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Proton-translocating transhydrogenase (NNT), found in the plasma membranes of 5	

bacteria and in the inner mitochondrial membranes, catalyses the proton translocation-6	

coupled transhydrogenation NADH + NADP+ + H+
out <-> NAD+ + NADPH + H+

in. 7	

Its physiological function is the generation of NADPH for anabolic reactions and 8	

oxidative status regulation, as well as potentially fine-tuning the Krebs cycle1,2. NNT 9	

deficiency causes familial glucocorticoid deficiency in humans and type II diabetes-10	

like abnormalities in mice (common strain C57BL/6J has dysfunctional 11	

transhydrogenase)3,4. The catalytic mechanism was proposed to involve a remarkable 12	

~180° rotation of the entire NADP(H)-binding domain that alternately participates in 13	

hydride transfer and proton channel gating but the details of this process remained 14	

obscure due to the lack of the high-resolution structures of intact NNT5,6. Here we 15	

report the first atomic structure of intact mammalian transhydrogenase, solved by 16	

cryo-EM in different conformational states. We show how the NADP(H)-binding 17	

domain opens the proton channel to the opposite sides of the membrane and provide 18	

structures of these two states. We also describe the catalytically important interfaces 19	

and linkers between the membrane and the soluble domains and their roles in 20	

nucleotide exchange. These structures allow us to propose a revised and detailed 21	

mechanism for a unique coupling process in transhydrogenase that is consistent with a 22	

large body of previous biochemical work. Results presented here are relevant for the 23	

development of currently unavailable NNT inhibitors with therapeutic potential in 24	

ischaemia reperfusion injury, metabolic syndrome and some cancers7–9.  25	



 26	

Main text 27	

Transhydrogenase always exists as a homodimer. Each monomer is composed of 28	

three domains, NAD(H)-binding dI, transmembrane dII and NADP(H)-binding dIII, 29	

split between one, two or three polypeptides (Fig. 1a, Extended Data Fig. 1). 30	

Structures of isolated domains and dI2dIII complexes from several species were 31	

solved in native, reduced or oxidised states, however, they failed to explain the unique 32	

mechanism of NNT which requires coordination of all the domains in the dimer10–14. 33	

The only intact architecture of NNT was determined at low resolution (6.9 Å) for the 34	

T. thermophilus enzyme in the presence of NADP+5. It showed that NNT is an 35	

asymmetric dimer, with one dIII being “face-up” (presenting NADP(H) to dI for 36	

hydride transfer) and the other dIII being “face-down” (with NADP(H) site facing 37	

dII) (Fig. 1b)5. This led to a proposal of a unique “division of labour” mechanism in 38	

which dIII rotates ~1800 and alternatively functions in proton translocation (face-39	

down) and hydride transfer (face-up)6. While being consistent with the T. 40	

thermophilus architecture and most of the previous biochemical work, in the absence 41	

of detailed structural information the mechanism was largely speculative and it failed 42	

to account for the different effects of NADP+/NADPH on the conformation of 43	

NNT15,16.  44	

 45	

To define the mechanism, we solved structures of a stable and active preparation 46	

of ovine NNT at pH 7.4 in the apo, NADP+-bound and NADPH-bound forms at up to 47	

2.9 Å resolution using cryo-EM (Extended Data Fig. 2-4). The only observed 3D 48	

class of particles in the apo-NNT dataset adopted an unexpected and previously 49	

unobserved “double face-down” conformation with both dIII domains tightly attached 50	



to dII in the “face-down” orientation (Fig. 1a). In the NADP+ dataset the main class 51	

showed a similar conformation, but with improved resolution, possibly due to the 52	

stabilising effects of the bound nucleotide (Fig. 1c and 2a, Extended Data Fig. 3 and 53	

5). NADP+ dataset also resulted in the structure of the less populated class (“single 54	

face-down”, Fig. 1b) in which one dIII is detached from dII, dI2 is more tilted and, 55	

importantly, the proton channel has different conformations in the two monomers, as 56	

discussed below (Extended Data Fig. 6). Excellent EM maps resulted in high quality 57	

full atomic models of mammalian NNT (Extended Data Fig. 5-6, Extended Data 58	

Table 1). Incubating NNT with NADPH induced global conformational changes, as 59	

predicted15,16, and we did not observe any “double face-down” class (Fig. 2a, 60	

Extended Data Fig. 4a). Only ~11 % of particles had one dIII weakly bound to dII and 61	

the rest of the particles corresponded to many different “double-detached” classes 62	

with both dIII domains detached and tethered only by a dII-dIII linker, which allowed 63	

striking tilting of dI2 in all directions (Fig. 2). We conclude that in the mammalian 64	

enzyme, NADP+ and NADPH on their own promote dIII detachment to various 65	

degrees but do not lead to a stable dI-dIII (face-up) interface formation.  66	

 67	

Some novel features of the structure, such as dI-dII linker, and other additional 68	

results are described in the Supplementary Discussion. The mammalian-specific 69	

helices TM1 and TM5 form an unexpected extended dII dimer interface, possibly 70	

stabilising mammalian NNT (Fig. 3a). The core fold of dII is conserved between T. 71	

thermophilus and ovine. The likely proton translocation pathway, as proposed earlier, 72	

is formed by TM3-4, TM9-10, and TM13-14, arranged in a hexagram5,17,18. We 73	

observed two conformations of the proton channel, depending on the attachment of 74	

the dIII domain, which inserts the helix 4 (residues 929-937) and the NADP+-75	



coordinating loop (residues 920-927) deeply between the key TM helices 3, 9 and 13, 76	

pushing them apart (Fig. 4a,b). Analysis of the proton channel in the dIII-attached 77	

state starting from the N-side (bacterial cytoplasm or mitochondrial matrix) indicates 78	

a narrow block followed by a group of conserved polar residues (His664, Asn796 and 79	

Asn489), a dry hydrophobic stretch and a cluster of negatively charged residues at the 80	

exit, appropriate for proton “gathering” from the P-side in forward reaction (Fig. 3b,c, 81	

Extended Data Fig. 6g). Strikingly, secondary structures of helices TM3 and TM9 are 82	

distorted around this region, signifying the conformational flexibility needed for the 83	

proton translocation (Fig. 3b).  84	

 85	

dIII detachment from dII induces a significant shift of the loops CL6/CL7, helix 86	

CL8 and the matrix-facing sides of TM9, 10, 11, 13 and 14 towards the centre of the 87	

dII, with up to 3.5 Å displacements (Fig. 4a). This results in a more compact packing 88	

of the helices making dIII-detached dII much more similar to the T. thermophilus dII 89	

(also detached from dIII) than dIII-attached dII (Extended data Fig. 7a,b). With dIII 90	

detached, the proton channel adopts a more closed conformation from the P-side 91	

(Extended data Fig. 7f,g). Dramatically, H664 flips “down” (towards P-side) and 92	

S799 “up”, in line with the MD predictions (Fig 4a, Extended Data Fig. 7c)17. H664 93	

becomes more accessible for protonation from the matrix side, both due to the re-94	

arrangements in the channel and, importantly, the removal of the dIII-NADP(H) 95	

“plug”, exposing the dII surface to the solvent (Fig. 3). Modelling of water molecules 96	

is consistent with this conclusion: in the dIII-attached dII one water molecule is bound 97	

above and one below the H664-N489-N796 ring while in the dIII-detached state, the 98	

P-side water molecule disappears and the S799 flips “downwards” (Extended Data 99	



Fig. 7d). Cryo-EM density of the highly coordinated P-side water molecule is visible 100	

in our 2.9 Å map (Extended Data Fig. 7e).  101	

 102	

The conformation of dIII bound to dII differs from crystal structures of isolated 103	

dIII at the interface-forming sites and in the nucleotide binding pocket (Fig. 4b, 104	

Extended Data Fig. 8a)10,11,14. Loop E (residues 1002-1010) is a transhydrogenase-105	

specific element that “occludes” the nucleotide in isolated dIII, preventing its 106	

exchange with the solution10,12. This loop is displaced by the dII CL7 and has only 107	

very weak density in our “double face-down” NADP+ structure, allowing NADP+ to 108	

insert deeply into the proton channel. In the apo-NNT structure, loop E is completely 109	

disordered allowing free exchange of nucleotide (Extended data Fig. 8b,c). dII 110	

binding also induces some opening around the ribose diphosphate, i.e. breaking of the 111	

R925-Y890 stacking interactions and the R925 bonds with the diphosphate that have 112	

not been observed in any dIII or dI2dIII crystal structures (Fig 4c)10,12. In apo-NNT, 113	

this opening is even more pronounced with R925 being rotated outwards (Extended 114	

Data Fig. 8c). We conclude that the NADP+ molecule is partially occluded in the 115	

face-down binding site, but less so than in the detached dIII.  116	

 117	

We can now revise the catalytic mechanism of transhydrogenase, involving dIII 118	

flipping as proposed earlier6, on the basis of our observations and previous functional 119	

and mutagenesis results (Extended Data Fig. 9a, Supplementary Tables 1-3), 120	

summarised in the following principal considerations.  121	

 122	

It has been well established from previous work that: a) dI remains open to 123	

nucleotide exchange throughout the reaction cycle as confirmed by high rates of 124	



binding of NAD(H) to dI during the catalytic cycle19,20. b) The dI-dIII interface is 125	

transient, hydride transfer is fast and does not limit the reaction21. c) When dIII is 126	

detached, bound NADP(H) is occluded, as shown by decreased Kd for NADP(H) in 127	

isolated dIII (~10-9 M) compared to intact enzyme (~10-6 M), copurification of bound 128	

nucleotide with isolated dIII and well-ordered and closed loop E in dIII 129	

structures10,12,22,23. H664 and R544 mutations which lead to dIII detachment also lead 130	

to co-purification with NADP(H)18,24.  131	

 132	

The following principle was speculatively proposed earlier6 and is now validated 133	

by our structures: d) The formation of the dII-dIII interface is necessary for nucleotide 134	

exchange, as shown by our structures demonstrating loop E opening (Extended Data 135	

Fig. 8). It is further validated by R544 mutants which disrupt the dII-dIII interface24.  136	

 137	

Crucial new insights from the structural data presented here are: e) Apo-dIII is 138	

attached to dII and can detach only when bound to NADP(H) (Fig. 2a). f) The proton 139	

channel is open only to the N-side when dIII is detached and only to the P-side when 140	

dIII is attached (Fig. 4, Extended Data Fig. 7). g) The dIII-NADP(H) detachment 141	

from dII depends on the protonation state of the key histidine in the proton channel 142	

(H664 in ovine). dIII-NADP+ is detached from protonated H664+ but is attached to 143	

the neutral H664. Vice versa, dIII-NADPH is detached from H664 and is attached to 144	

H664+. In other words, dIII-NADP(H) attachment modifies H664 pKa: bound 145	

NADPH promotes its protonation and NADP+ de-protonation. This pattern is 146	

consistent with the direct electrostatic interaction between H664 and the charged 147	

nicotinamide ring (positive in NADP+ and negative in NADPH) separated only by 148	

about 13 Å (Fig. 3e), much closer than 19 Å predicted previously5. The pKa of His664 149	



was experimentally estimated to be ~5.525, which is consistent with PROPKA 150	

calculations on our structures (suggesting pKa ~5). Since our datasets were collected 151	

at pH 7.4, when H664 is mostly de-protonated, we observed mostly attached dIII-152	

NADP+ and mostly detached dIII-NADPH, consistent with this proposal. dIII 153	

detachment from dII in the presence of NADP+ and H664+ is also validated by low 154	

pH-stimulation of NADP+-dependent cyclic reaction (hydride transfer from NADH to 155	

NAD+ via occluded NADP+)25,26. Cyclic reaction cannot inform us on specific 156	

NADPH effects as the main species in the NADPH-initiated cycle is still the occluded 157	

dIII-NADP+26. However, NADPH-stimulated dIII detachment at neutral-high pH has 158	

been demonstrated experimentally by stimulated trypsinolysis in the presence of 159	

NADPH (but not NADH/NAD+)15. We analysed the full pH dependence of 160	

trypsinolysis in the presence of all substrates and showed that NADPH stimulates 161	

trypsinolysis with increasing pH, while NADP+ stimulates it with decreasing pH 162	

(Extended Data Fig. 2e), validating the predicted H664-NADP(H) interactions. 163	

 164	

On the basis of these principles we propose a robust and elegant mechanism 165	

which explains the full reversibility of NNT, pH dependencies of reverse and cyclic 166	

reactions, effects of NADP+ and NADPH on the NNT conformation and is validated 167	

by the phenotypes of various mutants, particularly within the proton translocation 168	

pathway, E loop and dII-dIII interface (Fig. 5, Supplementary Video 1). Proton 169	

translocation and nucleotide exchange are tightly coupled by direct interactions 170	

between H664 and NADP(H): attachment/detachment of NADP(H)-bound dIII is 171	

strictly dependent on the protonation state of H664 and opens the proton channel to 172	

the opposite sides of the membrane. “Slipping”, or uncoupling, is prevented because 173	

proton translocation cannot happen without nucleotide exchange. The forward 174	



reaction occurs under conditions with high pmf and excess of NADP+. With dIII 175	

detached, H664 is unprotonated as it is exposed to the matrix with its relatively high 176	

pH (step 1, Fig. 5). After hydride transfer, dIII-NADPH swivels down and attaches to 177	

dII-H664, opening it to the P-side (step 2). This allows H664 protonation from the P-178	

side, where pH is lower (and His pKa is shifted higher due to interaction with 179	

NADPH). Nucleotide exchange follows, due to NADP+ excess and opened dIII (step 180	

3). dIII-NADP+ detaches from dII-H664+, which opens dII to the N-side where H664+ 181	

is de-protonated (step 4). dIII-NADP+ associates with dI, allowing for hydride transfer 182	

(back to step 1).  All the steps can be easily reversed in the appropriate conditions 183	

(high NADPH and low pmf), giving rise to the reverse reaction (Extended Data Fig. 184	

9b, Supplementary Discussion).  185	

     186	

This mechanism implies anti-phase action of two monomers, or “division of 187	

labour” as suggested previously6, which is absolutely necessary for bacterial enzymes 188	

without dI-dII linker, where one dIII has to be attached to dI2 at all times to prevent 189	

the loss of dI2. Mammalian NNT also demonstrates half-of-sites inhibition, 190	

catalytically inactive monomeric dI and negative cooperativity of NAD(H) and 191	

NADP(H) sites between monomers, strongly suggesting anti-phase mechanism27–29. 192	

The presence of dI-dII linker could make a strict anti-phase action less of a 193	

requirement for the mammalian enzyme, but such action would avoid steric clashes 194	

between independently functioning dIIIs and the swivelling “up” of one dIII is the 195	

best explanation for the initiation of the detachment, after hydride transfer, of the 196	

other dIII from dI2. The dI-dII linker could also contribute towards higher efficiency 197	

of the mammalian enzyme, as the dI-dIII interface can be weaker and allow for faster 198	

turnover. Biochemical data confirms that dI-dIII interaction in bacteria is much 199	



stronger than in mammals20,30. The existence of a unique auto-inhibited “double face-200	

down” conformation in mammalian NNT could be important for its additional 201	

regulation. Further data will be required to determine the significance of the anti-202	

phase action in NNT as well as to test all the implications of the proposed mechanism.  203	

