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SUMMARY

Strong spherical shock waves are studied for an imperfect gas, here modelled by a
van der Waals equation of state. Similarity solutions of Guderley type are shown to
exist, in which the radius of the shock is proportional to (—/)", where t is time
measured from the moment at which the shock focuses. The exponent a depends on
both the ratio of specific heats, y, and on the van der Waals excluded volume, b. For
small b, the solution resembles the Guderley solution and is well described by the
Chester-Chisnell-Whitham (CCW) approximation. A new branch of solutions,
which the CCW approximation fails to locate, is shown to exist for larger b.

The linear stability of the similarity solutions is examined directly, without the use
of the CCW approximation. Normal modes grow (Re ()3) < 0) or decay (Re (0) > 0)
as (-/)"", where the 'growth rate', /3, is a function of y, b and n, the spherical
harmonic wavenumber. No physically meaningful, discrete, spherically symmetric
(n = 0) modes were found. This case was examined numerically and nonlinearly for
shocks launched by a spherical 'piston'; no evidence of instability was discovered.
For n > 0, the existence of an infinite discrete spectrum of normal modes is indicated
for all y and b. In every case examined, the shock is unstable if b = 0 (the ideal gas),
Re (0) for the most unstable mode being negative for all n * 1 but tending to zero as
n—»°°; it is shown that /3 ~inV[(y — l)/(y +1)] as n—>°°. It is found that, in
general terms, stability is enhanced if either n or b is increased. Special attention is
given to the structure and stability of solutions in the limit y—»1. The limit of the
nearly incompressible fluid is also briefly considered.

A way of increasing the light emission from a sonoluminescing bubble is suggested
by the present analysis and is described.

1. Introduction

THE STUDY of shocks generated by spherical and cylindrical implosions in an
ideal gas has received much attention in the past decade. The prime impetus
has come from plasma fusion research. Our work (1,2) has, however, been
motivated by the suggestion (3,4) that such shocks are an essential part of
the mechanism responsible for sonoluminescence, that is, the light which
under certain conditions is emitted from a bubble of gas trapped in a liquid
and compressed by incident spherically symmetric sound waves.

The structure of strong spherical shocks was analysed by Guderley (5),
who studied the case of an ideal gas. He found that solutions exist of
similarity form, in which the radius Rs(t) of the shock and other variables
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502 C. C. WU AND P. H. ROBERTS

are proportional to ( - / )" up to the time t = 0 of implosion and proportional
to f, for the same constant a, after that moment.

In previous papers (1,2), we studied the generation of spherically
symmetric shocks in bubbles of air trapped in water and compressed by
incident spherically symmetric sound waves. We found that the density of
the air in the bubble is increased during the compression phase of the sound
wave and may approach that of water. The assumption that the air is then
an ideal gas becomes suspect. We noted that, when the imperfections of the
air are modelled by a simple van der Waals law, similarity solutions of
Guderley type continue to exist, with of course a different exponent a which
now depends on the van der Waals excluded volume b. We found that,
under many conditions of excitation, an implosion would approach simila-
rity form as the moment of collapse approaches, a result anticipated in (6 to
9) for the case of an ideal gas. Indeed, Greenspan and Nadim (9) made
precisely that point in their discussion of sonoluminescence. In short,
similarity solutions are ubiquitous. In the present paper, we study these
solutions more systematically (section 3), and we investigate their linear
stability (section 4).

The validity of the shock-wave model of sonoluminescence may well
hinge on the shock remaining spherical as it implodes, right down to high
compressions, small bubble radii, and high Mach numbers M. Plausibly, the
level of energy concentration is limited by the stability of the shock. This
provided the principal motivation for this paper. Fusion research has also
inspired several theoretical and experimental studies of cylindrical and
spherical implosions, and the stability of the resulting shock waves. For
example, see the experimental results reported in (10,11) and the theoreti-
cal findings described in (12,13). The experimental results are equivocal.
Singh et al. (10) show photographs of an imploding spherical shock after its
radius has been reduced by only about 50 per cent; no instabilities are
apparent, but we would argue that instabilities (which according to linear
analysis grow algebraically rather than exponentially; see section 4) would
not be prominent at such an early stage even if the shock were unstable.
Singh et al. (10) do not specify the Mach number of the shock at that stage,
but our estimate based on the information available suggests that it was
modest, perhaps less than 5. Watanabe and Takayama (11), who were
concerned with cylindrically symmetric implosions, also limited their experi-
ments to M < 5 (approximately); they report that instabilities arise. The
theoretical analyses of shock stability are based on the so-called 'CCW
approximation', so named after the influential contributions of Chester,
Chisnell and Whitham (14 to 16). We do not use that approximation in this
paper, although we do make a number of comparisons which suggest that,
while the CCW approximation provides a quick and relatively accurate
determination of the structure and stability of shocks in an ideal gas, it
performs badly when applied to shocks in a van der Waals gas once b
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SPHERICAL SHOCK WAVE 503

