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Abstract 

We report the preparation of a nanocomposite hydrogel based on a 

poloxamine gel matrix (Tetronic T1107) and cyclodextrin (CD)-modified Barium 

Titanate (BT) nanoparticles. The micellization and sol-gel behaviour of pH-

responsive block-copolymer T1107 were fully characterised by small-angle neutron 

scattering (SANS), dynamic light scattering (DLS), and FTIR-ATR spectroscopy as a 

function of concentration, pH and temperature. SANS results reveal that spherical 

micelles in the low concentration regime present a dehydrated core and highly 

hydrated shell, with a small aggregation number and size, highly dependent on the 

degree of protonation of the central amine spacer. At high concentration, T1107 

undergoes a sol-gel transition, which is inhibited at acidic pH. Nanocomposites were 

prepared by incorporating CD-modified BT of two different sizes (50 nm and 200 

nm) in concentrated polymer solutions. Rheological measurements show a broadening 

of the gel region, as well as an improvement of the mechanical properties, as assessed 

by the shear elastic modulus, G’ (up to 200% increase). Initial cytocompatibility 

studies of the nanocomposites show that the materials are non-toxic with viabilities 

over 70% for NIH3T3 fibroblast cell lines. Overall, the combination of Tetronics and 
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modified BaTiO3 provides easily customizable systems with promising applications as 

soft piezoelectric materials.  

 

INTRODUCTION 
Nanocomposite hydrogels are emerging as an attractive concept to craft 

materials with tailored properties, such as mechanical, optical, electronic, as well as 

promoting a specific biological response (self-healing materials, mechano-actuators, 

triggered delivery etc).1 The combination of a polymer gel matrix (which affords 

mechanical support, phase modulation and a hydrated environment) with 

nanoparticles (bringing specific functionalities, such as optical, magnetic, 

piezoelectric, antimicrobial…) is the basis of fascinating properties, resulting from a 

synergistic interplay between matrix and filler.1  

A promising type of matrix to produce nanocomposite hydrogels are 

poloxamines, also known by the commercial name of Tetronics (BASF). They are 

amphiphilic block copolymers, presenting an original X shape, where each of the four 

arms is made of a poly(propylene oxide) (PPO) and a poly(ethylene oxide) (PEO) 

block connected by a central ethylene diamine spacer. The number of PO and EO 

units that form the arms can be varied, offering a wide range of Mw and HLB values, 

and hence a rich phase behaviour and custom-made properties, both in terms of 

thermal and pH response.2–4 PEO-PPO-based polymeric micelles are now emerging as 

promising formulation candidates in the biomedical field, being available in large 

quantities in a large array of architectures, at low-cost, and also showing biological 

inhibitory activity of drug efflux pumps.5,6 The more well-known linear counterparts 

of Tetronics - Pluronic – are currently undergoing clinical trials with the cancer drug 

doxorubicin7 and the recent demonstration of the ability of Tetronics to also inhibit 

ATP-binding cassette transporters in cancer cell lines, responsible for multidrug 

resistance,5 added to their pH-responsiveness, has recently brought them into the 

spotlight as serious contenders in the biomedical field.6 Indeed, they have been 

proposed as water-soluble copolymers for injectable formulations,8 nanocarriers for 

drug and gene delivery 9,10 and in tissue engineering for bone regeneration.11  

The introduction of different types of nanoparticles into hydrogels is a 

successful way to not only improve existing characteristics (such as gel elasticity and 

toughness), but also add extra functionalities to the hydrogels,12–14 resulting in new, 
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functional materials. Extensive research is being carried out in this field covering a 

wide range of nanofillers, which, used in relatively low amounts, can yield 

remarkable changes in the final properties. Some examples are clays as natural and 

synthetic laponites,15 ceramics as hydroxyapatite (HA) or beta-tricalcium phosphate 

(β-TCP) for bone regeneration16,17 and delivery of growth factors.18 Metallic 

nanoparticles such as silver and gold constitute other approaches, chosen for their 

antimicrobial properties,19 as well as multi-wall carbon nanotubes (MWCNT) and 

graphene oxide (GO), which are also exploited to create electrically active hydrogels 

mimicking cardiac tissue with mechano-actuation,20 and polymer colloids to develop 

hydrogels for adhesives and surgical sealants.21  

A substantial amount of work is focusing on inorganic nanoparticles and 

ceramics as bioactive components in bioengineering,22,23 such as bioactive silica 

nanoparticles for improved osteogenesis24,25
 or TiO2 for antibacterial biodegradable 

hydrogels.26 In this work, we focus on Barium Titanate (BaTiO3, BT) nanoparticles, a 

perovskite-type ferroelectric ceramic that possesses a high dielectric constant with 

piezoelectric properties (in its tetragonal, orthorhombic and rhombohedral crystalline 

phases). BT has been replaced in some - mainly electric - applications by 

multiceramic materials, such as lead zirconate titanates, or PZTs. However, PZTs are 

not appropriate for biomedical applications due to the high toxicity of the lead 

component, and BT has been suggested as a good piezoelectric alternative due its 

better biocompatibility.27–29 Some examples are as second harmonic generators for 

imaging applications30,31 and in drug and gene delivery as nanocarriers and 

vectors.27,32 In bone regeneration in particular, BT presents potential as a ceramic 

filler; its piezoelectricity and interaction with the dipoles formed on the collagen 

fibres of the inner bone have been shown to promote bone regeneration, as they are 

able to generate small electrical impulses under minimal mechanic stress, enhancing 

the cellular and tissue stimulation for the healing process.33–35   

The main problem to overcome is that ceramic nanoparticles usually present 

poor processability and high aggregation due to their high area-to-volume ratio.36,37 