204	
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Main Figure Legends 308	

Figure 1. Mammalian transhydrogenase.  309	

	a, Schematic representation of the domains, linkers, binding sites and conformation 310	

of the mammalian transhydrogenase in the “double face-down” (both dIII attached to 311	

dII) conformation (apo and NADP+ datasets). b, Other conformations of NNT present 312	

in our datasets (one or both dIII detached in the presence of NADP+ and NADPH), 313	

the asymmetric conformation in T. thermophilus (N.B. the absence of dI-dII linker) 314	

and the sterically prohibited double-face-up conformation. c, The cryo-EM density of 315	

transhydrogenase in the “double face-down” NADP+ state, with two monomers 316	

coloured differently. d, Atomic model of mammalian NNT with domains coloured as 317	

in panel a, and mammalian-specific elements dI-dII linker, TM1 and TM5 highlighted 318	

in blue. Bound nucleotides are shown in black.  319	

 320	

Figure 2. NADP(H) binding influences the overall conformation of 321	

transhyrogenase.  322	

a, Structures and relative abundancies of different conformations of NNT observed in 323	

the datasets. “Double face-down” conformation was the only form observed in apo-324	

NNT and the major form in the NADP+ datasets, “single face-down” or “one dIII-325	

detached” conformation was a minor form in NADP+ and NADPH datasets and 326	

“double dIII-detached” was a major form in NADPH dataset. b, NNT-NADPH 327	

particles were analysed using multibody refinement in RELION 3.0 using dI2 and dII2 328	

masks which revealed a high degree of tilting of dI2 domain in all directions, 329	

consistent with both dIII being dissociated from the rest of the particle and disrupting 330	

the overall solidity of the enzyme. Two bins of particles from the extreme ends of the 331	

distribution along two principal components are aligned by dII2 and the difference in 332	

dI2 tilt is depicted in different shades of yellow and green. 333	

 334	

 335	



Figure 3. The transmembrane dII domain and the proton translocation pathway 336	

in the “double face-down” conformation.  337	

a, Organisation of transmembrane helices in the NNT dimer. The monomer on the left 338	

is coloured blue-to-red from N- to C-terminus and the monomer on the right has the 339	

inner proton channel-lining TM helices highlighted in magenta and the outer 340	

scaffolding helices in pink. The dimer interface consisting of eight helices is 341	

significantly larger than the four-helix interface of T. thermophilus. b, Conserved 342	

residues of the proton transfer pathway. Dowser-predicted water molecules are shown 343	

as red spheres. The distorted a-helical area is indicated as 310 helix. c, Proton 344	

translocating pore features a narrow block close to the matrix (N) side and a dry 345	

stretch in the middle of the membrane. Four of the predicted water molecules lie 346	

within the central pore. d, Detailed view of the matrix proton entry site with 347	

conserved residues and hydrogen bonding network shown. e, Nicotinamide ring is 348	

bound 13 Å away from H664 allowing for electrostatic interactions. 349	

 350	

Figure 4. dIII attachment changes the conformation of the proton translocation 351	

pathway and opens the NADP(H)-binding pocket. 352	

	a, Comparison of dII in dIII-associated (cyan) and dissociated (green) states from 353	

“single face-down” structure. dIII dissociation results in the tilting of TM helices 354	

towards the central axis. Expanded views show rearrangement of the N-side proton 355	

entry side in dII. Notably, H664 and S799 flip and the surrounding N489 and N796 356	

change conformations significantly, opening the channel to the N-side when dIII is 357	

detached. b, The interface between dIII and dII. Helix 4 and loop D, which are 358	

conserved transhydrogenase-specific elements flanking the central Rossmann fold, 359	

form extensive contacts with the cytoplasmic loops of the dII. Loop E is displaced by 360	

dII binding. c, NADP(H) binding pocket comparison between ovine dIII-dII and 361	

human dIII-NADP+ (PDB 1djl, in grey) reveals breaking of R925 interactions with 362	

diphosphate and Y890. 363	

 364	



Figure 5. The catalytic mechanism of transhydrogenase 365	

NNT always works as a dimer. Key steps in the mechanism for the monomer in 366	

colour are described in the main text. The other monomer (grey) works in the anti-367	

phase fashion. Nucleotide in dIII exists in either occluded (full line) or open state 368	

(dashed line). Key check-point in the mechanism is that proton translocation across 369	

the membrane cannot proceed to completion without nucleotide exchange in step 3. 370	

The dIII-NADP(H) and dII-H664 interactions, ensuring this coupled reaction, can be 371	

summarised as follows, with (*) meaning strong interaction and (ßà) weak 372	

interaction or repulsion: 373	

NADP+ * H NADP+ ßà H+ 374	

NADPH * H+ NADPH ßà H 375	

376	



Methods 377	

Purification of transhydrogenase from ovine mitochondria 378	

All the described procedures were done at 4°C. Mitochondria were purified from 379	

fresh ovine heart tissue by differential centrifugation and stored at –80°C according to 380	

the Procedure 3 by Smith31. On the day of purification, inner mitochondrial 381	

membranes were isolated as described for the respiratory complex I purification32. 382	

Briefly, 10 g of mitochondria were ruptured by homogenisation in 100 mL milliQ 383	

water, membranes were separated by 45 min centrifugation at 50000 g and 384	

resuspended in 100 mL of buffer M (20 mM HEPES, pH 7.4, 40 mM NaCl, 1 mM 385	

EDTA, 10% v/v glycerol, 2 mM DTT and 0.002% PMSF). After another round of 386	

resuspension and centrifugation, membranes were resuspended in 50 mL of buffer M. 387	

LMNG (10 %) was added dropwise to this suspension to 1 % and after stirring for 45 388	

min, the sample was centrifuged at 50000 g for 45 minutes. The supernatant was 389	

filtered with a 0.22 µm filter and loaded onto a 45 mL Q-sepharose HP anion 390	

exchange column equilibrated in buffer Q-A (20 mM HEPES pH7.4, 40 mM NaCl, 2 391	

mM EDTA, 10% v/v glycerol, 1 mM DTT, 0.05% LMNG). Proteins were eluted with 392	

a 400 mL linear gradient with 0-17% Q-B buffer (Q-A buffer with 1 M NaCl). NNT 393	

eluted as a broad peak around 110 mM NaCl and fractions containing significant 394	

amounts of NNT based on the activity assay and the SDS-PAGE profile were pooled 395	

and dialysed overnight against a 10-fold volume excess of buffer D (20 mM MES, pH 396	

5.8, 2 mM EDTA, 10% v/v glycerol, 1 mM DTT, 0.01% LMNG). This lowered the 397	

pH and conductance of the sample below 6 and 2 mS/cm, respectively, and made it 398	

suitable for loading onto a 45 mL SP-Sepharose HP cation exchange column 399	

equilibrated in buffer SP-A (20 mM MES pH5.8, 10 mM NaCl, 2 mM EDTA, 10% 400	

v/v glycerol, 1 mM DTT, 0.025% LMNG). Elution with a 100 mL 0-20% linear 401	



gradient with buffer SP-B (SP-A with 1 M NaCl) gave a sharp elution peak of 402	

relatively pure NNT at around 35 mM NaCl (conductance 4 mS/cm). Fractions 403	

containing NNT were concentrated to 4 mg/mL using a 100 kDa cut-off concentrator 404	

and stored at 30% glycerol under liquid nitrogen. On the day of a cryo-EM grid 405	

preparation, a sample of NNT was thawed on ice and loaded onto a Superose 12 406	

10/300 gel filtration column equilibrated in buffer GF (20 mM HEPES, pH 7.4, 50 407	

mM NaCl, 1 mM EDTA, 0.002% LMNG) to remove excess detergent and remaining 408	

protein contaminants. The purest and the most concentrated fractions of NNT eluted 409	

at ~10.5 mL and were concentrated to 5 mg/mL using a Millipore 100-kDa cut-off 410	

filter and used immediately for cryo-EM grid preparation (Extended Data Fig. 2). In 411	

some purifications, 0.002% LMNG in GF buffer was substituted by 0.05% FOM, 412	

which gave a monodisperse and highly active NNT but grids suitable for cryo-EM 413	

data collection could not be prepared from FOM preparations as the protein started to 414	

aggregate on the grid at concentrations higher than 2 mg/mL. Apo form of our 415	

preparation lacked any bound nucleotide, as confirmed by the absence of cyclic 416	

reaction without the addition of exogenous NADP+ (data not shown). 417	

 418	

Electron microscopy 419	

0.05% CHAPS was added to the protein sample before grid preparation to improve 420	

the ice quality and the particle distribution. Substrates at 5 mM concentration were 421	

added to the protein 15-30 min before the grid preparation and the samples were 422	

incubated on ice. 2.7 µL protein sample was applied to a freshly glow-discharged 423	

Quantifoil 0.6/1 copper grid and blotted for 4-6 s using a blotting force of 25 at 4°C 424	

and 100% humidity in an FEI Vitrobot Mark IV. Grids were flash-frozen in liquid 425	

ethane and stored in liquid nitrogen until data-collection. NNT-NADP+ grids were 426	



imaged using a 300 kV Titan Krios electron microscope equipped with a Gatan 427	

energy filtered K2 summit camera with a slit width of 20 eV at The Astbury Centre 428	

for Structural Molecular Biology of the University of Leeds. NNT-NADPH grids 429	

were imaged using a 300 kV Titan Krios electron microscope equipped with a Gatan 430	

energy filtered K2 summit camera with a slit width of 20 eV at the CM01 beamline, 431	

ESRF, Grenoble. Images were collected with EPU in a K2 super-resolution mode 432	

with a nominal magnification of 130000x and a physical pixel size of 1.065 Å for 433	

NNT-NADP+ and 1.07 Å for NNT-NADPH dataset. Total dose of 72 e/Å2 (NNT-434	

NADP+) or 70 e/Å2 (NNT-NADPH) was fractionated into 40 frames of 250 ms each. 435	

Apo-NNT grids were imaged using a 300 kV Titan Krios electron microscope 436	

equipped with a Gatan energy filtered K3 camera with a slit width of 20 eV at the 437	

Institute of Science and Technology Austria. Physical pixel size was 0.84 Å and the 438	

total dose of 90 e/Å2 was fractionated into 88 frames of 36 ms each. 439	

 440	

Image processing 441	

We collected 2272 movies for the NADP+ dataset, 1722 movies for NADPH dataset 442	

and 786 movies for the apo-NNT dataset. The processing was done in RELION 2.133 443	

unless otherwise stated. Movie frames were aligned using MotionCor234 and initial 444	

CTF parameters were estimated from averaged images using CTFFIND35. 445	

Autopicking with 2D class averages as references resulted in 516395 particles for the 446	

NADPH dataset, 1076677 particles for the NADP+ dataset and 500001 particles for 447	

the apo dataset. Multiple rounds of 2D classification and 3D classification were 448	

performed to classify considerably heterogeneous particles in both datasets (Extended 449	

data Fig. 3,4). CTF parameters and per-particle trajectories in the best two classes 450	



from the NADP+ dataset were estimated and corrected (particle polishing) using 451	

RELION 3.036. Local resolution was estimated using Resmap 5.037.  452	

 453	

For the NADP+ dataset we performed one round of 2D classification followed by two 454	

rounds of 3D classification with 3x and 2x binned particles, respectively, which 455	

resulted in eight classes containing 342284 particles from which it was obvious that 456	

there is a considerable heterogeneity in the conformations of dI2 and dIIIb. To address 457	

this, the particles were re-extracted without binning and refined with a dII2dIII2 mask 458	

to 3.5 Å and then classified into ten classes without searches and without a mask to 459	

separate the particles based on the relative position of the dI2. By combining similar 460	

classes and auto-refining them, we separated six different states of NNT which differ 461	

from each other with respect to the positions of dI2 and dIIIb. Two of these classes 462	

were resolved to 13 Å, further two to 7 Å and the best two classes to 3.7 and 3.2 Å. 463	

From the latter two maps it was obvious that the density for dI2 was still weaker than 464	

for the rest of the particle, indicating remaining heterogeneity in the positions of dI2, 465	

hence the final maps for these two classes were produced by combining focus-refined 466	

maps of dII2dIII2 and dI2 parts. This gave the final map for class 1 (closed) with 2.9 Å 467	

resolution in the dII2dIII2 and 3.2 Å resolution in the dI2 and for class 2 (open) 3.5 Å 468	

resolution for the dII2dIII and 4.1 Å resolution for the dI2. Due to the poor quality of 469	

the map for the open class in some regions of dIIb (CL6,7,8), we hypothesised that 470	

there is still remaining conformational heterogeneity present in this class and we 471	

performed another round of classification of these particles with a mask around dIIb 472	

to sort out any particles with dIIIb attached/semi-attached to dII. This procedure 473	

removed 52% particles and we performed an auto-refinement with a dII2dIII mask of 474	

the remaining 28498 particles with dIIIb unambiguously detached. This resulted in a 475	



3.7 Å map with dIIb density much better resolved and clearly different from the 476	

density of dIIa (which has dIII attached) and was used for model building. 477	

 478	

For the NADPH dataset, we performed one round of 2D classification followed by 479	

one round of 3D classification on 510073 3x binned particles with the same 480	

parameters as in the NADP+ dataset, which failed to yield any class with visible 481	

secondary structural features. We performed extensive classifications of these 482	

particles into 4-20 classes with T values between 4 and 12 and different filtering of 483	

the reference volumes which all failed to give a single well-defined class with 484	

secondary structural features. Nevertheless, we selected 405141 particles from the 485	

best 4 classes from a classification with T=8 and k=6 (same as for NADP+ dataset) for 486	

further classification attempts. Another round of extensive classifications was 487	

performed on this particle stack with the best results obtained from a T=8, k=20 run. 488	

Even in this run only ~6 classes had well-defined features corresponding to the 489	

domains of NNT. These 6 classes were re-extracted and refined which gave structures 490	

at 8.3, 9.2, 13, 16, 16, and 16 Å and revealed a high degree of dI2 and dIII mobility 491	

(Extended Data Fig. 4a). To address this, we tried to refine the 405141 particles 492	

together into one consensus structure at 13 Å, followed by focused refinement of 493	

either dI2 or dII2 but neither of these strategies yielded structures better than 9 Å, 494	

probably due to the too large conformational heterogeneity within the consensus 495	

refinement. Furthermore, dI2 and dII2 are only 80 kDa each and dII2 is obscured by a 496	

micelle which further complicates the alignment of such a heterogeneous dataset. 497	

Finally, we performed multi-body refinement in RELION 3.0 starting from the 498	

consensus refinement of 405141 particles and using masks for the two bodies: dI2 and 499	

dII2. This yielded a 9 Å reconstruction of dI2 and 10 Å reconstruction of dII2 but more 500	



importantly, the principal component analysis showed the striking degree of dI2 501	

mobility in these particles (Fig. 2de). This is not unexpected as upon dIII dissociation, 502	

dI2 remains only loosely tethered to the rest of the particle by a flexible dI-dII linker.  503	

