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Abstract

The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins mediate 
fundamental membrane remodeling events that require stabilizing negative membrane curvature. 
These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure 
and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing 
conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 Å 
resolution cryo-EM reconstruction of a one-start, double-stranded helical copolymer composed of 
two different human ESCRT-III subunits, CHMP1B and IST1. The inner strand comprises “open” 
CHMP1B subunits that interlock in an elaborate domain-swapped architecture, and is encircled by 
an outer strand of “closed” IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 
polymers form external coats on positively-curved membranes in vitro and in vivo. Our analysis 
suggests how common ESCRT-III filament architectures could stabilize different degrees and 
directions of membrane curvature.

The ESCRT pathway is best known for facilitating membrane remodeling and fission for 
processes such as the endosomal intralumenal vesicle (ILV) formation, enveloped virus 
budding, nuclear envelope closure, and cytokinetic abscission (1–3). In these reactions, the 
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ESCRT machinery assembles on the interior of a negatively-curved, cytoplasm-filled 
membrane neck, and pulls the membrane toward itself to the fission point. These fission 
reactions are topologically distinct from reactions in which cytoplasmic BAR domain-
containing proteins and dynamin-family GTPases assemble around and constrict positively-
curved membrane tubules.

ESCRT components are recruited to different membranes by site-specific adaptors that 
ultimately recruit ESCRT-III subunits and their binding partners, including VPS4-family 
ATPases. ESCRT-III assemblies promote membrane constriction and fission, possibly in 
concert with VPS4. Humans express 12 related ESCRT-III proteins, called CHarged 
Multivesicular body Proteins (CHMPs) 1A-7 and Increased Sodium Tolerance 1 (IST1) (1–
3). Crystal structures of CHMP3 and IST1 show a common structure in which the first two 
helices form a long hairpin, the shorter helices 3 and 4 pack against the open end of the 
hairpin, and helix 5 folds back and packs against the closed end of the helical hairpin (4–6). 
This “closed” conformation appears to auto-inhibit ESCRT-III membrane binding and 
oligomerization (4, 7, 8). ESCRT-III subunits can also adopt a second, more extended 
“open” conformation that has been characterized biochemically, but not visualized in 
molecular detail. The open conformation appears to be the active, polymerization-competent 
state because mutations or solution conditions that favor this conformation typically promote 
polymerization (1–3). Many ESCRT-III subunits form spiraling homo- and heteromeric 
filaments, both in vitro (4, 9–15) and in cells (10, 16–19), but the structural basis for 
filament assembly is unclear.

We used cryo-EM to determine the molecular structure of a helical copolymer comprising 
human IST1 and CHMP1B. Full-length IST1 and CHMP1B spontaneously co-assembled 
under low ionic strength conditions into well-ordered helical tubes. Helical order was further 
enhanced by using a truncated IST1 construct that spanned residues 1–189, hereafter termed 
IST1NTD, and by including small, acidic unilamellar vesicles (SUVs) to nucleate polymer 
formation. The resulting IST1NTD-CHMP1B tubes were long, straight, and 24 nm in 
diameter (Fig. 1A). The 3D structure of IST1NTD-CHMP1B assemblies was determined to a 
resolution of ~4 Å by real space helical reconstruction (Methods and figs. S1–4). Each tube 
comprised a right-handed one-start helical filament that packed with an inter-filament 
spacing of 5.1 nm/turn (Fig. 1B–D, Movie S1). Each filament was double-stranded, with 
distinct inner and outer strands (at 7.7 and 10.2 nm radii, respectively). Segmented densities 
from subunits in the outer strand corresponded well to the crystal structure of IST1NTD in its 
closed conformation (PDB: 3FRR) (5), with only minor refinements required to optimize the 
position of helix A (Fig. 1E, G, and Movie S2). By contrast, the CHMP1B subunits of the 
inner strand adopted a very different, open conformation. These subunits were almost 
entirely α-helical and side chain densities were clearly evident in the EM density (Fig. 1B, 
D, F, Movie S3). The open CHMP1B conformation resembled an arm, with helices 1–3 
forming the upper arm and biceps, helix 4 and helix A forming the forearm, and helix 5 
forming the hand. Joints between helices 3 and 4 and between helices A and 5 correspond to 
the elbow and wrist, respectively (Fig. 1F).