becomes sufficiently large. Indeed, once the CCW approximation is aban-
doned, a branch of solutions of an entirely different structure is revealed,
this being the only branch that exists when b is sufficiently large. Our results
show that the instabilities to which shocks are subject are progressively
removed if ft is increased for fixed n or if n is increased for fixed b, where n
is the harmonic number of the perturbation. The imperfect (van der Waals)
shock is apparently more stable than the corresponding shock in an ideal
gas, but the most dangerous modes of instability are, in both cases, those of
longest wavelength. Sonoluminescence has recently been observed in gases,
such as ethane, in which the ratio of specific heats, y, is close to unity. We
pay special attention in section 5 to the structure and stability of shocks in
the limit y —* 1. Shocks in a nearly incompressible fluid are briefly discussed
in Appendix A. In Appendix B, the limit n —» °o is studied for the case of an
ideal gas.

2. Basic equations

The basic equations of this study are the Euler equations

^ + V.(pv) = 0, (2.1)
ol

dE

+ VV . [ ( £ / ) ] = 0, (2.2)
Ol

~ (pv,) + Vj(pv,vj) = -V,p, (23)
ol

where p is gas density, v is fluid velocity, p is pressure and E = pe + \pv
2 is

the total energy density, e being the internal energy density. We assume that
the gas obeys a van der Waals equation of state of the form

&T Y-b
P

=
yZy e = cvT = -—^p, S = cv In [p(r-b)

y
] + constant, (2.4)

where Y = 1/p is specific volume, 5 is specific entropy, T is temperature, SI
is the gas constant, cv = 9?/(y - 1) is the specific heat at constant volume, y
is the ratio of specific heats and b is the van der Waals excluded volume; 9t,
y (>1) and b are constants. It follows from (2.1) to (2.4) that (22) may also
be written as

by] = o, (2.5)

that is, the specific entropy following the motion is constant.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/q
jm

a
m

/a
rtic

le
/4

9
/4

/5
0
1
/1

8
6
4
1
3
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



504 C. C. WU AND P. H. ROBERTS

Equations (2.1) to (2.4) break down at a shock front, where they are
replaced by the Rankine-Hugoniot conditions which, for the present van
der Waals model are, in the frame of reference moving with the shock,

n .y 2 p, 2 ( M 2 - 1 )

T
1 i l b p )

BAV2 = DAV1, (2.8)

and for which equation (2.5) is replaced by S ^ S i or, equivalently,
P^{%.~ b)

y
 ^PiiVi - b)

y
. Here the suffices t and 2 denote values immedi-

ately ahead of, and immediately behind, the shock front, n is the unit
normal to the front, and

Af = n.v 1 / f l l , (29)
where

/ (210)

is the Mach number for the flow ahead of the shock, a being the speed of
sound.

Following the lines of much previous research, we formulate the theory in
terms of a2 rather than p. We therefore use (2.10) to replace (2.2), (2.3) and
(2.7) by

( - + v. v)y = - - (1 - bp)Va
2 - — (1 - 2bp)Vp, (212)

\dt > y yp

\ r 2(M 2 -1) 1H 2 y ( M 2 - l ) ] / r 2(M 2 -1)
( 1 H L 1 +

 \/[
l

(213)

In what follows, we shall examine the structure (section 3) and stability
(section 4) of a strong spherical shock. The structure has a similarity form
similar to that discovered by Guderley (5) for the ideal gas. Guderley
supposed that a strong spherical shock imploded into a stagnant medium in
which

v = 0, p = p0, P=Po, a = a0, (214)

and reached the origin, O, at time t = 0. Subsequently (t > 0), the shock was
reflected at the origin and moved outwards. Guderley showed that the
equations admit a similarity solution in which the radius of the shock is

for t > 0. v
 '

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/q
jm

a
m

/a
rtic

le
/4

9
/4

/5
0
1
/1

8
6
4
1
3
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



SPHERICAL SHOCK WAVE 505

Remarkably, the constant exponent a is the same for the outgoing and
ingoing shocks, although the constant-amplitude factors At and Ao are
different. The constants a and AolAt are numerically determined. The
constant At is arbitrary as far as the similarity solution is concerned but
when an implosion is initiated, by for example the 'piston' described in
section 3, the solution is not at first of similarity form, but it approaches
similarity form as the moment of shock focusing approaches, and it does so
for only one value of Ah determined by the way that the implosion was set
off.