This problem may be overcome by surface modification of the nanoparticles. Based 

on our substantial work on cyclodextrins,4,38 we explore here the effect of surface 

modification of BT with cyclodextrins (CDs)39 prior to their introduction in the 

hydrogel matrix. Once the nanocomposite hydrogel has been prepared, the physical 



 

and chemical interaction between the matrix and the nanofiller is a determining factor 

for modulating the properties, which in our case are the changes in the sol-gel 

transition temperature and the improvement of the mechanical response of the 

hydrogels. 

While it is clear that the introduction of nanoparticles inside a gel matrix may 

improve the mechanical properties and generally the functionality of the material, 

there are still few fundamental studies aiming at elucidating structural changes 

induced by the presence of the nanoparticles, in particular using techniques such as 

small-angle neutron scattering (SANS). A few exceptions are the studies by Namban 

and Philip’s on the influence of Fe3O4 nanoparticles in a matrix of Pluronics,40 the 

introduction of clays such as laponite nanoparticles into Pluronic gels41 and  other 

type of ABA triblock copolymer hydrogels.42 Annaka et al.43 reported SANS studies 

where the introduction of hydrophilized silica nanoparticles (to match the refractive 

index of the natural lens) impacted the temperature and concentration regime of gel 

formation; SANS measurements showed that the silica particles did not affect 

micellar size but decreased their effective volume fraction.  Tamborini et al.44 also 

used SANS to study the nanocomposite structure of Pluronic crystals and silica 

nanoparticles as a function of the temperature rate used during preparation, where the 

volume fraction of the silica nanoparticles is kept low and their size are similar to the 

micelles. 

Within this framework, the objective of this work was to develop soft 

nanocomposites, using naturally gelling, low-cost poloxamines as a gel matrix, 

combined with piezoelectric BaTiO3 nanoparticles, chemically modified with 

cyclodextrins39 for improved compatibility. The BatiO3 particles are relatively large 

compared to the micelles and introduced up to high volume fraction (20%). In the first 

part of this work, we perform a thorough characterisation of the structural changes 

that lead to T1107 micellization and sol-gel transition, as a function of concentration, 

pH and temperature, using a combination of techniques (SANS, DLS and FTIR-ATR). 

Following this, cyclodextrin-modified BT nanoparticles of two different sizes are in 

the polymer matrix to produce nanocomposite gels, which are characterised both 

rheologically and spectroscopically, with particular focus on the structural and 

mechanical changes induced by the addition of the nanofiller. Finally, cytotoxicity 

and cytocompatibility assays of the nanocomposites at different concentrations, in 
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solution as well as in the gel phase, are performed, as an initial evaluation of their 

suitability as biomaterials. 

 

MATERIALS AND METHODS 
Materials. Tetronic 1107 (T1107) was a gift from BASF, with a reported composition 

per arm of 60 EO and 20 PO, HLB 18-23 and average molecular weight 15,000 

gmol-1. Inorganic nanoparticles of barium titanate (BT, BaTiO3), with an average 

diameter of 200 nm were supplied by Nanostructured and Amorphous Materials Inc. 

(tetragonal crystalline structure, 99.9% purity, ρ = 6.02 g·cm-3), while nanoparticles 

of 50 nm in diameter were supplied by Sigma-Aldrich (cubic crystalline structure, 

99.9% purity, ρ = 6.08 g·cm-3).  

Preparation of BaTiO3 nanoparticles. BT nanoparticles present strong aggregation 

that leads to rapid precipitation in water. Surface modification of the NPs with β-

cyclodextrin (CD) was performed to overcome this problem, according to the two-

step procedure described in a previous work,39 consisting in the generation of 

hydroxyl groups on the surface by reaction with H2O2, followed by mixing with a 10 

mM β-CD solution under vigorous stirring. The resulting nanoparticles are 

centrifuged and washed three times to remove reagents in excess and freeze-dried for 

storage.  

Small-Angle Neutron Scattering (SANS). Small-angle neutron scattering (SANS) 

experiments were carried out on LOQ instrument at ISIS spallation neutron source 

(ISIS, Rutherford-Appleton Laboratory, STFC, Didcot, Oxford). LOQ uses incident 

wavelengths from 2.2 to 10.0 Å, sorted by time-of-flight, with a fixed sample-detector 

distance of 4.1 m, which provides a range of scattering vectors (q) from 0.009 to 

0.29 Å-1. The samples were prepared in D2O (Aldrich, > 99.9% in D) and placed in 

clean disc-shaped quartz cells (Hellma) of either 1 or 2 mm path length, controlling 

the temperature from 20 to 50 °C with an external thermostat. In the case of 

experiments in acidic solutions, the necessary volume of concentrated HCl was added 

to the samples to reach the desired pH. All scattering data were first normalised for 

sample transmission and then background-corrected using a quartz cell filled with 

D2O to compensate for the inherent instrumental background, and finally corrected 

for the linearity and efficiency of the detector response using instrument-specific 

software package. The data were then converted to differential scattering cross-



 

sections expressed in absolute units of cm-1 using the standard procedures at ISIS. 

