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ABSTRACT

A method to estimate the underlying motion and the structure of an unknown rigid
object is presented. This approach differs from previous techniques in the relationship
assumed between successive motions. With this assumption, the number of feature
points can be reduced to only two which would otherwise be not interpretable by previ
ous method[4] even if finitely many frames could be used. A closly t:e1ated assumption
can be found in [1]. Several results are established: (1) There are two ambiguities when
I.hree frames ace used. (2) There is a unique interpretation for !he underlying motion and
structure when a fourth frame is included. (3) The uniqueness theorem was proved by a
geomelric method which leads to an efficient, simple, and reliable algorithm. (4) Neces
sary crileria to rejectlhe suitabiltiy of the assumption are stated for three and four frames.
(5) Many test examples are reported with detailed implementation experience. They
reveal that the algorithm is stable.
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1. Introduction

The recovery of object structure from motion is an important task in either

industrial applications or understanding of visual systems. One approach is to

compute the optical flow of an imaged object and then estimate its structure

[2,3,6,7]. Another approach which is more closely related to this paper uses

feature points over s~veral frames to find the 3D shape [1,4,5] based on rigidity

constraints. One use of these approaches based on the rigidity assumption is to

group (feature) points into different objects or different parts of an object and

thus help segment the images.

One of the research directions in the past was to find a suitable combination

of number of feature points and number of frames so that the observables are

sufficient for determining the object structure (uniquely). Theoretically, finding

such sufficient conditions is not a difficult task because relating the image coordi

nates to the object surface geometry is straightforward. The issue here is instead

computational complexity and the reliability of the different proposed techniques.

A13 to the uniqueness of the reconstructed structure, it is generally harder to

address due to the nonlinearity of the equations.

Another interesting research issue is to develop techniques which can also

have interpretations when only two feature points are available. Several attempts

have been made along this line to account for human perceptual ability as noted

in Johansson's experiments. In his experiments, only the major joints of a mov

ing human body are visible which implies that two feature points are observable

for each rigid part. A recent paper[l] gives a good exposition and many refer-

ences.



2. Related Work

In an early computational study [4], it was found that fOUf noncoplanar

points in three views uniquely determine the relative positions of these fOUf

points. Although three views were used, the motion between the first two views

and the motion between the next two views are irrelevant. As has been known

for a long time, any rigid motion (between two frames) can be represented as a

rotation by an angle () about an axis thr0'!1gh any point, followed by a transla

tion. Thus the irrelevant successive motions may suggest the possibility that the

rotation axis is changing, or the translation differs, or both.

Over a short time period, it is reasonable to assume that the direction of the

axis remains fixed, as pointed out in [1]. Using this simple assumption, a different

technique[l] can be found to make use of as few as two rigidly connected points

while the ufour points three views" approach is not applicable. Moreover, it is

easy to show that the rigidity assumption in ufour points three views" cannot

interpret the structure of two feature points by simply including more frames.

The key observation in [1] is that a feature point will trace out a circle in three

dimensional space if the relative positions are used. Clearly, recovering the struc

ture can be done from the projected circle which of course is an ellipse (we ignore

the degenerate case). Since it takes five points to fit an ellipse, therefore this

method needs an observation period of at least five frames.

Usually, these frames are taken at equally spaced time intervals. From this

consideration, we will extend the fixed axis assumption to require that the rota

tion angle remain the same for the frame to frame motion and call it constant.



Based on this, we develop a simple new technique which establishes the relative

structure of as few as two feature points and the motion parameters from only

three views. Furthermore, given any three frames, a necessary condition to

ensure that the object is undergoing a constant rigid motion is developed. In

addition, uniqueness from four frames is also proved.



3. Problem Description

In this paper, we consider the following problem. A rigid object no moving

uniformly in three dimensional space is imaged at several equally spaced time

instants. The task is to recover the underlying motion and the structure of 00

from these frames which are the projections of no. Usually it is impossible to

achieve this task if no identifiable feature points are assumed. Thus we assume

that there exist at least two feature points A o , B o of 00 which are traceable

(i.e., the correspondence of A 0' Bois established among these frames; see Fig. 1).