 504	

The apo-NNT dataset was fully processed in RELION 3.0. We manually selected 643 505	

good images and extracted 3x binned particles. Only one conformation of NNT could 506	

be observed using various 3D classification schemes, hence the 283706 particles 507	

corresponding to it were extracted without binning and auto-refined to 4.5 Å. From 508	

this structure it was clear that dI2 exhibits the same heterogeneity as in the NADP+ 509	

dataset. To improve the resolution in the dII-dIII, we focus-refined around this region 510	

and classified the particles without searches into 6 classes. The best class with 67908 511	

particles was auto-refined and polished to reach the resolution of 3.7 Å. Further 512	

polishing or subclassification of this class did not improve the resolution further. 513	

Attempts at focus-refinement of dI2 did not improve its resolution compared to the 514	

polished full structure of the final selected particles in which local resolution in dI2 515	

was ~5 Å. We conclude that dI2 without bound nucleotide exhibits even more 516	

disorder than when NAD+ is bound, possibly allowing NAD(H) exchange and dI2 517	

binding/release.  518	

 519	

Model building and refinement 520	

The initial model was built into the “double face-down” NADP+ class density by 521	

starting with the bovine dIII crystal structure with substituted ovine sequence and the 522	

dI homology model that was generated using Phyre2 server38. dII model and the 523	

linkers were built manually in Coot39. Manually adjusted models were refined using 524	

PHENIX software40 using an adapted method for refining cryo-EM structures which 525	



uses two rounds of a single cycle of group ADP refinement followed by three cycles 526	

of global minimization. This allows optimization of B-factors so that electron 527	

radiation-damaged carboxylate side-chains acquire high B-factors and do not lead to 528	

main-chain distortions (Letts et al, 2019, in press). The final model for NNT is of very 529	

high quality in terms of geometry and fit to density (Supplementary Table 1).  530	

Densities for several lipid molecules were observed in each of the half-closed cavities 531	

formed by helices TM1, TM2 and TM6 (Extended Data Fig. 5g, 6g-h). They were 532	

modelled in the structure as phosphatidylcholines based on their density appearance 533	

and the fact that only phosphatidylcholine could reactivate lipid-depleted insect 534	

NNT41.  535	

A density corresponding to the adenylate part of NAD+ was observed in the NAD(H) 536	

binding site of the dI (Extended Data Fig. 5j,k). We propose that this density is NAD+ 537	

which remained bound to the enzyme during purification or, more likely, was 538	

introduced into the sample as a contaminant from the NADP+ solution. Our NADP+ 539	

was only 98% pure and at 2% NAD+ contamination, NAD+ concentration would be 540	

100 µM which is in the range of the Kd for the enzyme23,28. The latter is supported by 541	

the fact that in our structure the conserved R139 is in the same extended conformation 542	

as in the E. coli dI2 with bound NAD+ and differs significantly from the apo or 543	

NADH-bound forms13. Nevertheless, our structure is a bona fide oxidised ground 544	

state conformation of NNT and earlier biochemical work suggests that nucleotide 545	

exchange in dI subunit can happen during any stage of the catalytic cycle and does not 546	

influence the global conformation of the enzyme15,16,42,43. Models for the “single face-547	

down” NADP+ class and the apo NNT were based on the “double face-down” NNT as 548	

the starting model. For apo NNT, due to the lack of reliable amino acid side chain 549	



information in the cryo-EM density of dI domain, dI was modelled as a polyalanine 550	

model based on the 6QTI dI and fit into the density as a rigid body.   551	

Structure analysis and preparation of figures 552	

Evolutionary conservation scores were projected onto the transhydrogenase structure 553	

using ConSurf44 (Extended Data Fig. 1b). Buried water molecules were modelled 554	

using the original Dowser software (Fig. 3, Extended Data Fig. 7)45. Proton 555	

translocation pore was predicted and analysed using a MOLEonline server46. 556	

Interdomain contacts and binding energy of nucleotides were analysed using the PISA 557	

server47,48. Models were evaluated using MolProbity and EMRinger49,50. Clustal 558	

Omega was used for sequence alignment51,52. Models and density maps were 559	

visualised for analysis and figure preparation purposes in PyMOL 2.2.3 and UCSF 560	

Chimera53. 561	

Activity measurements and trypsinolysis 562	

Reverse transhydrogenation activity was measured at 30°C spectrophotometrically by 563	

following the APAD+ (3-acetylpyridine adenine dinucleotide; NAD+ analogue; e = 564	

5.1 mM-1 cm-1) reduction at 375 nm using a Shimadzu UV-2600 UV-VIS 565	

spectrophotometer. Background absorption at 455 nm was subtracted from absorption 566	

at 375 nm. Reaction buffer was similar to the minimal EDTA-containing buffer used 567	

before (20 mM Tris-HCl, pH 6.8, 50 mM NaCl, 0.5 mM EDTA, 0.1% CHAPS, 0.25 568	

mg/mL lipids, 100 µM NADPH and 100 µM APAD+)25. For lipids we used soybean 569	

asolectin or DOPC:CL 4:1 mixture with similar results. Reaction was started with the 570	

addition of NNT. Activity depended on the type of detergent used during the final size 571	

exclusion chromatography step. Preparations in FOM gave slightly higher activity 572	



(~20 U/mg) than in LMNG (~15 U/mg). These values compare favourably to 573	

previous measurements25,54. 574	

Trypsinolysis was performed as described previously with a few changes15. NNT at 575	

0.05 mg/ml in GF buffer with 1 mM HEPES pH 7.4 was incubated with 0.4 mM 576	

nucleotides, trypsin (at different mass ratios) and 60 mM BAT buffer (1:1:1 Bis-Tris, 577	

acetate, tricine) at pH 5-8. Due to the pH optimum of trypsin being ~8, mass ratio 578	

between 1:400 and 1:40 and incubation times between 30 and 60 min were used at 579	

different pH values to achieve comparable rates of proteolysis.  580	

Proteoliposome reconstitution 581	

NNT was reconstituted into proteoliposomes using a detergent dilution procedure as 582	

described before25. Briefly, NNT purified in FOM or in LMNG was mixed with a 583	

500-fold excess of DOPC solubilised in 1% CHAPS. Following a 10 min incubation 584	

on ice, the solution was diluted 100-fold and incubated on ice for 3-5 hours before 585	

measuring the activities. Reaction was started by substrate additions (NADPH and 586	

APAD+ at 100 µM). CCCP (10 µM) was added after 1 min to decouple the proton 587	

gradient across proteoliposomes to assess the dependence of the transhydrogenation 588	

reaction on the proton motive force. After another 1 min, CHAPS (0.05%) was added 589	

to solubilise proteoliposomes and give a total decoupled reverse transhydrogenation 590	

activity of both inward and outward facing transhydrogenases.  591	

592	
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Extended Data Legends 687	

Extended Data Fig. 1. Comparison of model transhydrogenases from 688	

different species (T. thermophilus, R. rubrum, E. coli, O. aries and H. 689	

sapiens) 690	

a, The domain split and organisation of transhydrogenase in the four model species. 691	

dII-dIII linker is conserved in all transhydrogenases, while the dI-dII linker and TM1 692	

are limited to NNTs with a-b polypeptide split (e.g. E. coli) and single polypeptide 693	

NNTs (metazoans, including mammals). TM5 is only present in metazoans. b, 694	

Residue conservation scores (calculated in Consurf, coloured cyan to magenta from 695	

low to high conservation) mapped on the structure of a single monomer of 696	

transhydrogenase. The most highly conserved regions are the proton translocation 697	

pathway, nucleotide binding sites and dI-dIII, dII-dIII and dI-dI interfaces. c, The 698	

architecture of mammalian dII. Supernumerary helices TM1 and TM5 are coloured in 699	

a darker shade of blue. Residues of the proton transfer pathway are shown in circles. 700	

310-helix stretch within TM3 is depicted as a triangular helix. d, Alignment of 701	

conserved residues on TM3, TM9, TM13, TM14 and CL7 and CL8 important for 702	

proton translocation and reaction coupling in T. thermophilus (Tt), R. rubrum (Rr), E. 703	

coli (Ec), O. aries (Oa) and H. sapiens (Hs). T. thermophilus and a handful of other 704	

species with an NGXGG motif on TM9 have the protonatable histidine on TM3 705	

(a2H42 in T. thermophilus) while most other species that share an HSXXG motif on 706	

TM9 have the protonatable histidine on TM9 (bH91 in E. coli and H664 in O. aries). 707	

 708	

Extended Data Fig. 2. Purification and biochemical characterisation of 709	

ovine transhydrogenase 710	

a, Ovine NNT was purified chromatographically. The last step of purification, size 711	

exclusion chromatography, in two different detergents, FOM and LMNG, is shown. 712	

SDS-PAGE shows the presence of ~110 kDa polypeptide of NNT. Highest purity 713	

fractions around ~10.5 mL were pooled and concentrated for cryo-EM sample 714	

preparation. c, NNT is highly active and stable when purified in LMNG as shown by 715	



undiminished activity over several days when stored at 4°C. Error bars represent 716	

standard deviations based on n=3 independent measurements. d, Reconstitution of 717	

purified NNT into DOPC liposomes shows that the reverse transhydrogenation 718	

reaction is tightly coupled to proton transfer as it is stimulated ~10-fold by proton 719	

gradient uncoupler CCCP and by solubilisation in CHAPS detergent. Error bars 720	

represent standard deviations based on n=3 independent measurements. e, 721	

Trypsinolysis of NNT at different pH in the presence of substrates. 110 kDa full NNT 722	

and previously identified15 66 and 43 kDa fragments are labelled with asterisks. As 723	

pH decreases from 8 to 6, NADPH-induced proteolysis diminishes relative to that 724	

induced by NADP+. At pH 5 trypsin produces different fragments, but stabilisation of 725	

the intact NNT by NADPH is evident. Trypsinolysis was performed independently 726	

three times with similar results. NNT purification was repeated independently ten 727	

times with similar results as shown in panels a-b. For gel source data, see 728	

Supplementary Figure 1. 729	

 730	

Extended Data Fig. 3. Processing of NNT-NADP+ dataset   731	

Thorough classification of particles resulted in six distinct classes with different 732	

domain orientations and resolutions. Best-resolution class (“double face-down” NNT) 733	

is almost symmetric with both dIIIs bound in the ‘face-down’ position while the other 734	

five have only one dIII bound in the face-down position and the other dIII detached 735	

and the dI2 tilted at different angles. Simultaneous opening of dI2 and dissociation of 736	

dIIIb is probably necessary to permit full dIIIb rotation during the catalytic cycle. 737	

Monomers with dIII detached from dII also show weak or no density for dI-dII linker 738	

which suggests that it detaches from dIII to allow dI2 to open.  739	

 740	

Extended Data Fig. 4. Processing of Apo-NNT and NNT-NADPH datasets 741	

a, NNT bound to NADPH exhibited a large degree of conformational flexibility, 742	

which prevented a high-resolution (beyond 8 Å) refinement of any class of particles. 743	

Classification into 20 classes revealed that only a small proportion (~5%) of particles 744	



have one dIII bound to dII in the face-down orientation (class C). Another ~10% have 745	

partially detached dIII (classes A and B). A vast majority, however, have both dIIIs 746	

dissociated from the other domains leading to a large degree of freedom of movement 747	

of dI2 and both dIIIs independently of each other (see classes D, E and F). b, Apo-748	

NNT exhibited a single conformational class similar to the “double face-down” NNT 749	

class in the presence of NADP+.  750	

 751	

Extended Data Fig. 5. Examples of protein and ligand cryo-EM density 752	

All examples are from the “double face-down” class in the presence of NADP+, 753	

unless otherwise stated. a, Density of the transmembrane helices lining the proton 754	

channel (TM3 and 13). b, Density comparison of the TM2 between the “double face-755	

down” and “single face-down” (dIII-detached monomer) NADP+ classes, as well as 756	

apo class, which remains in the same conformation upon dII opening while TM9 757	

changes (Extended Data Fig. 6c). c, Beta sheet density of dI. d, Beta sheet density of 758	

dIII. e, a-helical segment of dI. f, a-helical segment of dIII. g, Two phosphatidyl-759	

cholines bound in the cavity enclosed by TM1, 2 and 6. h, dIIIa-NADP+ density. i, 760	

dIIIb-NADP+ density. j, Partial NAD+ density in dIa. k, Partial NAD+ density in dIb. 761	

The density for lipids and putative NAD+ is discussed in Methods.  762	

 763	

Extended Data Fig. 6. Comparison of “double face-down” and “single 764	

face-down” NNT-NADP+ conformations and apo-NNT.   765	

a, Local resolution and FSC curves for the “double face-down” NNT-NADP+ 766	

structure. b, Local resolution and FSC curves for the “single face-down” NNT-767	

NADP+ structure. c, Local resolution and FSC curves for the apo NNT structure. d, 768	

Overall comparison of “double face-down” (cyan) and “single face-down” (green) 769	

classes of NNT. An increased dI tilt, dIIIb detachment and dIIb conformation change 770	

are visible. e, Comparison of the two monomers in the “closed” NADP+ class as 771	

viewed from the dimerization interface reveals a tilt of dI2 and asymmetry in dI-772	

dIIIa/b contacts. f, Overall comparison of “double face-down” NNT-NADP+ (cyan) 773	



and apo NNT. dII-dIII are in the same conformation and dI2 is slightly more tilted in 774	

the apo-NNT. g, Electrostatic surface potential of the proton entry cavities on the 775	

matrix (bottom) and IMS sides (top) as well as that of the membrane-facing side 776	

(right). h, Hydrophobicity of residues on the surface of dII2 (coloured white to red 777	

from hydrophobic to hydrophilic). Surface-exposed tyrosine and tryptophan residues, 778	

which often delineate lipid membrane surface, are highlighted in green and the lipid-779	

binding pocket is circled. 780	

 781	

Extended Data Fig. 7. Changes in the proton translocation channel upon 782	

dIII detachment and comparison between ovine and T. thermophilus dII 783	

a, Comparison of T. thermophilus dII (salmon, PDB 5UNI) and “double face-down” 784	

(dIII attached) ovine dII (cyan, supernumerary TM1 and TM5 in blue). Residues in 785	

the N-side cavity display markedly different conformations. b, Comparison of T. 786	

thermophilus dII (salmon, PDB 5UNI) and “single face-down” (dIII-detached 787	

monomer) ovine dII (blue). Residues in the N-side cavity match more closely as both 788	

of these dII structures are detached from dIII. c, Comparison of the TM9 density in 789	

the “double face-down”, “single face-down” (dIII-detached monomer) and apo dII 790	

clearly displaying a H664 flip in the dIII-detached dII. d, Comparison of Dowser-791	

predicted waters in the dIII-attached (cyan) and dIII-detached (green) dII. The dIII-792	

attached structure has two water molecules, one below and one above the N-side 793	

proton gate while the dIII-detached structure only has one water molecule above the 794	

gate, consistent with the proposal that channel is open to P-side when dIII is attached. 795	

e, Density for a water molecule coordinated between H664 and S492, consistent with 796	