Some additional samples (Fig. 6) were measured on D22 at the Institut Laue-

Langevin (ILL), The wavelength λ was set at 6 Å, the peak flux of the cold source. 

The sample-to-detector distance was 4 m with a collimation at 5.6 m and a detector 

offset of 400 mm to maximize the available q-range using rectangular cells of 1mm of 

path lenght. All samples for SANS analysis were made in D2O to ensure sufficient 

contrast between the polymer and the solvent.  

SANS curves were fitted using the SasView 3.1.0 software and a brief 

explanation of the models can be found in the SI.45 Scattering curves from T1107 in 

its unimer form were fitted with a four-arm star-shape polymer model,46 while 

micelles were fitted to a core-shell sphere (CSS) model combined with a hard-sphere 

structure factor. When letting the scattering length density (sld) of the micellar core 

float, this value converged consistently to values similar to that of pure PO (PO = 

3.44×10-7 Å-2), therefore this parameter was fixed in the fits, reflecting the fact that 

the micellar core is largely dehydrated, as observed with other poloxamines under 

dilute conditions.4,47 Instead, the shell is extensively hydrated, and the level of 

hydration can be estimated from the fitted value of the sld of the PEO shell, shell. The 

volume fraction (occupied volume divided by the total volume) of solvent in the 

corona, xsolv, is related to the sld of the shell, PEO block and D2O by: 

                            Eq. 1 

The number of water molecules, nsolv, in the shell is obtained from: 

                       Eq. 2 

where      is the volume of a molecule of solvent. The number of water molecules 

per EO group, nsolv/EO, can then be obtained from Eq. 2 and the value of the 

aggregation number, Nagg, is obtained from the hydration of the shell and the 

structural parameters of the core-shell model. Provided that the amount of water 

inside the core is negligible, the volume of the micelle is: 

                        Eq. 3 

where vs is the volume of a surfactant molecule. Nagg can be extracted by introducing 

into the equation the volume fraction of solvent in the shell, xsolv, deduced from Eq. 1.  
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The nanocomposite data were analysed by a combination of the CSS and a generic 

power law model (CSS+PL), as well as the combination of different types of 

paracrystals (SC, BCC and FCC) and the PL model. In all the calculations, the 

polydispersity of the micelles was taken into account with a value of 0.20 by 

assuming a Gaussian size distribution. 

Dynamic light scattering (DLS). Size distributions of the poloxamine in water were 

obtained with a photon correlation spectrometer Malvern Zetasizer Nano, with a laser 

wavelength of 633 nm. The samples were filtered prior to the measurements by 0.22 

m Millex syringe PVDF filters onto semi-micro glass cells, and the temperature of 

the samples was controlled with 0.1˚C accuracy by the built-in Peltier in the cell 

compartment. The viscosity and refractive index of the solvent at different 

temperatures were taken into account to obtain the particle size distribution from the 

analysis of the autocorrelation function, which was performed with the Zetasizer 

software in the high resolution mode to better distinguish overlapping distributions. 

Infrared spectroscopy. The gelation processes were studied by attenuated total 

reflectance infrared spectroscopy (FTIR-ATR), using a Nicolette Avatar 360 

spectrometer, equipped with a Golden-Gate temperature controlled ATR. The spectra 

were collected on 0.1 mL samples placed directly on the diamond, at 2 cm-1 resolution 

and 32 scans per spectrum, in the temperature range from 20 to 60 ˚C. 

Rheology. Small-amplitude shear oscillatory experiments were performed on a 

dynamic strain-controlled rheometer ARES (TA Instruments) using plate-plate 

geometry (25 mm), with a temperature-controlling Peltier unit and a solvent trap. All 

solutions were left to rest at least one day at room temperature after preparation 

before conducting the rheological measurements. After loading, a thin layer of low 

viscosity paraffin oil was added to the geometry edge in order to prevent evaporation. 

Samples were allowed to rest for a few minutes before the start of the experiments to 

ensure dissipation of any pre-shearing due to manipulation and loading. Temperature 

sweeps at constant angular frequency of 6.28 rad·s−1 and 1% strain amplitude, within 

the limit of the linear viscoelastic range as measured by strain amplitude experiments, 

were conducted at a heating rate of 2 °C/min covering the temperature range from 20 

to 80 °C. The gel points are calculated by monitoring the elastic modulus, G’, along 

the temperature sweeps and identifying the gel point as the temperature where there is 



 

a sudden change in slope, corresponding to a sharp increase in G’ (corroborated by 

the calculation of the 2nd derivative).  