To make the problem more specific : A world coordinate system with un

known E as the origin is assumed. The rigid object no undergoes a constant

motion and is transformed to OJ +1 = Rfl j + T in the next frame where R

denotes the rotation; T denotes the translation; and OJ denotes the position of

0 0 in the ith frame. In particular

Ai+1=RA j +T

B;+l =RB; + T

where A 0 B o are the two feature points of the object no in the three dimensional

space. The issues to be explored here are (i) How can we recover the relative

structure of A 0' B 0 if the object observed actually undergoes an unknown con

stant motion? (ii) Does there exist a simple criterion to distinguish whether the

object undergoes a constant motion or not? (iii) How can we recover the under

lying motion? (iv) Are the recovered structure and motion unique?



4. Structure and Motion Of The Feature Points

4.1. The Theory

From the previous section, we have

A i +1 = RAj + T

where R is the rotation; T is the translation; i denotes the ith frame.

Let

Ai ,Bj be the projections of Ai ,Bj

w· = B· -A- = (a· b,· c,·)I I I· I

l :;;;;;;;; IBj - Ai I for all i ; I remains the same for all frames because of

the rigid motion

L = /2

- 2 2 2
"I; = IW; I = a; + b;

Subtracting (1) from (2), we get

(1)

(2)



Wi +1 = RWj for a < I < 2

From L = /2 = I B; - A; 1 2, we get

Cj 2 = L - 'li

and

c; = ±VL - '"1;

One observation here is that the angle between the successive vectors generated

by a vector (with feature points as its two ends) which undergoes a constant

motion is invariant. This fact, shown in the following lemma, leads us to an

efficient and simple technique to recover the structure of the two feature points

and the underlying motion.

Lemma 1: The inner product or the angle between the successive vectors wi is

invariant if the rigid motion is constant during the observation period.

Proof:

Wi+l"Wj = RWj " RWj_l

....:.... w- . RtRw"
I 1-1

= Wi " wi_l

where t denotes the transpose of a matrix. Furthermore, IWi I = l for all t

which implies that the angle is invariant. Q.E.D.



Applying Lemma 1, we get the algebraic equation

and thus

Raising both sides of (4) to the fourth power, we get

(3)

(4)

",. - 2",' [(L - "11)(L - 70) + (L - 71)(L - 7,)J + (L - 71)'b, - 70)' = 0 (5)

Rearranging (5) in terms of L , we get

aL'+vL+w=O

where

v = 2",' bo + 71 + "I,) - 271 b, - 70)'

(6)

Here (6) is a quadratic equation which is easy to solve. Thus there exist at most

two solutions for L (L should also be > maxb0.71.7,) ). Notice that we have

only used three frames so far. Due to the possibility of a positive or negative sign

of coefficient Cj, we may think that there exist 16 possible combinations of the

placement of the vector in three frames (if two Ls are possible). Subsequently,

this might generate several motions and relative structures.



In fact, the following lemmas shows that there exist at most two combina

tions (up to reflection in depth) which will be generated in most situations when

three frames are used.

Lemma 2: If a :r. a then there exists one combination of vectors in the three

frames (up to reflection with respect to depth) for each possible L. If a = a

then there exist two combinations of vectors in the three frames (up to reflection

with respect to depth) for each possible L . In other words, there exists a unique

combination of the placement of a vector for each possible interpretation of L if

the projection of Wo onto WI is not the same as the projection of W2 onto WI.

Proof: The 8 combinations including reflection are the following:

(1) (ao,b o, +JL - '10) (a"b l' +JL - '1,) (a 2,b 2, +JL - '12)

(2) (ao,b o, +JL -, '10) (a"b l' +JL - '1,) (a2,b 2' -JL _- '12)

(3) (ao,b o, +JL - '10) (a"b" -JL - '1,) (a2,b 2, +JL - '12)

(4) (ao,b o, +JL '10) (a"b l' -JL '1,) (a2,b 2, -JL -'12)

(5) (ao,b o, -JL '10) (a 1,b 1,+JL '1,) (a2,b 2, +JL - '12)

(6) (ao,b o, -JL '10) (a"b l' +JL '1,) (a2,b 2, -JL '12)

(7) (ao,b o, -JL '10) (a"b" -JL - '1,) (a2,b 2, +JL - '12)

(8) (ao,b o, -JL '10) (a"b" -JL '1,) (a2,b 2, -JL - '12)

where (1)(8), (2)(7), (3)(6), (4)(5) are the reflections of each other.



They are again reflections of each other.

