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A proper account of the neural computations involved in visual cognition must

address, among other things, structure and similarity. In this work we present a

set of behavioral experiments that investigate the effect of hierarchic structures in

visual cognition, and suggest that learning the correct category of visual stimuli

is easier when their underlying generative distributions are organized more

hierarchically. We then go on to discuss the implications of the Reproducing

Kernel Hilbert Space theory for measurements of similarity in neural settings,

and discuss a number of empirical findings that suggest the brain in fact relies

on kernel-like computations at various stages of processing.
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CHAPTER 1

INTRODUCTION

More than thirty years after Marr’s ambitious Vision (Marr, 1982), compiling a sys-

tematic theory of the principles of visual cognition still seems like an ambitious

undertaking. What is missing is not faster or more parallel computing, nor so-

phistication in method. The growing popularity of deep architectures of learning,

coupled with the massively parallel computing clusters–sometimes spanning

16000 cores (Le, 2013)–make possible machinery that exhibits respectable per-

formance in various domains of object detection and identification. In parallel,

computational techniques have reached such sophistication that it takes graduate-

level training in mathematics to fully understand them–e.g., Dirichlet Process

Mixture Modeling, (Neal, 2000). These advancements have led to markedly

improved artificial systems, some good enough to be integrated into consumer

products such as digital cameras. Yet in spite of their merits, our current algo-

rithms fall short compared to human vision. For instance, with the exception of

a few particular domains such as detection of faces, cars, and pedestrians, object

recognition is still unreliable, especially when applied to natural images, where

problems such as clutter and variable pose abound. Furthermore, to reach their

optimum performance, existing systems require massive training. In contrast,

human vision exhibits robust performance, and appears to need few examples to

do so.

The roots of this discrepancy can be traced, in part, to the minor role that

structure plays in today’s artificial vision systems. The state of the art approaches

in computer vision tend to focus on “bag of features” methods–e.g., SIFT, (Lowe,

1999), and various forms of mixture modeling–whose treatment of structural

1



information is either implicit or altogether absent (Poggio and Ullman, 2013).

This is in contrast to human vision’s aptitude to exploit structural clues to aid

recognition, especially when dealing with composite stimuli such as scenes

or novel objects made of familiar parts. Indeed, converging evidence from

anatomical, functional, and behavioral experiments suggest that one particular

type of structure, namely, hierarchy, plays an important role in visual cognition.

In the feedforward cortical visual stream of mammalian brain, receptive fields

at each successive stage are formed by gathering input from multiple units at

preceding stages, resulting in an organization that resembles a hierarchy both in

anatomy and function. Does our hierarchically organized visual system favor

hierarchically structured stimuli?

The answer, according to a set of behavioral experiments we have conducted,

is in the affirmative. Chapters 2 and 3 report a set of experiments that were

devised to investigate the interaction of hierarchic structures with visual learning.

Chapter 2 sets forth the general paradigm of the experiments, and covers some

preliminary data suggesting that hierarchically organized visual stimuli can be

learned more accurately than their non-hierarchic counterparts, in a classification

task. In chapter 3 we introduce a graph theoretic measure of hierarchicality to

explore the gradation of the effect observed earlier. Furthermore, in order to

more confidently attribute the observations to the structural differences of the

experimental conditions, we employ a number of techniques to equalize the

difficulty induced by non-structural factors.

Although machine vision may not be quite up to its human counterpart in

respecting structure, when it comes to similarity-based representations, it is the

natural vision researches that can benefit by following in the footsteps of artificial
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systems. For at least as far back as John Locke’s Essay on Human Understanding

(Locke, 1700) followed later by Hume, and more recently by Shepard, similarity

has been known to be play a frontal role in what the mind does and how it does it.

Yet rigorous treatment of similarity has not been as pronounced in brain sciences

as in machine learning, where it takes the form of kernel methods discussed in

the theory of Reproducing Kernel Hilbert Space.

This idea is explored in chapter 4. We introduce four fundamental constraints

on cognition, and discuss how regarding kernels as a measure of similarity

(as opposed to their more popular view as a frugal trick in high dimensional

computations) can simultaneously meet the requirements of all four constraints.
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CHAPTER 2

THE ROLE OF HIERARCHY IN LEARNING TO CATEGORIZE IMAGES

Abstract Converging evidence from anatomical studies (Maunsell and van

Essen, 1983) and functional analyses (Hubel and Wiesel, 1968) of the nervous

system suggests that the feed-forward pathway of the mammalian perceptual

system follows a largely hierarchic organization scheme. This may be because

hierarchic structures are intrinsically more viable and thus more likely to evolve

(Simon, 1973, 2002). But it may also be because objects in our environment

have a hierarchic structure and the perceptual system has evolved to match it.

We conducted a behavioral experiment to investigate the effect of the degree of

hierarchy of the generative probabilistic structure in categorization. We generated

one set of stimuli using a hierarchic underlying probability distribution, and

another set according to a non-hierarchic one. Participants were instructed to

categorize these images into one of the two possible categories a. Our results

suggest that participants perform more accurately in the case of hierarchically

structured stimuli1.

2.1 Regarding Hierarchies

The anatomy of the primate visual system suggests that the retinal input pro-

gresses through several stages of processing that form an approximate hierarchy.

In the visual system, a large number of photoreceptors project to one ganglion

cell, several of which converge onto a single LGN cell; then come the cortical

areas V1, V2, IT, etc. (Kaiser and Hilgetag, 2010; Modha and Singh, 2010).

1This chapter is based on an article co-authored with David Field and Shimon Edelman
(Shahbazi, Field, and Edelman, 2011).
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The impression of hierarchy is further strengthened by evidence from func-

tional analysis of the neuronal circuits. For instance, in V1 several simple cells

send their axons to one complex cell whose preferred stimulus is constructed by

the preferred stimuli of its input simple cells (Hubel and Wiesel, 1968). Moreover,

starting from the retina and going up to higher cortical areas, the complexity of

the features that each stage of this hierarchy responds best to increases (Gross,

Rocha-Miranda, and Bender, 1972).

There exist at least three different definitions of hierarchy in the literature.

According to the most parsimonious of them, a hierarchy is any system of items

where no item is superior to itself. Furthermore, there needs to be one hierarch,

an item which is superior to all other items (Dawkins, 1976). This definition

emphasizes that aspect of hierarchy that differentiates it from a heterarchy (Mc-

Culloch, 1945). According to McCulloch, heterarchy is a structure with a certain

circularity. This circularity results in the possibility of members of the system

being superior to themselves. Because of the paradoxes that it may engender,

heterarchy is an unlikely structure to be observed in our everyday lives, hence

the name (heterarchy is Greek for “under the governance of an alien”; von

Goldammer, Paul, and Newbury, 2003). Another definition of hierarchy comes

from algebra, where hierarchies are defined in terms of partially ordered sets

(posets; Lehmann, 1996). The third definition is the one advocated by Herbert Si-

mon (1973), the pioneering figure of hierarchy theory. While the three definitions

are not in disagreement with each other, the third one seems to be best suited for

the present discussion.

According to Simon, a hierarchy is a nested collection of items where each

item contains another set of subcollections. He uses the analogy of Chinese
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boxes, in which each box contains several smaller boxes while it is itself con-

tained, together with other boxes, in a larger one. Graphically, this resembles the

structure of a tree where vertices represent items and edges indicate containment.

At least since the mid twentieth century, hierarchies have been believed to be

the appropriate structure for the organization of complex systems in various

domains including sociology, biology, computer science, and cognitive science

(Simon, 1973; Hirtle and Jonides, 1985; Holling, 2001).

In cognitive science, neuroanatomical data are one source of the evidence

for the hierarchic structure of the visual system. Another line of evidence come

from computational considerations. The problem of inferring the state of the

environment from the sensory input is an ill posed problem (Chater, Tenenbaum,

and Yuille, 2006; Edelman, 2008). The normative approach to this problem is to

rely on the environmental statistics that have been acquired via past experience.

A cognitive system that relies on the statistics of its environment to perform its

tasks will soon run out of resources as the computational cost of keeping the

joint statistics of the environmental variables grows exponentially in the number

of variables that the system is keeping track of (an issue known as the curse of

dimensionality; Bishop, 2006). By employing a hierarchic structure in recording

the statistics, the system can bring the computational cost of the task under

control. In addition to this computational advantage, hierarchic systems have

been shown to be more stable and evolve faster than their alternatives (Simon,

2002).

While on the one hand it is inherently beneficial for systems to have a hier-

archic structure, on the other hand, specifically in the case of perception, it is

beneficial for a system to employ a hierarchic structure to represent its environ-
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ment. Indeed, in the visual domain objects seem to present themselves to us in

a hierarchic way. For example, a face is composed of two eyes, one nose, one

mouth etc.; an eye is in turn composed of the iris, pupil, eyelashes etc. Is this

hierarchy merely apparent, simply because of the hierarchic structure of our own

perceptual system, or is it truly “out there”?.

In this paper we address this question indirectly, by evaluating the effect

of the interaction between the probabilistic hierarchic structure that we build

into a family of stimuli and the ability of human subjects to categorize those

stimuli. In a series of related studies Orban and colleagues have investigated

learning of visual scenes in human subjects where higher level features are

formed, in a hierarchical way, by chunking lower level features together. (e.g.

Orbán, Fiser, Aslin, and Lengyel, 2008). Here, we present participants with two

sets of patterns composed of simple objects. In one of these sets, the scenes are

drawn from a hierarchically structured probability distribution, while in the

other one the dependencies are not strictly hierarchic. The subjects’ task is to

categorize the patterns into one of the two possible categories. If hierarchies

are an important aspect of the structure of the environmental systems, to which

subjects are attuned, it should be more difficult for the participants to correctly

categorize the non-hierarchic objects.

2.2 The Experiment

Participants were presented with images formed by twelve geometric shapes

(figure 2.1) and were instructed to categorize them as either food or poison.

Whether a certain image pattern is truly food or poison was initially unknown to
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participants, so that they needed to learn the diagnostic features by trial and error.

Every time they responded “food” they were given feedback (“correct” or “incor-

rect”). There was no feedback when they responded “poison”. Image patterns

were sampled from probabilistic graphical models (a graphical representation of

the joint distribution of the features in the image), specifically directed acyclic

graphs (i.e. Bayes nets; (Pearl, 2001; Bishop, 2006)), designed to meet certain

criteria. The Bayes nets had 12 visible nodes, comprising the image stimuli, and

10 hidden nodes (figures 2.2 and 2.3).

These hidden nodes represented the collection of contingencies upon which

the nature of the image pattern (food or poison) relied. For example, one hidden

node may denote the climate in which a certain fruit is grown, and another

hidden node may denote the toxicity of the soil. In our experiment, the individual

hidden nodes do not specifically stand for any such condition, rather the entire

network of hidden nodes represents a typical network of causations, the end

result of which makes the image a food or a poison. There were two sets of

images: one sampled from a hierarchic Bayes net and the other from a non-

hierarchic Bayes net. The non-hierarchic Bayes network was constructed in such

a way that the image patterns sampled from its twelve visible nodes looked

similar to the image patterns sampled from the hierarchic network. Note that

in this setting, hierarchy is not an all or none property, and the non-hierarchic

network still resembles, to some extent, a hierarchic structure (see concluding

remarks for discussion).
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Figure 2.1: participants were instructed to categorize image stimuli into
one of the two possible categories, “food” or “poison”. In one
condition. The stimuli were generated according to a hierarchic
structure. On the top two example images from this condition
are presented which were designated as food items. In the other
condition, images were generated according to a non-hierarchic
structure. On the bottom two example food images from this
condition are presented.

2.3 The Non-Hierarchic Case

For stimuli that are generated by a set of non-hierarchic causes, several factors

may impair participants’ performance. First, in the environment that participants

are familiar with (the real world), causal structures are usually hierarchic. For

instance, toxicity of the fruit is a feature formed by several lower level features

(lower level merely in the hierarchic sense), such as the molecular structure

of the soil, acidity of precipitation, ripeness (fruits that are too ripe are more

prone to corruption), etc. We expected, therefore, that participants would try to

utilize their existing hierarchic representation of the environment in learning the
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patterns, and that the mismatch between those representations and the causal

structure behind the patterns would impair their performance. At the same time,

non-hierarchic representations are more expensive to compute, and should add

to the impairment of learning.

Furthermore, following the premise of statistical learning, participants are

trying to learn the probability of a certain image pattern being associated with

either food or poison: Pr{F = f ood|I}, where F denotes the nutrition content

(i.e., food or poison) and I is the image pattern. The pattern consisted of twelve

elements (the geometric shapes). Let us call them ei. Therefore, I = (e1, ..., e12).

Keep in mind that even though the category of I is determined by nodes that

are not directly observable, the effect of those hidden nodes must be accessible

through the visible nodes, I itself. In fact, if the hidden nodes had no visible

manifestation, learning the diagnostic features would be impossible. Therefore,

observing that a subset of I, say, (ek, ..., en) has a particular value (e.g. ‘star’, ‘star’,

‘triangle’,...) counts as evidence in inferring the value of a certain hidden node.

Ultimately it is the values of these hidden nodes that make the fruit food or

poison. In the hierarchic condition, ei are related to each other in groups that

interact locally (figure 2.5, top). For example, (e1, e2) are grouped together under

the same hidden node; a hidden node from the second level of hierarchy, e13.

Similarly, two neighboring hidden nodes from the second level, e13 and e14, are

grouped together under a hidden node from the third level, e19, and so on. In

this situation, the values of the hidden nodes can be inferred in a straightforward

manner by observing neighborhood clusters of the visible nodes. For instance,

suppose participants have learned that the nutrition content of image patterns

can be inferred based on the value of the first hidden node in the third level of
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hierarchy, e19. The value of this particular node is reflected in the visible nodes

e1 through e4. Therefore, learning the required diagnostic feature amounts to

learning the values of these four nodes. (Note that participants need not have

explicit knowledge of the hierarchy. All they need to do is learn implicitly that

certain configurations of e1 through e4 have a high correlation with poison or

food).

In contrast, there is no such straightforward relationship in the non-hierarchic

condition. First of all, visible nodes do not interact locally. For example, even

though e5 through e8 are located close to each other, their features are contingent

on hidden nodes which do not directly interact (figure 2.5, bottom). Furthermore,

the statistical dependence may have a complicated structure: whereas in the

hierarchic condition e5 through e8 ultimately depend on one hidden node, e19, in

the non-hierarchic condition e6 and e7 are governed by both e20 and e22, while e8

depends on e5, and e5 is conditionally independent of other nodes (i.e., its values

do not depend on the values of the other nodes). The point is that even though

there still exists a network of hidden causes that could in principle be used to

infer the category of the stimuli, the more complicated structure of dependencies

makes such inference more difficult to perform.

