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Abstract 

In this paper we present a new algorithm for structure from motion from point cor- 
respondences in images taken from uncalibrated catadioptric cameras with parabolic 
mirrors. We assume that the unknown intrinsic parameters are three: the combined 
focal length of the mirror and lens and the intersection of the optical axis with the im- 
age. We introduce a new representation for images of points and lines in catadioptric 
images which we call the circle space. This circle space includes imaginary circles, 
one of which is the image of the absolute conic. We formulate the epipolar constraint 
in this space and establish a new 4 x 4 catadioptricfundamental matrix. We show that 
the image of the absolute conic belongs to the kernel of this matrix. This enables us to 
prove that Euclidean reconstruction is feasible from two views with constant parame- 
ters and from three views with varying parameters. In both cases, it is one less than the 
number of views necessary with perspective cameras. 

1, Introduction 

During the last 10 years there has been a considerable effort in studying the reconstruc- 

tion of scenes from uncalibrated perspeclive views given point correspondences. This 

is considered now a thoroughly understood problem. Solutions and insights gained 

from these studies boosted applications in video processing and image based render- 

ing. Two books [lo] and [5 ]  contain comprehensive treatments of the subject. 

In the meantime, computer vision researchers realized that perspective cameras are 

just one modality among many. Motivated by the need for a panoramic field of view, 

catadioptric cameras have been designed and can be already purchased off-the-shelf. 

For an extensive coverage the reader is referred to the recent book by Benosman and 

Kang [2] and the proceedings of the Workshop for Omnidirectional Vision [4]. Among 
several designs, the catadioptric systems with a single effective viewpoint, called cen- 

tral catadioptric, attracted special attention due to their elegant and useful geometric 



properties. Several authors have studied the properties of central catadioptric cameras 

and the image formation in them [15, 20, 3, 22, 12, 81. Kang [12] proposed a single 

view approach from the image of the circular mirror boundary of a paraboloid mirror. 

Geyer and Daniilidis showed [7, 81 how calibration of a parabolic catadioptric system 

can be achieved from a single view of three lines in space or from a single view of two 

sets of parallel lines. 

In this paper, we study the recovery of motion and scene structure from multiple 

parabolic catadioptric views. Such views can be obtained from a reflective surface of 

revolution of parabolic profile and an orthographic lens. We assume that the optical 

axes of the lens and the mirror are parallel. They do not have to coincide but to avoid 

aberrations and enable maximal coverage of the CCD-chip they should be close to 

each other. We assume, thus, that the catadioptric system is correctly aligned. We 

further assume that the aspect ratio and skew parameter are known leaving only the 

focal length (combined scaling factor of mirror, lens, and CCD-chip) and the image 

center (intersection of the optical axis with the image plane) as unknown. 

It is already known that in such parabolic catadioptric systems lines project onto cir- 

cles. We introduce a new representation for circles in the image plane: the circle space 

of three dimensions. This space is divided into two parts by an abstract paraboloid. 

The exterior of the paraboloid represents all circles with real radius and the interior all 

circles with imaginary radius. The space does not contain circles with complex radii 

but the paraboloid itself represents all circles with zero radius which are just points 

on the plane. By lifting each image point to a point of the paraboloid and each image 

circle to a point outside the paraboloid we have one space for both points and circles. 

The fact that we can represent imaginary circles enables us to represent the image 

of the absolute conic. In the calibrated case, the image of the absolute conic is the focus 

of the abstract paraboloid in the circle space. In the non-calibrated case, the imaginary 

image of the absolute conic is a point inside the abstract paraboloid that is vertically 

symmetric to the point representing the real image of the fronto-parallel horizon. 

We formulate the calibration problem as the question for a linear transformation 

that will map uncalibrated points on the abstract paraboloid to "calibrated" points on 

a paraboloid and the image of the absolute conic to its focus. Indeed, such a linear 

transformation K exists and encodes all three intrinsic parameters (focal length and 

image center). The question is now to find this mapping from multiple views. 

It turns out that we can formulate the epipolar constraint using projective coordi- 

nates of the circle space we have been working on. A new 4 x 4 "catadioptric" fun- 

damental matrix is composed from the essential matrix E and an induced projection 

following the mapping K above. We prove that the circle representation of the images 

of the absolute conic in the left and the right view respectively lie in the left and right 

nullspaces of the catadioptric fundamental matrix. Because the catadioptric fundamen- 

tal matrix is rank 2, the image of the absolute conic is in the intersection of the left and 

right nullspace if the intrinsic parameters are constant and rotation does not vanish and 

is not about the translation direction. For three views, it is even possible to determine 

the image of the three different absolute conics in the case of varying intrinsics. 