Dowser-predicted water is beginning to show in our cryo-EM density. f, Proton 797	

pathway profile (calculated in Mole 2.5) in dIII-attached dII reveals a diameter 798	

constriction between N-side and H664, a hydrophobic stretch between H664 and 799	

E806 and a negatively charged P-side proton entry site. g, Proton pathway profile in 800	

the dIII-detached dII. Additional constriction appearing between H664 and P-side 801	

upon dIII detachment is indicated. 802	

 803	



Extended Data Fig. 8. Different conformations of dIII   804	

a, A homology model of the asymmetric ovine NNT based on the T. thermophilus 805	

dI2dIII heterotrimer structure (PDB 4J16). N.B. putative interacting residues at the 806	

dIIIup-dIIIdown interface. dI-dII linker contacts the loop D of dIII in the face-down 807	

conformation. D942 and Y941 from dIII form hydrogen bonds with R544 on CL2 808	

loop stabilising the dII-dIII interface. Helix 4 and loop D also contribute towards 809	

formation of the dI-dIII interface but Y941 is too far to interact with dI. b, 810	

Comparison of ovine dIII (red) with R. rubrum isolated dIII (PDB 1PNO: chain A in 811	

blue and chain B in green). Helix 4, loop D and loop E are all more open around the 812	

nucleotide in the ovine structure but the nucleotide is occluded by the interactions 813	

from the dII residues (not shown) in the ovine “face-down” structure. c, Comparison 814	

of the NADP(H) binding site in “double face-down”-NNT (left) and apo-NNT (right). 815	

Loop E, K999 and R1000 are disordered in apo-NNT and R925 flips into an outward-816	

facing orientation, opening the site to the solvent. 817	

 818	

Extended Data Fig. 9. Validation of the mechanism and the reverse 819	

transhydrogenation mechanism 820	

a, Summary of the biochemical evidence and mutagenesis data supporting the 821	

proposed mechanism. Full description of mutants in E. coli, R. rubrum and human 822	

patient mutations are in Supplementary Tables 1-3. b, Our proposal for reverse 823	

reaction. Reverse transhydrogenation reaction consumes NADPH and NAD+ and 824	

results in proton pumping, supporting proton motive force (pmf). The driving forces 825	

for this reaction are the nucleotide ratios and low pmf which promotes protonation of 826	

H664 from the matrix side.  827	

 828	

Extended Data Table 1. Cryo-EM data collection, refinement and 829	

validation statistics 830	

 831	
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Supplementary Information 

 

Supplementary Discussion 

 

Mammalian-specific features of NNT 

The twelve conserved transmembrane helices in mammalian NNT adopt the same 

fold as demonstrated in the isolated T. thermophilus dII domain1,2. The supernumerary 

helices TM1 and TM5 form an unexpected extended dII dimer interface. Relatively large tilt 

of the TM1 allows its strong association over a large contact area with the TM5 of the 

opposite monomer, possibly stabilizing dimer formation in mammals (Fig. 3a). The 

connection from the dI domain via TM1 to TM5 of the opposing monomer may also help in 

the coordination of the catalytic cycle events between the monomers as discussed below. 

The dI-dII linker present in transhydrogenases with single and double polypeptide 

split (Extended Data Fig. 1a) was resolved here for the first time. The C-terminal part of the 

linker (residues 410-424) forms a loosely defined a helix which contacts dIII in the ‘face-

down’ orientation. V412 and T411 from the linker interact with residues N974-P977 of the 

loop D (residues 974-986) on dIII. This explains why K410-T411 bond is protected from 

trypsinolysis in the apo and NADP+-bound state (Fig. 1c,d, Extended Data Fig. 8a)3. The N-

terminal region of the dI-dII linker (400-410) is a flexible loop and only displays very weak 

density. In the dIII-detached state, the density for the C-terminal part of the linker disappears, 

which could indicate partial unfolding of the helix to accommodate an increased distance 

between dI and dII.  

The only catalytically important conformation that we did not observe in our 

structures is the face-up dIII conformation since it is likely that the dI-dIII interface formation 

requires binding of the corresponding nucleotide to dI and, once formed, has a very short life 

span as the hydride transfer is fast4–6. In contrast to the bacterial enzymes, the architecture of 

mammalian NNT with its dI-dII linker may prevent the observation of a stable face-up dIII 

conformation, although this remains to be established in future studies. Structures of dI2dIII 

heterotrimers from T. thermophilus and R. rubrum demonstrated that only one copy of dIII 

can bind to dI2 at a time due to steric clashes7–10. The symmetry of the “double face-down” 

state, most likely specific to single polypeptide transhydrogenases, is broken due to the tilting 

of dI2, which interacts loosely with dIII in one monomer (dIIIa) and not at all in another 

(dIIIb) (Extended Data Fig. 6e). The overall architecture of the dimer does not allow for tight 



interactions between dI and dIII in both monomers, whether dIII is facing “up” or “down”. 

On the other hand, dIII-dII interaction is permitted in both monomers simultaneously. 

 

Comparison of proton translocation machinery between ovine and T. thermophilus NNT 

All transhydrogenases have a single key protonatable histidine at the N-side of dII, 

either on TM3 (a2H42 in T. thermophilus) or on TM9 in E. coli and mammals (bH91/H664) 

(Extended Data Fig. 1d and 7a,b). MD simulations of T. thermophilus enzyme2 showed that 

protonation of this histidine induces a transient opening of the transmembrane proton channel 

between a2H42 and bE221 (ovine H664 and E806) accompanied by a flip of bT214. This 

role could be played by the ovine homologue S799 or by S492, a homologue of T. 

thermophilus a2H42, or by a non-conserved T495 (Fig. 3b)2. The latter two residues sit on a 

clear and significant distortion of helix TM3, i.e. two turns of 310 helix (the only such 

distortion in dII, Fig. 3b). A similar distortion is present (but was not discussed) around 

a2H42 in the TM3 of T. thermophilus dII (PDB 5UNI and 4O93). Furthemore, in TM9, the 

backbone oxygen atoms of residues 661, 662 and 667 are facing away from the helix-forming 

hydrogen bond network. Such disruptions of secondary structure in TM helices happen 

almost exclusively in functionally important sites, where flexibility of otherwise rigid TM 

helices is required11,12, consistent with our conclusion that these key TM3 and TM9 residues 

undergo conformational changes associated with proton translocation during the catalytic 

cycle, as observed in dII upon dIII attachment/detachment (Fig. 4).  

The differences between ovine and T. thermophilus dII are also in the P-side 

(intermembrane space) cavity, gated by a conserved residue E806 which in ovine dII is in an 

extended conformation in contrast to the T. thermophilus structures, with T674 and E678 

allowing access to the P-side. Residues at the P-side of the proton transfer path are generally 

much less conserved between species than at the N-side. The P-side entry cavity in mammals 

also has a stronger negative charge (Extended Data Fig. 6g), appropriate for the attraction of 

protons in the forward reaction.  

In contrast to what has been suggested for the T. thermophilus enzyme, dIII 

attachment to dII does not change the conformation of the short lateral helix CL8 nor does it 

disrupt the conserved salt bridge R839-D787 (Extended data Fig. 8c)1.  

 

Detailed explanation of the mechanism 



As outlined in the main text, the excess of NADP+ and pmf will promote forward 

reaction in the cycle shown in Fig. 5. After a full cycle and hydride transfer back at step 1, 

subsequent dIII dissociation from dI in step 2 is unlikely to be initiated by hydride transfer 

itself as it is a fast step and dI2dIII structures were solved with many combinations of bound 

nucleotides7,10. However, NNT always operates as a dimer, in which the two dIII domains 

cannot simultaneously attach to the dI dimer, as noted above. Therefore, as the second 

monomer (in grey in Fig. 5) goes through a similar cycle as the first monomer (in colour), the 

second dIII, swivelling up after detachment from dII, will clash with the already bound dIII 

from the first monomer and dislodge it, initiating its flip “down” in step 2, resuming the 

cycle. This sequence of events ensures tight coupling between hydride transfer, nucleotide 

exchange and proton translocation. “Slipping”, or uncoupling, at any step is prevented 

because proton translocation cannot happen without nucleotide exchange. For example, step 

3 (Fig. 5) cannot progress to step 4 and switch proton channel access unless there is 

nucleotide exchange – only the dIII-NADP+ and H664+ combination will allow dIII 

dissociation and dII opening to the N-side. If nucleotide exchange does not happen, bound 

dIII-NADPH will interact strongly with H664+ and prevent dIII detachment and dII opening 

to the N-side. In other words, two half-paths of proton across the membrane (up to H664 and 

after) in both forward and reverse reactions are connected only by nucleotide exchange, 

excluding any uncoupling.  

In the reverse reaction, when pmf is low and there is an excess of NADPH, all the 

steps are naturally reversed, resulting in proton pumping into the P-side (Extended Data Fig. 

9b). After hydride transfer, dIII-NADP+ is dislodged by an incoming dIII from the opposing 

monomer and is attached to dII with protonated H664+ (as pH is now lower in the matrix) 

(steps 1-2). This opens the channel to the P-side and H664 loses its proton there, as its pKa is 

reduced due to interaction with NADP+ (step 2). Nucleotide exchange follows due to the 

excess of NADPH (step 3) and dIII-NADPH swivels “up”, due to its low affinity to neutral 

H664, back to step 1. In both forward and reverse reactions, NAD+/NADH formed in dI in 

step 1 would be exchanged for NADH/NAD+ before step 4 completes, so that the cycle can 

resume, since dI remains open throughout. 

The proposed mechanism ensures tight coupling also close to the equilibrium 

conditions. We can simply consider all possibilities. After hydride transfer in step 1, dIII 

associates with dII, allowing nucleotide exchange. Subsequent to nucleotide exchange 

possible scenarios will be as follows:  



1. If it is dIII-NADP+ and H664+ (weak dIII-dII interaction), then dIII would be 

flipped up first, then dII is closed from periplasm and opened to cytoplasm, so that proton is 

released into the cytoplasm – this is forward reaction, when there is excess of NADP+.  

2. If it is dIII-NADP+ and H664 (strong dIII-dII interaction), dIII will remain 

attached to dII until H664 is protonated from the periplasm. This prevents slipping of forward 

reaction. After H664 protonation dIII will be flipped up and proton released into the 

cytoplasm, in the forward reaction as above. 

3. If it is dIII-NADPH and H664 (weak dIII-dII interaction), dIII will flip up 

first, then dII will close to the periplasm and open to cytoplasm, allowing H664 protonation 

from the cytoplasm - this is reverse reaction, when there is excess of NADPH.  

4. If it is dIII-NADPH and H664+ (strong dIII-dII interaction), dIII will remain 

attached to dII until H664 is de-protonated into the periplasm. This prevents slipping of 

reverse reaction. After H664 de-protonation, dIII can flip up and dII will close to the 

periplasm and open to cytoplasm, allowing H664 protonation from the cytoplasm, in the 

reverse reaction as above.  

5. In the apo state, dIII remains attached to dII, preventing proton leak.  

 

Thus, we achieve tight coupling between hydride transfer and proton translocation, 

without any slipping, at all conditions – either favourable for forward or reverse reaction, or 

close to equilibrium. Close to equilibrium the overall net direction of reaction will depend on 

the pmf value and nucleotide ratios. 

 

Communication between the two monomers 

The mechanism outlined above and previous biochemical data imply strong coupling 

between the two monomers resulting in their ‘anti-phase’ action. Our structures suggest 

different ways in which the two monomers can communicate with each other, in addition to 

one dIII dislodging another one from dI.  

Rotation of one dIII into the face-up position (modelled on dI2dIII crystal structures) 

would bring the two dIII domains much closer together than in the “double face-down” 

structure, so that they can form many hydrogen bonds without clashing and so interact when 

swivelling (Extended Data Fig. 8a).  

dI dimer is stabilised by a large buried surface extended by an elongated hairpin 

(ovine residues 172-184) reaching out from each monomer into the neighbour8,13,14. The 

hairpin from one dI monomer interacts only weakly or not at all with the “face-down” dIII in 



another monomer (as seen in our structures), but strongly with the “face-up” dIII (as in 

dI2dIII crystal structures). This hairpin originates directly from the Rossmann fold 

coordinating the NAD(H) in the first monomer, which may allow for communication of the 

redox state from one dI monomer to the other.  

Additionally, in mammalian enzyme the dI-dII linker contacts the dIII from one 

monomer and is continued by the TM1, which forms extensive interactions with the TM5 and 

the TM4-5 loop from another monomer, which in turn directly contact dIII from that 

monomer (Fig. 1d). This feature, in addition to the TM1/TM5 dimer stabilisation, may allow 

for more efficient dIII cross-talk. Together, all these possible routes of communication may 

allow for the two monomers to work more effectively in an anti-phase fashion. 

 

 



Supplementary Table 1. Catalytic activities of site-directed mutants in E. coli NNT 

 
Homol-

ogous 

ovine 

residue 

E. coli mutation 
Reverse 

activity  

Cyclic 

activity 

Proton 

pumping 

activity 

Notes Structural and mechanistic explanation if conserved Reference 

D214 D195E 8% N/A N/A forward activity inhibited by ~79% part of the NAD(H)-binding pocket 15 

Y245 Y226F ~40% N/A 31% ~3x increase in Km for APAD+ part of the NAD(H)-binding pocket - mobile loop 16 

Y245 Y226L 38% N/A 13% ~3x increase for APAD+ part of the NAD(H)-binding pocket - mobile loop 16 

Y245 Y226H 45% N/A 28-42% ~3x increase for APAD+ part of the NAD(H)-binding pocket - mobile loop 16 

Y245 Y226N 43% N/A 51% N/A part of the NAD(H)-binding pocket - mobile loop 16 

K251 D232N 45% N/A 67% N/A  17 

K251 D232E 89% N/A 110% N/A  17 

K251 D232K 75% N/A 65% N/A  17 

K251 D232H 84% N/A 98% N/A  17 

E257 E238Q 71% N/A 18% N/A part of the NAD(H)-binding pocket 17 

E257 E238K 41% N/A 27% N/A part of the NAD(H)-binding pocket 17 

K259 E240Q N/A N/A N/A 3x increased Km for APAD+ but not for NADH  17 

 
triple D232N 

E238Q E240Q 
55% N/A 59% 

lower inhibition by DCCD than wt, both in the presence and 

absence of NAD(P)H 
 17 

 
triple D232H 

E238Q E240Q 
44% N/A 51% 

lower inhibition by DCCD than wt, both in the presence and 

absence of NADH(P)H 
 17 

A454 E423C >75% N/A N/A   18 

Y470 Y439F 41% N/A 38%  part of the lipid binding pocket at the dimer interface 19 

A479 A448C 50-75% N/A N/A  part of the dII-dIII interface 18 

H481 H450T 17% N/A 51% Greatly lowered activity but still pumps protons part of the dII-dIII interface 20 

H481 H450T 26% 3000% 21%  part of the dII-dIII interface 21 

T488 T457A 80% N/A 109%  immediate vicinity to the proton pumping residue N489 19 

N489 N458A 66% N/A 44%  part of the proton pumping machinery 19 

S492 S461 51% N/A 67%  immediate vicinity to the proton pumping residue N489 19 

 
triple T457A 

N458A S461A 
9% N/A 22%   19 

G505 Q474C >75% N/A N/A   18 

L507 G476C 93% 81% N/A 

double mutants with cysteines on other cytoplasmic loops 

generated and cross-linked; activities were mainly preserved 

(above 50%) 