2.4 Procedures

Eight participants (four male and four female) took part in the experiment. Each

participant performed both the hierarchic and the non-hierarchic conditions in a

randomized order. Each condition consisted of 200 trials. It took each participant

between fifteen to thirty minutes to complete the experiment. Images were
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(a)

Figure 2.2: Graphical representation of the statistical dependencies in the
hierarchic condition

(a)

Figure 2.3: Graphical representation of the statistical dependencies in the
non-hierarchic condition
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Figure 2.4: Images are sampled from the visible nodes (red dashed line)
of the Directed Acyclic Graphs. Hidden nodes (green dashed
line) represent the network of causes that determine whether
the image is food or poison.

presented on a computer screen using the Psychophysics tool box (Brainard,

1997) running under Matlab. In each trial, an image pattern was presented on

the screen and participants had to respond by pressing either “Y”, meaning

they believed the stimulus was a food item, or “N” otherwise. There was no

time constraint. The next stimulus appeared on the screen immediately after the

participants’ response. For each condition of the experiment, the participants

initially started with 100 points–their remaining “life”. For every “poison” item

accepted, they lost 5 points; for every “food” item they gained 5 points. The last

five “food” items that were correctly categorized were displayed at the bottom of

the screen. Thus, feedback on the participants’ choice was provided in the form

of correct or incorrect only when they responded “Y”.
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Figure 2.5: In the hierarchic condition proximal nodes’ values are related
locally (top) and their causal structure is more straightforward.
In contrast, in the non-hierarchic condition (bottom) proximal
nodes do not necessarily interact locally, and their causal struc-
ture is more complex

2.5 Results

Performance was measured as the percentage of correct classifications for each

participant in each condition. On average, participants performed 79% correct in

the hierarchic condition compared to 63 % correct in the non-hierarchy condition

(figure 2.6). This difference in performance is statistically significant as confirmed

by the nonparametric Kruskal–Wallis rank sum test (χ2
= 104.91, d f = 1, p <

2.2×10−16). We also fit a linear mixed model to the data using the lmer procedure
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Figure 2.6: Left: Comparison of performance in the hierarchic (white bars)
versus non-hierarchic (black bars) over 200 trials. Error bars
represent 95% confidence limits. Y axis shows mean accuracy
of categorization over blocks of 10 trials. Right: participants’
performance measured as the mean percentage of correct classi-
fications in each condition. H: Hierarchy, N: Non-Hierarchy.

(Bates, 2005). A binomial logit-link linear mixed model fit to the scores yielded a

significant effect of condition (z = 9.85, p < 2.2 × 10−16). To explore the effect of

gradual learning, we added trial number (in increments of 10) as an independent

variable to the linear mixed model. In this analysis, the main effect of condition

became n.s., the effect of trial number and the interaction between trial number

and condition were both highly significant (z = 17.96, p < 2 × 10−16, and z =

7.267, p < 3.67 × 10−13, respectively; see figure 2.6).
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2.6 Concluding Remarks

There are several ways in which a structure can differ from a hierarchy. For

example, links can skip levels, or the direction of the causation can be reversed.

Consequently, further experiments are required to pin down the effect of each

of them. Furthermore, the distinction between a hierarchy and a non-hierarchy

is not all or none; rather it is a graded property, with perfect hierarchy at one

extreme and heterarchy at the other extreme. We have been unable, however, to

find a standard measure of the degree of hierarchicality in the existing literature.

Developing and motivating such a measure is a topic for future work.

Another issue for future research is the possibility that subjects performed

worse in the non-hierarchic condition of our experiment because the patterns

in that condition were more complex. We plan to use the information entropy

(Shannon, 1949) of the two graphs, as well as other measures of pattern generator

complexity, in investigating this possibility. In the present study, we controlled

for pattern complexity at the level of the leaves of the graph, by using stimuli

that have the same appearance in both conditions.
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CHAPTER 3

LEARNING PROBABILISTIC VISUAL HIERARCHIES

Abstract We live in a world where many complex phenomena, from biolog-

ical systems to large scale institutions, seem to employ hierarchic schemes in

the organization of their parts. In particular, in the feedforward cortical visual

stream in the mammalian brain, receptive fields at each successive stage are

formed by gathering input from multiple units at preceding stages, resulting in

an organization that resembles a hierarchy both in anatomy and in function. This

organization may be in part influenced by hierarchical structures in the visual

world, and it may in turn make it easier for the system to deal with visual stimuli

that are hierarchically organized, as compared to those that are less so. To test the

latter prediction, we conducted three behavioral experiments that investigated

the influence of the latent structure of visual scenes on their classification. Partici-

pants were presented with stimuli drawn from underlying generative probability

distributions whose degree of hierarchicality was controlled and had to learn

to classify the stimuli as either “food” or “poison.”. We found that participants

learn and perform better when the structure of the underlying distribution is

more hierarchical1.

3.1 Introduction

Many natural and artificial phenomena exhibit hierarchical structure, in which

elements at one level of organization form larger units at a higher level. The

fundamental structure of condensed matter, for instance, is hierarchical: stuff is

1This chapter is based on an article co-authored with Shimon Edelman.
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organized in molecules, which consist of atoms, which in turn consist of hadrons

and leptons, etc. Likewise, many human institutions, such as the military, are

organized hierarchically. Visual scenes and objects, too, are often described in

hierarchical terms: a face has two eyes, a mouth, and a nose, with the eye having

a finer structure of its own, and so on.

The apparent hierarchical structure of visual categories may be in the eye

of the beholder, but it may also be due to a combination of external factors,

namely, the organizational advantage that hierarchical structures offer and the

computational advantage enjoyed by a cognitive system that attunes itself to

a hierarchically organized environment. With regard to the former, it has been

observed that hierarchically organized natural systems are likely to be less sus-

ceptible to perturbations and also to evolve faster than competitors (Simon, 1973,

2002). At the same time, a cognitive agent in the business of survival, which

must keep track of the statistics of its environment, can do so more efficiently

if it organizes the variables in question hierarchically, a strategy used often in

computer vision (Selfridge, 1958; Epshtein, Lifshitz, and Ullman, 2008) and natu-

ral language processing (Solan, Horn, Ruppin, and Edelman, 2005; Teh, Jordan,

Beal, and Blei, 2006a).

Indeed, the cortical visual pathway in the mammalian central nervous system

is organized hierarchically (Felleman and Van Essen, 1991; Modha and Singh,

2010; Kaiser and Hilgetag, 2010). Anatomically, the feedforward visual stream

is characterized by a convergence of neuronal projections in a many-to-one

fashion. For instance, a simple cell in the primary visual cortical area V1 receives

a weighted sum of the outputs of several lateral geniculate nucleus (LGN) cells,

each of which in turn is fed by the outputs of several retinal ganglion cells
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(Hubel and Wiesel, 1968). At the next stage, the outputs of several simple

cells converge on each complex cell. Functionally, too, the visual stream is

organized hierarchically, with the receptive fields of cells at each stage computed

by combining the characteristics of the receptive fields of cells at the preceding

stage (Marr and Hildreth, 1980).

How does the anatomical/functional hierarchy of the cortical visual process-

ing pathway affect the way we perceive the world? Given that this structure

may have evolved in the first place in response to certain objective characteristics

of the environment, one may expect that the visual system would be better at

dealing with stimuli whose categorical structure is itself hierarchically orga-

nized (Fiser and Aslin, 2005; Orban, Fiser, Aslin, and Lengyel, 2008), even if

this structure is latent, that is, hidden in the probabilistic relationships among

individual objects. In this paper, we report a series of behavioral experiments

that investigated this hypothesis.

Following Bateson and Hinde (1976), we define a hierarchy as a nested

collection of items where no item is superior to itself. Formally, hierarchies

can be represented as directed graphs in which vertices denote units and edges

indicate containment. We presented participants with images drawn from two

possible categories, each defined by a joint probability distribution on their

features, while controlling the degree of hierarchicality of the joint distribution.

Intuitively, a tree structure is more strictly hierarchical if, for instance, fewer of

its edges skip levels. In general, our subjects found it easier to learn to categorize

images drawn from more hierarchical distributions.
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Figure 3.1: Left: Three examples of stimuli from Experiment 1. The par-
ticipants learned to categorize such stimuli as either “food” or
“poison” through trial and error. The true nature of the stim-
uli was determined by a hidden joint probability distribution,
which controlled the identity and placement of the features (ele-
mentary shapes) comprising the stimuli. Right: The structure of
the probability distribution from which the stimuli were drawn.
The node at the top (hidden) is a random variable determining
the category of the stimulus pattern. The bottom nodes corre-
spond to the visible elements that comprise a stimulus. Each
random variable at the bottom corresponds to one particular
location in the image. At the sampling stage, one of the five
possible elementary shapes is selected and used in that location.
As an example, the conditional probability tables are shown for
the top node (hidden), one intermediate node (hidden), and one
visible node. In each table, the left column shows the possible
values of the corresponding node; the right column shows their
probabilities, given the parent node’s values. Node numbers
reflect the actual enumeration used in H1, Figure 3.5.

3.2 The experimental approach

In each of the following experiments, we manipulated the degree of hierarchical-

ity of the probability distribution underlying the category structure of the stimuli.
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In Experiment 1, there were two conditions, corresponding to hierarchical and

non-hierarchical distributions. In Experiments 2 through 5, we controlled the de-

gree of hierarchicality, defined via a measure based on path lengths and degrees

of branching. Furthermore, to be able to attribute the difference in performance

to the difference in hierarchicality, we equalized the information content of the

distributions across conditions.

The stimuli in the experiments were defined by visible and hidden features.

The visible features are the elementary shapes that comprise the stimulus image

(see Figure 3.1, left, for three examples). The hidden features, corresponding to

the structure of the probability distribution (Figure 3.1, right), can be thought of

intuitively as environmental factors that are not immediately accessible to the

participants, yet contribute to making an item “food” or “poison” (e.g., properties

of climate and soil in an area where a certain fruit grows). The category of

the stimulus (food or poison) was also hidden and had to be learned by the

participants from experience.

The manner in which hidden factors contributed to how the property of

being food or poison manifested itself in the image was defined by a probability

distribution, which took the form of a conditional dependence graph (Pearl,

2000; see Figure 3.1, right). Once the graph structure and its corresponding

distributions are set, a stimulus is generated by drawing a random sample. The

value of the top node determines the category of that stimulus (food or poison),

and the value of the bottom nodes determines what elements will be used in

the image. Each of these bottom nodes correspond to one particular location in

the image. Intermediate hidden features are not explicitly coded in the stimuli;

rather, they control the structure of the conditional dependence of the visible
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features on the category. It is the hierarchicality of this structure that was the

independent variable of our experiments.

We considered two main factors controlling the hierarchicality of the graph

structures. The first factor is how closely it resembles a tree. A tree is a graph

in which there is exactly one path connecting any two given vertices (Bondy

and Murty, 1976). In our setup, the existence of more than one such path means

that the child node depends conditionally on more than one parent node. In

other words, it means that the visible features of a stimulus are controlled by

several hidden factors. We hypothesized that in this situation it would be more

difficult for the participants to learn the diagnostic features. The second factor is

the number of children that a parent node has, i.e., the degree of branching. A

high degree of branching indicates that the same hidden factor controls several

visible features. We hypothesized that this too would make learning correct

categorization more difficult.

In each of the experiments, participants were presented with stimuli in the

form of arrays of elementary shapes (Figure 3.1, left), and were instructed to cate-

gorize them as food or poison. Correct categorization required an understanding

(possibly implicit) of the diagnostic features of each category, which had to be

learned by trial and error. Diagnostic features were combinations of particular

elements (basic shapes) and their locations. For instance, a possible food feature

could consist of two stars in the top right corner and a triangle in the bottom left

corner, or two squares next to each other anywhere in the image.

Before starting the experiment, participants were handed written instructions,

complemented by the experimenter’s verbal assistance, that defined their task as

learning to categorize image patterns as food or poison. They were told that they
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would be presented with fruits from an alien planet, and they needed to learn

which fruits are good to eat. Further, they were informed that just as on Earth

particular combinations of features may make a fruit edible (e.g. an apple that

is vibrant red, firm to the touch, and smells good), particular combinations of

these alien features (i.e. the geometric shapes making up the stimulus) are the

diagnostic features that they should try to learn. They were also instructed that

the association between stimuli and their category label was probabilistic and

that the same image pattern could have some probability of being food and some

probability of being poison. In addition, they were informed that the conditions

(blocks of trials, whose beginning and end were displayed on the screen) were

independent, and that whatever features they learned for one condition would

not transfer to the other.

The Bayes Network Toolbox for Matlab (Murphy et al., 2001) was used in

implementing the probabilistic models. The stimuli were presented on a com-

puter screen using Matlab Psychophysics Toolbox (Brainard, 1997). Participants

responded to each stimulus by pressing ‘Y’ for food and ‘N’ for poison. Each time

they responded ‘Y’ they were given feedback; no feedback was provided when

they responded ‘N’. To aid the learning process, the last five correctly classified

food items were displayed at the bottom of the screen to be compared against

each other. There was no time constraint: participants were free to take as much

time as they needed. The next stimulus appeared on the screen immediately

after the participants’ response. To help them keep track of their performance, in

the beginning of the experiment they were awarded 100 points; for every poison

item accepted, five points were deducted; conversely, five points were gained for

every food item accepted. They were given explicit information that this score

was only for them to track their performance and would not participate in the
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data analysis.

3.3 Experiment 1

3.3.1 Stimuli and methods

Experiment 1 consisted of two conditions, hierarchic and non-hierarchic, with

200 trials per condition. Each stimulus was formed by 12 elementary shapes

(Figure 3.1, left). The graphs corresponding to the underlying probability dis-

tributions in the two conditions are shown in Figure 3.2. The graph on the left

shows the hierarchic condition; the one on the right shows the non-hierarchic

(actually, less hierarchic; more on this later) condition.

For the hierarchic graph, the distributions of individual nodes were sampled

from a Dirichlet distribution with uneven weights, so that particular values

of the random variables could be assigned a larger mass (Bishop, 2006). The

distributions of the non-hierarchic graph were then trained on samples drawn

from the hierarchic one, making the distributions of identically numbered nodes

match. In both graphs, the top node’s probability mass values were manually set

to 20% food and 80% poison.

Eight subjects participated in the experiment. Each participant performed

both the hierarchic and the non-hierarchic conditions (blocks) in a randomized

order.
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Figure 3.2: Directed acyclic graphs representing the underlying joint proba-
bility distributions for the two conditions of Experiment 1. Left:
hierarchy. Right: non-hierarchy. In each graph, the top node de-
notes the random variable representing the food/poison choice.
The bottom 12 nodes denote random variables representing the
elementary shapes comprising the stimulus pattern (for some
examples, see Figure 3.1, left). Starting with the top node, a
sample is drawn from each random variable conditioned on the
sample drawn from its parent(s). The values drawn from each of
the last 12 random variables are matched to their corresponding
shape and assembled into a complete stimulus pattern.

3.3.2 Results

Performance was measured as the rate of correct responses in each condition.

The mean correct rate was 79% in the hierarchic condition, compared to 63% in

the non-hierarchy condition (Figure 3.3, left). The difference between conditions

was statistically significant, as revealed by a nonparametric Kruskal-Wallis rank

sum test (χ2
= 104.91, d f = 1, p < 2.2 × 10−16). Because significant effects can

still be rendered n.s. when all the random effects are considered jointly (Baayen,

2008), we also fit a linear mixed model to the data using the lmer procedure

(Bates, 2005). A binomial logit-link linear mixed model fit to the scores yielded a

significant effect of condition (z = 9.85, p < 2.2 × 10−16).

To explore the effect of gradual learning, we added trial number (in incre-
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Figure 3.3: Mean categorization performance in Experiment 1. Left: mean
performance for each of the two conditions. Error bars rep-
resent 95% confidence intervals. Right: the development of
performance throughout the experiment. The 200 trials of each
condition are here grouped into eight blocks of 25 trials.

ments of 25) as an independent variable to the linear mixed model. In this

analysis, the main effect of condition became n.s.; the effect of trial number and

the interaction between trial number and condition were both highly significant

(z = 17.96, p < 2×10−16, and z = 7.267, p < 3.67×10−13, respectively; see Figure 3.3,

right).

3.3.3 Discussion

The results of Experiment 1 suggest that probabilistic (generative) hierarchical

structure of composite visual objects affects their learning. However, because

this experiment involved only two levels of hierarchicality, it could not reveal its
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graded effects, if any.