Thus, the main result of this paper is that, with unknown focal length and image 

center, Euclidean reconstruction from parabolic catadioptric views is feasible: 

1. From two views with the same camera parameters. 



2. From three views with varying camera parameters. 

In both cases, it is one view less, than in the case of perspective views with the same 

unknowns (focal length and image center): Three views are necessary for constant 

parameters [14, 131 and four views are necessary for varying parameters [l I]. In both 

cases, the approach involves only linear steps: the solution for the fundamental matrix 

and the intersection of subspaces. 

We are not going to review here the vast amount of literature on uncalibrated Eu- 

clidean reconstruction which has been comprehensively summarized in the two recent 

books [lo, 51. The main result [14] is that three views suffice for Euclidean reconstruc- 

tion with all intrinsics unknown but constant. The results still hold for known aspect 

ratio and skew. Hartley [lo] showed that a varying focal length can be recovered from 

two views with all other intrinsic parameters fixed. Sturm [IS] studied the degener- 

ate configurations for the same assumption. Heyden and Astrom [ I  I ]  proved that four 

views suffice for unknown varying focal length and image center but known aspect 

ratio and skew. Pollefeys et al. [17] studied several configurations of unknown and 

varying parameters. 

In the omnidirectional vision literature, there are very few approaches dealing with 

structure from motion. Gluckman and Nayar [9] studied ego-motion estimation by 

mapping the catadioptric image to the sphere. Svoboda et a1 [20] first established the 

epipolar geometry for all central catadioptric systems. Kang [I21 proposed a direct 

self-calibration by minimizing the epipolar constraint. Fermueller and Aloimonos [6] 

proved the superiority of the sphere over the plane regarding stability. Teller [I] showed 

how to compute ego-motion from spherical mosaics. Multiple view algorithms for 

the perspective case which assume piecewise planar environments are simpler when 

modified for catadioptric imagery. [21, 191. 

In the next section we mention introductory facts about catadioptric geometry. We 

introduce the notion of circle space and we find the image of the absolute conic on that 

space. We finish the second section with the recovery of the image of the absolute conic 

from the catadioptric fundamental matrix. In the third section we present reconstruction 

algorithms for two and three views. In the fourth section a real experiment is described. 

2. Preparations 

2.1. Known Facts 

We recall from [I some facts about the projection induced by parabolic mirror. 

Fact 1. In a coordinate system whose origin is the focus of the paraboloid and axis 

of symmetry coincides with the z-axis, the projection of a space point (z, y, z ,  1) is in 

image coordinates: 

where f is the combined focal length of the mirror and camera, and (ex> c,) is the 

image center, the intersection of the axis of the parabola with the image plane. We 



assume that the aspect ratio is 1 and that there is no skew. The image point is obtained 

by intersecting the ray through the focus and the space point with the parabola, then 

orthographically projecting the intersection to a plane perpendicular to the axis of the 

paraboloid. 

Fact 2. The horizon of the fronto-parallel plane, the plane perpendicular to the axis of 

the paraboloidal mirror, is the circle 

This circle of radius 2 f centered about the image center is the equivalent of the cali- 

brating conic which we call w' since we call the image of the absolute conic w. 

Fact 3. The projection of a line is an arc of a circle. If ( is the center and R the radius 

of the circle and if d2 = (cX - cx)2  + (cY - [11)2 then 

This condition is equivalent to the condition that the circle intersect w' antipodally. 

Fact 4. The image w of the absolute conic 0, is the circle 

( C Z  - u)" ( ( c y  - v)" -4 f , (4) 

centered at the image center with radius 2i f .  This can be derived by solving for z and 

y in the projection formula ( I )  after substituting z" yy" + z" 0, 

Substitute the right hand sides into x% y2 + z" 0, obtaining 

Dividing by z"4 f leaves (4). Thus, knowledge of either the absolute conic or the 

calibrating conic yields the intrinsic parameters. 

2.2. Parabolic Circle Space 

In the next few paragraphs we consider an abstract paraboloid which is different from 

the physical paraboloid of the mirror. Following Pedoe [16], we use this surface to 

describe a correspondence between points in space and circles in the plane. Lines in 

this circle space correspond to one parameter systems of coaxial circles. Planes in the 

space correspond to two parameter systems of circles which intersect a single circle 

antipodally. See Figure 1 in which a circle is obtained from a point in space by taking 

the polar of the point with respect to the paraboloid, and projecting to a plane the 

intersection of the polar plane with the paraboloid; this projection will be a circle. 