 22 

N527 N492A 54% N/A 78%  immediate vicinity to the proton pumping residue N489 19 

L533 T498C >75% N/A N/A   18 

T535 T500A 49% N/A 56%  not part of proton transfer pathway 19 

Q536 Q501C >75% N/A N/A  not part of proton transfer pathway 18 

R537 R502S 71% N/A 93%  not part of proton transfer pathway 17 

540-545 D(505-510) 6% 371% N/A 
NADP+ independent cyclic activity increased by 35x - 

enzyme co-purifies with NADP+ at 0.2 mol/mol 

CL2 (esp. R544) is important for dII-dIII interface formation, deletion of this loop locks the enzyme in the 

dIII-detached state, explaining the copurification with NADP+, increased cyclic activity and decreased 
23 



reverse activity, because NADP(H) cannot exchange without dIII interacting with dII 

543-545 D(508-510) 50% 253% N/A NADP+ independent cyclic activity increased by 306% 

CL2 (esp. R544) is important for dII-dIII interface formation, deletion of this loop locks the enzyme in the 

dIII-detached state, explaining the increased cyclic activity and decreased reverse activity, because 

NADP(H) cannot exchange without dIII interacting with dII 

23 

R544 K509E 50% 201% N/A NADP+ independent cyclic activity increased by 168% 

R544 important for dII-dIII interface formation, mutation of this residue locks the enzyme in the dIII-

detached state, explaining the increased cyclic activity and decreased reverse activity, because NADP(H) 

cannot exchange without dIII interacting with dII 

23 

G573 S2C 100% 95% N/A   18,22 

L595 L24C ~15% N/A N/A  not part of proton transfer pathway, buried residue 18 

A601 S30C >75% N/A N/A   18 

R602 R31A 19% 8% 8%  stabilises CL3, TM5 and TM6 24 

R602 R31E >120% 61% >120%  stabilises CL3, TM5 and TM6 24 

R602 R31L 41% 15% 46%  stabilises CL3, TM5 and TM6 24 

N605 N34A 59% N/A 79%  not part of proton transfer pathway 19 

N605 N34T >120% 92% >120%  not part of proton transfer pathway 24 

P627 T54C 
50% or 

>75% 
65% N/A   18,22 

K649 K76Q 99% 95% ~100%  not part of proton transfer pathway 24 

R650 K77A 9% 4% 11%   24 

R650 K77L 13% 4% 19%   24 

R650 K77Q 49% 46% 62%   24 

S654 T81C 50-75% N/A N/A   18 

D655 E82K 79% N/A 66%   20 

D655 E82Q 63% or 49% N/A 
85% or 

63% 
  19,20 

Q658 E85A 9% 19% 9%  N-terminal part of the TM9 which undergoes changes during dIII attachment 24 

Q658 E85C 4% or 50-75 3% 8%  N-terminal part of the TM9 which undergoes changes during dIII attachment 18,24 

Q658 E85K 15% 4% 14%  N-terminal part of the TM9 which undergoes changes during dIII attachment 24 

Q658 E85L 8% 5% 7%  N-terminal part of the TM9 which undergoes changes during dIII attachment 24 

Q658 E85Q 3% or 63% 2% 4% or 71%  N-terminal part of the TM9 which undergoes changes during dIII attachment 19,24 

Q658 E85S 22% 6% 20%  N-terminal part of the TM9 which undergoes changes during dIII attachment 24 

 
triple E79Q 

E82Q E85Q 
55% N/A 94%   19 

H664 H91A 7% 10% 0% 

H664 is a key residue for proton translocation and based on 

its protonation state stabilises face-down dIII-NADP+ or dIII-

NADPH 

Mutation to small and nonpolar residue stabilised NNT in a face-down conformation, hence no cyclic or 

reverse activity measurable 
24 

H664 H91C 
12% or 3% 

or 24% 
11% 

7% or 0% 

or 0% 

No conformational change in b chain induced by NADP(H) 

binding - as measured by bR265 susceptibility to trypsin 

Mutation to small and uncharged residue stabilised NNT in a face-down conformation, hence no cyclic or 

reverse activity measurable and NADP(H) cannot induce change of conformations 
20,24,25 

H664 H91D 9% or 25% 
240% or 

12% 
6% or 0%  Cyclic activity data conflicting; NNT could be trapped either in dIII-attached or detached conformations; 

based on H91E mutation, dIII-attached conformation is more likely 
24,26 

H664 H91E 15% 3% 0%  Negatively charged residue stabilised NNT in a face-down conformation; hence no cyclic or reverse activity  24 

H664 H91G 27% 15% 0%  Mutation to small and uncharged residue stabilised NNT in a face-down conformation, hence radically 

reduced cyclic or reverse activities  
24 

H664 H91I 28% 6% 2%  Mutation to nonpolar residue stabilised NNT in a face-down conformation, hence radically reduced cyclic 24 



and reverse activities  

H664 H91L 18% 11% 2%  Mutation to nonpolar residue stabilised NNT in a face-down conformation, hence radically reduced cyclic 

and reverse activities  
24 

H664 H91K 
4% or 2% or 

5% or 4% 

260% or 

120% or 

3-20% 

20% or 

30% or 1% 

Also increases NADP+ independent cyclic activity by 40x - 

copurifies with 0.2 mol NADP+ per mol; present in NADP(H) 

induced conformation as shown by susceptibility to 

trypsinolysis at bR265; Measured at large nucleotide conc. 

(0.5mM NADPH, 1mM APAD for reverse; 1mM NADH or 

0.5mM NADP+ and NADH each); 

positive charge on H91 promotes dissociation of dIII- NADP+, hence increased cyclic activity and co-

purification with NADP+; substitution for a bulky Lys at this crucial site prevents NADP(H) insertion and 

locks dII in the detached state 

23–27 

H664 H91M 16% 3% <1%  Mutation to nonpolar residue stabilised NNT in a face-down conformation, hence radically reduced cyclic 

and reverse activities  
24 

H664 H91N 

80% or 86% 

or 66% or 

18% 

8% or 

44% 

7% or 0% 

or 0% or 

7% or 4% 

Proton transfer activity is inhibited 
NNT trapped in the face-down conformation; Asn cannot be protonated, hence complete inhibition of proton 

transfer and reduced reverse/cyclic activities as detachment of dIII is dysregulated 
21,24–26 

H664 H91R 1% or 7% 
228% or 

8% 
25% or 0% 

pH dependence of reverse activity disrupted - shifted towards 

acidic pH, pH dependence of cyclic activity stays the same; 

retains 0.8 mol NADP(H) per dimer 

consistent with H91K mutant: positive charge on H91 promotes dissociation of dIII- NADP+, hence 

increased cyclic activity and co-purification with NADP+; NADP(H) cannot insert into dII stabilised in N-

side open state 

26 

H664 H91S 19% or 6% N/A 11% or 8% 
No conformational change in b chain induced by NADP(H) 

binding - as measured by bR265 susceptibility to trypsin 

Mutation to small and uncharged residue stabilised NNT in a face-down conformation; hence no reverse 

activity measurable and NADP(H) cannot induce change of conformations 
20,25 

H664 H91T 11% or 2% N/A 8% or 8% 
No conformational change in b chain induced by NADP(H) 

binding - as measured by bR265 susceptibility to trypsin 

Mutation to small and uncharged residue stabilised NNT in a face-down conformation; hence no reverse 

activity measurable and NADP(H) cannot induce change of conformations 
20,25 

H664 H91V 17% 3% 0%  Mutation to small and non-polar residue stabilised NNT in a face-down conformation; hence no cyclic or 

reverse activity measurable and NADP(H) cannot induce change of conformations 
24 

H664 H91W 3% 3% 0%  Bulky residue stabilised dII in a dIII-attached state, hence no reverse and cyclic activities 24 

H664 H91Y 7% 8% 1%  Bulky residue stabilised dII a dIII-attached state, hence no reverse and cyclic activities 24 

S665 S92A 
>120% or 

53% 
95% 

>120% or 

78% 
 not part of proton transfer pathway 19,24 

S665 S92C >75% N/A N/A  not part of proton transfer pathway 18 

G668 G95A 56% 45% 44% 
no cyclic activity without NADPH; rev. act measured at 200 

µM substrates, cyclic at 10 µM NADPH 
not part of proton transfer pathway 28 

E678 S105C 
37% or 

>75% 
85% N/A   18,22 

I681 

E682 

double H108N 

H109N 
51% N/A 69%   19 

E682-

F685 
deltaH109-G112 58% 49% N/A 

b domain was split into two my introducing a stop codon at 

H109 
 29 

T688 A114C ~15% N/A N/A   18 

V698 E124C 15% >100% N/A 
pH dependence of reverse activity shifted toward acidic - 

max. rate at pH6 
 22 

V698 E124K 46% 30% 36%   24 

V698 E124A 28% 68% 41%   24 

V698 E124Q 41% N/A 150%   19 

G706 G132A 101% 70% 101% 
no cyclic activity without NADPH; rev. act measured at 200 

µM substrates, cyclic at 10 µM NADPH 
not part of proton transfer pathway 28 

T709 T135A 73% 52% 31%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

T709 T135C 55% 13% 16%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 



T709 T135D 71% 6% 28%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

T709 T135K 5% 100% 1%  not part of proton transfer pathway but in close vicinity to be able to distort local environment; bulky residue 

could stabilise detached dII, giving rise to retained cyclic activity 
24 

T709 T135L 33% 77% 9%  not part of proton transfer pathway but in close vicinity to be able to distort local environment; bulky residue 

could stabilise detached dII, giving rise to retained cyclic activity 
24 

T709 T135S 23% 17% 12%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

S711 T137A 100-120% 70% 100-120%  not part of proton transfer pathway 24 

G712 G138A 57% 34% 32% 
no cyclic activity without NADPH; rev. act measured at 200 

µM substrates, cyclic at 10 µM NADPH 
not part of proton transfer pathway 28 

S713 S139A 6% 12% 0%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

S713 S139C 34% 63% 33%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

S713 S139D 2% 4% 0%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

S713 S139G 83% 31% 41%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

S713 S139H 1% 2% 0%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

S713 S139K 2% 4% 0%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

S713 S139L 4% 6% 0%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

S713 S139N 3% 3% 0%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

S713 S139T 96% 77% 71%  not part of proton transfer pathway but in close vicinity to be able to distort local environment 24 

S713 
triple T135A 

T137A S139A 
29% N/A 155%   19 

A716 A142C >75% N/A N/A  not part of proton transfer pathway but in close vicinity to be able to distort local environment 18 

K719 K145A 44% 21% 50%  Important for maintaining integrity of dII (stabilises CL6 by salt bridge to the main chain), hence inhibition 

of all activities 
24 

K719 K145E 46% 57% 67%  Important for maintaining integrity of dII (stabilises CL6 by salt bridge to the main chain), hence inhibition 

of all activities 
24 

K719 K145L 19% 23% 2%  Important for maintaining integrity of dII (stabilises CL6 by salt bridge to the main chain), hence inhibition 

of all activities 
24 

K719 K145T 29% N/A 71%  Important for maintaining integrity of dII (stabilises CL6 by salt bridge to the main chain), hence inhibition 

of all activities 
19 

I723 K149Q 49% 58% 67%   24 

A727 K153A 17% 16% 19%   24 

A727 K153Q 50% 60% 7%   24 

L731 A157C >75% N/A N/A   18 

R734 R160A 45% 18% 3%  Important for maintaining integrity of dII (stabilises CL6 by salt bridge to the main chain of CL8), hence 

inhibition of all activities 
24 

R734 R160L 97% 40% 68%  Important for maintaining integrity of dII (stabilises CL6 by salt bridge to the main chain of CL8), hence 

inhibition of all activities 
24 

H735 H161S 90% N/A 100%  not part of proton transfer pathway or structurally important 20 

H735 H161T 88% or 98% 122% 
108 or 

110% 
 not part of proton transfer pathway or structurally important 20,21 

H735 H161C 59% N/A 94% Little effect not part of proton transfer pathway or structurally important 20,21 

N738 N164T >120% >120% 100-120%  not part of proton transfer pathway or structurally important 24 

G747 L173C 50-75% N/A N/A   18 

S757 S183C 50% or 65% N/A  faces the IMS, no catalytic role 18,22 



>75% 

S767 I193C N/A N/A N/A  no catalytic role 18 

A782 S208C >75% N/A N/A   18 

D787 D213A 13% 14% 4%  
Important for integrity of dII and transmission of conformational changes between dII and dIII (stabilises 

CL7 and CL8 by salt bridge to R839); mutant stabilised in face-down state and all the activities were 

inhibited 

24 

D787 D213E 34% or 20% 28% 
77% or 

18% 
 Mutation to a similar residue gives a milder but noticeable phenotype 24,26 

D787 D213G 2% 3% 0%  
Important for integrity of dII and transmission of conformational changes between dII and dIII (stabilises 

CL7 and CL8 by salt bridge to R839); mutant stabilised in face-down state and all the activities were 

inhibited 

24 

D787 D213H 82% N/A 34%  Mutation to a similar residue gives a milder but noticeable phenotype 20 

D787 D213I 11% 62% N/A 
Decreased Km(NADPH) from 33 µM to 9.1 µM; decreased 

S0.5 for NADPH from 2.7 to 0.27 µM in cyclic reaction 

Important for integrity of dII and transmission of conformational changes between dII and dIII (stabilises 

CL7 and CL8 by salt bridge to R839); mutant stabilised in dIII-detached state as suggested by decreased 

Km(NADPH) and less affected cyclic activity 

30 

D787 D213K 7% or 4% 8% 49% or 5%  
Important for integrity of dII and transmission of conformational changes between dII and dIII (stabilises 

CL7 and CL8 by salt bridge to R839); mutant stabilised in face-down state and all the activities were 

inhibited 

24,26 

D787 D213N 23% or 92% 67% 44% 
Decreased Km(NADPH) from 33 µM to 20 µM; decreased S0.5 

for NADPH from 2.7 to 0.43 µM in cyclic reaction 

Important for integrity of dII and transmission of conformational changes between dII and dIII (stabilises 

CL7 and CL8 by salt bridge to R839); mutant stabilised in dIII-detached state as suggested by decreased 

Km(NADPH) and less affected cyclic activity 

20,30 

D787 D213L 4% 6% 3%  
Important for integrity of dII and transmission of conformational changes between dII and dIII (stabilises 

CL7 and CL8 by salt bridge to R839); mutant stabilised in face-down state and all the activities were 

inhibited 

24 

D787 D213R 5% 33% 28% or 6%  
Important for integrity of dII and transmission of conformational changes between dII and dIII (stabilises 

CL7 and CL8 by salt bridge to R839); mutant stabilised in face-down state and all the activities were 

inhibited 

24,26 

D787 
double D213N 

E82Q 
25% N/A 81%   19 

M788 M214C 50-75% N/A N/A  part of CL7 and in close vicinity to dII-dIII interface 18 