To be able to attribute the difference in performance to the difference in

the underlying hidden structure of the categories, in this experiment we made

sure that the actual stimuli were visually identical across conditions; only their

structured probabilistic association with the category labels differed. However,

the effect that we found could still be due to the underlying distribution in the

non-hierarchic case being harder to learn. This can happen, for instance, when

the distributions are close to uniform and do not favor particular values. To

address these issues we devised a second experiment.

3.4 Experiment 2

Experiment 2 consisted of four conditions that were equally complex, but varied

quantifiably in how hierarchic they were. This design allowed us to determine

whether the effect of hierarchicality on categorization performance is graded.

Complexity across the conditions was equalized by controlling the joint entropies

of the distributions. Because no published standard approach to measuring hier-

archicality could be found in the literature, we introduce our own formulation in

the following section.

3.4.1 Stimuli and methods

Figures 3.5 and 3.4 show, respectively, the four graphs used to generate the

stimuli in the four conditions of Experiment 2 and a sample of the resulting

stimuli. We aimed to assign a score, H, to each graph that would reflect how
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Figure 3.4: A sample of stimuli from Experiment 2.

closely it resembled a strict hierarchy. The main two factors that we wanted this

formulation to emphasize were the degree of branching and the resemblance of

the graph to a tree. Accordingly, we defined H as follows:

H =

∑

j |S j − K|
N

+ δ (3.1)

where S j is the length of the shortest path between the jth vertex and the top

node, and K is the nominal length of such path (in an l-level hierarchy, for a

vertex on the lth level, K � l). For the six visible nodes of the four graphs, K is

set to the statistical mode of the path lengths. Note that only H1 and H2 have

mid-level nodes, and the contribution of these nodes to H is zero. Also note that

because the graphs are directed, the choice of the top node is unambiguous. N is

the total number of vertices in the graph, and δ is a term penalizing the average

branching degree of the graph:

δ =

∑

d j

N × K
(3.2)
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Figure 3.5: The four directed acyclic graphs representing the underlying
joint distributions for the four conditions of Experiment 2. The
degree of hierarchicality, as defined by eq. 3.1, is listed for each
graph.

where d j is the degree of branching (i.e., the number of edges fanning out) of

node j. We introduced δ into H to distinguish between a tree with few children

per node from a tree with many children per node. Consider a linear tree where

each node has exactly one node as opposed to a flat tree where the number of

children per node approaches infinity. The first half of eq. 3.1 assigns identical

scores to both of these trees. By incorporating δ, the score of the flat tree is made

higher, as per its deviation from hierarchicality. The purpose of dividing by K is

normalization, so that larger trees do not get penalized unfairly.

To illustrate the above points, we follow step by step the computation of H for

the H3 condition. The mode of path lengths in this case is 1, so K = 1. For all six

nodes, S j = 1. This means that the first half of eq. 3.1 is equal to
∑ |1 − 1|/7 = 0.
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The average degree of branching is 6
7

normalized by K = 1. Thus, the total score

is H = 0 + 6
7
.

Once a measure of hierarchicality is assigned, we equalize the joint entropy–

over all the random variables involved including, top, middle and bottom leaves–

of the underlying distributions for the four conditions, to avoid a situation in

which differences in learnability are due merely to differences in the statistical

complexity of the distributions. For that purpose, we use Shannon’s entropy for

a multivariate distribution (Shannon, 1949):

H(X1, ..., Xn) = −∑x1
...
∑

xn
P(x1, ..., xn) log[P(x1, ..., xn)]

We began by fixing the values of top node probability at 0.2 and 0.8 respectively

for food and poison, so that 20% of the stimuli generated from each graph would

be food and the rest poison. The distributions of the remaining nodes were then

sampled from a Dirichlet distribution. Finally, the joint entropies for all graphs

were equalized by an optimization procedure (gradient descent on the empirical

gradient of the entropy).

The test setup of Experiment 2 was similar to that of Experiment 1, with a

few changes. Instead of twelve color shapes, each stimulus consisted of six black

and white shapes. To keep the length of the experiment reasonably short, each

participant performed only two out of the four possible conditions. These two

conditions were chosen at random for each participant. Each condition contained

of 100 trials. A total of 56 subjects participated in the experiment (23, 30, 26, and

33, for H1, H2, H3, and H4 respectively).
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Figure 3.6: Mean categorization performance in Experiment 2. Left: mean
performance for each of the two conditions. Error bars rep-
resent 95% confidence intervals. Right: the development of
performance throughout the experiment. The 100 trials of each
condition are here grouped into four blocks of 25 trials.

3.4.2 Results

The mean performance levels in the four conditions of Experiment 2 were 54.9%,

40.3%, 39.7%, and 36.7% for H1 through H4 respectively (see Figure 3.6). Re-

gression analysis revealed significant trends for the measure of hierarchicality:

for a linear regression, R2
= 0.302, F = 49.02, d f = 110, and p < 2.11 × 10−10;

for quadratic regression, R2
= 0.413, F = 39.98, d f = 109, and p < 9.513 × 10−14

(Figure 3.7).

To quantify the progression of learning, we broke down each condition into
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Figure 3.7: Quadratic regression of performance on hierarchicality in Ex-
periment 2 (R2

= 0.413, F = 39.98, d f = 109, p < 9.513 × 10−14).

blocks of 25 trials and performed regression on two variables: Condition and

Progression. For the first degree polynomial regression, we obtained R2
= 0.437,

F = 434.9, d f = 1117, and p < 2.2 × 10−16. For the second degree polynomial,

we obtained R2
= 0.494 F = 219.4, d f = 1114, and p < 2.2 × 10−16. Furthermore,

Condition and Progression, as well as their quadratic forms, were all significant

with p < 8.01 × 10−12, but their interaction was n.s. (p = 0.0848).

As in Experiment 1, we also fit a binomial logit-link mixed effects model to

the data, using the lmer procedure. This analysis confirmed that both Condition

and Progression effects were significant with p < 1.1 × 10−9.
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3.4.3 Sensitivity to the parameters involved in defining H

The definition of hierarchicality that we introduced earlier in this paper (eq. 3.1)

involves implicit free parameters that control the relative contributions of differ-

ent measures of the graph structure to the value of H. It is reasonable to ask how

these degrees of freedom affect the statistical picture of the subjects’ performance

painted by our experiments. We addressed this question in two ways.

First, we treated H itself as a parameter and used the mixed effects analysis

to obtain values of the Akaike Information Criterion (AIC) and the Bayesian

Information criterion (BIC) for each value of H. These measures of model fit were

then used in an empirical gradient descent search, to determine which value

in the four-dimensional space of hierarchicality measures (corresponding to H1

through H4) resulted in the best fit. The search algorithm was run 10 times, for

1000 iterations each. We repeated the mixed effect regression analysis for the 10

best and the 10 worst values of H found in this manner. In all 20 cases, the effect

of H on the subjects’ performance was still significant, at least with p < 10−3.

In a second analysis, we parameterized H explicitly as a simplex:

H = α

∑

j |S j − K|
N

+ (1 − α)

∑

d j

N × K
(3.3)

and searched for the optimal α by descending on the empirical gradient of AIC.

The value of αminimizing AIC was found to be α > 15. However, the minimum

value of AIC was smaller only by 7 units than the value that resulted from our

original definition of H, signifying a negligible improvement in the goodness of

fit.
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In conclusion, these two analyses suggest that the significance of the results

of our experiment does not depend on the specifics of our formulation of H.

3.4.4 Discussion

Although all the regression analyses in this experiment yielded a significant

dependence of categorization performance on hierarchicality, an inspection of the

plots indicates that this effect may have been driven mostly by the subjects’ better

performance in the H1 condition. Indeed, when we omitted H1 from the analyses,

the effect of H became non-significant. To address this issue, we conducted a

third experiment, in which we looked more closely at the intermediate values

of H.

3.5 Experiment 3

3.5.1 Stimuli and methods

In Experiment 3, we generated a new set of stimuli with more evenly distributed

values of hierarchicality: the successive levels differed from one another by 0.3

units (Figure 3.8). The statistical complexity of the new stimuli was equalized to

that of the stimuli in Experiment 2. Other than the new stimulus set, everything

in the setup of Experiments 2 and 3 was the same. Fifteen subjects participated

in this experiment.
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Figure 3.8: The four directed acyclic graphs used to generate the stimuli
for the four conditions of Experiment 3, in which the levels of
hierarchicality were set to be equally far apart (0.3 units). The
degree of hierarchicality (eq. 3.1) for each graph is indicated.

3.5.2 Results

The mean performance in the four conditions was 46.8%, 43.2%, 38.3%, and 21.2%

for H1 through H4 respectively (Figure 3.9). The linear regression of performance

on hierarchicality (Figure 3.10) was significant: R2
= 0.576, F = 40.36, d f = 28,

and p < 7.12×10−7. The quadratic term was n.s. To make sure that the significance

of the results was not driven by just one condition, we carried out an analysis

with H4, the condition in which the performance differed the most from the

others, omitted. The outcome was still significant: R2
= 0.210, F = 7.408, d f = 23,

and p < 0.01.

To quantify the progression of learning, we broke down each condition into
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Figure 3.9: Mean categorization performance in Experiment 3. Left: mean
performance for each of the two conditions. Error bars rep-
resent 95% confidence intervals. Right: the development of
performance throughout the experiment. The 100 trials of each
condition are here grouped into four blocks of 25 trials.

blocks of 25 trials. A regression over the resulting two fixed effects, Progression

and Condition, resulted in a linear fit with R2
= 0.173, F = 206.2, d f = 1947,

and p < 2.2 × 10−16, and a quadratic fit with R2
= 0.201 F = 99.1, d f = 1944, and

p < 2.2 × 10−16. For the linear fit, both Condition and Progression effects were

significant, p < 3.86 × 10−15. For the quadratic fit, Progression but not Condition

was significant. The interaction was significant, p < 0.0073.

As before, we also performed a mixed effect analysis using the lmer procedure

on the entire data (see section 3.4.2 for details), which confirmed that both

Condition and Progression were significant, p < 1.87 × 10−10.
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Figure 3.10: Linear regression of performance on hierarchicality in Experi-
ment 3; R2

= 0.576, F = 40.36, d f = 28, p < 7.12 × 10−7.

3.5.3 Experiments 2 and 3 together

Taken together, the levels of hierarchicality in the different conditions of Experi-

ments 2 and 3 span a broad range of values. Pooling together the data from these

experiments and performing a linear regression yielded R2
= 0.361, F = 80.66,

d f = 140, and p < 1.62 × 10−15 (figure 3.11). A quadratic regression resulted in

R2
= 0.396, F = 47.27, d f = 139, and p < 2.2 × 10−16.

3.5.4 Discussion

The collective results of the three experiments reported so far suggest a significant

interaction of hierarchicality with learnability. However, there still are a number

of factors that these experiments fail to control for. First and foremost, our
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Figure 3.11: Combined data from Experiments 2 and 3. Taken together,
the eight conditions of these experiments correspond to seven
distinct measures of hierarchicality (H1 was equal to 0.45 in
both experiments). This plot shows a linear regression for the
pooled data: R2

= 0.361, F = 80.66, d f = 140, p < 1.62 × 10−15.

measure of hierarchicality incorporates two different properties of the graphs,

namely, degree of branching and skipping levels. This raises the question of

what the contribution of each property to learnability is. Although our analyses

in section 3.4.3 do address this issue to some extent, we decided it would be ideal

to treat each term directly and in isolation.

Furthermore, in our experimental protocol, we presented subjects with the

last five correctly categorized food items to aid feature detection. However,

in natural settings seldom do agents have access to an explicit record of past

encounters with stimuli.

Finally, in all the previous experiments the distribution of stimuli were 20%
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food and 80% poison; we needed further control runs to find out whether this

particular distribution was confounding the results. Consequently, we devised

experiments 4 and 5 to remedy the above mentioned shortcomings.

3.6 Experiments 4 & 5

For experiments 4 and 5 we devised two sets of generative distributions with

varying measures of hierarchicality. In one set, called skipping, the contribution

of the penalty term for degree of branching was fixed, and all the difference in

structure was due to links skipping levels (figure 3.13). In the other set, called

branching, the penalty term for skipping levels was fixed while the degree of

branching changed (figure 3.12). This setting allowed us to study the effect

of each of the terms (equations 3.1 and 3.2) in our measure of hierarchicality

in isolation. Each set contained three conditions with varying measures of

hierarchicality.

Furthermore, unlike the previous experiments, we relied on Kullback-Leibler

divergence as the measure of complexity, which we minimized using random

search over the parameter space.

As before, in experiment 4 the distribution of food and poison items were

20% and 80%, respectively, and the last five correctly categorized food items

were displayed for the subjects. In contrast, in experiment 5, food and poison

were evenly distributed (50% each), and the only display was the target stimulus.

Each condition consisted of 150 trials. The rest of the experimental paradigm

was the same as the previous three.

39



1 2 3 4 5 6 

7 8 9 

10 

1 2 3 4 5 6 

7 8 9 

10 

1 2 3 4 5 6 

7 8 9 

10 

H1: 1.05 

H1: 0.75 
H1: 0.45 

Figure 3.12: Graphical representation of probability distributions underly-
ing the branching set of conditions in experiments 4 and 5. σ,
the first term in the measure of hierarchicality that penalizes
skipping levels is the same for all three graphs. But each one
has a different value of δ, the second term which penalizes
degree of branching. H1: σ = 0; δ = 9

20
; total = 0.45 – H2:

σ = 0; δ = 15
20

; total = 0.75 – H3: σ = 0; δ = 21
20

; total =1.05

3.6.1 Results of experiment 4

16 subjects participated in the branching set of conditions, and 29 in the skipping set.

Mean performance of the branching set was 54%, 51%, and 42% respectively for

H1, H2, and H3 (figure 3.14). Linear regression of performance on hierarchicality

for branching (Figure 3.15) shows the effect is significant with R2
= 0.186, F = 8.99,

d f = 31, and p = 0.005043. The quadratic effect was n.s. Mean performance

of the skipping set was 53%, 51%, and 41% respectively for H1, H2, and H3

(figure 3.16). Linear regression of performance on hierarchicality for skipping
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Figure 3.13: Graphical representation of probability distributions underly-
ing the skipping set of conditions in experiments 4 and 5. δ, the
second term in the measure of hierarchicality that penalizes de-
gree of branching is the same for all three graphs. But each one
has a different value of σ, the first term which penalizes skip-
ping levels. H1: σ = 0; δ = 8

18
; total = 0.44 – H2: σ = 2

9
; δ = 3

9
;

total = 0.67 – H3: σ = 0; δ = 8
18

; total =0.78

(Figure 3.17) shows the effect is significant with R2
= 0.1466, F = 11.14, d f = 57,

and p = 0.00148. The quadratic effect was n.s.

3.6.2 Results of experiment 5

14 subjects participated in the branching set of conditions, and 20 in the skipping

set. Mean performance of the branching set was 50%, 51%, and 50% respectively

for H1, H2, and H3 with a n.s. effect: p = 0.73. Mean performance of the skipping

set was 49%, 51%, and 49% respectively for H1, H2, and H3 with a n.s. effect:
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Figure 3.14: Mean categorization performance in branching conditions of
experiment 4. Left: mean performance for each of the three con-
ditions. Error bars represent 95% confidence intervals. Right:
the development of performance throughout the experiment.
The 150 trials of each condition are grouped into six blocks of
25 trials.

p = 0.88.