Other variables also scaled with distance r = |x| from the origin in the
same way as in (2.15). In preparation for the study of these shocks, we shall
introduce a stretched coordinate system defined by

_(A,(-t)"t- forr<0,

l4 or a£ for / > 0,

and use | as an independent variable in place of x. More precisely, we shall
write

aT
- - " (217)

The change of variables (2.16) and (2.17) leads to new forms for (2.1),
(2.11) and (2.12), namely

(2.18)

, (2.19)
a dt a £ 1 - bU

a dt a

(2.20)

where 5 = bp0, £ = |£| and now V, = dld£,. We suppose that the shock
position is given by

/ ( I , 0 = 0, (2.21)

so that n = V//|V/|. The rate of change of / following the shock is zero, so
that the velocity of the shock along its normal,

u=^t/, (2.22)
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506 C. C. WU AND P. H. ROBERTS

is given by

ct
(223)

The shock conditions (2.6), (2.8) and (2.13) now give, in the laboratory
frame,

2(M 2 -1 )

(2-25)

-£G1)Zt (2.26)

(2.27)

where by (2.9)

A/2 = ( t / - n . V 1 ) 2 / Z 1 , (2.28)

and all of (224) to (2.28) are evaluated at the front (2.21).

3. The unperturbed shock

We now examine the possibility that, by suitable choice of a, equations
(2.1), (2.11) and (2.12) admit spherically symmetric similarity solutions of
the form described in section 2. In the |-frame, these depend only on £ and
are independent of t\ V and U have only radial components V and U. The
shock front (2.21) is given by

£ = & = !, U = l, (3.1)

the latter following from (2.15). The governing equations (2.18) to (2.20)
imply that

(3-4)
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SPHERICAL SHOCK WAVE 507

where K = 2(1 - a)/ay. Equations (3.2) and (3.3) can be integrated once, to
give L = constant, where L is the Larraza invariant.!

L = eztfGil - V)Y"»
U

 G°y_/ . (3.5)

Conservation of L is related to conservation of S and therefore L, like 5, is
not conserved across the shock front. The initial conditions are determined
by the state ahead of the implosion, where d = 1 and Vx = 0. For a strong
shock (M -> oo), (2.28) gives Zj = 1/M2 and (2.24) to (2.27) become

2 ( 1 - 5 )

-v^r - (3-6)
These imply that behind the shock front

We adopted a method of solution similar to that expounded in (17, §107),
but one that is, for b¥-0, necessarily more intricate. It is therefore prudent
to examine first some possibly simpler alternatives, such as the CCW
approximation, which has been shown to work well in the case of an ideal
gas (15), and which can be modified to give exact results (18). The idea
behind the CCW approximation is that the characteristics behind the shock
that overtake the front do not influence the structure of the solution. This
leads to a simple relationship between changes dp in pressure, dv in fluid
velocity normal to the front (relative to the rest frame) and area dA
occupied by an infinitesimal area of the front, namely

dp2 + p2a2dv2 +£2^1^ = o. (3.8)
v2 + a2 A

In the present application, v2 = v2r- vlr and A = Anr* so that dA/A = 2/r.
From (2.6) and (2.13) we have

dp2 = — — MdM, (3.9)
y + 1

2fl! 1 + M 2 , , X J „ _
aw2 = . —r^— (1 ~ opi) dM, (3.10)

y + 1 Mz

so that (3.8) becomes
AMdM dM .

t We are grateful to Andres Larraza for informing us of the existence of this invariant for the
case of an ideal gas.
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508 C. C. WU AND P. H. ROBERTS

where, after some reductions,

and

2 (y~i)M
2

2yMz - (y - 1)

In the case of strong shocks, (3.12) reduces to

i [(y - l)(y + 2) + 25 + (y + 5)(2y(y -
A =A . y ( y - l

It follows from (3.11) and (3.14) that for the similarity solutions

2 + A.
(3.15)

It was pointed out by Chisnell (IS) that the approximation (3.13) is a very
good one in the case of an ideal gas ( i = 0). This will be confirmed below. It
is less obvious, and it is one of the objects of this paper to discover, if it is an
equally good approximation for a van der Waals gas (b ¥• 0). We note here
that in the dense-gas limit

A(Af) = l + - ^ + 2M if 5 = 1. (3.16)

A non-uniformity arises in the double limit y—»1, £—»0. It is easily seen
from (3.14) and (3.15) that

A<»—»1, a—*i, fory—»1 when I

A..—>ooi a—»1, fory—»1 when 5 = 0.