We next deal with the case of a: = o.

From (3) or (4), we have

a= C1 (Co- c.)

Since a: = 0, we get

(i) c 1 = 0

Here there are only four combinations left, which reduces to two combinations

(up to reflection)

(ii) Co = c.

Since the signs of Co and C 2 must be the same, again only four combinations are

left which reduces to two combinations. Q.E.D.

The above lemma shows that we usually have a unique structure of feature

points for each L and sometimes there are two ambiguities. In the following

lemma the conditions which determine how many Ls can be obtained are stated.

Lemma 3: (i) If 'U < 0 then there must exist a unique L

(ii) If 'U = 0 then there exists at most one L

(iii) If 1£ > 0 then there exist exactly two Ls or no L at all

where u = (-y. - "10)' - 4a'.



Proof: (i) Since the coefficient 1£ of L 2 is negative, the parabola must be convex

downward as depicted in Fig 2. Furthermore the fact that

Ibo) > 0; lb.) > 0; Ib,) > 0 can be verified easily from (4) and thus '"10,1>,'"1,

must lie in the middle segment ef. Obviously, only one L will be greater than or

equal to the maximum of ')'0,')'1,')'2.

(ii) Since 1£ = 0, f(L) becomes a linear equation, hence has at most one solution.

(iii) Since" > 0, f(L ) is convex upward as depicted in Fig 3.

The fact that Ibo) > O;/b.l > O;/b,) > 0 implies that '"10''"1.,'"1, lie outside the

segment gh. If one of ')'0,')'1,'12 lies to the right of h then no solution exists; other-

wise there will be exactly two solutions. Q.E.D.

The next lemma gives us a necessary condition to have a solution when the case

of (ii) or (iii) of Lemma 3 is encountered.

Lemma 4: If 1£ >0, then the necessary condition to have a solution is

Proof: Let L' be the minimum for f(L ) as depicted in Figure 4.

From (5), we obtain

L' -
'"1.b, - '"10)' - ""bo + 2'"1. + '"1,)

('"1, - '"10)'-4",'

In order to have a solution, ')'1 < L· must hold. By comparing ')'1 and L • , we



get 2')'1 > ')'0 + ')'2 as the necessary condition.

If 1L = 0 then the only root L which equals _.E!. must be > ')'1 which leads to
v

2'.,. > 70 + 72' Q.E.D.

The structure of the feature points may be ambiguous when three frames are

used, as pointed out in Lemma 3. In the next Lemma, we show that the unique-

ness of structure can be assured when another frame is included.

Lemma 5: The structure of the feature points can be uniquely determined if four

frames are given.

Proof: As shown before, the translation component can be ignored by consider-

ing the vector between the two feature points. Since the underlying motion is

assumed to be constant, the vector wO,wl,w2 will be transformed to WI = R wo,

W2 = R WI; W3 = R W2 as depicted in Fig. 5 where the end point of vector Wi is

denoted by 6j if we move one end point of each Wi to the origin of our camera

system. Since we can view R as a rotation by the angle (J about some axis with

direction cosines (n I n2 n3)J the points 61, 62, ISs, 64 must lie on a circle in space

and the angle between 06i and 06i +1 must be (J where 0 is the center of the cir-

cle and lies on the rotational axis.

The projections of the 6/ s onto the image plane are denoted by Wi. The task

here (see Fig. 6) is to show that 00 can be uniquely determined (up to reflection)



from the observable wi's. In the following, we give a geometrical proof:

Let

o = (h, k, m) be the center of the circle

°1 be the midpoint of segment 0102

°2 be the midpoint of segment 0063

o3 be the midpoint of segment 6163

"" depicted in Fig. 6b.

Let

o = (h , k ) be the projection of 0

PI be the midpoint of segment w1w2

P 2 be the midpoint of segment wffU3

p 3 be the midpoint of segment WIW3

as depicted in Fig. 6c where ° is not observable.