V790 V216C 50-75% N/A N/A  close vicinity to proton translocation pathway 18 

T793 S219A 100% >120% >120%  close vicinity to proton translocation pathway 24 

T793 S219C 50-75% N/A N/A  close vicinity to proton translocation pathway 18 

N796 N222A 18% or 9% 
17% or 

4% 
0% or 10%  part of proton translocation pathway; mutation to a small nonpolar residue stabilises the face-down dIII 

conformation, hence inhibition of all activities 
19,24,26 

N796 N222C 58% or 48% 
59% or 

24% 

11% or 

30% 
 

part of proton translocation pathway, hence proton transfer activity affected the strongest; mutation to a 

small uncharged residue also stabilises the face-down dIII conformation, hence intermediate inhibition of 

reverse and cyclic activities as well 

19,24,31 

N796 N222D 
13% or 21% 

or 15% 

100% or 

23% or 

7% 

22% or 

13% or 

14% 

 Not entirely consistent measurements, introduction of negative charge at N796 appears to favour dIII-

attached conformation and favours face-down dIII 
19,24,26 

N796 N222G 2% or 11% 
2% or 

5% 
0% or 10%  part of proton translocation pathway; mutation to a small nonpolar residue stabilises the face-down dIII 

conformation, hence inhibition of all activities 
24,31 

N796 N222H 
7% or 35% 

or 12% 

114% or 

18% or 

4% 

7% or 0% 

or 4% 
 

Different measurements not entirely consistent; N796 part of proton translocation pathway, hence proton 

transfer activity affected the strongest; mutation to a small uncharged residue also stabilises the face-down 

dIII conformation, hence intermediate inhibition of reverse and cyclic activities as well 

19,24,26 

N796 N222K 3% or 11% 15% 13% or 0% retains 0.58 mol of NADP(H) per dimer Part of proton translocation pathway next to H664; confirms observations on H91K/R mutants; low cyclic 24,26 



activity not entirely consistent 

N796 N222L 52% 28% 1%  Part of proton translocation pathway next to H664; mutation to a nonpolar residue stabilises the face-down 

dIII conformation, hence inhibition of all activities 
24 

N796 N222Q 15% 16% 0%  Part of proton translocation pathway next to H664; introduction of a larger residue stabilises the face-down 

dIII conformation, hence inhibition of all activities 
24 

N796 N222R 
2% or 2% or 

3% 

214% or 

9% or 

57% 

13% or 0% 

or 11% 
retains 0.44 mol of NADP(H) per dimer 

Part of proton translocation pathway next to H664; confirms observations on H91K/R mutants: dIII-

detached NNT copurifies with NADP(H) and catalyses cyclic reaction 
19,24,26 

N796 N222S 3% 1% 0%  Part of proton translocation pathway next to H664; mutation to a nonpolar residue stabilises the face-down 

dIII conformation, hence inhibition of all activities 
24 

N796 N222Y 3% or 3% 
7% or 

3% 
0% or 6%  Part of proton translocation pathway next to H664; mutation stabilises the face-down dIII conformation, 

hence inhibition of all activities 
19,24 

N796, 

H664 

double N222H 

H91N 
2% N/A 8%  part of proton translocation pathway, mutant stabilised in face-down dIII conformation, underlines the 

sensitivity of this area to small changes 
26 

S797 S223A >120% >120% >120%  not part of proton transfer pathway but in close enough vicinity to be able to distort local environment 24 

Y798 Y224F 83% or 49% 
>120% 

or 93% 

95% or 

92% 
 not part of proton transfer pathway but in close enough vicinity to be able to distort local environment 24,31 

Y798 
double Y224F 

N222A 
8% 5% 10%  not part of proton transfer pathway but in close enough vicinity to be able to distort local environment 19 

S799 S225A 87% 88% 57%  consistent with S799 participating in proton translocation as the proton translocation activity is inhibited 

more than hydride transfer activity in the mutant enzyme 
24 

S799 S225C ~30% N/A N/A  consistent with S799 participating in proton translocation as the proton translocation activity is inhibited 

more than hydride transfer activity in the mutant enzyme 
18 

S799, 

S797 

double S223A 

S225A 
107% N/A 101%  close vicinity to proton translocation pathway 19 

G800 G226A 50% 70% 32% 
no cyclic activity without NADPH; rev. act measured at 200 

µM substrates, cyclic at 10 µM NADPH 
close vicinity to proton translocation pathway 28 

G807 G233A 49% 31% 30% 
no cyclic activity without NADPH; rev. act measured at 200 

µM substrates, cyclic at 10 µM NADPH 
close vicinity to proton translocation pathway 28 

N811 S237C 
81% or 

>75% 
>100% N/A  part of IL7 18,22 

N812 N238A 62% N/A 100%  part of IL7 19 

N812 N238C 50% 100% N/A  part of IL7 32 

N813 D239C 
10% or 50-

75% 
70% N/A   18,32 

L814 L240C 40% 120% N/A  close vicinity to proton translocation pathway and part of TMH14 important for transmitting dIII-induced 

changes in dII 
32 

L815 L241C 40% 60% N/A  close vicinity to proton translocation pathway and part of TMH14 important for transmitting dIII-induced 

changes in dII 
32 

T816 I242C 0% 0% N/A   32 

I817 V243C 30% 40% N/A   32 

V818 T244C 40% 30% N/A   32 

G819 G245C 25% 0% N/A  close vicinity to proton translocation pathway 32 

G819 G245L 20% 50% N/A  close vicinity to proton translocation pathway 32 

G819 G245A 104% 58% 100%  close vicinity to proton translocation pathway 28 

A820 A246C 140% 170% N/A  close vicinity to proton translocation pathway 32 



L821 L247C 30% 200% N/A  close vicinity to proton translocation pathway 32 

I822 V248C 40% 170% N/A   32 

G823 G249A 79% 71% 77%  close vicinity to proton translocation pathway 28 

G823 G249C 40% 0% N/A  close vicinity to proton translocation pathway 32 

G823 G249L 70% 50% N/A  close vicinity to proton translocation pathway 32 

S824 S250A >120% >120% >120%  close vicinity to proton translocation pathway 24 

S824 S250C 
250% or 

>75% 
170% N/A Cyclic activity sensitive to phosphatase treatment close vicinity to proton translocation pathway 18,32 

S825 S251A >120% >120% 77%  close vicinity to proton translocation pathway 24 

S825 S251C 130% 250% N/A Cyclic activity sensitive to phosphatase treatment close vicinity to proton translocation pathway 32 

S825 
double S250A 

S251A 
95% N/A 115%  close vicinity to proton translocation pathway 19 

G826 G252A 2.6% 96% 0% 

Also increases NADP+ independent cyclic activity by 20x – 

because NADPH remains bound to enzyme; measured both in 

membranes and purified NNT 

direct contact with N796; substitution with any bulkier residue distorts the proton translocation pathway and 

prevents binding of dIII; consistent with co-purification with NADP(H) and high cyclic activity 
28 

G826 G252C 1.9% 85% 1.6% 

Also increases  NADP+ independent cyclic activity by 20x – 

because NADPH remains bound to enzyme; measured both in 

membranes and purified NNT; Karlsson report lower (~20% 

cyclic activity) 

direct contact with N796; substitution with any bulkier residue distorts the proton translocation pathway and 

prevents binding of dIII; consistent with co-purification with NADP(H) and high cyclic activity 
28,32 

G826 G252S 2.4% 83% 1% 

Also increases  NADP+ independent cyclic activity by 20x – 

because NADPH remains bound to enzyme; measured both in 

membranes and purified NNT 

direct contact with N796; substitution with any bulkier residue distorts the proton translocation pathway and 

prevents binding of dIII; consistent with co-purification with NADP(H) and high cyclic activity 
28 

G826 G252T 2.3% 101% 0% 

Also increases  NADP+ independent cyclic activity by 20x – 

because NADPH remains bound to enzyme; measured both in 

membranes and purified NNT 

direct contact with N796; substitution with any bulkier residue distorts the proton translocation pathway and 

prevents binding of dIII; consistent with co-purification with NADP(H) and high cyclic activity 
28 

G826 G252V 2.5% 22% 0% 
Also increases  NADP+ independent cyclic activity by 4.5x – 

because NADPH remains bound to enzyme 

direct contact with N796; substitution with any bulkier residue distorts the proton translocation pathway and 

prevents binding of dIII; consistent with co-purification with NADP(H) and high cyclic activity 
28 

G826 G252L 10% 20% N/A  direct contact with N796; substitution with any bulkier residue distorts the proton translocation pathway and 

prevents binding of dIII; consistent with co-purification with NADP(H) and high cyclic activity 
32 

A827 A253C 50% 150% N/A  close vicinity to proton translocation pathway 32 

I828 I254C 30% 100% N/A  close vicinity to proton translocation pathway 32 

L829 I255C 80% 150% N/A   32 

S830 S256A 89% >120% 95%  close vicinity to proton translocation pathway 24 

S830 S256C 220% 150% N/A Cyclic activity sensitive to phosphatase treatment close vicinity to proton translocation pathway 32 

Y831 Y257F >120% >120% >120%  close vicinity to proton translocation pathway 24 

Y831 Y257C 70% 120% N/A  close vicinity to proton translocation pathway 32 

Y831 
double S256A 

Y257F 
88% N/A 69%  close vicinity to proton translocation pathway 19 

I832 I258C 70% 80% N/A  important in switching dII between the two conformations; mutant switches more slowly 32 

M833 M259C 20% 220% N/A Cyclic activity not sensitive to phosphatase treatment important in switching dII between the two conformations; mutant locked in dIII-detached conformation 32 

C834 S260C 
44% or 78% 

or 250% 

130% or 

100% 
57% 

No increase of NADP+ independent cyclic activity; Karlsson 

et al 2003 report enchanced reverse transhydrogenation 

activity 

Measurements not entirely consistent; this residue is important in switching dII between the two 

conformations 
20,23,32 

C834 S260C 23% ~50% N/A done in cysteine-free NNT important in switching dII between the two conformations 33 

V835 K261C 8% ~40% N/A done in cysteine-free NNT  33 



A836 A262C 
8% or 50-

75% 
~60% N/A 

done in cysteine-free NNT; also measured labelling of this 

cysteine by a maleimide MIANS; stimulated by NADP+ and 

to a lesser degree NADPH addition 

important in switching dII between the two conformations; mutant slightly stabilised in dIII-detached 

conformation based on cyclic activity 
18,33 

M837 M263C 5% ~50% N/A done in cysteine-free NNT 
important in switching dII between the two conformations; mutant slightly stabilised in dIII-detached 

conformation based on cyclic activity 
33 

N838 N264C 10% ~30% N/A done in cysteine-free NNT 
important in switching dII between the two conformations; mutant slightly stabilised in dIII-detached 

conformation based on cyclic activity 
33 

R839 R265C 8% 100% N/A 

3x higher NADP+ independent cyclic activity, paradoxically 

increased Km for NADPH from 7 µM  to 17 µM; done in 

cysteine-free NNT; pH optimum for reverse reaction shifted 

towards acidic pH (~6.5) 

Maintains integrity of dII and transmits conformational changes between dII and dIII; mutant locked in dIII-

detached conformation, hence reverse activity inhibited more than cyclic activity 
33 

R839 R265A 20% ~150% N/A 
pH optimum for reverse reaction shifted towards acidic pH 

(~6.5) 

Maintains integrity of dII and transmits conformational changes between dII and dIII; mutant locked in dIII-

detached conformation, hence reverse activity inhibited more than cyclic activity 
33 

R839 R265E 8% ~90% N/A 
pH optimum for reverse reaction shifted towards acidic pH 

(~6.5) 

Maintains integrity of dII and transmits conformational changes between dII and dIII; mutant locked in dIII-

detached conformation, hence reverse activity inhibited more than cyclic activity 
33 

R839 R265K 34% ~130% N/A 
pH optimum for reverse reaction shifted towards acidic pH 

(~6.5) 

Maintains integrity of dII and transmits conformational changes between dII and dIII; mutant locked in dIII-

detached conformation, hence reverse activity inhibited more than cyclic activity 
33 

R839 
R265C AND 

D213C 
5% ~30% N/A 

NADP(H)-independent cyclic activity N/A; done in cysteine-

free NNT;  

Maintains integrity of dII and transmits conformational changes between dII and dIII; mutant locked in dIII-

detached conformation, hence reverse activity inhibited more than cyclic activity 
33 

S840 S266C 69% ~90% N/A 
2.4x higher NADP+ independent cyclic activity, Km for 

NADPH 5.3 µM 
not part of catalytic machinery 33 

G848 G274A 72% 45% N/A  not part of catalytic machinery 34 

G848 G274D 50% 63% N/A  not part of catalytic machinery 34 

G848 G274V 57% 39% N/A  not part of catalytic machinery 34 

G850 G276A 60% 42% N/A  not part of catalytic machinery 34 

G850 G276V 40% 16% N/A  not part of catalytic machinery 34 

G850 G276F 41% 29% N/A  not part of catalytic machinery 34 

G889 G314A 7% or 4% 
3% or 

0% 
N/A 

No increase of NADP+ independent cyclic activity; 

trypsinolysis of b subunit not stimulated by NADP(H) 
part of the NADP(H) binding pocket, mutation prevents NADP(H) binding, hence all activities inhibited 23,34,35 

G889 G314E 1% 0% 0% 
spontaneous mutation in E. coli RH1 strain;  trypsinolysis of 

b subunit not stimulated by NADP(H) 
part of the NADP(H) binding pocket, mutation prevents NADP(H) binding, hence all activities inhibited 34–36 

G889 G314C 1% 0% N/A  trypsinolysis of b subunit not stimulated by NADP(H) part of the NADP(H) binding pocket, mutation prevents NADP(H) binding, hence all activities inhibited 34,35 

G889 G314V 1% 0% N/A  trypsinolysis of b subunit not stimulated by NADP(H) part of the NADP(H) binding pocket, mutation prevents NADP(H) binding, hence all activities inhibited 34,35 

Y890 Y315H 28% N/A 63%  part of the NADP(H) binding pocket, also involved in opening of dIII 16 

Y890 Y315I 4% N/A N/A  part of the NADP(H) binding pocket, also involved in opening of dIII 16 

Y890 Y315F 62% N/A 60% Phe mutant 50% activity and pumps protons part of the NADP(H) binding pocket, also involved in opening of dIII 16 

Y890 Y315D 6% N/A N/A  part of the NADP(H) binding pocket, also involved in opening of dIII 16 

Y890 Y315N 25% N/A 20%  part of the NADP(H) binding pocket, also involved in opening of dIII 16 

Y890 Y315V 4% N/A N/A  part of the NADP(H) binding pocket, also involved in opening of dIII 16 

Y890 Y315L 13 N/A N/A  part of the NADP(H) binding pocket, also involved in opening of dIII 16 

A894 V319G 55% N/A N/A trypsinolysis pattern the same as wild-type  34 

G912 G337A 68% N/A N/A trypsinolysis pattern the same as wild-type not part of catalytic machinery 34 

G912 G337D 95% N/A N/A trypsinolysis pattern the same as wild-type not part of catalytic machinery 34 

G912 G337E 93% N/A N/A trypsinolysis pattern the same as wild-type not part of catalytic machinery 34 



G912 
double V319G 

G337D 
11% N/A N/A trypsinolysis pattern the same as wild-type not part of catalytic machinery 34 