3.6.3 Discussion

While the results of experiment 4 were in line with our previous findings, experi-

ment 5 failed to replicate our earlier observations in either branching or skipping

condition sets, with performances that did not deviate from chance level (50%).

Experiments 4 and 5 shared the same graph structure in their underlying
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Figure 3.15: Linear regression of performance over condition for the branch-
ing set of experiment 4: R2

= 0.186, F = 8.99, d f = 34, and
p = 0.005043

distributions. However, the distribution of food and poison stimuli were different

(20% food – 80% poison in experiment 4 vs. 50% food – 50% poison in experiment

5). In order to attribute the different performances in the two experiments to

their different distributions of target stimuli, we would have to consider that

the specific parameters of the experimental setup favored certain distributions

over others. This is unlikely because the particular aspects of our setup have

undergone several changes since experiment 1, but the effect has remained

significant through experiment 4.

The more likely culprit is the absence of the five exemplars that subjects

were shown to aid detection of diagnostic features. We are planning a new

set of experiments to help narrow down the factors involved in the impaired

performance on experiment 5.
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Figure 3.16: Mean categorization performance in skipping conditions of
experiment 4. Left: mean performance for each of the three con-
ditions. Error bars represent 95% confidence intervals. Right:
the development of performance throughout the experiment.
The 150 trials of each condition are grouped into six blocks of
25 trials.

On the other hand, the results of experiments 4 did uphold our previous

findings in both branching and skipping conditions, suggesting that i) both terms

involved in our formulation of hierarchicality interact with subject performance

in learning, and ii) equalizing complexity using the more strict metric of Kullback-

Leibler divergence yields similar results to using joint entropy.
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Figure 3.17: Linear regression of performance over condition for the skip-
ping set of experiment 4: R2

= 0.1466, F = 11.14, d f = 57, and
p = 0.00148

3.7 General discussion

In the studies described in this paper, we set out to investigate the effects of hid-

den probabilistic hierarchical structure of visual stimuli on their categorization.

In four experiments, we found that stimuli generated from distributions that are

quantitatively more hierarchical are indeed easier for subjects to categorize.

In Experiment 1, there were only two conditions, which differed considerably

in the degree of hierarchicality of the stimuli. This difference was reflected

in the participants’ less accurate performance in the less hierarchic condition.

Experiment 2, in which there were four levels of hierarchicality, suggested that

the dependence of performance on hierarchicality may be graded. This finding

was supported by the results of Experiment 3, in which hierarchicality was
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more carefully controlled. Experiment 4 suggested that each of the two penalty

terms in H contributes to the observed effect, and that the statistical significance

of results are maintained after replacing joint entropy with Kullback-Leibler

divergence. The results of experiment 5 were non-significant.

One may speculate regarding the possible explanations for the dependence of

the ease of learning and categorization on the hierarchical structure underlying

the stimuli. In the environment that the participants are familiar with (the real

world), causal structures are often hierarchical. For instance, the toxicity of a

fruit may depend in complex ways on features that are hidden from the observer,

such as the genetic makeup of the plant, the composition of the soil, the acidity

of precipitation, and the degree of ripeness (fruits that are unripe or are too

ripe may be inedible). It can be expected, therefore, that participants bring their

implicit expectation of hierarchicality to the artificial learning environment of

the experiment, and that their performance suffers when this expectation is not

fully met.

What mechanisms could mediate this effect? A visible feature may only

be diagnostic to the extent that it reveals the values of hidden features. In a

hierarchical structure, a spatially compact cluster of visible features may depend

on the same hidden cause, which would then be easier to infer than in the case

of a less hierarchical hidden structure, in which the correlated feature could be

spatially far-flung.

Finally, from the vantage point of statistical learning, less hierarchical repre-

sentations may be more expensive to compute, due to the curse of dimensionality

(Hastie, Tibshirani, Friedman, and Franklin, 2005). Tracking the statistics of the

environment amounts to recording co-occurrences of various events. On the one
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hand, the more events are kept track of, the more powerful the inferences that can

be performed. On the other hand, the resources required for such bookkeeping

grow exponentially in the number of events to be recorded. One solution is to

group together events that co-occur often enough, and treat them as one — in

other words, to form a hierarchy of events. In an environment where events do

not lend themselves to such representation, maintaining detailed statistics can

be too expensive, which would make learning more difficult.
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CHAPTER 4

SIMILARITY, KERNELS, AND THE FUNDAMENTAL CONSTRAINTS

ON COGNITION

Abstract The kernel trick, which was devised in statistical learning theory as a

shortcut to expensive high dimensional computations, has broad and construc-

tive implications for the brain sciences. Regarding the kernel not so much as an

implicit map onto a high dimensional space, rather, as a measure of similarity

that offers low dimensional and low complexity decision rules, opens up several

venues for their application in cognitive information processing. Here we specify

four fundamental constraints that must be met by any nervous system that learns

from the statistics of its world, and discuss how kernel-like neural computa-

tions can serve perceptual learning and decision making, while observing those

constraints1.

4.1 Motivation and plan

The concept of similarity is widely used in psychology. Historically, in a philo-

sophical tradition dating at least back to Aristotle, it has served as a highly

intuitive, unifying slogan for a variety of phenomena related to categorization.

Here’s how Hume put it in the Enquiry (1748):

ALL our reasonings concerning matter of fact are founded on a species

of Analogy, which leads us to expect from any cause the same events,

which we have observed to result from similar causes. Where the

1This chapter is based on an article co-authored with Rajeev Raizada and Shimon Edelman.
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causes are entirely similar, the analogy is perfect, and the inference,

drawn from it, is regarded as certain and conclusive. [. . . ] Where

the objects have not so exact a similarity, the analogy is less perfect,

and the inference is less conclusive; though still it has some force, in

proportion to the degree of similarity and resemblance.

In the past century, psychologists have turned similarity into a powerful the-

oretical tool, most importantly by honing the ways in which similarity can be

grounded in multidimensional topological or metric representation spaces (see

Osgood, 1949 for an early example) or in situations where a set-theoretic ap-

proach may seem preferable (Tversky, 1977).

Sometimes criticized as too loose to be really explanatory (e.g., Goodman,

1972), the concept of similarity has eventually been given a mathematical formula-

tion, including a derivation from first principles of the fundamental relationship

between similarity and generalization (Shepard, 1987). These mathematical

developments have solidified similarity’s status as a theoretical-explanatory

construct in cognitive science (Ashby and Perrin, 1988; Medin, Goldstone, and

Gentner, 1993; Goldstone, 1994; Edelman, 1998; Tenenbaum and Griffiths, 2001;

for a recent review, see Edelman and Shahbazi, 2012).

In the present paper, we explore the parallels between the psychological

construct of similarity and its recent mathematical treatment in the neighboring

discipline of machine learning, where a family of classification and regression

methods has emerged that is based on the concept of a kernel (Schölkopf and

Smola, 2002). Insofar as kernels (described formally in a later section) involve

the estimation of distances between points or functions (Jäkel, Schölkopf, and

Wichmann, 2008, 2009), they are related to similarity. At the same time, there
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seems to be a deep rift between the two.

On the one hand, similarity-based learning and generalization has long been

thought to require low-dimensional representations, so as to avoid the so-called

“curse of dimensionality” (Bellman, 1961; Edelman and Intrator, 1997, 2002), as

well as to promote the economy of information storage and transmission (Jo-

liffe, 1986; Roweis and Saul, 2000). Moreover, as no two measurements of the

state of the environment are likely to be identical, some abstraction is necessary

before learning becomes possible, which calls for information-preserving dimen-

sionality reduction (Edelman, 1998, 1999). On the other hand, the best-known

kernel methods, based on the Support Vector Machine idea (Cortes and Vapnik,

1995; Vapnik, 1999), involve a massive increase in the dimensionality of the

representation prior to solving the task at hand.

We attempt to span this rift by seeking a common denominator for some key

ideas — and, importantly, their mathematical treatment — behind similarity and

kernels. In service of this goal, we first identify, in section 4.2, four fundamental

constraints on cognition, having to do with (i) measurement, (ii) learnability, (iii)

categorization, and (iv) generalization. In section 4.3, we then show that while

on an abstract-functional or task level these constraints appeal to the concept of

similarity, on an algorithmic computational level they call for the use of kernels.

Section 4.4 revisits some standard notions from the similarity literature in the

light of this observation. In section 4.5.1, we illustrate the proposed synthesis

by pairing the methods that it encompasses with a range of cognitive tasks.

In section 4.5, we suggest some ways in which these methods can be used to

further our understanding of computation in the brain. Finally, section 4.6 offers

a summary and some concluding remarks.
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4.2 Fundamental constraints on cognition

4.2.1 A fundamental constraint on measurement

Perception in any biological or artificial system begins with some measurements

performed over the raw signal (Edelman, 2008, ch.5). In mammalian vision, for

instance, the very first measurement stage corresponds to the retinal photorecep-

tors transducing the image formed by the eye’s optics into an array of neural

activities. The resulting signal is extensively processed by the retinal circuitry

before being sent on to the rest of the brain through the optic nerve.

Effectively, a processing unit at any stage in the sensory pathway and beyond

“sees” the world through some measurement function φ(·). Importantly, the

measurement process is, at least in the initial stages of development, uncalibrated,

in the sense that the precise form of the measurement function is not known —

that is, not explicitly available — throughout the system. For example, the actual,

detailed weight, timing profiles, and noise properties of the receptive field of

a sensory neuron are implicitly “known” to the neuron itself (insofar as these

parameters determine its response to various types of stimuli), but not to any

other units in the system. Indeed, for the usual developmental reasons, those

parameters vary from one neuron to the next in ways that are underspecified by

the genetic code shared by all neurons in an organism.

Even if the system learns to cope with this predicament (as suggested by

some recent findings; Pagan, Urban, Wohl, and Rust, 2013), such learning can

only be fully effective if driven by calibrated stimuli, which are by definition not

available in natural settings. Moreover, a system that relies on learning, be it as
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part of its development or as part of its subsequent functioning, it must either

(i) simultaneously learn the structure of the data and its own parameters, or (ii)

learn the former while being insensitive to the latter.

These considerations imply the following fundamental challenge:

M0 Any system that involves perceptual MEASUREMENT is confronted with

unknowns that it must learn to tolerate or factor out of the computations

that support the various tasks at hand, such as learning and categorization

(see Tables 4.5 and 4.4).

To the best of our knowledge, this is the first statement of the measurement

constraint in the literature. On a somewhat related note, Resnikoff (1989) ob-

served that the general measurement uncertainty principle, as formulated by

Gabor (1946), is important for understanding perception. For a recent review of

uncertainty in perceptual measurement and the role of receptive field learning

under this uncertainty, see (Jurica, Gepshtein, Tyukin, and van Leeuwen, 2013).

4.2.2 Three fundamental constraints on learning

In learning tasks, the need to generalize from labeled to unlabeled data (in

supervised scenarios) or from familiar to novel data (in unsupervised scenarios)

imposes certain general constraints on the computational solutions (Geman,

Bienenstock, and Doursat, 1992). Although here we focus on categorization,

where the goal is to learn class labels for data points, these constraints apply

also to regression, where the goal is to learn a functional relationship between

independent and dependent variables (Bishop, 2006).
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According to the standard formulation in computational learning science, the

problem of learning reduces, on the most abstract level of analysis, to probability

density estimation (Chater et al., 2006). Indeed, the knowledge of the joint proba-

bility distribution over the variables of interest allows the learner to compute,

for a query point, the value of the dependent variable, given the observed values

(measurements) of the independent variables.2 This basic insight serves as a

background for the present discussion.

In this section, we briefly discuss the constraints that apply to (i) the com-

putation of similarity among stimuli, (ii) to the dimensionality of representation

spaces, and (iii) to the complexity of the decision surfaces.

Similarity

Estimating the similarity among stimuli is arguably the most important use to

which sensory data could be put. As mentioned in the introduction, similarity

constitutes the only principled basis for generalization, and therefore for any

non-trivial learning from experience (Hume, 1748; Shepard, 1987; Edelman, 1998;

Edelman and Shahbazi, 2012). Following Shepard (1987), we therefore observe:

S 0 The fundamental challenge facing any system that is expected to generalize

from familiar to unfamiliar stimuli is how to estimate SIMILARITY over

stimuli in a principled manner.

2In this sense, the joint probability distribution over the representation space is the most that
can be known about a problem. To know more — for instance, to know the directions of causal
links between variables — observation alone does not suffice: one needs intervention (Steyvers,
Tenenbaum, Wagenmakers, and Blum, 2003; Pearl, 2009), a topic which is beyond the scope of
the present survey.
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Dimensionality

Given a representation space for which similarity has been defined, a straight-

forward and surprisingly effective approach to generalize category labels is to

assign to the query point a label derived from its nearest neighbor(s) (Cover and

Hart, 1967). Importantly, this approach is nonparametric, in that no particular

functional form is assumed for the underlying probability distribution function.

To ensure uniformly good generalization, the nearest neighbor approach

requires that the representation space be “tiled” with exemplars, so that any new

query point would fall not too far from familiar ones. This requirement gives

rise to the so-called “curse of dimensionality” (a concept first formulated in the

context of control theory; Bellman, 1961): the tiling of the problem representation

space with examples, and with it learning to generalize well, becomes exponen-

tially less feasible as the dimensionality of the space grows. Hence, the following

constraint:

D0 The fundamental challenge facing any learning system is how to reduce

the effective DIMENSIONALITY of the problem so as to allow learning from

the typically sparse available data (Intrator and Cooper, 1992; Edelman

and Intrator, 1997).

We remark that the effective dimensionality of a problem need not be the same

as its nominal dimensionality, which is inherited from the measurement or repre-

sentation space in which the problem arises. In particular, the parametric form

of the decision or regression surface (or, more generally, of the underlying joint

probability distribution) may be known independently, in which case the effec-

tive dimensionality is determined by that form. Likewise, in the support vector
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approach to classification (Cortes and Vapnik, 1995), the nominal dimensionality,

which is equal to the number of features (dimensions of the representation space),

is raised drastically when the problem is remapped into a new space that affords

linear discrimination, yet its effective dimensionality is determined by the typi-

cally very small number of “support vectors” — key data points that determine

the width of the classifier margin. More on this below and in section 4.3.4.

Complexity

If the parametric form of the probability distribution is known, or if a particular

form is adopted as a working hypothesis, subject to evaluation, then the focus

in assuring good generalization shifts from the nominal dimensionality of the

representation space to the number of parameters that need to be learned. As

noted by Cortes and Vapnik (1995), it was R. A. Fisher (1936) who first formalized

the two-class categorization problem and derived a Bayesian-optimal solution to

it in the form of a quadratic discriminant function, which he recommended to

approximate by a linear discriminant in cases where the number of data points

is too small relative to the dimensionality of the measurement space — a very

common predicament, known in learning theory as the problem of sparse data.

Since then, the idea of keeping the number of parameters small — including

opting whenever possible for the smallest number of parameters for a given

problem, as afforded by the linear classifier — proved to be a manifestation of a

very general principle that governs generalization from data.

Support for Fisher’s recommendation comes from converging ideas in the

theory of information and computation (Solomonoff, 1964), the Minimum De-

scription Length Principle or MDL (Rissanen, 1987), nonparametric estimation
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(Geman et al., 1992), regularization theory (Evgeniou, Pontil, and Poggio, 2000),

and statistical learnability theory based on the concept of Vapnik-Chervonenkis

(VC) dimension (Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989), which

is in turn founded on empirical risk minimization (Vapnik, 1999). This latter

approach, which leads to Support Vector Machines, is described by Vapnik as

follows: “To generalize well, we control (decrease) the VC dimension by con-

structing an optimal separating hyperplane (that maximizes the margin). To

increase the margin we use very high dimensional spaces.”