Preparation of the Nanocomposite Gels. Concentrated solutions of T1107 and NPs 

were prepared by weighing the required amounts of Tetronic, modified BaTiO3 

nanoparticles (50 nm and 200 nm in diameter) and water, D2O or PBS, followed by 

mixing. To ensure appropriate dispersion of the NPs in the gel matrix, cycles 

alternating magnetic stirring, vortex mixing and cooling to 4 ˚C were performed, to 

facilitate the dissolution of the polymer, while keeping the viscosity low (the viscosity 

of Poloxamines increases with temperature).  

Cytotoxicity Studies. The cytocompatibility of the nanocomposite gels of T1107 and 

BT was tested on the fibroblast cell line NIH3T3 by means of the tetrazolium assay 

(MTT), in which the viability of the cells is assessed by the loss of viable cells upon 

treatment with the compounds of interest. The cells were incubated at 37 ˚C and 5% 

CO2 in Dulbecco’s modified eagle medium from Life’s Technologies, supplemented 

with 10% fetal bovine serum and 0.1% of penicillin/streptomycin. T1107 solutions 

were prepared in PBS and filtered through 0.22 μm for sterilization.  Cells were 

seeded into 96-well plates at a concentration of 5×104 cells·mL-1 and 24 hours later 

the nanocomposite was introduced into the wells. MTT tests were conducted on day 3 

by the addition of MTT 5 mg/mL and incubation for 4 hrs. The formazan absorbance 

at 540 nm was measured with a Thermo Scientific Multiscan EX microplate reader. 

DMSO was used as a positive control, and the appropriate negative controls 

performed by incubating the cells in the absence of the nanocomposite.  

 
RESULTS AND DISCUSION 
Self-aggregation of T1107 and phase behaviour: the dilute regime. 

The phase diagram of T1107 in water at its natural pH (ca. 7.8) is shown in Fig. 

1. At 20% and 40 ˚C, the solution becomes gel-like up to 50 ˚C, with a wider gel 

region at higher concentrations (spanning 30 ˚C to 80 ˚C at 30%). Gel formation is 

impeded at acidic pH, due to the protonation of the di-amino middle block. For 

example, at pH 6, no gel is detected from 25 to 80 ˚C for a 20% mixture. A similar 

behaviour has been observed with poloxamine T1307, which has a larger molecular 

weight (18,000 gmol-1) and higher HLB (> 24); however with this larger poloxamine, 
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at 20% and pH = 6 a gel phase still exists between 40 and 50 ˚C.4 More acidic pH 

totally hinders gel formation. Replacement of H2O by D2O slightly shifts the gel 

phase boundary to higher concentration and temperature (SI, Table 1). 

 
      T (˚C)       

T1107 20 25 30 35 40 45 50 55 60 65 70 75 80 

5% ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
10% ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
15% ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
20% □ □ □ □ ● ● ● □ □ □ ○ ○ ○ 
25% □ □ □ ● ● ● ● ● ● ● ● ● ● 
30% □ ● ● ● ● ● ● ● ● ● ● ● ● 

 
 
Fig. 1. Phase behaviour of T1107 in water.  Solution;  viscous solution;  gel. 

 
 

Fig. 2A shows the intensity size distribution of 1% T1107 at different 

temperatures obtained from DLS measurements. Unimers are detected at 20 ˚C, with 

a hydrodynamic radius, Rh, of 3.2 nm. Between 30 and 35 ˚C, the distribution 

broadens and shifts toward higher sizes, reflecting the micellization process. Micelles 

are fully formed at 40 ˚C, with a Rh nearly constant above that point (7.8 nm). The 

relative size of the micelles compared to that of the unimers, Rmic/Runim, is 2.4, which 

is intermediate between the larger T1307 (1.6, with NEO = 72, NPO = 23)2 and the more 

hydrophobic T904 (2.8, NEO = 15, NPO = 17),3 suggesting that the micelles of T1107 

must contain a relatively low number of unimers, loosely aggregated, as found for 

T1307 4 and also reported with Pluronic of high HLB, such as P85.48 At pH 2.8 (Fig. 

2B), the formation of micelles is hindered, resulting in a smaller micellar size of 6.9 

nm at 50 ˚C.  
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 Fig. 2: Intensity size distributions as a function of temperature obtained by DLS for a 1% 

aqueous solution of T1107 at (A) pH 7.8 and (B) pH 2.8 in H2O. 

More detailed structural information on the unimers and micelles can be 

obtained from small-angle neutron scattering measurements (SANS); combining these 

with DLS enables one to unambiguously identify concentration regimes where 

unimers, micelles, or both are present, thus directing the choice of a suitable fitting 

model. Fig. 3A shows the scattering curves for a 2% T1107 solution in D2O. Below 

30 ˚C, the poloxamine is in the form of unimers (as established by DLS), whereas at 

40 ˚C and 50 ˚C micelles are the dominant species, and the overall scattering 

increases accordingly. A four-arm star-shape polymer model was shown to 

successfully describe the unimers.46 With this model, the radius of gyration, Rg, at 20 

˚C decreases with concentration, from 3.6 nm at 0.5%, to 2.9 nm at 2% and 1.9 nm at 

5%; the first value is close to 3.2 nm obtained by DLS for Rh at 1%. 
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Fig. 3: SANS curves for 2% T1107 solutions in D2O as a function of temperature at pH 8.1 (A) 

and pH 2.2 (B). Solid lines are fits to the different models described in the text. 