We call the paraboloid JI; it is given by the quadratic form 



Figure 1: A circle y is represented by the point ;Y. The plane .rr is the polar plane of 7 
with respect to n. y is obtained by projecting the intersection of .rr with II to the plane. 

Its focus is at the origin and has a focal length equal to a. So, 

Definition. Suppose y is the circle centered at (p, q)  with radius R:  

( p - x ) ' +  (q  - y)' = R', (6) 

where R is possibly zero or imaginary, but never complex. Let the point representation 

of y be the the projective point 

Note that the circle's radius is real iff it lies outside of n. Its radius is imaginary iff 

it lies inside of (above) n. If R = 0 then y is a single point and ;Y lies on n. The set of 

points (7) is the parabolic circle space. 

When y is a point, because 7 has the same x  and y  coordinates as y but lying on n, 
we say that ;Y is the lifting of y to II. 

Proposition. Ifn is the polarplane of the point ;Y with respect to the paraboloid ll, 

the orthographic projection in the direction of the z-axis of the intersection of .rr with 

II is the circle y. 

Proof: The polar plane .rr of ;Y is 

0 = ; Y T c n ( x  y  z  l)T 

1 
= 1 2 ( - - - P 2 - q 2 + 2 p x + 2 q - z  4 

Substitute z = x" y2 - 114, yielding (6). 



Therefore the point ( p ,  q ,  T ,  1)  represents the circle 

1 
(p-2)" ( q -  y)"=p" +q"T - - .  

4  
(8) 

We can extend the definition to encompass lines as well; they are represented by points 

on the plane at ca. The polar plane of a point ( p ,  q ,  T ,  0) at infinity is the plane 

which is independent of z and so the line in the plane has the same equation. 

2.3. Application of Circle Representation 

First, note the point representations of the calibrating conic, 

which, because it has a real radius, lies outside of II; and the absolute conic, 

which, because it has an imaginary radius, lies inside of IT. The points I;, and G' lie the 

same vertical distance, 4  f  2 ,  away from II. 

Proposition. The point representations of circles which are images of lines in a 

parabolic projection lie in a plane whose pole with respect to I3 is 3. 

Proof: If (p ,  q, T ,  1 )  is a circle which is the parabolic projection of a line it must satisfy 

(3). Using (8), 

which, in the variables p, q, and T ,  is the equation of a plane. This plane is represented 

by the row vector 

The point 

cslrT = ( c , , c y r C 2 + C ~ + 4 f 2  - 1 / 4 . 1 )  = I ; , ,  

is the pole of the plane T .  

The paraboloid II was defined so that its focus is the origin. The point G is located 

at the origin when c,, c ,  = 0 and f = $. The polar plane of this point (1 1) reduces 

to T = -+. In this case, image points lifted to the parabola exactly correspond to 

calibrated rays. When these intrinsics hold, the lifting of a space point projected by 



formula (1) is a point on the parabola which is collinear with the focus and the point in 

space. In particular, the projection of the point (z, y ,  z, l)T in space is 

according to (1). The lifting of this point is, 

which lies on the line through the focus and the point (x, y ,  z, 

Is there a linear transformation which transforms point representations of uncali- 

brated image points, in which G is in general position, to calibrated rays, in which G is 

the origin? In the next section we show that this is indeed the case. 

2.4. Transformations Fixing I'l 

In this section we find linear transformations under which TI is invariant. The four 

transformations, 

.@ = ( " ' h i "  e a  a 0  0 0 

-s in  a cos a 0  

0 0 
0 1  !) , sa = (: ; :2 4) 1 

0 0 1  0 0 0  1 

are such that for any choice of 6, a,  and vectors T ,  

where Crr was previously defined in (5) and is the quadratic form of TI. Therefore these 

transformations affect the parabolic circle space such that they take points to points, as 

opposed to say points to circles. The transformations have the following effect on 

points in the image plane: Rs induces a rotation of 6 about the origin; S, induces a 

scale of a also about the origin; T, translates points by T; and H reflects about the line 

x = 0. 

Any composition of these transformations will also leave rI invariant. Note that 
these transformations also leave .7r, invariant. They are therefore affine transforma- 

tions, and also they send lines to lines. 