On the face of it, the second desideratum identified by Vapnik — a high-

dimensional representation space — runs counter to principle D0 identified

earlier. However, as we shall see in section 4.3.2, it is made unproblematic by

the so-called “kernel trick,” which ensures that the effective dimensionality of a

problem approached in this manner is dictated by the number of data points,

rather than by the number of intermediate representation-space “features,” which

need never be computed explicitly (Jäkel, Schölkopf, and Wichmann, 2007). The

windfall from this mathematical fact allows us to focus on the first part of

Vapnik’s statement:

C0 The fundamental challenge facing any categorization system is how to

remap the problem it faces into a space where it becomes a matter of low

COMPLEXITY — preferably, linear — discrimination.
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4.3 Kernel-based methods

The four fundamental constraints listed above — M0 (measurement), S 0 (similar-

ity), D0 (dimensionality), and C0 (complexity) — are simultaneously satisfied by

a family of computational approaches based on the concept of kernel.

4.3.1 Origins

In different mathematical contexts the term kernel can be used in somewhat dif-

ferent senses. The general common theme is that a kernel defines an equivalence

relation between a subset of elements in the domain of application. For instance,

in abstract algebra the kernel of a homomorphism φ from a group G to another

group with identity element e is the subset of G that gets mapped to e, namely

Ker φ := {x ∈ G | φ(x) = e}.3 In particular, in linear algebra the kernel of a linear

map over a vector space is the subspace that gets mapped to zero (Gallian, 2010).

The word “kernel” can also refer to the characteristic property of certain

mathematical operations. Used in this sense, kernel means seed, nucleus, or the

central aspect of the operation with respect to which it is defined. For instance,

in the general theory of stochastic processes a Markov kernel characterizes the

state transitions of the process, similar to a Markov transition matrix.4

The particular sense of kernel that we are interested in here is the one that

arises in the theory of Reproducing Kernel Hilbert Spaces, or RKHS, where a

3A homomorphism is a structure-preserving map between two algebraic structures, such as
groups or fields. A group is a set of elements together with an operation that combines any two
elements to form a third, which also belongs to the set, while satisfying the four group axioms:
closure, associativity, identity, and invertibility.

4Our search for an underlying relationship between the two senses of the term yielded no
results, suggesting that this terminology may be an artifact of translation from the German kern.
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kernel is defined as a symmetric function of two arguments:

k : Rd × Rd → R

k(x, y) = k(y, x)

Furthermore, k must be positive semi-definite. For the purposes of this paper

this means that for a given sample set x1, x2, ...xn, the matrix K whose i jth entry

denotes k(xi, x j) must be positive semi-definite.5

In keeping with the common theme of the term kernel, this definition induces

an equivalence relation whereby pairs of points are assigned by the kernel

function the same value of distance: {(x, y) | k(x, y) = d}. In the rest of this paper,

we use the term kernel in this particular sense.

The interesting property of kernels that makes them useful in pattern recogni-

tion and machine learning is that they are equivalent to the inner product of some,

possibly unknown, function of their arguments.6 Formally, k(x, y) = 〈φ(x), φ(y)〉,

for some φ(·). We explain this concept in more detail in the following sections.

4.3.2 The “kernel trick”

In this section we first demonstrate application of the kernel trick in an example,

and then discuss it in more detail for the general case.

5Formally, the matrix K is positive semi-definite if for any vector v the product vT Kv is greater
than or equal to zero.

6An inner product over a vector space is a map from pairs of vectors to a field (e.g., to the real
numbers) that satisfies symmetry (for the complex field, conjugate symmetry), linearity, and
positive definiteness.
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Simple example of the kernel trick

In the following exposition, we draw on materials from (Schölkopf and Smola,

2002; Balcan, Blum, and Vempala, 2006; Jäkel et al., 2007, 2008, 2009). As an

example, consider the problem of classifying objects, represented by points in

some multidimensional measurement space, into two or more categories. Infor-

mation that would support such classification may not be available in individual

features (dimensions) of the objects or even in their linear combinations. In such

cases, one may resort to the use of a polynomial classifier, whose input features

include, in addition to the original dimensions, some or all of their products

(Boser, Guyon, and Vapnik, 1992).

For example, suppose the original signal is x ∈ R2, and the feature of interest

is contained in the product x1x2. We can provide the classifier with this feature by

mapping the data points from their original space to a new one via φ : R2 → R3,

(x1, x2) → (x2
1
, x2

2
,
√

2x1x2). However, in practice one does not usually know the

appropriate mapping, φ, for a given set of data. Therefore, φ is chosen to be very

flexible (e.g., a very high order polynomial), so as to accommodate a wide range

of possibilities (Jäkel et al., 2007).

Unfortunately the computational cost of such mappings can be prohibitive,

particularly when the original data reside in a high-dimensional space (as does

any set of megapixel-resolution images); cf. the fundamental constraint D0. For

instance, computing a d-degree polynomial for an N-dimensional x, requires

computing (N + d − 1)!/d!(N − 1)! monomial terms. Ideally, one would like to

keep the advantages of high-dimensional feature spaces while reducing the cost

of working with them. This is where kernel-based approaches come in handy.

As stated earlier, a kernel is a nonnegative definite, symmetric function of two
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arguments, k(x, y) : Rx × Ry → R. It can be shown that such a kernel corresponds

to the inner product of its arguments k(x, y) = 〈φ(x), φ(y)〉 (cf. section 4.3.2 for

details on this) modified under some function φ(·) defined over the original

domain, which may be desirable but expensive to compute. Identifying a kernel

k(·, ·) for a function φ(·) makes it possible, therefore, to evaluate for a given x

and y the inner product 〈φ(x), φ(y)〉 directly, without having first to compute

the expensive φ(x) and φ(y). For instance, in the above example opting for

k(x, y) = 〈x, y〉2, we get:

x = (x1, x2), y = (y1, y2)

φ(x) = (x2
1, x

2
2,
√

2x1x2), φ(y) = (y2
1, y

2
2,
√

2y1y2)

〈φ(x), φ(y)〉 = (x2
1y2

1 + x2
2y2

2 + 2x1y1x2y2) = 〈x, y〉2 = k(x, y)

As long as the use to which the data are put depends only on inner products

(as in PCA and SVM), using a kernel allows one to enjoy the advantages of a

high-dimensional representation space without having to pay the price of explicit

computations in that space. This is known as the “kernel trick” (Bishop, 2006).

The kernel trick in general

The primary motivation for using kernels, at least in the classical machine learn-

ing view, is that often the nominal representation of data to be used in learning is

not linearly separable, and does not lend itself to the multitude of tried-and-true

classifying algorithms that require linear separability for their operation, such as

the perceptron, Fisher’s linear discriminant, and principal component analysis.

In such cases, one may use a dimension-raising map, φ(·), to transform data
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points from their original representation into a higher dimensional one attained

by φ(·), in hopes that they will become linearly separable. Intuitively, in a higher

dimensional space, the same number of data points have a better chance of being

linearly separable (alternatively, by raising the dimensionality we effectively

compute more combinations of the features present in the original representation).

The separating hyperplane in the new space, then, corresponds to a non-linear

boundary in the original space.

This method can be effective particularly if one’s choice of φ(·) is insightful.

However, not only such requisite insight may not be at the researcher’s beck and

call , but the very process of remapping data, and any subsequent manipulation

of them in φ-space, can be very expensive, rendering this procedure impractical.

Let us see how kernelization can remedy these problems.

Cost of computation In 1964, Aizerman, Braverman, and Rozoner observed

that a symmetric positive semi-definite kernel, k(·, ·) can be viewed as the inner

product of the same function, say, φ(·), evaluated at two different points, x and y,

i.e. k(x, y) = 〈φ(x), φ(y)〉 (the proof of this property is given by Mercer’s theorem;

Mercer 1909). They further suggested that as long as the learning algorithm only

requires the inner products of data points, i.e. 〈x, y〉, the kernel k(x, y) can be used

as a shortcut to first remapping them explicitly through φ(·), and then computing

their inner product. In other words, instead of first computing x→ φ(x), y→ φ(y)

and then 〈φ(x), φ(y)〉, one can compute only the less expensive k(x, y) to the same

effect. This shortcut, which came to be known as the kernel trick, made it

possible for learning algorithms that upto that point were only effective in linear

domains, to successfully handle nonlinear data sets as well, with a reasonable

computational overhead. However, it wasn’t until 1992 that Boser et al.’s seminal
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paper on large margin classifiers , also known as Support Vector Machines, made

a strong case for the merits of kernelization and introduced it to the mainstream

machine learning.

Choice of transformation The foregoing shows how relying on a kernel func-

tion can keep the cost of computation under control, however, we still need to

figure out what transformation, φ(·) to use, and also, what kernel k(·, ·) corre-

sponds to that particular φ(·).

Answering the latter question is easy: for a given φ(·) the corresponding kernel

is given by taking its inner product with itself, i.e. k(x, y) = 〈φ(x), φ(y)〉. That

the resulting kernel is symmetric follows from the properties of inner product.

Positive definiteness is only required to guarantee existence of a corresponding

feature map, which in this case would be established independently.

The former question however is not as straightforward, because in general

not enough is known about the problem to guide the selection of the right

transformation. Consequently, φ(·), and with it k(·, ·) are chosen to be flexible

enough to accommodate a wide range of possibilities. In particular, (Cover,

1965) shows that a nonlinearly separable sample set will with high probability

become linearly separable after transformation under a dimension-raising map

φ(·). In practice, instead of deciding on φ(·) and computing the kernel from it,

the practitioner decides on an off-the-shelf kernel known to correspond to a

dimension-raising φ(·). Just how high the new dimensionality will be, depends

on the particular choice of kernel, which for some cases, e.g. the Gaussian kernel

k(x, y) = Exp(−γ||x − y||2) , will be infinite (Eigensatz and Pauly, 2006)! Why this
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is so is beyond the scope of this paper 7, especially since we will not pursue the

dimension-raising view of the kernels any further. See table 4.1 for a summary

of this discussion.

It is worth emphasizing that in principle, untangling the non-linearly sep-

arable data doesn’t have to involve raising their dimensionality, and may be

achieved via a dimension-preserving (or perhaps even reducing) φ(·). There-

fore, raising the dimensionality is a practical choice that’s more convenient than

searching for the alternative.

The linear boundary that’s obtained in the higher dimensional space, corre-

sponds to a nonlinear boundary in the original space of representation. Naturally,

one should worry about the generalizability of the learned criteria: how non-

linear can the decision boundary be before it amounts to over-fitting?

Regularization The high dimensional feature maps induced by kernels make

it easy to find the model parameters that fit the training data well. However,

on their own, the flexibility that they afford a computational learning system

can cripple its performance, since with too good a fit often the training will

not generalize well to unseen data. Consider a decision function that wiggles

around too often, making it irregular looking. As good as its fit to the training

data may be, the decisions that it makes in response to novel situations are

questionable. Consequently it is essential that kernel-based learning algorithms

employ measures to bound the complexity of their model (cf. VC dimension C0

7The interested reader may observe that expressing the Gaussian kernel in terms of the
corresponding φ(·)’s whose inner product would be k(·, ·), involves an infinite expansion. For
instance, for x, y ∈ R we may have k(x, y) = Exp(−||x − y||2) = Exp(−x2)Exp(−y2)Exp(2xy) =

Exp(−x2)Exp(−y2)
∑∞

i=0
2i xiyi

i!
where the series results from the Taylor expansion of the last term.

Therefore, the feature map is φ(t) = Exp(−t2)
∑∞

i=0

√

2i

i!
ti.
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x1, x2, ...xn ∈ Rd : Samples are not linearly separable
φ : Rd → Rd2 , d2 > d : Dimension-raising map

φ(x1), φ(x2), ...φ(xn) ∈ Rd2 : Samples are linearly separable in the new
space

〈φ(xi), φ(x j)〉 : Learning algorithm requires the inner prod-
uct of the new representations

k : Rd × Rd → R : Operating in the φ-space is expensive; use k

instead
〈φ(xi), φ(x j)〉 = k(xi, x j) : Using the less expensive k on the original

form of xi and x j has the same effect as trans-
forming them with φ and taking their inner
product

Table 4.1: Summary of the kernel trick from section 4.3.2. In order to apply
a linear discriminant algorithm to a sample set that is not lin-
early separable, one can remap them under a dimension-raising
transformation unto a higher dimensional space where they are
likely to become linearly separable. Furthermore, to bypass the
expense of explicit computation in high-dimensional spaces, a
symmetric positive semi-definite kernel can be used in place of
the inner product of the samples in the new space.

in section 4.2.2) and keep it as regular as possible. However, just as too much

irregularity can degrade performance, too much regularity can be harmful as

well. Ideally a learning system needs to be only as irregular (or regular) as the

nature of the learning task demands. In machine learning this tension between

complexity and simplicity is referred to as bias-variance tradeoff (Geman et al.,

1992).

In kernel-based settings this issue is addressed by regularization of the de-

cision boundary (Evgeniou et al., 2000). More specifically, during training, the

error that gets minimized includes a term that penalizes the irregularity of the

class boundary, e.g. the norm of the derivative of the decision function, || f ′||,

which will be smaller for smoother (i.e. more regular) functions.
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4.3.3 Kernel as a measure of similarity

So far we have focused on the feature map, φ(·), and its dimension-raising power

for untangling data and making them linearly separable. In fact, were it not for

the practical difficulties of working explicitly with φ(·), there would be no place

for the kernel in our discussions. In this section we shift our focus from φ(·) as a

method of increasing dimensionality, to k(·, ·) as a measure of similarity.

Recall that according to Mercer’s theorem (Mercer, 1909) for any symmetric

positive semi-definite kernel there always exist φ(·) such that k(x, y) = 〈φ(x), φ(y)〉.

Therefore, kernels can be viewed as measuring cosine similarity between data

points by taking their inner product.8 However, instead of comparing x and

y as they are, k compares a transformed version of them, which for different

choices of kernel can be very similar to x and y (e.g. linear kernel: k(x, y) = 〈x, y〉)

or very different (e.g. Gaussian kernel k(x, y) = Exp(−γ||x − y||2)). In fact, in this

new setting there is no need to invoke the notion of an implicit map φ(·); the

kernel k is any function that assigns a non-negative value to a pair of input points

x j ∈ X regardless of their order, i.e. k : X × X → R. If the assigned value can

serve as a similarity measure (as in the Gaussian kernel where the assigned value

Exp(−γ||x − y||2) is a nonlinear form of the Euclidean distance between the inputs

||x − y||), then that kernel is useful.

In practice, akin to the Chorus of Prototypes (Edelman, 1999), a subset of

samples are chosen as exemplars, against which the similarity of the remaining

samples are measured. The new representation of any to-be-classified point will

then be a vector whose jth entry denotes the similarity of that point to the jth

exemplar. This new representation can then be used for learning in the usual

8For x and y ∈ Rd, cos(θ) where θ is the angle between them is given by 〈x,y〉
||x||.||y||
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way. Table 4.2 summarizes these points.