At 40 and 50 ˚C, micelles dominate the scattering, and hence a core-shell sphere 

model (CSS) combined with a structure factor for hard spheres were used. The fitted 

and calculated parameters in the dilute regime (2 %) are collected in Table 1 for two 

values of the pH (data at 0.5% and 5% are provided in SI, Table 2). 

Table 1. Micellar parameters of 2% T1107 in D2O deduced from fits to the SANS data (core-
shell model with a hard-sphere structure factor): Rc (core radius), t (shell thickness),  (volume fraction 
from the hard-sphere potential), shell (scattering length density of the hydrophilic corona), Nagg 
(aggregation number), nsolv/EO (number of solvent molecules per EO in the shell). 

pH T / °C Rc / Å t / Å  shell 106 / Nagg nsolv/EO 



 

Å-2
 

8.1 
 

40 34 47 0.08 5.95 14 20 

50 34 46 0.08 6.06 12 23 

2.2 50 30 43 0.08 5.99 9 22 

 

Micellar size is fairly insensitive to temperature or concentration up to 5% 

(Table 1), with a total radius around 8 nm (in agreement with DLS, Fig. 2A). The sld 

of the shell, shell, takes values close to D2O (6.36×10-6 Å-2), indicating an extensive 

solvation of the hydrophilic corona, reflected in the high number of solvent molecules 

per EO. The aggregation number, Nagg, does not vary much with temperature or 

concentration, while the hydration of the shell (nsolv/EO) decreases slightly with 

concentration, suggesting a more compact micellar structure.  

In contrast to temperature and concentration, pH has a strong impact on micellar 

structure (Fig. 3B, Table 1). At pH 2.2, the low scattering at 20 ˚C and 30 ˚C reflects 

the presence of unimers with Rg = 2.7 nm (similar to natural pH, at 2.8 nm).  At 40 ˚C, 

both aggregates and micelles coexist (as shown by DLS). At 50 ˚C, the micelles are 

substantially smaller than at neutral pH (Table 1), in agreement with DLS results (Fig. 

2B). Nagg is of only 9 molecules per aggregate, comparable to the value of 4 reported 

in water by static light scattering at pH 2 (37 °C).2 Thus, a drop in pH can be 

envisaged as a trigger for the release of a cargo from the interior of the micelles, 

which do not break fully, thus enabling delivery in a stepwise fashion. 

IR spectroscopy can provide information on changes occurring in the chemical 

surroundings of specific functional groups, such as those occurring in micellization 

processes or temperature induced sol-gel transitions. There is a precedent of this 

approach in the literature, where the aggregation of Pluronic F127 49 and reverse 

Tetronic 10R5 3 was followed by monitoring the band at 1085 cm-1 (corresponding to 

the combination of stretching and vibration of the C-O-C from PEO and PPO blocks). 

The same approach applied to 10% T1107is shown in Figure 4. When increasing the 

temperature from 20 to 60 ˚C, a shift of the 1085 cm-1 band towards higher 

wavenumbers (blue shift) is observed, as well as a broadening in the bandwidth 

(FWHM). There is no clear breakpoint in any of the plots, but a smooth change of 

slope at around 30 ºC (shown with the linear fits) in the maximum of the band, 

suggesting a small degree of dehydration once micelles form (above the cmc). The 
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broadening of the IR band also points to the coexistence of different environments or 

states of dehydration. FTIR-ATR analysis of the T1107 25% is shown on the SI Fig 1. 

This pattern is qualitatively similar to that obtained for Pluronic F127,49 although in 

that previous study the breakpoint was sharper. The more open structure of the T1107 

compared to that of the Pluronics may explain that changes in hydration occur in a 

continuous manner, with less of a sharp change, as the micelles are comparatively less 

compact, with looser unimers.  

 

 

 

Fig. 4: A FTIR-ATR analysis of the position and FWHM of the 1085 cm-1 band of T1107 

samples at 10%. The linear fits of the monomer region (orange) and Micelles region (blue) are shown... 

 

The concentrated regime: T1107 gels 

Raising the temperature and increasing the concentration of T1107 induces the 

formation of physical gels (Table 1). Fig. 5A shows the SANS data obtained at 25% 

T1107 when gradually increasing the temperature from 20 to 50 ˚C; samples turn to 

gels at 40 ˚C and 50 ˚C (SI, Table 1 for the phase diagram in D2O). Up to 30 ˚C the 

solution is viscous and the system consists of a concentrated solution of micelles, 



 

whose interactions are reflected by a strong peak in the mid-q range. At 20 ˚C, a fit to 

thr CSS model reveals micelles of 26 Å core and 33 Å shell (Table 2). Despite the 

considerably higher concentration, Nagg is lower than for 2% micelles at 40 or 50 ˚C, 

and the shell contains more solvent molecules per EO unit (Table 1), showing that 

temperature more readily enhances aggregation than concentration. At 30 ˚C, the 

solution becomes very viscous, producing a high intensity peak around 0.06 Å-1 (Fig. 