High ionic strength conditions (4, 8) typically favor the monomeric, closed ESCRT-III 
subunit conformation (4, 8, 20, 21), and CHMP1B also remained monomeric under high 
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ionic strength conditions (fig. S5). Lowering the ionic strength triggered coassembly of IST1 
and CHMP1B, implying that CHMP1B subunits are captured as they open. To visualize this 
conformational change, we generated a structure-based homology model for the CHMP1B 
closed state (see Methods). In comparison to the modeled closed state, the helix 5 hand is 
displaced by ~100 Å when CHMP1B opens. This global reorganization requires only three 
local rearrangements: the elbow angle between helices 3 and 4 must change, and the loops 
that connect helix 2/3 and helix 4/A must become helical to create the longer, continuous 
helices that extend the upper arm to the elbow and create the forearm in the open state (Figs. 
1F–G, 2A and Movie S4).

In the filament, the open CHMP1B conformation is stabilized by extensive intersubunit 
interactions along the inner strand (Fig. 2B). Each CHMP1B molecule interacts with four 
other CHMP1B subunits that pack together and cross the forearm of the original subunit. In 
addition, the helix 5 hand grasps the shoulder of the hairpin four subunits away, making a 
domain-swapped contact that is analogous to the intrasubunit interaction between the hairpin 
and helix 5 in the closed ESCRT-III conformations (Fig. 2A–B). Opening and assembly 
reduces the total solvent accessible surface area of CHMP1B from ~10,720Å2 to ~6350Å2. 
The IST1NTD-CHMP1B assembly is further stabilized by three additional types of 
interactions, which differ completely from crystallized contacts for soluble IST1-CHMP1B 
heterodimers (Figs. 2C–F, figs. S6–7 (6)).

A final notable feature of the IST1-CHMP1B tube is the remarkably cationic interior. This 
surface is created by a series of conserved basic residues from helix 1 of CHMP1B (Fig. 2D, 
F), which forms the principal membrane-binding site in other ESCRT-III proteins (5, 22). Its 
position inside the IST1-CHMP1B copolymer was unexpected because well characterized 
ESCRT-mediated membrane remodeling events require that membranes interact with the 
exterior surface of coiled ESCRT-III filaments, e.g., as in the neck of a nascent ILV or 
viruses. The functional roles of IST1 and CHMP1B in such canonical ESCRT activities have 
been enigmatic, however, because neither protein is required for ILV biogenesis (23–26) or 
virus budding (27). Moreover, IST1 functions in the resolution of endosomal tubules that 
project into the cytoplasm and recycle cargoes back to the plasma membrane (28). Looking 
in cells, we found that moderately overexpressed CHMP1B polymerized into elongated 
cytoplasmic structures (fig. S8). Deep-etch EM of the plasma membranes revealed filaments 
that were similar to those of CHMP4A and other well studied ESCRT-III proteins (17), 
except that CHMP1B filaments coated tubules ~35–60 nm in diameter that extended into 
rather than away from the cytoplasm (Fig. 3A–D) (17, 18). Replicas of cells transfected and 
immunolabeled for CHMP1B alone, or with IST1, also revealed immunodecorated 
organelles and tubules that were not attached to the plasma membrane but again had 
recognizable striations (Fig. 3E–K). The resemblance of these organelles to early endosomes 
(29) including the occasional presence of clathrin-coated buds (Fig. 3J–K) indicates that 
CHMP1B and IST1 can coat and potentially remodel endosomal tubules.

To determine whether distinct membrane remodeling topologies are intrinsic properties of 
different ESCRT-III filaments, we compared the structures induced by spirals of CHMP1B 
to those induced by the prototypical ESCRT-III protein CHMP4A. In earlier studies, 
CHMP4 proteins only deformed the membrane when bound to ATPase-deficient VPS4B 
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(17) or an activated CHMP2A mutant (18). Here we found that deleting C-terminal 
sequences yielded a mutant CHMP4A that formed tight, membrane-deforming spirals (Fig. 
4A). The deformations induced by CHMP4A spirals were directed away from the 
cytoplasm, as expected (17, 18). Comparable views of cells transfected with full-length and 
C-terminal truncations of CHMP1B confirmed that CHMP4A and CHMP1B induced 
cellular membranes to tubulate in opposite directions (Fig. 4B, fig. S9).