H920 H345C 250% N/A 26% done in isolated dIII; retains less NADP(H) 
very close to the NADP(H) binding site, destabilises nucleotide binding, making exchange possible even 

when not bound to dII, hence decoupled phenotype 
37 

H920 H345N 8% or 7% 830% 12% 
additional trypsin fragment of b subunit; NADP(H)-

stimulated b subunit cleavage still present 

very close to the NADP(H) binding site, stimulates nucleotide binding, hence high cyclic and low reverse 

activities 
21,34 

H920 H345Q 18% or 17% 22% 30% 
additional trypsin fragment of b subunit; NADP(H)-

stimulated b subunit cleavage still present 
very close to the NADP(H) binding site, slows down nucleotide exchange inhibiting all activities 21,34 

 
double G337D 

H345Q 
5% N/A N/A fully cleaved in the absence of substrates  34 

 
triple V319G 

G337D H345Q 
1% N/A N/A   34 

A923 A348C 825% N/A 67% done in isolated dIII; retains 60% NADPH, 34% in apo form 
part of the NADP(H) binding pocket, destabilises nucleotide binding, making exchange possible even when 

not bound to dII, hence decoupled phenotype 
37 

R925 R350C 250% or 4% 7% 41% 
done in isolated dIII; 24% with NADP+, 30% with NADPH, 

46% in apo form 

part of the NADP(H) binding pocket, coordinates diphosphate; NADP(H) binding is destabilised and 

exchange possible even when not bound to dII, hence decoupled phenotype 
34,37 

R925 R350S 4% 1% N/A  part of the NADP(H) binding pocket, coordinates diphosphate; NADP(H) binding is destabilised in mutant 34 

R925 R350G 5% 0% N/A  part of the NADP(H) binding pocket, coordinates diphosphate; NADP(H) binding is destabilised in mutant 34 

R925 
double H345Q 

R350G 
1% N/A N/A fully cleaved in the absence of substrates Trapped in dIII-detached conformation without the nucleotide bound 34 

R925 
triple V319G 

H345Q R350G 
1% N/A N/A fully cleaved in the absence of substrates Trapped in dIII-detached conformation without the nucleotide bound 34 

R925 
triple G337D 

H345Q R350G 
0% N/A N/A fully cleaved in the absence of substrates Trapped in dIII-detached conformation without the nucleotide bound 34 

R925 

quadruple 

V319G G337D 

H345Q R350G 

1% N/A N/A fully cleaved in the absence of substrates Trapped in dIII-detached conformation without the nucleotide bound 34 

Q929 H354Q 10% 78% 10%   21 

Q929 H354Y 11% 11% 11%   21 

E936 E361Q 20% 40% 113%  at the edge of the dII-dIII interface, stabilising effect on the interface, such that its formation is not strictly 

controlled by the nucleotide exchange, hence decoupled phenotype 
38 

E946 E371Q 71% 78% 34%  at the edge of the dII-dIII interface 38 

E949 E374L 63% 708% 33%  not part of catalytic machinery; stabilises dIII in the detached state 38 

D958 D383L 49% 79% N/A  not part of catalytic machinery 38 

D958 D383R 92% 123% N/A  not part of catalytic machinery 38 

A965 A390C 74% 106% N/A  close to the NADP(H) binding site but facing away from it 37 

D967 D392C 1375% N/A 18% done in isolated dIII, fully in apo form 
part of the NADP(H) binding site, also contributes to stabilisation of loop E in the closed conformation, 

hence nucleotide exchange possible without interaction with dII and reverse activity is elevated 
37 

E967 D392A 1% 0% 44%  part of the NADP(H) binding site, prevents closing of loop E and binding of nucleotide 38 

E967 D392K 3% 0% 2%  part of the NADP(H) binding site, prevents closing of loop E and binding of nucleotide 38 

E967 D392N 2% 0% 13%  part of the NADP(H) binding site, prevents closing of loop E and binding of nucleotide 38 

E967 D392Q 3% 0% 2%  part of the NADP(H) binding site, prevents closing of loop E and binding of nucleotide 38 

E967 D392T 2% 0% 2%  part of the NADP(H) binding site, prevents closing of loop E and binding of nucleotide 38 

T968 T393C 175% N/A 49% 
in isolated dIII; 34% NADP+, 66% NADPH; 2x faster release 

rate of NADPH 

part of the NADP(H) binding site, hydrogen bonding with diphosphate; mutation allows nucleotide 

exchange to be decoupled from proton transfer, hence decoupled phenotype 
39 



A973 A398C 100% 102% N/A in isolated dIII; forward reaction rate increased 3-fold not part of catalytic machinery 40 

D976 D401G 0-102% 3-76% 0-88%  part of D loop, stabilises dI-dII linker in the face-down state 27 

D976 D401E 0-102% 3-76% 0-88%  part of D loop, stabilises dI-dII linker in the face-down state 27 

D976 D401V 0-102% 3-76% 0-88%  part of D loop, stabilises dI-dII linker in the face-down state 27 

S979 S404C 75% 100% N/A in isolated dIII; forward reaction rate increased 2-fold part of D loop, not part of catalytic machinery 40 

I981 S406C 450% 29% N/A 
in isolated dIII; forward reaction rate increased 35-fold; 4x 

faster NADPH release 
 40 

G983 G408C 100% 29% N/A in isolated dIII; forward reaction rate increased 3-fold surface-exposed residue, not part of catalytic machinery 40 

M984 M409C 75% 24% N/A in isolated dIII; forward reaction rate increased 3-fold close to the NADP(H) binding site 40 

V986 V411C 125% 31% N/A in isolated dIII; forward reaction rate increased 5-fold not part of catalytic machinery 40 

E988 E413G 70-106% N/A 89-99%  surface-exposed residue, not part of catalytic machinery 27 

E988 E413D 70-106% N/A 89-99%  surface-exposed residue, not part of catalytic machinery 27 

E988 E413V 70-106% N/A 89-99%  surface-exposed residue, not part of catalytic machinery 27 

K991 K416G 33% 27% 82%  surface-exposed residue, not part of catalytic machinery 27 

K999 K424C 

425% - dI-

dIII only; 

30% full 

NNT 

50% full 

NNT, 

45% 

dI/dIII  

45% in isolated dIII; 63% apo form 
part of the KRS motif of the NADP(H) binding pocket; accelerates nucleotide exchange in dI-dIII, hence 

faster reverse reaction but disrupts binding of NADP(H), hence slower activities measured in the full NNT 
37 

K999 K424G 1-5% 7-36% 0%  KRS motif of the NADP(H) binding pocket; disrupted nucleotide binding 27 

K999 K424R 1-5% 7-36% 100%  KRS motif of the NADP(H) binding pocket; disrupted nucleotide binding 27 

R1000 R425G 0-13% 1-38% 0-98%  KRS motif of the NADP(H) binding pocket; disrupted nucleotide binding 27 

R1000 R425E 0-13% 1-38% 0-98%  KRS motif of the NADP(H) binding pocket; disrupted nucleotide binding 27 

R1000 R425K 0-13% 1-38% 0-98%  KRS motif of the NADP(H) binding pocket; disrupted nucleotide binding 27 

R1000 R425C 
425% or 

10% 
8% 12% in isolated dIII, fully in apo form KRS motif of the NADP(H) binding pocket; disrupted nucleotide binding 37,39 

G1005 G430C 850% N/A 14% 
in isolated dIII, 65% with NADPH, 32% in apo form; forward 

reaction rate increased ~300 fold; 110x faster NADPH release  

part of the E loop important for stabilisation of the occluded state; nucleotide exchange can proceed without 

dII-dIII interaction, hence decoupled phenotype and accelerated reverse reaction 
39,40 

Y1006 Y431C 450% 16% N/A 
in isolated dIII; forward reaction rate increased 100-fold; 5x 

faster NADPH release 

part of the E loop important for stabilisation of the occluded state; nucleotide exchange can proceed without 

dII-dIII interaction, hence decoupled phenotype and accelerated reverse reaction 
40 

Y1006 Y431H ~3% N/A 11% In full NNT part of the E loop important for stabilisation of the occluded state 16 

Y1006 Y431L 6% N/A 8% In full NNT part of the E loop important for stabilisation of the occluded state 16 

Y1006 Y431F 60-80% N/A 19-113% pumps protons; ~3x increase for APAD+ part of the E loop important for stabilisation of the occluded state 16 

Y1006 Y431N 4% N/A N/A  part of the E loop important for stabilisation of the occluded state 16 

Y1006 Y431I 4% N/A N/A  part of the E loop important for stabilisation of the occluded state 16 

Y1006 
double Y431F 

Y315F 
62% N/A N/A  part of the E loop important for stabilisation of the occluded state 16 

Y1006 

triple 

alphaY226F 

bY315 T431 

50% N/A N/A increased Km for both substrates part of the E loop important for stabilisation of the occluded state 16 

A1007 A432C 150% N/A 63% 
in isolated dIII, 78% with NADPH, 22% in apo form; forward 

reaction rate increased 3-fold 
part of the E loop important for stabilisation of the occluded state 39,40 

K1027 K452D 4-44% 8-39% 0-99%  surface-exposed residue, not part of catalytic machinery 27 

K1027 K452G 4-44% 8-39% 0-99%  surface-exposed residue, not part of catalytic machinery 27 

A1035 K460Q 57% 61% N/A   41 



K1036 A461C 46% 57% N/A   41 

K1036 A461F 42% 70% N/A   41 

K1036 A461P 48% 59% N/A   41 

K1036 A461R 86% 118% N/A   41 

K1036 A461S 69% 93% N/A   41 

K1036 A461L 68% 86% N/A   41 

V1037 L462A 38% 55% N/A   41 

V1037 L462E 47% 70% N/A   41 

V1037 L462G 58% 86% N/A   41 

V1037 L462P 37% 52% N/A   41 

V1037 L462R 37% 45% N/A   41 

V1037 L462T 62% 102% N/A   41 

V1037 delta462 28% 27% N/A   41 

V1037 delta461-462 3% 2% N/A ~50% incorporation into membrane  41 

V1037 delta460-462 1% 0% N/A not even incorporated into membrane  41 

V1037 delta456-462 1% 1% N/A not even incorporated into membrane  41 

V1037 delta448-462 1% 1% N/A not even incorporated into membrane  41 

V1037 delta442-462 8% 7% N/A not even incorporated into membrane  41 

V1037 delta431-462 1% 0% N/A not even incorporated into membrane  41 

 

 



Supplementary Table 2. Catalytic activities of site-directed mutants in R. rubrum NNT 

 

Homol-

ogous 

ovine 

residue 

R. rubrum 

mutation 

Reverse 

activity  

Cyclic 

activity 

Proton 

pumping 

activity 

Notes Structural and mechanistic explanation if conserved Reference 

V16 I3A 69% 100% N/A Kd for NADH unchanged  42 

I108 M97A 62% 98% N/A Kd for NADH unchanged  42 

I108 M97L 66% 91% N/A Kd for NADH unchanged  42 

I108 M97V 72% 112% N/A Kd for NADH unchanged  42 

R139 R127A 0% N/A N/A 

Km for NADH increases from 18 to 700-800 µM; binding of NAD+ slightly 

weaker; E. coli R139 changes conformation between NAD+ and NADH 

bound forms 

part of the NAD(H)-binding pocket, significantly changes conformation between NAD+, 

NADH and apo states as demonstrated in E. coli NNT; no NADH binding leads to 

complete inhibition 

43 

R139 R127M 0% N/A N/A 
Km for NADH increases from 18 to 700-800 µM; binding of NAD+ only 

slightly weaker; E. coli R139 changes conformation between NAD+ and 

NADH bound forms 

part of the NAD(H)-binding pocket, significantly changes conformation between NAD+, 

NADH and apo states as demonstrated in E. coli NNT; no NADH binding leads to 

complete inhibition 

43 

Q144 Q132N 0% 0% N/A 
hydride transfer abolished but still binds NAD(H) with approximately the 

same affinity 

important for stabilising nicotinamide ring of NAD(H) during hydride transfer; hence 

complete inhibition of activities 
43,44 

D147 D135N 0% 0% N/A no effect on Km of NAD(H) 
immediate vicinity to the NAD(H) binding site and R139; complete inhibition suggests a 

role in stabilising an intermediate state 
43 

S150 S138A 0% N/A N/A no effect on Km of NAD(H) 
immediate vicinity to the NAD(H) binding site and R139; complete inhibition suggests a 

role in stabilising an intermediate state 
43 

Y158 Y146A <10% N/A N/A Weaker NADH binding, purifies as a monomer 
part of the dI-dI interface; strong inhibition of activity suggests that working as a dimer 

in anti-phase fashion is essential 
45 

Y158 Y146F 80% N/A N/A  part of the dI-dI interface; only slight inhibition as dI can still dimerise 45 

none M226F 55% 35% N/A 
Kd of NADH increases from 30 µM to 130 µM, forward reaction inhibited 

slightly (~30%) 
 46 

G241 T231C 58% 90% N/A 
Kd of NADH increases from 30 µM to 58 µM, forward reaction inhibited 

slightly (~30%) 
 46 

G244 G234A 51% 15% N/A 
Kd of NADH increases from 30 µM to 33-35 µM, forward reaction 

inhibited slightly (~30%) 

part of the NAD(H)-binding pocket and the mobile loop; slight inhibition of activities 

due to weaker NAD(H) binding 
46 

Y245 Y235N ~20% 2-3% N/A 

forward reaction inhibited by ~50%; however, reverse and forward 

reactions are rate-limited by product release from dIII and cyclic is rate-

limited by hydride transfer 

part of the NAD(H)-binding pocket and the mobile loop; almost complete inhibition of 

cyclic reaction, Y235 essential for stabilisation of the intermediate during hydride 

transfer 

47,48 

Y245 Y235F ~50% 7-8% N/A 

forward reaction inhibited by ~50%; however, reverse and forward 

reactions are rate-limited by product release from dIII and cylic is rate-

limited by hydride transfer 

part of the NAD(H)-binding pocket and the mobile loop; almost complete inhibition of 

cyclic reaction, Y235 essential for stabilisation of the intermediate during hydride 

transfer 

47,48 

A246 A236G 72% 53% N/A 
Kd of NADH increases from 30 µM to 300-400 µM, forward reaction 

inhibited slightly (~30%) 

part of the NAD(H)-binding pocket and the mobile loop; slight inhibition due to weaker 

NAD(H) binding 
46 

K247 K237M 75% 63% N/A 
Kd of NADH increases from 30 µM to 75-85 µM, forward reaction 

inhibited slightly (~40%) 

part of the NAD(H)-binding pocket and the mobile loop; slight inhibition due to weaker 

NAD(H) binding 
46 

M258 M239I 80% 30% N/A Km for NADH increased ~3-fold not part of catalytic machinery 49 

M258 M239F 58% 16% N/A Km for NADH increased ~3-fold not part of catalytic machinery 49 

L353 L343V 69% 95% N/A Kd for NADH unchanged buried residue 42 

 



 

Supplementary Table 3: Missense mutations in human patients with familial glucocorticoid deficiency 

 
Homol-

ogous 

ovine 

residue 

Human 

mutation 

Reverse 

activity  

Cyclic 

activity 

Proton 

pumping 

activity 

Notes Structural and mechanistic explanation if conserved Reference 

S150 S150N N/A N/A N/A  immediate vicinity of the NAD(H) binding pocket 50 

G157 G157S N/A N/A N/A more severe phenotype, includes mineralocorticoid deficiency immediate vicinity of the NAD(H) binding pocket 51 

F172 F172S N/A N/A N/A  part of the dI-dI interface 52 

M294 M294V N/A N/A N/A  buried residue 53 

T314 T314A N/A N/A N/A  buried residue 50 

Y345 Y345S N/A N/A N/A  buried residue, relatively close to the dI-dI interface 54 

P394 P394L N/A N/A N/A  surface exposed residue, immediate vicinity to the dI-dII linker 50,53 

A490 A490V N/A N/A N/A  immediate vicinity to the proton translocation pathway 50 

G621 G621R N/A N/A N/A  buried residue 50 

G635 G635R N/A N/A N/A  membrane-facing residue 50 

G819 G819D N/A N/A N/A  close vicinity to the proton translocation pathway 50 

A820 A820E N/A N/A N/A More severe phenotype with hypoglycaemia and precocious puberty close vicinity to the proton translocation pathway 53 

L934 L934P N/A N/A N/A  part of the conserved helix 4 important for dII-dIII interface formation 50 

A965 A965P N/A N/A N/A  forms the NADP(H)-binding pocket 50 

N966 N966K N/A N/A N/A  forms the NADP(H)-binding pocket  

 



References 

 

1. Leung, J. H. et al. Structural biology. Division of labor in transhydrogenase by 

alternating proton translocation and hydride transfer. Science 347, 178–81 (2015). 