5A), as seen in physical gels consisting of packed micelles.50 In the gel phase (40 and 

50 ˚C), good fits were obtained by using the CSS model with a structure factor for 

hard spheres, with the sld of the core fixed to that of PO (as for dilute micelles), rather 

than the paracrystal model used elsewhere for Pluronic gels.50,51  

Table 2. Micellar parameters of 25% T1107 in D2O deduced from SANS data analysis. Rc (core 
radius), t (shell thickness),  (volume fraction from the hard-sphere potential), shell (scattering length 
density of the hydrophilic corona), Nagg (aggregation number), nsol/EO (number of solvent molecules 
per EO in the shell). 

pH T / °C Phase Rc / Å t / Å  shell  106 / Å-2 Nagg nsol/ EO 

7.6 

20 Sol 26 33 0.39 6.29 4 31 

30 Sol-Gel 30 36 0.52 5.98 8 18 

40 Gel 32 36 0.53 5.92 10 16 

50 Gel 33 36 0.53 5.94 10 15 

2.1 

30 Sol 23 25 0.29 6.05 3 18 

40 Sol 26 27 0.41 5.90 5 14 

50 Sol 28 28 0.44 5.80 7 12 

 

FTIR-ATR data of T1107 gels (Figure 1B SI), unlike what had been observed at 

10%, show very little change either in the position of the C-O-C band or its width, 

suggesting that the chemical environment (i.e., hydration state) of the EO and PO 

groups remains very similar over the sol-to-gel transition, while it increases more 

noticeably as a result of  micellization (Figure 4A).  
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Fig. 5: SANS curves from 25% T1107 solutions in D2O as a function of temperature at natural 

pH (A) and at pH 2.1 (B). Solid lines are fits to the models described in the text. 

As acidic pH hinders the formation of the micelles, or results in smaller micelles 

(as observed in the dilute regime), this must have direct consequences on the structure 

of the gels (Fig. 5B). Clearly, the overall scattering is much lower than at natural pH 

(Fig. 5A). At 20 ˚C, the lower intensity suggests a transition state, corresponding to a 

mixture of unimers and micelles, while at higher temperatures (30ºC, 40ºC, 50ºC) the 

scattering reflects the presence of strongly interacting aggregates, whose structural 

parameters have been calculated according to a model of CSS with a HS structure 



 

factor. The resulting aggregation numbers are low compared to the gels at natural pH, 

but the trend with temperature is the same: a dehydration of the shell and increase of 

Nagg, along with an increase in the dimensions of the aggregates. Finally, the volume 

fractions and sizes are smaller than at natural pH, in agreement with the reduced Nagg 

under acidic conditions. 

The volume fraction returned from the fits gives some valuable insights into the 

structural changes occurring with temperature. At 20 ˚C and natural pH, where the 

solution is still viscous but no gelation has occurred, a value of 0.39 reflects the 

concentration of strongly interacting particles. This value increases with temperature 

and becomes practically constant within the gel region at 0.53. The theoretical volume 

fraction for a compact packing of spheres fcc is 0.74, 0.68 for a bcc, and 0.52 for a scc 

arrangement, hence the value obtained would correspond to a simple cubic paracrystal 

arrangement, as for Pluronic F127.52 The estimated fraction volume of 0.53, suggests 

that the arrangement, although displaying some long-range order responsible for the 

intense diffraction peaks, might rather be a dense mixture of micelles, in close contact, 

which do not form a completely ordered structure.  

In order to test this hypothesis further, a wider range of concentrations of T1107 (10%, 

20%, and up to 30%) were measured at 40 ºC, on a different instrument (D22, ILL) 

and with a set-up that provided a higher resolution of the scattering peaks (Fig. 6). 

10% T1107 shows no crystallinity peaks and the scattering curve can be fitted very 

well with the CSS+HS. The increase in concentration to 20% and 30% leads to a two-

fold increase in the intensity and the appearance of sharp scattering peaks in the 0.07-

0.09 Å-1 range. The higher resolution of this region reveals a peak that was not 

detectable in the previous set-up (Fig. 5). The CSS+HS model is no longer suitable to 

describe the data from 20% and above in the higher q region (despite the fit being of 

higher quality in the lower q region), as it obviates the first peak at 0.07 Å-1 (which is 

best seen in Fig. 7A). As stated above, the presence of these peaks evidence a higher 

degree of arrangement, probably an intermediate situation between a dense packing of 

micelles and a paracrystalline structure, which is favoured by the inherent 

polydispersity of the micelles. BCC fits were proposed for samples with 

concentrations of 20% T1107 and above, and the diffraction peaks at higher q are 

better described by this model, giving a sphere radius of 35.1 Å and 35.5 Å for 20% 
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and 30% solutions and nearest neighbour distance (dnn) of 166.8 Å and 155.8 Å, 

respectively.  
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Fig. 6: SANS curves from T1107 10%, 20% and 30% solutions in D2O at 40 ˚C and natural pH. 

Solid lines are fits to the models described in the text CSS+HS (10% sample) and BCC (20% and 30% 

sample). Data measured on D22 (ILL). 