We also tested how CHMP1B polymers bind and remodel liposomal membranes in vitro. 
Under physiological solution conditions, CHMP1B formed single and double-stranded one-
start helices and spirals around membrane tubules, with interstrand spacing of 4.7 ± 0.1 nm 
(Fig. 4C, figs. S10–S11). Adding IST1 to CHMP1B-induced membrane tubules generated 
copolymeric helices that were structural analogs of the membrane-free IST1-CHMP1B 
assemblies described above, as judged by their interstrand spacing (5.1 ± 0.1 nm vs. 5.2 
± 0.1 nm) and by the similarities of 2D class averages of the two assemblies (Fig. 4D, figs. 
S10–S11). The positively-curved membrane tubules within the protein coats could be 
visualized with negative staining of the CHMP1B and IST1-CHMP1B assemblies (Fig. 4C–
D, fig. S10), in cryo-EM images, and in 2D class averages of the molecules along the 
tangential surface of the bilayer (fig. S11). Thus, CHMP1B and IST1 form external coats on 
positively-curved membranes in vitro and in cells.

Our analyses provide insight into how ESCRT-III helices can assemble structures of 
decreasing diameter, as might be required to draw membranes together to the fission point. 
In addition to uniform 24 nm helices, we frequently observed conical helical assemblies of 
membrane-associated CHMP1B and IST1NTD-CHMP1B (Fig. 4C–D, figs. S10–11), as well 
as conical IST1-CHMP1B filaments assembled in the absence of nucleating vesicles (fig. 
S12). One class of membrane-free IST1NTD-CHMP1B cones was sufficiently common to be 
reconstructed at low resolution, which confirmed that the cones are composed of the same 
double-stranded filaments as those seen in the IST1NTD-CHMP1B helices (Fig. 4D, figs. S1, 
S11–12, Movie S5–6). Within the conical spiral, both the degree of filament curvature and 
the lateral interactions between adjacent filaments varied continuously. Small changes in 
filament curvature are likely accommodated by altering the angles of the “elbow” and 
“wrist” joints. Larger changes could, in principle, be accommodated (or even driven) by 
ratcheting the buttressing intersubunit interactions made by the “forearm” and “hand”. For 
example, changing the connectivity from i+4 to i+5 would tend to straighten the CHMP1B 
filament. The required continuum of differing lateral interactions in the IST1NTD-CHMP1B 
spirals is apparently accommodated by small shifts in ionic inter-strand interactions, which 
is plausible because the basic charges are distributed almost uniformly along one edge of the 
double strand (Fig. 2C–D). Wider IST1-CHMP1B spirals will tend to propagate toward their 
preferred 24 nm diameter. At this diameter, the narrow lumen (~10 nm) would force internal 
opposing lipid bilayers (each ~4.7 nm wide) toward hemi-fission (30, 31), potentially 
providing a driving force for membrane constriction and fission. Finally, we note that other 
ESCRT-III subunits, such as CHMP4A, tubulate membranes in the opposite direction to that 
seen with CHMP1B. Such stabilization of negative, rather than positive, membrane 
curvature could be achieved simply by altering the intrinsic degree and direction of filament 
curvature, while retaining an analogous membrane-binding surface and subunit connectivity.
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Fig. 1. IST1NTD and CHMP1B copolymerized into helical tubes comprising polar, double-
stranded helical filaments
(A) Electron cryomicrograph showing IST1NTD-CHMP1B tubes (white arrows) assembled 
by incubating equimolar IST1NTD and CHMP1B in the presence of polymer-nucleating 
small acidic unilamellar vesicles (SUVs, yellow arrows). Inset: end-on view of a short 

IST1NTD-CHMP1B tube. Bars: 40 nm (A), 20 nm (inset). (B) End-on view of the 
reconstructed IST1NTD-CHMP1B tube highlighting single subunits of IST1NTD (light green, 

outer strand) and CHMP1B (dark green, inner strand). (C) External view of the 

reconstructed helix with a highlighted IST1NTD subunit. (D) Internal cutaway view of the 

reconstructed helix with a highlighted CHMP1B subunit. (E) Ribbon diagram of the 

modeled IST1NTD subunit (closed conformation). (F) Ribbon diagram of the modeled 
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CHMP1B subunit (open conformation). (G) Secondary structure diagrams for closed 
IST1NTD (top), open CHMP1B (middle), and closed CHMP1B (bottom).
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Fig. 2. CHMP1B opening, strand structure, and electrostatic surface potentials of the IST1NTD-
CHMP1B assembly
(A) Superposition of the open and closed CHMP1B conformations. (B) Five interlocked 