These transformations act as similarity transformations on the points. Do they 

change the image of the absolute conic and the line image plane so as to correctly 

reflect the transformation induced on the points? In other words, say c,, c,, and f 

are fixed, applying T, would induce a translation of r on points; it should therefore 

transform (;/ into 

and the line image plane ( 1  1) to 

so that the new image center is (ex + rX, C, + 7,) as desired; any rotation or scaling 

should act similarly. One can verify that all four transformations transform 3 and the 

line image plane in a manner consistent with the way in which the transformations 

affect points. 

Thus, there is a linear transformation taking point representations of image points 

obtained from a camera with intrinsic parameters c, , c,, and f, to calibrated rays. This 

transformation is the 4 x 4 matrix, 

This is an important point, for if q = (u, v, I ) ~  is the parabolic projection (with intrin- 

sics ex, cy, f) of the space pointp = (x? y, z,  l )T  then for some scalar A, 

Implying that if 

then 

which is the perspective projection of (x, y, z ,  1) with image center (O,O, 1) and focal 

length f = 1. Note that K is different from the usual camera matrix: it is not actually 

a projection; P induces the projection. Leaving K non-singular (i.e. not incorporating 
P) will make it easier to prove that a matrix, a fundamental matrix, created with it has 

a certain rank. 



2.5. The Catadioptric Fundamental Matrix 

Let m and n be calibrated rays pointing to the same point (x, y, z ,  1) in space taken 

from two views related by a rotation R and translation t. The points m and n must 

satisfy the epipolar constraint which is specified by 

nT [t] . Rrn = nT E T ~ L  = 0 , (15) 

where E = [ t ] ,  R is called the essential matrix. Say p = (ul, vl, l ) T  and q = 
('112, ~ 2 ,  l)T are two parabolic catadioptric projections of the space point, and say the 

camera matrices are K and K t ,  with LZ, and LZ,' the point representations of the image of 

the absolute conic. If 5 and ij are their liftings to II, then using equation (14), so that 

r r ~  = PKj5 and rr. = PK1ij, the epipolar constraint (15) becomes, 

Let the 4 x 4 matrix 

be called the catadioptric&ndamental matrix. Then the epipolar constraint for parabolic 

catadioptric cameras is 

Theorem. The catadioptricfundamental matrix dejned in ( 1  7) has rank 2. Let be 
the point rep. of the image of the absolute conic in thejrst image, corresponding to K, 
and similarly for Ga corresponding to K 1  in the second image. Then, 

G2F = 0 and FG1 = 0 .  (19) 

Proof: The essential matrix E is known to be of rank 2, so P T ~ P  = (: :) has 
rank 2. Since K is non-singular then F must also have rank 2. Let us calculate the left 

and right null vectors of F. First, let t and t1 be the images of the viewpoints from each 

camera, 
1 T t E = O , a n d  E t = O .  

Then by inspection, linearly independent left and right null vectors of PTEP are 

f1=(t1 '  o ) ,  f 2 = ( O  0 0 1) and 

f; = ( t  o ) ~  , f; = (0 0 0 l)T . 

Hence g i = 1 ~  = K-' f i  are vectors spanning the right nullspace of F and g:=1,2 = 

f , ! T ~ ' - T  are vectors spanning the left nullspace. Note that g2 = (;Il and gi = 3:. 

Therefore, 

LZ,TF=O and FGl = O .  



Corollary. IfK = K' and t # t' then, 

k e r ~ n k e r ~ ~  = {XW). 

The condition t # t' is true when the rotation is not trivial and when the axis of 

rotation is not the translation vector. 

3. Algorithm 

The algorithm proceeds in three steps. First estimate the fundamental matrix, from the 

fundamental matrix extract the intrinsic parameters via the image of the absolute conic, 

and reconstruct using well known perspective methods. 

3.1. Estimating F 

We use a non-linear method to estimate F. An algorithm based on singular value 

decomposition which is similar to the the &point algorithm for the perspective case 

exists for parabolic catadioptric projections but is equally sensitive. 

1. Obtain images pi,j = (u, v i , j ,  l )T  of the same point yj,l,. . .  ,, in space in two 

catadioptric views i = 1 , 2 .  Let 

2. Minimize the sum of first-order geometric errors, 

0 0 

where the minimization is over Fand  using the notation poy = p (i i) p. 
0 0 0 0  

F is parameterized as in: 

where one of a , .  . . , f is held constant at 1. This ensures that F has rank 2. 