 

Hydrogel nanocomposites 

The structure of the nanocomposite gels was studied by SANS with 20% T1107 

and a 5% load of BaTiO3 nanoparticles (50 and 200 nm) to achieve a total dry load of 

25 %. Figure 7A shows the scattering patterns of the different gel nanocomposites at 

40ºC. In addition to the CSS-HS model used for low concentration Tetronic gels, a 

generic power law was added to account for the scattering of the large inorganic 

nanoparticles at low q.53,54 The fitted parameters (Table 3) show that the introduction 

of the nanoparticles in the gel does not seem to affect the size of the micelles, their 

volume fraction or their aggregation number. As observed for the pure Tetronic gels, 

the simple CSS+HS model however is not able to not fit the scattering peak 

adequately in the 0.07-0.09 Å-1 q-region. These peaks are typical of crystalline or 

para-crystalline arrangements in the system due to structured nano-domains, as 



 

observed in Pluronic F127 gels 52 and in T1107 gels (Fig. 6). The presence of BT 

nanoparticles in an already concentrated solution may be able to promote this long-

range order arrangement.55 In order to precisely measure the structural parameters of 

the nanocomposite gels, the BCC approach was also tested, in combination with a 

power law model (Figure 7B and Table 4). The introduction of the nanoparticles does 

not lead to major structural changes in the lattice, namely, a slight tightening of the 

network with a decrease in the nearest neighbour distance, dnn (Table 4), an effect 

similar to that obtained by increasing the concentration of T1107 (Fig. 6). The values 

obtained for the T1107+BT nanocomposites fall within the range between the T1107 

samples at 20% and 30%. The addition of nanoparticles does not have any notable 

effect either on the band shift or the FWHM (SI Fig 2). At 25%, T1107 micelles are 

fully formed at 20 ˚C, and the compaction of the micelles that takes place when 

increasing the temperature and leads to the sol-gel transition does not involve changes 

in the local environment that are reflected in the characteristic vibrations of the EO or 

PO groups.   



19 

 

 

 

     

Fig. 7: SANS curves from T1107 25% solutions in D2O and 20% solutions with 5 wt% of BT 50 nm 
(black) and BT200 nm (red) at 40 ˚C at natural pH. Solid lines are fits to the models described in the 
text: CSS+PL (A) and BCC+PL (B).  

 



 

Table 3: Micellar parameters of 25% T1107 and 20% T1107 and 5% BT nanoparticles of 50 
nm and 200 nm in D2O extracted from SANS data analysis. Rc (core radius, Å), t (shell thickness, Å),  
(volume fraction from the hard-sphere potential),  (scattering length density), Nagg (aggregation 
number), nsolv/x (number of solvent molecules per EO or PO units in the shell. 

Sample Rc / Å t / Å  shell  106 / 

Å-2 

Nagg nsol/ EO 

T1107 25% 32 36 0.552 6.13 10 16 

T1107 20% 
BT50 nm 

33 34 0.548 6.03 10 16 

T1107 20% 
BT200 nm 

32 36 0.554 5.96 10 16 

 

 

 

Table 4: Micellar parameters of 25% T1107 and BT nanoparticles of 50 nm and 200 nm in D2O 
extracted from SANS data analysis using a BCC model. Rc (core radius, Å), dnn (nearest neighbor 
distance, Å), D factor (paracrystal distortion factor) 

 

Sample Rc / Å dnn / Å D factor 

T1107 25% 35 167 0.086 

T1107 25% 
BT50 nm 

35 165 0.086 

T1107 25% 
BT200 nm 

35 166 0.088 

    

 

The introduction of nanoparticles in a hydrogel is known to alter its mechanical 

properties, as well as the thermogelation behaviour of the system  .40,56,57 We thus 

examine the rheological behaviour of the hydrogel nanocomposites, in particular the 
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effect of nanoparticle size (50 nm and 200 nm), the relative proportion of poloxamine 

and NP (varied from 0 to 20% in BaTiO3) and the effect of solvent (both water and 

phosphate buffered saline, PBS). The introduction of BT nanoparticles is expected to 

impact gel formation by either affecting the packing of the micelles or increasing 

connectivity in the network, thus modifying the properties of the system.1 
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Fig. 8: Temperature sweeps of 25% T1107 with BT nanoparticles of 50nm and 200nm in water 

and PBS, respectively: a) 50 nm BT in water b) 200 nm BT in water c) 50 nm BT in PBS d) 200 nm 

BT in PBS. 

The temperature sweeps showing the elastic modulus between 10 and 80°C (Fig. 

8) reveal a broadening of the gel phase region with increasing concentrations of BT 

from 0% to 20%. The onset of gelation shifts to lower temperatures by as much as 10 

˚C, while the gel-to-sol transition extends beyond 80 ˚C for the highest particle 

loadings. Replacing water with PBS induces a shift to both sol-gel and gel-sol 

transitions to lower temperatures (Table 5). This is attributed to the salting out effect 

caused by PO4
3- anions present in the solvent 58 that reduce the solubility of the PPO 

blocks, thus lowering the cmc and promoting micellation. At the same time, these 

anions reduce the capability of the PEO chains to form hydrogen bonds with the 



 

surrounding water, also lowering the cloud point.59 This overall results in a slightly 

narrower gel phase, particularly at 0% and 5% BT, but at higher BT loading (above 

10%), the effect of PBS is compensated by the effect of the filler, resulting in a gel 

phase extending beyond 80 ˚C.  