CHMP1B molecules from the inner strand of the filament. (C) “Top-end”, electrostatic 
surface view of the IST1NTD-CHMP1B tube, highlighting the acidity of the CHMP1B inner 
strand (including Glu130, Asp131, Asp147, Glu152, Asp155, Glu156, Asp160) and the 
IST1NTD outer strand (including Asp49, Glu50, Glu57, Glu163, Glu168, Glu178, Asp180, 

Glu186). (D) “Bottom-end”, electrostatic surface view of the IST1NTD-CHMP1B tube, 
highlighting the strongly basic characters of the CHMP1B inner strand (including Lys3, 
Lys87, Lys94, Lys101, Lys107, and Lys114) and the IST1NTD outer strand (including Lys7, 

Arg10, Lys90, Arg109, Lys118, Lys127, Lys130, Lys134, Arg137). (E) Exterior, 
electrostatic surface view of the IST1NTD-CHMP1B tube, revealing the modestly basic 

character of the IST1NTD outer strand. (F) Internal cutaway electrostatic surface view of the 
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IST1NTD-CHMP1B tube, revealing the strongly basic character of the lumenal surface, 
contributed primarily by basic residues in CHMP1B helix 1 (arrows), including Lys3, Lys13, 
Arg17, Lys20, Lys21, Lys24, Lys32, and Lys35.
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Fig. 3. CHMP1B and IST1 tubulated cellular membranes
(A) Survey view of the cytoplasmic surface of the plasma membrane in an unroofed COS-7 
cell expressing FLAG-CHMP1B. Tubular invaginations extending into the cell interior are 
apparent along the exposed plasma membrane and as stabilized openings at the edges of the 

cell. Use view glasses for 3D viewing of anaglyphs (left eye = red). (B) Higher 
magnification view of tubular invaginations induced and coated by FLAG-CHMP1B 

filaments. (C) Immunodecoration confirmed the presence of CHMP1B around and along a 
tubule in a cell expressing untagged CHMP1B. Antibody detected with 12 nm gold is white 

in these contrast reversed EM images. (D) Higher magnification view of FLAG-CHMP1B 

filament spirals on exposed plasma membrane. (E) CHMP1B-immunoreactive organelle in 
an unroofed COS-7 cell expressing untagged CHMP1B. Antibody detected with 12 nm gold 
is white in these contrast reversed EM images; a representative gold particle is circled in 

blue. (F to I) Representative internal tubules from cells co-expressing untagged CHMP1B 
(12 nm gold, example circled in blue) and IST1-myc (18 nm gold); examples circled in red. 

(J and K) Clathrin coated bud capping the end of CHMP1B (J) and IST1-myc (K) immuno-
labeled tubules from co-transfected cells. Importantly, measurements of filament diameter 
(and interstrand spacing) showed that when apparently unitary filaments were resolvable, 
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their diameter varied from 5–10 nm including platinum. These measurements are generally 
consistent with the dimensions of IST1-CHMP1B and CHMP1B filaments formed in vitro. 
Scale bars 500nm (A), 100nm (B) to (K).
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Fig. 4. Topology of ESCRT-III membrane deformation in cells and in vitro
(A) Series of filament spirals on the plasma membrane of COS-7 cells expressing 
CHMP4A1–164 show development of the outwardly directed protrusions previously 
associated with ESCRT-III filaments (15, 16). Drawing highlights relationship between 

CHMP4A filament spiral and a negatively-curved plasma membrane tubule. (B) Series of 
filament spirals on the plasma membrane of COS-7 cells expressing FLAG-CHMP1B show 
development of invaginations directed into the cell. Drawing highlights relationship between 

CHMP1B filament spiral and a positively-curved plasma membrane tubule. (C) Negative 
stain electron micrograph showing that CHMP1B tubulates liposomes and forms a 
filamentous coat on the outside of the tubule. White arrows highlight regions coated by the 
CHMP1B helices, and the yellow arrow highlights a break in the coat where the internal 
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lipid is visible. (D) Negative stain electron micrograph showing that the IST1NTD-CHMP1B 
copolymer forms on the outside of membrane tubules. White arrows highlight regions coated 
by the IST1NTD-CHMP1B copolymer, and the yellow arrows highlight breaks in the helical 
coat or uncoated regions of the liposome where the internal membrane is visible. Scale bars 
100nm (A) and (B), 50 nm (C) and (D).
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