The similarity view of kernels is not a new addition to our repertoire, and has

been there all along. Recall that earlier we stated the kernel trick is only useful

when the learning algorithm relies on the inner products of the data points. That

means that the cosine similarity is built into the dimension raising view too. The

similarity view simply targets our interpretation of what the kernel does, and

shifts our attention from φ as the goal and k as the trick that gets us there, to k

itself as the goal. Furthermore, since the kernel trick needs to be accompanied

by a learning algorithm that works with inner products, it is often viewed as

part of the learning process, evidenced in the strong association between kernel

trick and SVM. In the similarity view, on the other hand, the kernel is a means of

representing data, somewhat independent of the learning algorithm. The payoff

is a representation scheme that is better suited to learning. In fact, under the

right circumstances even a simple nearest neighborhood search may suffice for

learning from data represented via similarity (cf. section 4.4.3 for examples). A

quick query of the literature will show that there now exist a kernelized version

of many of the popular algorithms in machine learning.

As an example, let us look at the application of kernels as similarity measures

in the Perceptron algorithm. The neurally inspired Perceptron decides on the

category of the input by comparing the weighted sum of its components to

a threshold: C(x) = sign(〈w, x〉) = sign(
∑

w jx j)
9,10, with w denoting the weight

vector. Being a linear combination of the input, Perceptron’s decision boundary

is a line in the input space and fails to learn the correct category when data are

9For simplicity we have dropped the bias term b, the general form of the perceptron decision
function is C(x) = sign(〈w, x〉 + b)

10The sign function is defined as sign(t) =

{

1 t > 0

−1 t < 0

66



X : x1, x2, ...xn ∈ Rd : Sample set used in learning
e1, e2, ...em ⊂ X : Subset of the samples chosen as exemplars,

e j

k : Rd × Rd → R : Appropriate k for measuring similarity
T : Rd → Rm : Re-represent each sample via transforma-

tion T . The new dimensionality, m, is de-
cided by the number of exemplars

T (x) =

(k(x, e1), k(x, e2), ...k(x, em))

: Each sample re-represented as its set of sim-
ilarities to the exemplars

X̂ : T (x1),T (x2), ...T (xn) ∈ Rm : The new representation of samples used in
learning

Table 4.2: Summary of the kernel as measure of similarity from section
4.3.3. Instead of a shortcut to high-dimensional computations,
the kernel can be viewed as a measure of similarity, yielding a
new representation of data that might better serve learning from
them. First a subset of samples are chosen as exemplars, and
then using the kernel, the similarity of the remaining samples are
measured against the exemplars. The new representation of each
sample consists of the set of such similarities.

not linearly separable, e.g. the XOR problem (Minsky and Papert, 1969). We

should be inclined to kernelize the perceptron in order to fix this shortcoming,

however, the kernel trick only works if the learning algorithm requires the inner

products only, and never the data points themselves. The original formulation of

the perceptron, stated in terms of the weighting of the individual points, does

not meet this requirement.

The solution lies in applying the kernel as a measure of similarity. In particu-

lar, we select a subset of the training points as exemplars, e1, ...em, and measure

against them the kernelized similarity of the to-be-classified point, x; the rest is

the same as the classical perceptron: C(x) = sign(
∑m

1 α jk(x, e j)), or in the notation

of table 4.2, C(x) = sign(〈α,T (x)〉). The learning then consists of optimizing α j,

denoting the emphasis we would like to put on the similarity of x to each of
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the preset exemplars (figure 4.1) (Freund and Schapire, 1999). To see that this

new decision rule corresponds to a kernelized version of the linear perceptron,

note that the weight vector can be expressed as a linear combination of the

exemplars, w =
∑

α jφ(e j) – hence, optimizing α has the same effect as optimiz-

ing w. Therefore, applying the kernel as a measure of similarity has the same

effect as its application in the dimension raising view: C(x) = sign(〈w, φ(x)〉) =

sign(〈∑ j α jφ(e j), φ(x)〉) = sign(
∑

α j〈φ(e j), φ(x)〉) = sign(
∑

j α jk(e j, x)).

Overcomplete representations It is worth pointing out that incorporating non-

linearities of the type discussed thus far can potentially address a range of ques-

tions about the response nonlinearities observed in the visual system. Recordings

from the early stages of the visual pathway in cats and monkeys indicate certain

"non-classical" nonlinearities in how neurons respond to the presence of stimuli

(Zetzsche and Rhrbein, 2001). For instance, while stimuli whose neural represen-

tation is orthogonal to the weight profile of the receiving unit are expected not

to elicit any response, they in fact result in the weakening of that unit’s activity.

(Olshausen and Field, 1997) argue that this behavior may be explained in light of

the sparse and overcomplete coding scheme at work in those areas.

Early in the visual stream (e.g., LGN, V1, V2) the outgoing fibers outnumber

the incoming ones, suggesting an overcomplete11 basis representation scheme,

which would result in linear dependency among the firing of different units.

Nonlinearly transforming the tuning of the units will counter such dependencies,

thus upholding sparseness in their activity (Olshausen and Field, 2004). A

thorough investigation of the connections between kernels and overcomplete

11An overcomplete basis set is one whose number of bases exceeds its dimensionality. In
contrast, a 3 × 3 identity matrix is not overcomplete in R3.
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Figure 4.1: Left: The classical formulation of the perceptron algorithm can
only handle linearly separable data. Right: The perceptron algo-
rithm can be modified using kernel as a measure of similarity to
become capable of dealing with nonlinearly separable data as
well. A subset of data points are chosen as exemplars, and the
remaining samples are re-represented as their set of similarities
against the exemplars (enveloped by the dashed lines above).
α j, the emphasis put on similarity to exemplar j, plays a similar
role to the weights in a non-kernelized perceptron (cf. section
4.3.3 and table 4.2 ).

representations, however, falls outside the scope of this work.
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Figure 4.2: Left: The rightmost neural processing unit only has access to x

and y through f (·). Right: If, however, it is only interested in the
similarity of x and y, it can use 〈 f (x), f (y)〉 to the same effect as
accessing x and y directly (cf. section 4.3.3).

The measurement constraint

Having covered kernels viewed as a shortcut to inner products, and as a measure

of similarity, we can now address M0, the fundamental constraint on measure-

ment.

Suppose x and y are two neural signals each fed into a processing unit whose

behavior is captured by f (·). The output of these units is therefore f (x) and f (y)

(figure 4.2). A processing unit at the following stage only has access to x and y as

modified according to f (·). Therefore, it must rely on computations that do not

require explicit knowledge of x and y. However, if the unit is only interested in

the similarity of x and y (a reasonable expectations in the nervous system), and

the kernel defined by k(·, ·) = 〈 f (·), f (·)〉 is a suitable measure of similarity, then

this unit can effectively access all the required explicit information about x and y

through k(x, y).

In other words, while the similarity notion of the kernel can serve as a means

of neural information processing, the implicit feature map may provide a trick to

circumvent difficulties that arise as a result of limited access to information.
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4.3.4 Regarding the dimensionality of kernel solutions

In this section we first reiterate the significance of dimensionality reduction

for learning from experience, and then discuss how this issue is addressed in

learning systems that rely on kernels.

Dimensionality reduction

Learning from experience requires that the perceptual system consult infor-

mation obtained for a situation when that situation presents itself later again.

However, it is extremely unlikely for two states of the environment to be iden-

tical, especially as recorded by the sensory system. Varying conditions such as

lighting, pose, clutter, and angle of view, make the retinal imprint of a predator

change significantly from one encounter to the next. If the perceptual system is

to learn the appropriate response to the presence of a predator (e.g., to flee), it

must represent the predator in terms that are insensitive to the details of sensory

input. Indeed, for a representation to be useful for future reference, it must ad-

mit some abstraction from the measurements performed by the sensory system.

Abstractions of this form can usually be obtained by remapping the signal onto a

space of smaller dimensionality wherein only certain features of interest from the

original signal are retained (Joliffe, 1986; Roweis and Saul, 2000; Hadsell, Chopra,

and LeCun, 2006). For instance Principle Component Analysis projects the signal

onto the subspace spanned by those dimensions along which the original signal

has maximum variance (cf. section 4.2.2).

Computational and economical concerns offer further motivation for dimen-

sionality reduction. Measurements that are recorded by sensory devices are
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typically of very large dimensions. However, the sample size is often relatively

small, giving rise to sparsely distributed data points learning whose relevant

statistics can be difficult–i.e. the curse of dimensionality (Bellman, 1961). In

addition, high dimensional data burden the system with higher expenses both in

terms of storage and performing computations. Reducing the dimensionality of

the signal can simultaneously make learning from sparse data more feasible, and

lower the system’s expenditure.

Do kernels increase or decrease dimensionality?

Kernels’ treatment of dimensionality is a somewhat confusing topic. This is

in part because the literature is not vocal enough on this issue to guide the

uninitiated, and in part because by themselves kernels are indifferent to the

dimensionality of their domain of application; whether that dimensionality gets

raised, reduced, or left unchanged, is for the most part up to the practitioner.

Nonetheless, since in most discussions its usefulness is attributed to the dimen-

sion raising power of φ, many brain scientists have come to the conclusion that

the kernel trick is a method of inflating the dimensionality of data, and thereby,

have dismissed it as a irrelevant to the brain; after all, when it comes to the brain,

diminishing the dimensionality is a lot more useful than augmenting it (cf. D0 in

4.2.2 and 4.3.4).

Here we aim to express the relationship between kernels and dimensionality

in more explicit and simple (if at times overly so) terms in hopes that other

interested researchers may benefit from it.

As it must by now be familiar to the reader, there are two main views on how
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the kernel does its trick. One view emphasizes the the feature map φ(·), while

the other emphasizes the notion of similarity. Regarding the former view, it is

not a necessity that φ(·) raises the dimension; rather, as discussed under "Choice

of transformation" in section 4.3.2, this happens as a matter of convenience,

reflecting the designer’s imperfect knowledge about the problem. Furthermore,

the feature map is implicit and never actually computed (which only further

complicates this issue). In fact, the sample set never leave their native nominal

space, where the eventual solution will also reside. Consequently, the burden

of determining the effective dimensionality of the kernelized solution is born

by the learning algorithm, not the feature map. This is especially manifest

in the imposition of the penalty term to keep the decisions (of the learning

algorithm) regular. For instance, in SVM, the effective dimensionality of the

decision function is independent of the dimensionality of φ(·), and lies in the

support vectors whose freedom is tightly bound via regularization.

In the similarity view, the dimensionality of the samples does change, but

according to the number of exemplars chosen, and, again, independent of the

corresponding φ(·). Consulting table 4.2, you can see that the re-representing

transformation T has dimensionality m, the number of exemplars. The good

news is that usually m can take on a value much smaller than d, the dimensional-

ity of the original samples–Section 4.3.4 explores this idea in more detail.

Taken altogether, kernel’s treatment of dimensionality does not conflict with

the principles of dimensionality and complexity, D0 and C0; rather it supports

them by confining the dimensionality of the eventual solution, thereby increasing

the generalizability of the learned decisions. This is achieved by regularizing the

decision function, or, to the same effect, by remapping data using T which relies
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on fewer exemplars than the native number of dimensions. This bring us to the

next question: How do we choose the exemplars?

Random projections and feature selection

Considering that one mark of a good representation scheme is preservation

of relationships (Edelman, 1998, 1999; Shepard, 1987), in machine learning a

number of algorithms have been designed whose objective is to reduce the di-

mensionality of data while preserving their pairwise similarities, often measured

in terms of their Euclidean distance. Examples of such algorithms include, PCA,

Multidimensional Scaling, Isometric Mapping, and Autoencoders. One property

common to most such distance preserving algorithms is that they accomplish

their objective by performing carefully designed operations on data (e.g., finding

dimensions of maximum variance in PCA, and training to reproduce the input

pattern on the output in Autoencoder) which usually end up computationally

expensive.

The Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss, 1984) offers

a computationally simple and inexpensive way for embedding data into a lower

dimensional subspace while preserving their pairwise distances, given that

certain conditions hold. More specifically, as long as the number of data points is

small relative to their dimensionality, a situation that arises often in perceptual

processing, projecting them onto a randomly chosen subspace of much smaller

dimensionality will preserve their pairwise distances. Formally, for x j ∈ Rd, a

linear map l : Rd → Rm with d ≫ m, and 0 < ε < 1 we have
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(1 − ε) ‖xi − x j‖2 ≤ ‖l(xi) − l(x j)‖2 ≤ (1 + ε) ‖xi − x j‖2

Following the above considerations, (Balcan et al., 2006) observe that the

kernel method can be thought of as a lower dimensional embedding of the

data in the following way. Suppose that remapped under φ, corresponding

to some kernel k, data become linearly separable. Then, following Johnson-

Lindenstrauss lemma, projecting the remapped data onto a subspace spanned

by randomly chosen vectors r j should nearly preserve their linear separability.

However, the straightforward application of the lemma which is of the form

(〈r1, φ(·)〉, 〈r2, φ(·)〉, ...〈rm, φ(·)〉)12 would be too expensive to compute, since r j are

of the same dimensionality as φ. Instead, one can draw e1 through em from the

original data at random to serve as exemplars, and remap any other point x using

T : Rd → Rm with d ≫ m as

T (x) = (k(x, e1), k(x, e2), ...k(x, em))

where k(·, e j) corresponds to a random projection from φ-space along the jth di-

mension of T , similar to 〈r j, φ(·)〉, but without the explicit computation of φ and

〈r j, φ(·)〉. In other words T provides an inexpensive way to embed x in a lower

dimensional subspace while almost preserving its linear separability under φ.

Formulated this way, k can be thought of as a measure of similarity, and e j as

exemplars, prototypes, landmarks, or features against which k measures the sim-

ilarity of x (Balcan et al., 2006; Blum, 2006). (Edelman, 1999) and (Anselmi, Leibo,

Rosasco, Mutch, Tacchetti, and Poggio, 2014) are two examples of successful

12Projection of the vector v onto the subspace spanned by r1, ...rm is given by R × v where R is
the projection matrix whose jth column is r j.

75



application of this method in object recognition.

The small set of randomly selected prototypes in Balcan et al.’s (2006) for-

mulation serves well for a binary classification setting. While the full extent of

the significance of feature selection for similarity-based learning systems has

not been explored (Pękalska, Duin, and Paclík, 2006), it appears that in a more

involved setting with multiple classes and complex feature sets, it may be prefer-

able to i) carefully select the exemplars so as to better reflect prior knowledge

about the structure of the data ii) select them via optimization of certain objec-

tive (Klare and Jain, 2012), or iii) to increase the number of randomly chosen

prototypes, hence heightening the likelihood of covering the would-be-optimal

ones.

4.3.5 Kernels and the fundamental constraints

We may now observe that the kernel trick can be used as a basis for an approach

that would satisfy all four fundamental constraints listed earlier:

M0 The measurement constraint. By relying on kernels both as a measure of

similarity and as an implicit feature map, a neural processing unit can

gain explicit access to information that would otherwise be only indirectly

accessible (cf. section 4.3.3).

S 0 The similarity constraint. A representational unit that needs to compute the

similarity of x and y can do so using k(x, y) (cf. section 4.3.3).

D0 The dimensionality constraint. Using the kernel trick, a learning problem

can be embedded into a space spanned by the data points, whose effective
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dimensionality is typically much lower than the nominal dimensionality of

the data space (cf. section 4.3.4).

C0 The complexity constraint. By keeping the effective dimensionality of their

solutions low, either by regularizing the solution or by relying on few ex-

emplars, kernel-based methods keep complexity under control (cf. section

4.3.4).

4.3.6 A probabilistic angle

Consistent with the prominence of statistical learning in natural and artificial

systems, similarity-based methods have received a fair amount of probabilistic

treatment. Starting from the basic principles Shepard (1987) derives a universal

law for generalization based on similarity stating that the probability of the

"consequence" of a novel stimulus being the same as a familiar one decays

exponentially in the dissimilarity of the two stimuli, as represented in their

"psychological space". This formulation has served as the basis of a number of

explicitly or implicitly probabilistic models of classification based on similarity

(e.g., Nosofsky 1986; Kruschke 1992). In particular (Tenenbaum and Griffiths,

2001) offer a Bayesian formulation that extends the scope of Shepard’s original

law to include generalizing from multiple familiar examples.