Table 5: Rheological Data for T1107 25% with 50 nm (BT50) and 200 nm (BT200) BaTiO3 
nanoparticles. 

Sample Solvent Gel 
Formation 

Temperature 
(˚C) 

Span 
of the 

gel 
phase 
(˚C) 

G’ 
Max 

(KPa) 

Tan 
(δ) 

T1107 25% Water 32 41 42.6 0.081 
 PBS 29 38 38.3 0.057 
5%   BT50 Water 28 51 53.7 0.046 
 PBS 27 43 42.6 0.048 
10% BT50 Water 27 53 59.1 0.020 
 PBS 24 55 59.3 0.021 
15% BT50 Water 25 53 62.2 0.011 
 PBS 22 57 72.4 0.020 
20% BT50 Water 23 57 83.1 0.016 
 PBS 18 60 80.2 0.021 
5%   BT200 Water 28 50 49.4 0.028 
 PBS 27 46 47.0 0.049 
10% BT200 Water 26 53 57.4 0.022 
 PBS 24 52 56.6 0.031 
15% BT200 Water 23 56 81.2 0.014 
 PBS 23 57 63.1 0.017 

 

An important effect of the addition of the nanoparticles, beyond extending the 

gel phase, is the increase in the elastic modulus (Table 5, Fig. 9). A direct relationship 

is observed between the amount of nanoparticles and the increase in G’, with, 

however, no effect of particle sizes up to 10% concentration.  
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Figure 9. Change in elastic modulus (G’) as a function of BT concentration in T1107 25% 

samples. 

There is, however, quite some variation between repeats at high particle loading 

(20%) and this erratic behaviour may be attributed due to the difficulty in achieving 

sample homogeneity, effect also seen by Tamborini et al in their work in micellar 

polycristals.44 The overall increase in G’ and sharp decrease in tan (δ) (Table 5) 

suggests that the introduction of the cyclodextrin-coated nanoparticles leads to a more 

rigid and connected network. Comparing tan (δ) values at the same compositions for 

the two different solvents shows again that the presence of charges from PBS leads to 

an increase in the liquid-like behaviour of the system and a looser packing of the 

network. 

 

 Cytotoxicity studies. 

Previous investigations have reported good cytotoxicity results for BT 

alone.30,60,61 The surface modified BT with CDs, which helps to stabilize the 

nanoparticles in solution, display excellent viability of the cells, even up to 

concentrations of 200 μg/mL.39 Figure 10 shows the MTT results for the T1107 

hydrogels at different concentrations with and without BT200-βCD nanoparticles.  
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The phase behaviour of the hydrophilic, X-shaped poloxamine Tetronic T1107 

has been fully characterised, using a combination of DLS and SANS. At low 

concentrations and above 30˚C, the amphiphile forms spherical micelles with a 

dehydrated core and a highly hydrated shell, with aggregation numbers relatively 

small, mostly due to the hydrophilicity of the polymer, with dimensions that do not 

depend much on the temperature or concentration. Micellar size is notably affected by 

the degree of protonation of the central amine spacer, forming loose hydrated 

aggregates. In the high-concentration regime, T1107 forms gels. SANS data analysis 

shows that upon gelation the micelles become dehydrated, and long-range order is 

detected through the appearance of sharp scattering peaks, revealing a BCC order. 

The presence of BT nanoparticles modified with CDs produces substantial changes in 

the rheological behaviour of the system. By adjusting the concentration of the 

nanoparticles, the sol-gel transition temperature of 25% T1107 can be tailored, with a 

maximum reduction in the gelation temperature of 12 ºC, as well as an increase of the 

same magnitude in the gel-sol transition, thus leading to a broadening of the gel phase 

region. At the same time, the elastic modulus G’ of the nanocomposite increases up to 

200% by incorporating the BT nanoparticles, and follows a linear trend with the 

concentration of the nanofiller. Thus, in addition to their inherent piezoelectric 

properties, the nanoparticles provide a handle to tune gelation point and elastic gel 

modulus, which is of interest for the preparation of injectable (thermoresponsive) 

hydrogels. From the structural point of view, the presence of the modified BT 

nanoparticles do not disturb the BCC arrangement of the micelles in the gels. Overall, 

the effect of filler size (50 nm vs 200 nm) is largely negligible, both on the 

macroscopic scale (rheology) and the nanostructure. Acidic conditions inhibit the 

formation of a gel phase, leaving a concentrated solution of small aggregates formed 

by extensively hydrated oligomers. The cytotoxicity of the nanocomposites was 

assessed both at high and low concentrations. Viability of fibroblasts at low 

concentration of poloxamine (up to 1 wt%), show excellent results (above 90% 

viability) for both the T1107 and the nanocomposite. At higher concentrations (1 wt% 

to 25 wt% T1107 with and without BT) the viability levels are between 70-90%, 

presenting higher variability for that specific cell line due to the presence of the 

micelles interfering with the nutrition demands of the cells. Overall, these results are 

promising for the further development of these composite materials for biomedical 

applications.   
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