Clearly P j is the projection of OJ for 1 < i < 3, because the midpoint property

is preserved by parallel projection. Since 0 lies on the intersection of the two

lines formed by 0 10 2 and °2°3, therefore ° must lie on the intersection of the

two dashed lines fOJ:1D.ed by PIP 2 and w2P 3 as depicted in Fig 6d. If we extend

woO ("" indicated in the dotted line) to w. such that the lengths woO and Ow.

are equal, then w4 must lie on the same ellipse which is the projection of the cir-



-- -cleo Moreover, a similar technique can be applied to WI' W3J Wo (although it is

unnecessary) to find other new points on the ellipse. Obviously, five points can

uniquely determine the orientation of the circle. Now let (n 1 n 2 n 3) be the unit

vector along the rotational axis which is the orientation of the circle; then there

must exist a scalar t such that

where (x OI Yo, 0) is the projection of 60;

(xQ-h , yo-k ,z(Jm) is the vector 060 ; and (h, k, m) is the center of the cir-

cleo

Clearly Zo - m can be found by taking the inner product of (nIl n21 n3) and

(xo-h , yo-k ,zo-m) to be zero and t can be found by comparing the first two

components. Therefore, z 0 can be obtained from the projection.

The degenerate case would occur if both n 1 and n2 are zero simultaneously

which gives scalar t infinitely many possible values. In this case, any depth can

be assigned to the feature point since the depth does not have any effect on the

3D motion. Q.E.D.

The motion parameters which consist of the rotational axis and rotational

angle can be found easily. In fact, the orientation (nl' n2J na) of the circle in the

previous lemma is the rotational axis. Furthermore, the tilt of the rotational axis

is already found when the center of the ellipse is derived by the technique of

Lemma 5 because the rotational axis passes through the camera origin and the

center of the circle lies on the axis. To be precise, the center of the projected



circle and the camera origin determine the projection of the rotational axis. The

slant of the rotational axis can be found from the lengths of the two axes of the

ellipse. The cosine of the rotational angle can be found from the inner product of

Dba and ObI' taking the norms into account. We have already shown how to

derive Dba in Lemma 5. The same technique can be used for ObI.

4.2. An Implementation Algorithm

There are many ways to implement the above theory. Foe example, fitting

an ellipse to five points can be done by solving a linear system of equations or by

solving a linear equation [9] (using four points to obtain four straight lines, and

the fifth point to determine the weight). Each of these methods may lead to

undesirable results due to noise in the inputs. (To illustrate this situation, ima

gine the task of determining the intersection of two almost parallel lines. It would

be better if we could bypass this step.) In the following, we shall outline an

approach that results in an elegant, efficient and reliable implementation.

Although we mentioned finding the fifth point to get the ellipse in Lemma 5,

we actually do not need this information in our construction process. Other infor

mation such as the axes and the center of the ellipse is more useful and reliable,

based on our experience with several implementation algorithms. We outline the

construction steps below.

(1) Move one endpoint of the observables to the origin of the camera. We thus

obtain we' WI' wz, Wg.

(2) Use the midpoint technique as described in Lemma 5 to find the center (xcen ,



ycen) of the ellipse.

(3) It follows that the directions of the two axes of the ellipse are (xcen , yeen)

and (yeen , -xcen). Therefore, the tilt of the rotation axis is arctan (ycenjxcen ).

(4) Find the coordinates of any two points from We' Wh W2, Wg with respect to the

new coordinate system defined by the two axes of the ellipse, with the center of

the ellipse as the origin of the system. (The idea here is to ensure that the equa-

tion for the ellipse is canonical.)

x2 y2
(5) Use the formula -. + -2 = 1 and the coordinates of (4) to find A and B.

. A B

(6) The slant of the last component of the rotational axis is arccos (B / A).

(7) (n" n2' ns) is found from the tilt and the slant from (3) and (6).

(8) Scalar t in Lemma 5 can be found from t· n 1 = xcen

(9) The last component Zo - m of 060 can be found from

(zo-h, yo-k, zo-m) . (n" n2' ns) = 0

(10) Zo can therefore be found as described in Lemma 5, and the relative struc-

tures of the two feature points can thus be obtained.

(n) Repeat (9) for 06,. Find the inner product of (zo-h, yo-k, zo-m) and

(x I-h I Yl-k, z I-m) divided by the norms. The value obtained is the cosine of

the rotational angle.

(12) To get the rotation matrix R, we can use the following matrix [81:

R=
n ,2 + (1- n ,2)eosO

n,n2 (1- cosO) + n3sinO
n,ns (1- cosO) - n 2sinO

n ,n 2(1 - cosO) - n ssinO
n1 + (1 - n1) cosO

n 2n s(1 - cosO) + n ,sinO

n,ns (1 - cosO) + n 2Sinoj
n2nS (1 - cosO) - n ,sinO

n? + (1 - n?)