In the context of nearest neighborhood search, (Kriegel, Kunath, and Renz,

2007) propose a probabilistic formulation where the distance between a query

and its neighbors is treated as the probability density of a “hit”. Also (Gupta,

Gray, and Olshen, 2006) use the relative frequencies of samples that are near

neighbors of test point to offer a Bayesian formulation for supervised learning.
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Concerning the kernel trick in particular, (Smola, Gretton, Song, and

Schölkopf, 2007) propose a way to "embed [probability] distributions in a Hilbert

space" by constructing a mapping between the the two and treating each point

in the RKHS as the mean of a distribution. This method is further generalized in

(Song, Huang, Smola, and Fukumizu, 2009) to include conditional distributions

as well, motivating Fukumizu et al. (2011)’s explicitly Bayesian formulation of

nonparametric posterior point estimation in RKHS.

4.3.7 Are Gaussian kernels special?

Learning algorithms that make use of the kernel trick prescribe that the kernel

be chosen carefully so as to both accommodate the particular set of data at hand

and avoid overfitting (see section 4.3.2). In practice, the proper choice of kernel

requires that the designer of the application rely on his familiarity and expertise

with the problem. For instance, while a polynomial kernel may be all that is

needed for certain sets of data, other sets may require a sigmoid or a Gaussian

kernel, and even after the right kernel is chosen there still remains the issue of

fine tuning its parameters. This task is often referred to as model selection.

The difficulty here is that typically too little is known a priori about the

problem to guide the choice of kernel. Short of resorting to typically involved

methods of automatic model selection (e.g., Howley and Madden 2005) in such

cases, especially in visual domains, a popular default choice of kernel is a radial

basis function (RBF), often in the form of a Gaussian kernel: k(x, y) ∝ Exp(−||x −

y||2), e.g., (Belkin and Niyogi, 2003; Hegde, Sankaranarayanan, and Baraniuk,

2012).
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Perhaps not coincidentally, RBF’s also seem to be evolution’s favorite choice

of distance metric in the nervous system. In the primate visual system the

strength of response of a cell exhibits an exponential fall off, Exp(−γ||x − y||p), in

the distance of the present stimulus, x, from the preferred one, y (Rose, 1979;

Daugman, 1980; Kang, Shapley, and Sompolinsky, 2004). This trend is not

limited to the visual system and is observed in other cortical regions (Dayan

and Abbott, 2001), as well as non-primate species, e.g., (Miller, Jacobs, and

Theunissen, 1991; Theunissen, Roddey, Stufflebeam, Clague, and Miller, 1996).

Furthermore, following (Shepard, 1987), the behavioral likelihood of generalizing

from a familiar stimulus to a novel one is proportional to the negative exponential

of their perceived similarity, i.e. their distance in the “psychological space” where

they are represented, P(Lx = l0|Ly = l0) ∝ Exp(−||x − y||) with Li denoting the label

of item i.

A common explanation for this behavior maintains that by being more sen-

sitive to the slope of the tuning curve rather than its magnitude, overlapping

graded tuning curves afford the neurons finer discrimination (Snippe and Koen-

derink, 1992; Butts and Goldman, 2006). Likewise, (Edelman, 1999) makes a

similar case for the merits of such receptive fields in object recognition. Here we

mention further properties of the Gaussian that may contribute to its frontal role

in neural coding.

• The Gaussian tuning curves corresponding to a collection of cells can serve

as a basis function set in formation of mappings, for instance between

different sensory modalities (Pouget and Sejnowski, 2001). In particular,

the basis decomposition of a Gaussian itself results in Gaussians. For

instance the Fourier transform of a Gaussian will consist of Gaussian basis
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functions (e.g. for f (t) = Exp(−αt2) we have F (s) =
√
π/αExp(−π2s2/α)).

• The Gaussian kernel is self similar, i.e. convolving two Gaussians yields

another Gaussian. This property may be helpful in that in a cascade of cells

with a Gaussian tuning curve little information is lost to those units that do

not have direct access to each other; see M0.

• The Gaussian can arise from the collective activity of a large population,

none of whose individuals are necessarily Gaussian, as stated by Central

Limit Theorem.

• The feature map corresponding to a Gaussian kernel is infinite dimensional

(Eigensatz and Pauly, 2006), offering more flexibility where little is known

about the nonlinearity of data.

Considering that often the cortical tuning curves resemble RBFs, one may

ask whether this feat is rooted in our evolutionary history or emerges from the

statistics of the environment. More precisely, to what extent is the synaptic weight

profile of an RBF-like receptive field coded genetically, as opposed to driven

by experience? Research from embryogenesis suggests that certain functional

aspects of the nervous system are already in place at birth. For instance (Horton

and Hocking, 1996) found that the geniculocortical pathway of macaque monkey

shows ocular dominance in prematurely delivered babies. Furthermore, (Wong,

1999) suggests that spontaneous rhythmic bursts of retinal activity in unborn

vertebrates can lead to formation of visual receptive fields via Hebbian like

mechanisms.
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4.4 Issues and ideas related to kernels

In this section, we discuss the main headings under which the relevant material

is typically found in the literature. As we shall see, there is considerable overlap

among the headings, which underscores the need for a unified framework.

4.4.1 Manifolds and linearization

The dynamics of a an object rotating around an axis can be captured with only

one parameter: the angle of rotation. Yet, the measurements recorded from

the object by the sensory instruments will not readily present the rest of the

perceptual system with this simple dynamics; rather, they provide it with a high

dimensional representation–e.g., retinal input–wherein the lower dimensional

dynamics are implicit. One of the goals of the perceptual processing is to extract

from the sensory measurements the lower dimensional representations that are

most pertinent to the task at hand (Edelman and Intrator, 1997). Assuming that

the mapping between states of the world and their corresponding percepts is

isometric, i.e. small changes in the states of the world are followed by small

changes in how they are perceived–note that the intermediate representations

need not be, and in practice aren’t isometric–then such dynamics of interest will

correspond to lower dimensional manifolds embedded in the high dimensional

space of their initial measurement (DiCarlo and Cox, 2007). Once the system

has learned the appropriate subspace, it can use it in forming invariant represen-

tations to facilitate recognition. For instance, in vision, the subspace spanned

by the varying viewing conditions of an object can be helpful in building a rep-

resentation that is invariant to those conditions: as long as the representation
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lies within the learned subspace, it belongs to the same object. Therefore, one of

the goals of perception can be understood in terms of making explicit the more

meaningful subspaces that are implicit in the sensory signal.

Simultaneously, the task of uncovering such manifolds takes care of another

consideration pertinent to perceptual learning. As stated in section 4.2.2, to be

effective, the decision strategies learned from experience must generalize well

to novel situations. However, while the measurements taken by the sensory

devices are high dimensional, informative examples, especially those that figure

in vital situations, may be rare (a prey who manages to escape the predator once,

may not fare so well upon the next encounter), leading to a sparse set of high

dimensional samples with poor generalizability. Relying on the more significant

features of the available examples in learning, for instance by uncovering the

low dimensional manifold, reduces the effective dimensionality of data and

makes them more generalizable. This is akin to Vapnik’s observation that when

dealing with high dimensional data, one ought to reduce the VC-dimension of

the learned decision function to avoid bias and improve generalization (Vapnik,

1999).

The computational techniques developed for the purposes of manifold learn-

ing usually rely on some metric that quantifies the similarity of typically high

dimensional data points, and use the result to approximate the lower dimen-

sional target manifold (see section 4.4.2 for examples). However the task of

these techniques is complicated by the fact that the subspaces corresponding

to different stimuli are often irregular and “entangled” (DiCarlo and Cox, 2007;

Elgammal and Lee, 2008), untangling which is a challenge similar to learning

a nonlinear decision function. Intuitively, finding the boundary between two
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intertwined manifolds is not unlike finding the boundary separating two sets of

data points. Indeed, here too kernelizing the metric used to measure similarity

between data points can help to uncover manifolds that will not yield to the

straight application of such measures. For instance, while the ordinary appli-

cation of PCA can only reveal linear trends embedded in data, the kernelized

version, kPCA (Schölkopf, Smola, and Müller, 1997), is capable of uncovering

nonlinear trends as well. In section 4.4.2 we review application of kernels to a few

more manifold learning methods including ISOMAP and Laplacian Eigenmaps.

As in other contexts, application of kernels to manifold learning can also

be appreciated in light of their ability to tame expensive computations. For

instance, noting that most visual manifold learning methods naively assume

isometry to Euclidean distance between the images , (Hegde et al., 2012) suggest

the Earth Mover Distance as a better alternative, and apply kernels to break the

computational cost of their metric.

4.4.2 Graph methods

In recent years a number of graph theoretic approaches have been proposed

whose objective is to discover underlying low dimensional manifolds embedded

in the high dimensional space where data points are initially presented. Iso-

metric feature mapping, or Isomap (Tenenbaum, 1998), treats the data points in

a small neighborhood as vertices of a weighted graph whose weighted edges

correspond to the pairwise Euclidean distances of data points. The geodesic

distance of any two points is then the shortest path length between their respec-

tive vertices. By applying classical MDS to these geodesic distances, Isomap can
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reveal underlying nonlinear manifolds in a computationally tractable fashion.

Furthermore, the adjacency matrix representing the geodesic distances can be

interpreted as a kernel matrix where the weight of the edge connecting vertices

i and j corresponds to k(xi, x j) (Ham, Lee, Mika, and Schölkopf, 2004), hinting

that Isomap may be viewed as a kernel eigenvalue problem, with the caveat that

this matrix may not necessarily be positive semi-definite (a property required of

kernel matrices).

Similarly, in a method called Laplacian eigenmap, (Belkin and Niyogi, 2003)

represent data points on the vertices of a weighted graph whose weighted edges

are the Gaussian of the pairwise Euclidean distances of the points, i.e. the weight

of the edge connecting points xi and x j is Wi j = e−||xi−x j ||2/2σ2

(though they call the

resultant kernel matrix from this Gaussian a heat kernel, owing to links between

their method and the solution to the differential equation of diffusion fields). The

target manifold is then computed via eigendecomposition of the graph Laplacian.

Furthermore, (Wilson and Zhu, 2008) note that in the spectral analysis of a graph,

the Gaussian kernel (heat kernel) representation is preferred because it helps

to disambiguate different graphs with the same spectrum. (Sprekeler, 2011)

suggests that under certain conditions the Laplacian eigenmap is equivalent

to slow feature analysis, a neurally inspired technique that aims to uncover

invariant or slowly varying features from high dimensional temporal data that

resemble sensory input (Wiskott and Sejnowski, 2002). Finally, (Ham et al., 2004)

point out that the above methods, Isometric feature mapping and Laplacian

eigenmap, as well as the closely related Locally Linear Embedding (LLE) can in

fact be viewed as special cases of the general family of kernel PCA.
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4.4.3 Locality-sensitive hashing

Locality Sensitive Hashing (LSH) was originally suggested as an efficient im-

plementation of data retrieval in nearest neighborhood (k-NN) search methods.

Though simple and effective (Cover and Hart, 1967), the time complexity of

k-NN usually grows intractable as the number of stored data points or their di-

mensionality increases (Arya, Mount, Netanyahu, Silverman, and Wu, 1998). By

relaxing the requirement for an exact match, albeit with a predictably bounded

error, LSH offers a k-NN implementation whose cost grows logarithmically in the

number of points and their dimensionality (Indyk and Motwani, 1998; Andoni

and Indyk, 2008). This efficiency is made possible in part by partitioning the

search space into small clusters so that similar entries get binned together, and

in part by relying on simple features, or even randomly selected ones (Charikar,

2002), for deciding how to partition the search space.

The clustering aspect of LSH, together with its insensitivity to carefully de-

signed features, makes it a suitable choice for similarity based classification

purposes, especially when dealing with large and high dimensional data sets

where more conventional methods may be too computationally expensive to

be feasible (e.g., Shakhnarovich, Indyk, and Darrell, 2006, and Grauman and

Darrell, 2007). Furthermore, equipping the machinery of LSH with the flexibility

of kernelized metrics as the measure of similarity has been shown to result in im-

proved performance compared to non-kernelized counterparts such as Euclidean

distance (Kulis and Grauman, 2009).

We have previously discussed the merits of Content Addressable Memory

(CAM), and the hashing implementation as an instance, for successful evolution

of a cognitive agent (Edelman and Shahbazi, 2012; Edelman, 2008). Note that
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while a conventional hash function is designed to minimize collisions, that is,

mapping different entries to the same hash key, in LSH the aim is to maximize

collision among entries that are similar enough according to some metric. Never-

theless, LSH can serve as a CAM whereby entries that are similar will receive the

same treatment, and as such, it deserves attention as potentially useful means of

cognition.

4.5 Similarity and kernels in the brain

4.5.1 Behavioral needs vs. computational means

The very basic needs of an evolving organism–fight, flight, food, reproduction–

can take on various forms and shapes in different contexts (table 4.4, right). At

a formal level, however, they can typically be stated in terms of few forms of

learning and decision making (table 4.3). considering the prevalence of the four

fundamental constraints in different domains of cognition, it is not surprising

that most forms of learning and decision making can benefit from a kernelized

formulation. Table 4.5 summarizes several such cognitive strategies and their

kernel algorithm counterparts.

4.5.2 Behavioral findings

Reiterating section 4.2.2, to be useful for survival, neural representations must

reflect the similarities of their distal references. At the lower stages of processing

the strength of neural responses is a function of the similarity of the current
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type of task what needs to be done what it takes

recognition dealing with novel views
of shapes

tolerance to
extraneous
factors (pose,
illumination,
etc.)

categorization dealing with novel
instances of known
categories

tolerance to
within-category
differences

open-ended representation dealing with shapes that
differ from familiar
categories

representing a
novel shape
without
necessarily
categorizing it

structural analysis reasoning about (i) the
arrangement of parts in an
object; (ii) the arrangement
of objects in a scene

explicit coding of
parts &
relationships of
objects and
scenes

Table 4.3: A hierarchy of tasks arising in visual object and scene processing
(reprinted from Edelman and Shahbazi, 2012).

stimulus to the preferred one. For instance the firing rate of V1 simple cells de-

creases as the orientation of the current stimulus moves away from the preferred

orientation. At higher stages too, brain imaging techniques suggest that multi-

voxel codes well reflect the similarity, both of identity and of structure, of various

stimuli presented (Hayworth, Lescroart, and Biederman, 2011; Zhang, Meyers,

Bichot, Serre, Poggio, and Desimone, 2011; MacEvoy and Epstein, 2011). What

is more, this trend can also be observed in subjects’ performance in behavioral

tasks (same references).

The flip side of kernel as a measure of similarity is linear separability. Re-

searchers in visual psychophysics have for some years been exploring the effects

of linear separability of simple stimuli, defined usually in a low-dimensional
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means of survival examples

deciding on an appropriate
response to a novel stimulus

"Is this food?"