Initial estimates for F can be obtained using the singular value decomposition 

method since the components of F are linear in the lifted image points. 



3.2. Estimating w 

In the case where K = K' the left and right nullspaces of F contain the point rep. 

of the image of the absolute conic. In the presence of noise the nullspaces will not 

intersect. Once we have calculated the two-dimensional nullspaces, we choose the 

point equidistant to the two lines as the estimate of 5. 

When the intrinsics vary and we have images from three views, with three matrices 

Ki=1,2,3 and point rep.'s Wz=1,2,3, we then have 

Then once we have estimated the three fundamental matrices we calculate say Gl from 

the fact that, 

ker FI2 n ker F$ = {GI). 

Again, the estimate of 51 is the point equidistant to the two nullspaces. 

3.3. Reconstruction 

Reconstruction proceeds as in the calibrated perspective case. Once we have deter- 

mined 5 and consequently w, we can transform the image points into calibrated rays 

with which we determine the essential matrix E using a non-linear optimization and 

then back-project the rays into space using a linear algorithm, both algorithms de- 

scribed in [lo]. 

4. Experiments 

We use the algorithm to perform a reconstruction of a scene from two views. The two 

pictures in Figure 2 are of a building on the campus of our institution and are assumed 

to have the same intrinsic parameters. First we manually choose and correspond points 

in the two images. We calculate the fundamental matrix F between the two views from 

the point correspondences using the algorithm described in the previous section. We 

estimate the point representation of the image of the absolute conic by finding the left 

and right nullspaces of F and finding the point equidistant to each. Using the intrinsic 

parameters we back-project the image points to calibrated rays. Using the calibrated 

rays we estimate the essential matrix E, decompose E into translation and rotation, and 

determine the perspective camera projection matrices PI and P2. We then back-project 

the rays and use homogeneous linear triangulation to estimate scene points. 

The reconstruction is shown in the top and bottom of Figure 3. In the reconstruction 

we have fitted a plane to the points on the front facade of the building and to points on 

the ground plane, these are highlighted in Figure 2 and shaded differently in Figure 

3. The viewpoints and poses are also displayed in the figures. The triangulation is 

manually added and shown for visualization purposes only. The ground plane and front 

facade were reconstructed to almost planar surfaces and are close to perpendicular. 
The other facade of the building, on the left in the images, did not reconstruct true 

to the scene, this is because this plane is perpendicular to the axis of motion which 



Figure 2: Two images taken with the same parabolic catadioptric camera. Points are 

those used for correspondence. Points highlighted in white are on the ground plane; 
points highlighted in black are on one side of the building facade. 

makes estimating depth more error-prone. In two views with such small motion, the 

reconstruction performs remarkably well. 

5. Conclusion 

We have established a new representation for images of lines and points in parabolic 

catadioptric cameras. Based on this representation we found a natural representation 

for the image of the absolute conic if aspect ratio and skew are assumed known. Writing 

the epipolar constraint in this new space yields a new catadioptric fundamental matrix. 

It turns out that the image of the absolute conic belongs to the two-dimensional kernel 
of this matrix. Applying thus only subspace recovery and intersection we can obtain 

Euclidean reconstructions: 

from two views with the same camera 

from three views with three different cameras. 

The corresponding minimal views for the perspective case are three and four, respec- 

tively. This approach opened new questions which we address in our current work: 
What is the number of independent conditions on F to be decomposable? What is the 

degree of the manifold of all catadioptric fundamental matrices? Which point configu- 

rations make the recovery of the fundamental matrix degenerate? What is the minimal 
number of points for directly computing motion and the intrinsics? 

Sensor resolution of commercial catadioptric cameras is increasing every year. We 
believe that geometrically intuitive algorithms working directly on catadioptric images 
can provide flexible solutions for panoramic image-based rendering and visualization. 



Figure 3: Reconstruction from two images. Black points are in the ground plane. 

Darkly shaded points are on the front facade of the building; lightly shaded points are 

on the other facade (which is on the left in the images). Planes are fitted to the facade 

and ground plane (and translated slightly so points are made visible). The coordinate 

systems at the points are the pose estimates. Tilt of the fitted plane is irrelevant to the 

results of the reconstruction. The top view is taken Wingstraightat thefrent facadg; ------- 

the bottom view is from the side. Note that the mirror reverses the orientation; this has 

been accounted for in the reconstruction. 
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