5. Experimental Results

Computer simulations for the estimation of the motion parameters and

structure of the feature points were conducted on many sets of test data incor

porating noise of 1% , 5%, and 10% of the signal.

In all the following examples, the first point used as a feature point is chosen

randomly in three dimensional space with respect to the camera coordinate sys

tem. The other feature point is taken to be the reference point at the origin of

the camera system, since it is the vector between the two points, not the absolute

positions of the two points, that is significant in this context. Next, the point is

rotated for several frames according to some arbitrarily chosen motion parame

ters which consist of the tilt and slant of a rotational axis, and a rotational angle

about the axis. Then the observables are set to the first two components of these

coordinates with noise added to them. The motion parameters and relative

structure are computed using the method described in Sections 4.1 and 4.2. The

results are then compared with the underlying motion and structure. In our

implementation algorithm, one of the key steps is to find the center of the ellipse.

This is important because the tilt of the rotational axis as well as the directions

of the two axes of the ellipse are related to the coordinates of the center. Subse

quently, all reconstructions are based on this canonical coordinate system for the

ellipse. To demonstrate this key step, instead of deriving the center from noise

corrupted observables, we impose the same percentage of error in the center of

the ellipse. The results are surprisingly reliable. Several examples were used to

reveal that getting reasonable performance from the algorithm requires more than



four frames if the center is calculated from observables.

Example: Eight test cases are reported here. The tilt and the slant of the

feature point were chosen to be 10 degrees and SO degrees, and the radius to be

20 (using spherical coordinates). The tilt and the slant of the rotational axis were

chosen to be 30 degrees and 40 degrees, and the rotational angle about the axis

was 20 degrees. The first row gives the reference knowledge. The other rows show

the results using different versions of algorithm as explained below.

Frames Noise Motion Parameters Feature Point

- % Tilt I Slant I An.ie Tilt I Slant I Radius
- - 30 40 20 10 80 20
4 0 30 40 20 10 80 20
4 1 29 44 23 9 88 19.89
4 5 27 46 37 9 90 20.65
4 10 25 46 49 8 90 21.6
8 5 27 35 11 9 72 21.6
8 10 25 28 3 8 59 25.0

10 5 27 34 16 9 70 20
10 10 25 27 10 8 57 25.6

Many other examples were run under the conditions of no noise and four frames;

the results all shows that the error due to the finite precision of computer arith-

metic is less than 0.01%. The implementation up to this stage is a straightfor-

ward translation of the method described in Section 4.2. We have found that

•



•

other implementations using the fifth point to fit the ellipse by solving the linear

system of equations sometimes produces an undesirable result due to the condi

tioning of the matrix for some inputs (e.g., very small rotational angle, small

depth component of the feature point, etc.). The same situation was found using

the approach in [91.

Noise ranging from 1% to 10% was introduced in the next set of tests, and

we also corrupted the center of the ellipse together with the observables. In fact,

we have found that "a straightforward approach using the center derived from the

corrupted observables in our algorithm suffers from similar difficulties to those

encountered in the other implementations mentioned above. The correctness of

the measurement of the center is again subject to the conditioning of the matrix.

We see that the the algorithm with slight modifications yields very good esti

mates. In fact, some tricks need to be incorporated in the reconstruction algo

rithm even if the noise is directly imposed on the center of the ellipse, since the

inherent difficulty encountered in fitting a canonical ellipse will certainly take

place for some inputs. These situations often arise for a very small rotational

angle or small depth component. However, often information can be exploited to

overcome this difficulty, such as that the length of the long axis of the ellipse is

greater than the distance from the center to any point on the ellipse. .Af3 another

illustration, information about a point which is very near the endpoint of the

long axis of the ellipse can also be used to estimate a bound on the length of the

axis. By exploiting such information, we were able to to get very good perfor

mance over a very large range of input cases using only four frames.



We show that only one combination exists for Cl::' '=1= o.

From (3) or (4) we have

,,= C1(cO - c,)

or

,,= ,jL - "h (±,jL -70 ± ,jL -7,) (7)

There are six cases to be considered: (i) ,,>0 •70 < 7, (ii) ,,>0 , 70 > 7, (iii)

,,>0 .70 = 7, (iv) ,,<0 , 70 < 7, (v) ,,<0 •70 > 7, (vi) ,,<0 .70 = 7,. We

here deal with cases (i) and (iii); the other cases are similar.