This non-uniformity is also present in the unapproximated theory to which
we now return.

It follows from (3.2) to (3.4) that

dZ = Z

dV~(l

([Z - (1 - IQ*][2(1 - BG)/a - (3y - 1 + 45G)K] _

I [3V-K(l-6G)]Z-V(l-V){l/a-V)
 7

(3.18)
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SPHERICAL SHOCK WAVE 509

cf. (17, (107.8)), to which (3.18) reduces in the case when b = 0. There are
two critical curves in the (V, Z)-plane:

curve 1 Z = ( l -K) 2 , (3.19)

curve 2 [3V - K(1 -5G)]Z = V(l - V)(l/a - V). (3.20)

In order that the solution corresponds to a shock that is reflected at O and
eventually reaches r = <*>, where

V(oo) = Z(°°) = 0, (3.21)

the curve representing the solution of (3.2) to (3.6) must cross both curves 1
and 2, and in order that the solution itself be physically acceptable (for
example, single-valued in £) it must cross curves 1 and 2 at a point where
those curves intersect; the tangent to the curve must be continuous
everywhere, including at that point of intersection, £ = £. (say). This
determines a.f In the Guderley case of an ideal gas, the BG terms are
absent from (3.18) to (3.20) but, in the van der Waals case, the search for a
is a three-dimensional one, in (V, Z, G)-space, and the curves 1 and 2 are
really surfaces which intersect on curves; we shall, however, continue to
refer to surfaces 1 and 2 as 'curves' intersecting in 'points'.

We integrated the governing equations numerically, using a fourth-order
Runge-Kutta scheme. In most of the cases we examined, the curves 1 and 2
intersect twice. We shall call the intersection of smaller V and larger Z 'the
upper intersection point', or UIP for short; the one for larger V and smaller
Z will be called 'the lower intersection point' or LIP. For an ideal gas the
solutions can only cross at the LIP but for a van der Waals gas either point
(or both!) may, depending on y and b, be a possible crossing point. If a
value of a is found such that the solution for the imploding shock reaches
the LIP there is no difficulty in continuing that solution for the reflected
shock, the integral curve continuing smoothly until (3.21) is satisfied. A
solution successfully crosses at the UIP only if the derivatives of V, Z and G
are continuous there, and this consideration (if it can be met) determines a.
We should add that there appears to be no inherent reason why curves 1
and 2 should intersect at all! We were, for instance, unable with our
technique to obtain any similarity solution for 0-0001 < 6 < 0-05 when
7 = 1-2; perhaps curves 1 and 2 do not intersect in these cases.

Next to a, the most significant quantity that must be determined is Ao/Ah

the ratio of scales for the outgoing and ingoing shocks; see (2.15). This ratio
decides their relative speeds. The equations governing the ingoing and
outgoing shocks are identical but the sign change implied by the reversal of
the sign of t in (2.17)3 is significant. For the ingoing shock, / and v are

t Equation (3.18) apparently presents a second opportunity, namely crossing at the
intersection of curve 2 with the curve 2(1 - BC)la = (3-y - 1 + ASG)V, but this turns out to be
illusory.
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510 C. C. WU AND P. H. ROBERTS

negative, so that V is positive, corresponding to implosion everywhere.
After focusing, t is positive as are t; and V behind the shock, but v and V
ahead of the shock are negative, since they refer to ingoing material that has
not yet met the outgoing shock and had its motion reversed by that
encounter. Thus, the state at t = 0+ is obtained from the state at t = 0— by
reversing the sign of V but leaving Z and G with their asymptotic forms:

V = O(r
Va

), Z^Oir
2
"

1
), G = O(1), £-»»; (3.22)

L is unchanged. The method of determining the reflected shock may be
clarified by reference to Fig. l(g). The curve through (V, Z) = (0,0)
corresponds to the upstream state. It is obtained by integration of the basic
state, assuming in the first instance that Ao =At. The rescaling subsequently
necessary to correct this untenable assumption does not change this curve,
but it does alter the correspondence between f and points on the curve. The
curve itself determines the dashed curve on the right-hand side of the figure.
This curve delineates possible states immediately behind the shock, as given
by the jump conditions (2.24) to (2.27). This dashed curve meets the
solution curve (the full line at the top of the figure) obtained by integration
starting from the initial conditions