"Is this a dangerous animal?"
"Can I outrun this predator?"
"How much water do I need for this trip?"

veridical representation judging the similarity of a red apple to a green
apple
judging the similarity of a red apple to a red
flower

dealing with noise and
confounding factors

detecting a lion’s roar from a distance in the
wind
telling apart a dog from a wolf

dealing with ambiguity and
missing information

recognizing prey in the fog

recognizing an occluded pig by its tail
generalizing learned skills to
new tasks

learning to hunt boars can help better hunt
deers
learning tree climbing can help rock climbing
figuring out what a ripe cherry looks like can
help figure out what a ripe apricot looks like

Table 4.4: A non-exhaustive list of tasks that can help an animal survive
(left column), and examples of situations in which they play out
(right column).

parameter space. For instance, Vighneshvel and Arun (2013) used line segments

differing only in their orientation as stimuli in a visual search task. In this setting,

the task of finding a segment tilted at 0◦ among 20◦ and 40◦ distractors is linearly

separable, whereas the task of finding a segment tilted at 20◦ among 0◦ and 40◦

distractors is not. However, natural perceptual categorization problems never

reside in such simple spaces. A more realistic approach should vary the layout

of stimuli parametrically in some appropriately complex “hidden” space (Cutzu

and Edelman, 1996; Op de Beeck, Wagemans, and Vogels, 2001; cf. Blair and

Homa, 2001).
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means of survival possible strategy kernel based ML technique

deciding on an
appropriate response
to a novel stimulus

judge similarity to
familiar examples

k-NN with kernel metric

judge similarity to
random examples

kernel re-representation
T (·), LSH

find a decision
boundary based on
previous examples

SVM, RBF networks

discover and exploit
structure within
collected examples

ISOMAP, kPCA, spectral
clustering

quantify output in
terms of input

regression, Gaussian
processes

veridical
representation

preserve pairwise
distances

MDS with kernel metric

dealing with noise and
confounding factors

allow for variance regularization

dealing with ambiguity
and missing
information

use co-occurrent
information,

explicit coding of
structure, e.g. ChoRD

top-down processing generative models - not
kernel based (although see
section 4.3.6)

generalizing learned
skills to new tasks

transfer of learning hierarchical mixture
models - not kernel based

Table 4.5: A non-exhaustive list of visual tasks that can help an animal
survive (left column), possible ways these tasks can be under-
taken (middle column), and the kernel-based machine learning
techniques implementing them (right column).

Although experiments targeted at uncovering the nature of class separability

in cortical representations are scarce, there is evidence suggesting that one aspect

of class learning can be seen in better linear separation of their representations.

For instance, (Miller, Schalk, Hermes, Ojemann, and Rao, 2014) report that elec-

troencephalographic recordings from subcortical areas of 188 epileptic patients

can correctly be classified via a linear discriminant classifier. In a parallel project
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we are collecting imaging data to further investigate the cortical implications

of linear separability for learning (cf. section 4.6.2). Behaviorally too, evidence

is in favor of linear separability and learning going hand in hand (Medin and

Schwanenflugel, 1981; Wattenmaker, Dewey, Murphy, and Medin, 1986; Blair and

Homa, 2001). Furthermore, it has been suggested that the metrics entertained

by the prototype (Posner and Keele, 1968; Rosch, 1978) and exemplar (Nosofsky,

1988) views of categorization require to operate on representations that respect

linear relationships (Blair and Homa, 2001).

4.5.3 The brain angle

Considering that much of the literature on kernels focuses on the issue of linear

separability, we may wonder how crucial it is for the representations that the

brain uses to be linearly separable. At a first glance it seems that since many of

the behavioral needs of an evolving agent rely on computations that resemble

problems of machine learning (Table 4.5), linear separation of representations

is indispensable in the brain. For example, the formal statement of perceptual

categorization is quite similar to that of a myriad classifying algorithms. Indeed

as expressed in (DiCarlo and Cox, 2007), (DiCarlo, Zoccolan, and Rust, 2012),

and (Pagan et al., 2013) the coarse grains of perceptual information processing in

the ventral visual pathway can be cast in terms of untangling the raw sensory

measurements in several stages of neural computation. In effect, while the low

level subspaces wherein representations of the same class lie are twisted and

tangled, higher up the stream they become progressively more amenable to

linear decision boundaries.
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The chief rationale offered for this picture is invariance: "At higher stages

of visual processing, neurons tend to maintain their selectivity for objects

across changes in view; this translates to manifolds that are more flat and sep-

arated"(DiCarlo et al., 2012). However, at a closer inspection one may notice

that the translation from invariance to linear separability is not self-evident and

requires appealing to the details of neuron-level mechanics. The linear discrimi-

nant approach corresponds closely to one of the main computational building

blocks of the brain, the cortical pyramidal cell, whose function is characterized by

a linear combination of its inputs, followed by a soft thresholding (Buzsáki, 2010).

Therefore, the ability of a neuron (or any hierarchically organized, feedforward,

ensemble of them) to tell apart one category from another is only as good as

the incoming representations of those categories have been processed by the

preceding stages to become linearly separable. Imagine a different universe

in which cell responses to input x are characterized by f (x) = sign(
∑

w jx
2
j
). In

such a universe, a nervous system that expends its resources on untangling the

representations with respect to hyperplanes would not fare as well as one that

factors in the particular response nonlinearities of its constituent cells.

Linear separability is nonetheless defensible on grounds of complexity. As

discussed in section 4.2.2, simpler decision criteria make for more generalizable

decisions, in any universe. At this point some clarification is necessary: The

linear separation attained by kernels in φ-space does not necessarily uphold

simplicity, and thereby generalizability. In fact, were it not for the tight grip of

the regularizing term, it could easily result in a disastrously overfitted solution.

However, this should not be cause for concern since the untangled neural

representations do not reside in the implicit φ-space; rather, in a very explicit
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space comprised of signals that are re-represented by way of certain flattening

transformation which may or may not involve steps that we can interpret as

an implicit, never realized, feature map (cf. section 4.3.4 for more details). Put

another way, suppose the nervous system uses the Gaussian kernel to remap the

sensory signal residing in S 0 onto a new space, S 1, better suited for the perceptual

needs of the organism. Now, while each point in the φ-space (corresponding to

the Gaussian kernel) stands for an individual point from S 0, each point in S 1

corresponds to the similarity of two points from S 0, measured by the Gaussian

kernel. Consequently, one can talk about the decision boundaries in S 0, φ, and

S 1 spaces which may or may not be hyperplanes (figure 4.3). Extending the

example further, representations in S 2, computed as before via a Gaussian kernel

but with S 1 as input, would correspond to the similarity of similarities, or meta-

similarity. Such higher order measures of similarity, particularly when combined

with hierarchic abstraction to reflect the similarity of parts and wholes, have

been proven effective in shape (Egozi, Keller, and Guterman, 2010) and string

(On and Lee, 2011) matching.

4.6 Conclusions

4.6.1 Summary

An organism that strives to survive and prosper in the wild would benefit from a

nervous system that affords it means of making informed decisions in response

to the various states of the world. However, such a nervous system is faced

with a number of fundamental challenges that it must learn to cope with before
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Figure 4.3: Linear separability in neural representations: Raw sensory mea-
surements reside in S 0 where they are typically not linearly
separable. Through application of a Gaussian kernel which
measures their similarities, they may become linearly separable
in the new space S 1. However this linearly separability would
be different from the one corresponding to the feature map
of the Gaussian, φ-space. While each point in φ-space corre-
sponds to a sensory measurement, each point in S 1 denotes the
similarity of a pair of sensory measurements. Finally, further
application of the kernel on S 1 yields S 2 where second-order
similarities are represented. See text for details.

it can succeed at its job. We have enumerated four fundamental constraints

on the cognitive functioning of a neural information processor that target its

essential functioning as well as the economics of its operation–cf. M0 (section

4.2.1), S 0(section 4.2.2), D0(section 4.2.2), and C0(section 4.2.2). With the exception

of M0, each of these challenges have been addressed elsewhere. In this paper

we attempted to paint a broad picture based on ideas from Reproducing Kernel

Hilbert Spaces, that would relate the various existing approaches to one another.

The kernel trick which was originally conceived as a shortcut to expensive
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high-dimensional computations can simultaneously address all four constraints.

By acting as a measure of similarity (S 0) kernels offer solutions that are of low

complexity (C0) and reside in spaces of lower dimensions (D0) than the space

of training samples. Furthermore, as long as at each stage of processing the

required information about earlier stages is limited to comparisons and similari-

ties, relying on kernel-like computations minimizes loss of access to measured

information (M0).

These observations are consistent with findings from a range of biological

and behavioral experiments. At the neural level, comparison of input to proto-

type stimuli and measuring their similarity is among the most common types

of neural processing of sensory information. In addition, brain imaging and

electrophysiological recordings uphold the notion of low complexity represen-

tations afforded by kernel-like computations. Furthermore, behavioral studies

on similarity and on linear separability suggest that both factors are involved in

subject performance in various forms of learning and decision making.

4.6.2 Future work

As discussed in section 4.3.4, while in simple settings even a randomly chosen

set of exemplars may suffice for optimal performance, in real world applications

the complexity of data structure (e.g. warped manifolds, skewed distributions,

etc. which abound in domains such as image analysis, bioinformatics, and

computational genomics) and the demands of the learning task (e.g. multiclass

learning) can complicate the story. In such cases randomly chosen features

may not always meet the desired performance, and care must be taken to select
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exemplars that would accommodate the requirements of the learning task. Some

research has already been conducted on certain aspects of prototype selection

for kernel algorithms (e.g. Laub and Müller, 2004). However, further work

is required to find a systematic strategy for selecting prototypes that optimize

different performance objectives.

The statement of the fundamental constraint on measurement, M0, does not

entertain a long history in the literature, and as such, our proposed solution to

is for the most part theoretic. Further experimentation is needed to explore its

neural and behavioral underpinnings and their empirical implications.

From Hume’s Enquiry (1748) to (Shinkareva, Wang, and Wedell, 2013; Xue,

Weng, He, and Li, 2013), the similarity aspect of the framework discussed here

has been subject to much theoretical and empirical scrutinizing. However, exper-

imental work on linear separability–the other side of this coin–has only recently

started to get the community’s attention; e.g., (Miller et al., 2014) for neural, and

(Blair and Homa, 2001) for behavioral effects of linear separability. In a separate

project we are using fMRI scanning and multivoxel pattern analysis to study the

linear separability of higher cortical representations.

The answers of the type we seek are not readily found in the machine learning

literature, where the focus is, quite understandably, on improving performance

rather than on painting a broad picture that would relate the various existing

approaches to one another.
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CHAPTER 5

CONCLUDING REMARKS

5.1 Summary and Discussion

The findings of chapters 2 and 3 suggest that not only does learning indeed

rely, at least insofar as it concerns vision, on spatial contingencies and struc-

tural regularities, but it favors certain such structures over others. This should

not surprise us, seeing that vision evolved in an environment abundant with

hierarchic organization (which appeared there in the first place because of the

evolutionary stability of such organizations). Furthermore, the hierarchic nature

of the organization does not have to be strictly apparent to be exploited by the

cognitive system. In our experiments, the hierarchicality was only indirectly

accessible to subjects through the network of causes that were hidden from them

and had to be inferred, perhaps without explicit knowledge. Nonetheless, in

the majority of experiments we observed a markedly better performance for the

more (covertly) hierarchic conditions.

One of our primary motivations pursued in chapter 4 was to acquaint the

brain sciences community with a potentially useful idea that has independently

evolved in the discipline of statistical learning. As a result we have in several

places sacrificed rigor for ease and clarity in conveying the spirit of the message,

which is this:

Representing the sates of the world, and making inferences on them, requires,

among other things, quantifying the similarity of those states via metrics that

may vary with the demands of the task (though Gaussian-like metrics seem to
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accommodate a wide range of them). The kernel trick provides an economical

means of accomplishing this, while honoring the various constraints that arise

in cognitive operation. In particular, computations that involve kernelization,

should not, and in practice do not, increase dimensionality; rather, they de-

crease it in ways that are predictable, and more importantly, controllable by the

experimenter.

The prospect of machines that think is starting to appear unsettlingly close

(e.g. Stephan Hawking recently expressed his concern over this matter; BBC,

2014). Regardless of the legitimacy of fear over vengeful machines, there is no

denying that from the scripted thought processes of (Schank and Abelson, 1977)

and SOAR architecture (Laird, Newell, and Rosenbloom, 1987) that marked the

beginning stages of cognitive science, our artificially intelligent systems have

come a long way. But even steering away from the so called hard problems, our

learning systems still need to catch up to primate learning on some of the easy but

fundamental aspects of cognitive function. Structure, briefly discussed in chapter

1 and covered in more detail in chapters 2 and 3, is one example. Representing

based on similarities and exemplar/prototype-based decision making, discussed

in chapter 4, seems to be in a better standing, already incorporated (implicitly or

explicitly) into many learning algorithms.

One major cognitive factor prominent in biological, but for the most part

absent in artificial learning, is abstraction. The footprints of abstraction are

present in human cognition everywhere from chunking phonemes into words

and words into sentences, grouping parts into bigger parts and into objects

and scenes, all the way to higher level cognition observed in problem solving

and chess playing. Such hierarchic abstraction exists in various disguises in
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machine learning (e.g. mixture modeling and hierarchic convolutional networks).

But abstraction is also a major player in discovering similarities in seemingly

disparate domains (e.g. high temporal frequency of sound vs. high spatial

frequency of an image). Literature on transfer of learning and Bayesian inference–

e.g. hierarchical Dirichlet processes (Teh, Jordan, Beal, and Blei, 2006b) and

machine science (Evans and Rzhetsky, 2010)–has some pointers on this form of

abstraction, but their involvement in machine learning is not as pronounced as

in human learning. Perhaps until that comes to change we ought not lose any

sleep over the threat of AI powered terminating machines.

5.2 Parting Remarks

‘What is the meaning of it, Watson?’ said Holmes

solemnly as he laid down the paper. ‘What object is

served by this circle of misery and violence and fear?

It must tend to some end, or else our universe is ruled

by chance, which is unthinkable. But what end? There

is the great standing perennial problem to which human

reason is as far from an answer as ever.’

–Sherlock Holmes, The Adventure of the Cardboard Box

The account of vision and cognition offered in the previous chapters, is, to

put charitably, quite technical. Is this how the brain works?

The standard answer to this question would read something along the fol-

lowing lines:
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“Marr’s Vision (1982) [that the first chapter opened with], painted a road

map to the proper understanding of mind–brain, by detailing three levels of

analysis that any pupil of the brain sciences would have to keep in mind.1 The

short version of Marr’s message is this: Any cognition can be upheld by many

algorithms realizable via many instantiations. Consequently, to understand

mind–brain it is crucial to scrutinize it at many different levels. From molecular

and electrophysiological properties of single neurons, collective behavior of neu-

ral circuits, propensities of different cortices, functional imaging (where the units

of measurement typically contain 600,000 neurons), and electroencephalography

(which track the firing of many millions of neurons), to quantifying the behavior

of a single human, as well as the dynamics of his interactions with other bodies

and the changes that he undergoes in turn, and, of course the more abstract levels

which are best captured by formal methodologies, are all essential ingredients in

the soup that will be the story of how the mind works.”

But let us not bother with the standard answer, and instead turn the question

around. For most of its life, physics used to be a qualitative branch of philosophy.

It was only around the time when Newton and Leibniz coexisted that we came to

realize the far reaches of a formalized physics in explaining the universe. Today

we may be comfortable with a deeply computational physics, but the question

still remains: Why do the secrets of our universe yield to mathematics?

Atop the threshold of the first Academy, the critical inquisitive methods of

whose founder is still at large in its modern namesake, was written in Greek:

"AΓEΩMETPHTOΣ MH∆EIΣ EIΣITΩ"2

1These three levels were later revised by Tomaso Poggio (2012).
2Let no one ignorant of geometry enter.
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