Case (i): ,,>0 ,70 < 7,

Since ,jL - 70 > ,jL - 7,. it is easily seen from (7) that (8) and (9) can possi

bly hold:

a=,jL -7d,jL -70 +,jL -7,)

a=,jL -7d,jL -70-,jL -7,)

(8)

(9)

If only one of them holds, then we are done. .A:3 an illustration, suppose (8) is

truej then c l,e 0 must have the same sign, and e l,e 2 must have the same sign

also. This implies that the following combination and its reflection are the only

placements:

or



If both of them are true:

Subtracting (9) from (8) gives

Adding (8) to (9) gives

';L - '"II ';L - '"10 = <>:;of °
Thus L = '12 since L cannot be equal to "'fl. Furthermore, Co and c 1 must have

the same sign to make a>O. This implies that the following two combinations

are possible:

(ao,b o, -';L '"(0) (a"b" -yL '"1,) (a"b"O)

They are again reflections of each other.

Case (iii): <»0, '"10 = '"1,

Obviously, only (8) can hold which results in the following combinations :

(ao,bo,+';L '"(0) (a"b,,+yL -'"1,) (a"b,,-yL -'"1,)



The rest of the cases use the technique of linear least square estimation to

derive the center of the ellipse and the lengths of the two axes from the observ

abIes in more than fo:ur frames, because it was found that the information men

tioned in the previous paragraph will not work when the center is calculated from

four corrupted frames. The errors propagated to the center from the observables

are sometimes unpredictable and not tolerable. In these cases, the number of

additional constraints on the center of the ellipse obtained by adding more

frames is more than the number of the frames added which needs to be noted.

As these examples show, the proposed reconstruction algorithm is very reli

able and yields good results. Of course, if some of the noise consists of outliers

then a more sophisticated approach needs to be sought (e.g. filter out the

outliers or use' a feedback approach).



6. Concluding Remarks

A method of estimating the underlying motion and the structure of a un

known rigid object has been presented. This problem has been extensively stu

died in the analysis of time-varying imagery. The difference of this method from

previous ones [4,5] is that the successive motion is assumed to be constant for a

short time period. A similar method is described in [IJ where a fixed rotational

axis was assumed. Although ours is a stronger assumption, it allows a weaker

condition on the number of obse:rvable points, which would otherwise be impossi

ble to interpret using previous methods even if as many frames as desired are

allowed to be taken. These approaches can be considered as not only represent

ing a trade-off but also as complementary because neither approach can be

extended to handle the other case.

Several results have been established. First, the fact that the angle remains

invariant between successive frames was observed. Next, at most two ambigui

ties (up to reflection in depth) will occur if three frames are used. Furthermore) a

simple criterion for a unique solution is developed if only three frames are avail

able. Last but not least, the uniqueness of the underlying motion and the struc

ture was proved geometrically, which led us to construct a simple, efficient, and

reliable algorithm. One result we did not include in this paper is a very simple

necessary criterion to have a constant motion for four points. In fact, the parallel

ism between the line formed by frame 1 and frame 4 and the line formed by

frame 2 and frame 3 serves as the criterion.

•



Many test results were reported along with detailed implementation experi

ence. The algorithm shows stability and yields good performance with up to 10%

noise. Compared with the tolerance of noise in many other reported approaches,

this technique seems robust. One experience we have learned is that fitting an

ellipse to several points is be~ter done in the canonical coordinate system if we

can find the center and the axes.
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Figure 1.
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Figure 2: Parabola is convex downward; ""fi must lie in segment ef.
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Figure 3: Parabola is convex upward; "10'1("12 cannot lie in the segment gh.
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Figure 4: L· assumes the minimum value.
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Figure 5: E is the origin of the camera system or reference point.
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Figure 6(a): The projection of Figure 5.
The ellipse and 0 are not obseITable.
The task is to estimate 0'0 from WOWIWt1,WS'

•

Figure 6(b): Imagine this figure in 3D space.
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Figure 6(e): 0 is not observable.

x

y

I
I

I
I Wi

I /
I ".~

1 0

I
1

I Wo
W4

E X

Figure 6(d): 0 is found and a'new point w4 is created.
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