» \K, G(0) = O(e
3Klo

-
K)

)-*0, Z(0) =

a s f - » 0 , (3.23)

corresponding (for K < 3) to the reflected shock as it leaves O. The
intersection of dashed and undashed curves defines the state immediately
behind the shock. The second dashed curve on the left connects this point to
the corresponding preshocked state on the other full curve, as given by
(2.24) to (2.27). It is finally necessary to adjust Ao on this curve so that the
point of intersection of dashed and undashed curves becomes £ = 1, the
normalized position of the shock front; see (3.1). This completes the
determination of the reflected shock and of the constant Ao/A,.

Figures 1 to 4 display solutions for y = \ and for various values of 5.
Figure 1 shows the Guderley solution (b = 0). The full curve diagonally
across the (V, Z)-plot of Fig. l(a) is curve 1; see (3.19). The dashed line
shows curve 2, defined by (3.20). The other full curve is the solution curve;
it clearly passes through the 'lower' point of intersection of curves 1 and 2,

Fio. 1. The Guderley (5) solution in the case when y = \. Panel (a)
illustrates the way in which a is determined (see text); panels (b) to (d)
show respectively G, V and Z. Here £ = r/A,(-t)° is the similarity variable.
The resulting ingoing velocity is shown in panel (e), where U is
the velocity of the shock front. The pressure disturbance is graphed in panel
(f). Panels (g) to (1) refer to the shock that emerges from the origin after
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SPHERICAL SHOCK WAVE

(1) Imploding shock

511

0 5 10 0

(2) Reflected shock

10 0 5

0

FIG. 1. Continued—the implosion. Panel (g) illustrates how that reflected
shock is married up to conditions ahead of the shock, where the fluid is still
moving inwards; see text. Panels (h) to (1) show for the reflected shock the

same quantities as (b) to (f) for the implosion
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512 C. C. WU AND P. H. ROBERTS

corresponding to the LIP. (This panel is essentially the same as (17, Fig.
95).) Figures l(b) to (d) show G, V and Z for the imploding shock, the
dashed line being the shock discontinuity. Figure l(e), a restatement of Fig.
l(c), gives the fluid velocity in terms of the shock speed. The pressure
variation is plotted in Fig. l(f). Figures l(g) to (1) refer to the reflected
shock, the significance of Fig. l(g) having already been described above.
Figures l(h) to (1) are the counterparts of Figs l(b) to (f).

Similarly organized data are presented in Figs 2 to 4 for B = 0-05, 0-05
and 0-8. There are two sets of data for 5 = 0-05 because, for this and
neighbouring values of 5, two completely different solutions are possible,
one of which (Fig. 2) crosses the LIP in the (V, Z)-plane, and the other (Fig.
3) crosses the UIP. The corresponding (V, Z)-plots are shown in Figs 2(a)
and 3(a); similar details are shown in Figs 2(g) and 3(g). The UIP solution
shows greater compression of the gas than the LIP solution; compare Figs
2(b) and 2(h) with Figs 3(b) and 3(h). In fact, the densities in the former
approach closely the limit p»« 1/6 = 20, set by the van der Waals excluded
volume. The greater densities in the UIP solution are paralleled by greater
pressure jumps across the imploding shock; compare Figs 2(f) and 3(f).
Properties of the y = \ solutions are also summarized in Table 1. The third
column of this table gives the central compression, pc/p0 = G, at the
moment of focusing, that is, the 0(1) constant of (3.22). The last three
columns refer to the reflected shock, and give the upstream (pou) and
downstream (/>„,) densities at the shock front; Mo is the Mach number based
on the upstream fluid velocity and sound speed in the shock frame.

It may be recalled that, according to (2.22), the shock speed is aRs/t. The
larger a is, the faster (for the same R and t) the shock moves. The constant
Ao/At determines whether the outgoing shock moves slower (Ao/Ai < 1) or
faster (Ao/A, > 1) than the ingoing shock at the same radius. In the case of
the ideal gas, it moves more slowly; in the other cases shown, it moves more
rapidly.