2. Padayatti, P. S. et al. Critical Role of Water Molecules in Proton Translocation by the 

Membrane-Bound Transhydrogenase. Structure 1–9 (2017).  

3. Yamaguchi, M., Wakabayashi, S. & Hatefi, Y. Mitochondrial Energy-Linked 

Nicotinamide Nucleotide Transhydrogenase: Effect of Substrates on the Sensitivity of 

the Enzyme to Trypsin and Identification of Tryptic Cleavage Sites. Biochemistry 29, 

4136–4143 (1990). 

4. Venning, J. D., Peake, S. J., Quirk, P. G. & Jackson, J. B. Stopped-flow reaction 

kinetics of recombinant components of proton-translocating transhydrogenase with 

physiological nucleotides. J. Biol. Chem. 275, 19490–7 (2000). 

5. Venning, J. D., Bizouarn, T., Cotton, N. P. J., Quirk, P. G. & Jackson, J. B. Stopped-

flow kinetics of hydride transfer between nucleotides by recombinant domains of 

proton-translocating transhydrogenase. Eur. J. Biochem. 257, 202–209 (1998). 

6. Hutton, M., Day, J. M., Bizouarn, T. & Jackson, J. B. Kinetic resolution of the reaction 

catalysed by proton-translocating transhydrogenase from Escherichia coli as revealed 

by experiments with analogues of the nucleotide substrates. Eur. J. Biochem. 219, 

1041–1051 (1994). 

7. Cotton, N. P. J., White, S. A., Peake, S. J., Mcsweeney, S. & Jackson, J. B. The 

Crystal Structure of an Asymmetric Complex of the Two Nucleotide Binding 

Components of Proton-Translocating Transhydrogenase. Structure 9, 165–176 (2001). 

8. Sundaresan, V., Chartron, J., Yamaguchi, M. & Stout, C. D. Conformational Diversity 

in NAD(H) and Interacting Transhydrogenase Nicotinamide Nucleotide Binding 

Domains. J. Mol. Biol. 346, 617–629 (2005). 

9. Singh, A. et al. Interactions between transhydrogenase and thio-nicotinamide 

analogues of NAD(H) and NADP(H) underline the importance of nucleotide 

conformational changes in coupling to proton translocation. J. Biol. Chem. 278, 

33208–33216 (2003). 

10. Mather, O. C., Singh, A., Van Boxel, G. I., White, S. A. & Jackson, J. B. Active-site 

conformational changes associated with hydride transfer in proton-translocating 

transhydrogenase. Biochemistry 43, 10952–10964 (2004). 

11. Cooley, R. B., Arp, D. J. & Karplus, P. A. Evolutionary Origin of a Secondary 

Structure: π-Helices as Cryptic but Widespread Insertional Variations of α-Helices 

That Enhance Protein Functionality. J. Mol. Biol. 404, 232–246 (2010). 

12. Efremov, R. G. & Sazanov, L. A. Structure of the membrane domain of respiratory 

complex i. Nature 476, 414–421 (2011). 

13. Prasad, G. S. et al. Crystal structures of transhydrogenase domain I with and without 

bound NADH. Biochemistry 41, 12745–12754 (2002). 

14. Johansson, T. et al. X-ray structure of domain I of the proton-pumping membrane 

protein transhydrogenase from Escherichia coli. J. Mol. Biol. 352, 299–312 (2005). 

15. Hu, X., Zhang, J. & Rydström, J. Interactions of reduced and oxidized nicotinamide 

mononucleotide with wild-type and αD195E mutant proton-pumping nicotinamide 

nucleotide transhydrogenases from Escherichia coli. Biochim. Biophys. Acta - 



Bioenerg. 1367, 134–138 (1998). 

16. Olausson, T. et al. Site-directed mutagenesis of tyrosine residues at nicotinamide 

nucleotide binding sites of Escherichia coli transhydrogenase. Biochemistry 32, 

13237–13244 (1993). 

17. Glavas, N., Ahmad, S., Bragg, P. D., Olausson, T. & Rydström, J. Identification of 

N,N’-dicyclohexylcarbodiimide-reactive glutamic and aspartic acid residues in 

Escherichia coli transhydrogenase and the exchange of these by site-specific 

mutagenesis. J. Biol. Chem. 268, 14125–30 (1993). 

18. Meuller, J. & Rydström, J. The membrane topology of proton-pumping Escherichia 

coli transhydrogenase determined by cysteine labeling. J. Biol. Chem. 274, 19072–

19080 (1999). 

19. Bragg, P. D. & Hou, C. Mutation of conserved polar residues in the transmembrane 

domain of the proton-pumping pyridine nucleotide transhydrogenase of Escherichia 

coli. Arch Biochem Biophys 363, 182–190 (1999). 

20. Holmberg, E. et al. Prediction and site-specific mutagenesis of residues in 

transmembrane alpha-helices of proton-pumping nicotinamide nucleotide 

transhydrogenases from Escherichia coli and bovine heart mitochondria. Biochemistry 

33, 7691–700 (1994). 

21. Bragg, P. D. & Hou, C. The Role of Conserved Histidine Residues in the Pyridine 

Nucleotide Transhydrogenase of Escherichia Coli. Eur. J. Biochem. 241, 611–618 

(1996). 

22. Althage, M. et al. Cross-linking of transmembrane helices in proton-translocating 

nicotinamide nucleotide transhydrogenase from Escherichia coli: implications for the 

structure and function of the membrane domain. Biochim. Biophys. Acta - Bioenerg. 

1659, 73–82 (2004). 

23. Glavas, N. A. & Bragg, P. D. The mechanism of hydride transfer between NADH and 

3-acetylpyridine adenine dinucleotide by the pyridine nucleotide transhydrogenase of 

Escherichia coli. Biochim. Biophys. Acta 1231, 297–303 (1995). 

24. Yamaguchi, M., Stout, D. C. & Hatefi, Y. The proton channel of the energy-

transducing nicotinamide nucleotide transhydrogenase of Escherichia coli. J. Biol. 

Chem. 277, 33670–33675 (2002). 

25. Glavas, N. A., Hou, C. & Bragg, P. D. Involvement of Histidine-91 of the β Subunit in 

Proton Translocation by the Pyridine Nucleotide Transhydrogenase of Escherichia 

coli. Biochemistry 34, 7694–7702 (1995). 

26. Bragg, P. D. & Hou, C. Characterization of mutants of βHistidine91, βAspartate213, 

and βAsparagine222, possible components of the energy transduction pathway of the 

proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli. Arch. 

Biochem. Biophys. 388, 299–307 (2001). 

27. Hu, X., Zhang, J., Fjellström, O., Bizouarn, T. & Rydström, J. Site-directed 

mutagenesis of charged and potentially proton-carrying residues in the β subunit of the 

proton-translocating nicotinamide nucleotide transhydrogenase from escherichia coli. 

Characterization of the βH91, βD392, and βK424 mutants. Biochemistry 38, 1652–

1658 (1999). 

28. Yamaguchi, M. & Stout, C. D. Essential Glycine in the Proton Channel of Escherichia 

coli Transhydrogenase. J. Biol. Chem. 278, 45333–45339 (2003). 



29. Althage, M. et al. Functional split and crosslinking of the membrane domain of the β 

subunit of proton-translocating transhydrogenase from Escherichia coli. Biochemistry 

42, 10998–11003 (2003). 

30. Yamaguchi, M. & Hatefi, Y. Proton-translocating nicotinamide nucleotide 

transhydrogenase of Escherichia coli. Involvement of aspartate 213 in the membrane-

intercalating domain of the beta subunit in energy transduction. J. Biol. Chem. 270, 

16653–16659 (1995). 

31. Bragg, P. D. & Hou, C. Mutation of conserved polar residues in the transmembrane 

domain of the proton-pumping pyridine nucleotide transhydrogenase of Escherichia 

coli. Arch Biochem Biophys 363, 182–190 (1999). 

32. Karlsson, J., Althage, M. & Rydström, J. Roles of individual amino acids in helix 14 

of the membrane domain of proton-translocating transhydrogenase from Escherichia 

coli as deduced from cysteine mutagenesis. Biochemistry 42, 6575–6581 (2003). 

33. Althage, M., Bizouarn, T. & Rydström, J. Identification of a region involved in the 

communication between the NADP(H) binding domain and the membrane domain in 

proton pumping E. coli transhydrogenase. Biochemistry 40, 9968–9976 (2001). 

34. Bragg, P. D., Glavas, N. A. & Hou, C. Mutation of Conserved Residues in the 

NADP(H)-Binding Domain of the Proton Translocating Pyridine Nucleotide 

Transhydrogenase ofEscherichia coli. Arch. Biochem. Biophys. 338, 57–66 (1997). 

35. Ahmad, S., Glavas, N. A. & Bragg, P. D. A mutation at Gly314 of the β subunit of the 

Escherichia coli pyridine nucleotide transhydrogenase abolishes activity and affects 

the NADP(H)-induced conformational change. Eur. J. Biochem. 207, 733–739 (1992). 

36. Johansson, C., Bergkvist, A., Fjellström, O., Rydström, J. & Karlsson, B. G. 

Sequential assignment and secondary structure analysis of the NADP(H)-binding 

domain of Escherichia coli transhydrogenase. J. Biomol. NMR 14, 295–6 (1999). 

37. Fjellström, O. et al. Mapping of residues in the NADP(H)-binding site of proton-

translocating nicotinamide nucleotide transhydrogenase from Escherichia coli. A study 

of structure and function. J. Biol. Chem. 274, 6350–6359 (1999). 

38. Meuller, J., Hu, X., Bunthof, C., Olausson, T. & Rydström, J. Identification of an 

aspartic acid residue in the β subunit which is essential for catalysis and proton 

pumping by transhydrogenase from Escherichia coli. Biochim. Biophys. Acta - 

Bioenerg. 1273, 191–194 (1996). 

39. Bergkvist, A., Johansson, C., Johansson, T., Rydstrom, J. & Karlsson, B. G. 

Interactions of the NADP(H)-binding domain III of proton-translocating 

transhydrogenase from Escherichia coli with NADP(H) and the NAD(H)-binding 

domain I studied by NMR and site-directed mutagenesis. Biochemistry 39, 12595–

12605 (2000). 

40. Johansson, C., Pedersen, A., Karlsson, B. G. & Rydström, J. Redox-sensitive loops D 

and E regulate NADP(H) binding in domain III and domain I-domain III interactions 

in proton-translocating Escherichia coli transhydrogenase. Eur. J. Biochem. 269, 

4505–4515 (2002). 

41. Bragg, P. D. & Hou, C. Effect of truncation and mutation of the carboxyl-terminal 

region of the β subunit on membrane assembly and activity of the pyridine nucleotide 

transhydrogenase of Escherichia coli. Biochim. Biophys. Acta - Bioenerg. 1365, 464–

472 (1998). 



42. Tveen Jensen, K., Strambini, G., Gonnelli, M., Broos, J. & Jackson, J. B. Mutations in 

Transhydrogenase Change the Fluorescence Emission State of TRP72 from 1La to 

1Lb. Biophys. J. 95, 3419–3428 (2008). 

43. Brondijk, T. H. C. et al. The role of invariant amino acid residues at the hydride 

transfer site of proton-translocating transhydrogenase. J. Biol. Chem. 281, 13345–

13354 (2006). 

44. Van Boxel, G. I., Quirk, P. G., Cotton, N. P. J., White, S. A. & Jackson, J. B. 

Glutamine 132 in the NAD(H)-binding component of proton-translocating 

transhydrogenase tethers the nucleotides before hydride transfer. Biochemistry 42, 

1217–1226 (2003). 

45. Obiozo, U. M. et al. Substitution of tyrosine 146 in the dI component of proton-

translocating transhydrogenase leads to reversible dissociation of the active dimer into 

inactive monomers. J. Biol. Chem. 282, 36434–36443 (2007). 

46. Gupta, S. et al. Mutation of amino acid residues in the mobile loop region of the 

NAD(H)-binding domain of proton-translocating transhydrogenase. Biochim. Biophys. 

Acta - Bioenerg. 1409, 25–38 (1998). 

47. Diggle, C. et al. Mutation of Tyr235 in the NAD(H)-binding subunit of the proton-

translocating nicotinamide nucleotide transhydrogenase of Rhodospirillum rubrum 

affects the conformational dynamics of a mobile loop and lowers the catalytic activity 

of the enzyme. J. Biol. Chem. 271, 10109–15 (1996). 

48. Bizouarn, T., Grimley, R., Diggle, C., Thomas, C. M. & Jackson, J. B. Mutations at 

tyrosine-235 in the mobile loop region of domain I protein of transhydrogenase from 

Rhodospirillum rubrum strongly inhibit hydride transfer. Biochim. Biophys. Acta - 

Bioenerg. 1320, 265–274 (1997). 

49. Grimley, R. L., Quirk, P. G., Bizouarn, T., Thomas, C. M. & Jackson, J. B. Role of 

methionine-239, an amino acid residue in the mobile-loop region of the NADH-

binding domain (domain I) of proton-translocating transhydrogenase. Biochemistry 36, 

14762–14770 (1997). 

50. Meimaridou, E. et al. Mutations in NNT encoding nicotinamide nucleotide 

transhydrogenase cause familial glucocorticoid deficiency. Nat. Genet. 44, 740–2 

(2012). 

51. Weinberg-Shukron, A. et al. Combined mineralocorticoid and glucocorticoid 

deficiency is caused by a novel founder nicotinamide nucleotide transhydrogenase 

mutation that alters mitochondrial morphology and increases oxidative stress. J. Med. 

Genet. 52, 636–641 (2015). 

52. Yamaguchi, R. et al. A novel homozygous mutation of the nicotinamide nucleotide 

transhydrogenase gene in a Japanese patient with familial glucocorticoid deficiency. 

Endocr. J. 60, 855–859 (2013). 

53. Roucher-Boulez, F. et al. NNT mutations: a cause of primary adrenal insufficiency, 

oxidative stress and extra- adrenal defects. Eur. J. Endocrinol. 175, 73–84 (2016). 

54. Hershkovitz, E., Arafat, M., Loewenthal, N., Haim, A. & Parvari, R. Combined 

adrenal failure and testicular adrenal rest tumor in a patient with nicotinamide 

nucleotide transhydrogenase deficiency. J. Pediatr. Endocrinol. Metab. 28, 1187–90 

(2015). 

 