Figure 5 shows the critical exponent as a function of 5 for three values of
y. The full curves correspond to LIP and UIP solutions, the dashed curves
to results from the CCW approximation. In the case when y = \, the LIP
solution arises in the range 0=s6 <s 0-05; the UIP solution exists in
0005 =6 5 =s 0035 and again in 005 <e 5 «£ 1, as shown in Fig. 5(c). When
y = I a UIP solution exists for 0-05«6 =s 1 and a LIP in 0*£5 <0081. For
y = $, the LEP solution only exists over a tiny range, 0 =s 5 « 0-0001; a UIP
solution arises in 0-05 =s 5 « 1 . We did not obtain a similarity solution in the
range 0-0001 «£ 5 < 0-05. Computational difficulties arise when y and 5 are
small. For example, a satisfactory solution for y = l-2 and 5=0-0001
requires a to be determined to seven decimal places.

As was noted in (6,8), an imploding shock, almost independently of how
it is excited, approaches similarity form immediately prior to the moment
(f = 0) of collapse. Greenspan and Nadim (9) based their discussion of the
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SPHERICAL SHOCK WAVE 513

(1) Imploding shock

(a)

(2) Reflected shock

(g)

FIG. 2. The similarity solution of Guderley type for an implosion in which
imperfections of the gas are slight (b = 0-05, y = $). For an explanation of

the panels see the legend to Fig. 1

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/q
jm

a
m

/a
rtic

le
/4

9
/4

/5
0
1
/1

8
6
4
1
3
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



514 C. C. WU AND P. H. ROBERTS

(1) Imploding shock

0

(2) Reflected shock

(g) (h) (i)

FIG. 3. The similarity solution on the new branch for an implosion in which
imperfections of the gas are slight (b = 005, y = I). For an explanation of

the panels see the legend to Fig. 1
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SPHERICAL SHOCK WAVE 515

(1) Imploding shock

(a)

2-5

(2) Reflected shock

(g) (h)

Fio. 4. The similarity solution on the new branch for an implosion in which
imperfections of the gas are great (5 = 0-8, y = \). For an explanation of

the panels see the legend to Fig. 1
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516 C. C. WU AND P. H. ROBERTS

TABLE 1. Summary of integrations for the case when y =

5

00
005(LIP)
005(UIP)
0-25
0-8

a

0-717
0-661
0-494
0-534
0-554

pJPo

20-1
12-6
19-5
3-70
1-22

AJAt

0-492
205
6-44
3-66
2-99

PoulPO

64-2
15-1
19-6
3-77
1-22

Pod/pO

145
17-9
19-9
3-91
1-24

Mo

1-73
2-01
2-88
1-94
1-49

sonoluminescing bubble on the same idea. Similarity solutions are useful
approximations in quite general circumstances.

The approach of solutions to similarity form is illustrated in Figs 6 to 11,
which display solutions for y = \ for spherical implosions driven by a
'piston'. One supposes that a spherical diaphragm separates the gas at r = 3
into two domains, the pressure in the outer domain being 104 times the
pressure in the inner domain. At t = 0, this diaphragm is removed.
Similarly-generated shocks were considered in (6,8). (In the computations,
which were performed using the Lax-Friedrich method on a non-uniform
grid, the initial discontinuity in p at r = § is smoothed out slightly.)

Figures 6 to 8 were derived from the solution of this 'piston problem' for
the ideal gas and Figs 9 to 11 are from the solution for the van der Waals
gas with 5 = 0-25; the moment of collapse is now t = t0. The first columns of
Figs 6 and 9 show the initial density, velocity and pressure distributions.
The second, third and fourth columns show these quantities at subsequent
times for the imploding shock; the final columns show them for the reflected
shock. In Figs 7 to 9 they are normalized to simplify comparison with the
corresponding solutions given in Figs l(b, e, f, h, k, 1). The dashed curves in
Figs 8 and 11 are similarity solutions.

0-8

0-7

t

0-6

0-5

04

( a ) y = l - 2 (b )y= l -4

LIP

0

UIP

v*
UIP

0-5 1 0 0-5

(c) y= 5/3

LIP

UIP

UIP

1 0 0-5

FIG. 5. The variation of a with B for y = \, \ and \. The longer solid curve
in each panel refers to the new 'upper-branch' solution; the shorter solid
curve corresponds to 'lower-branch' solutions of Guderley type. The dashed

curves give the predictions of CCW theory
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I = 8-48 x

1 = 0 R 5 = 0-6

1/

= 6-58x 10~3

12

1

a
m
2
o

(A
ao
n

m

Fio. 6. The structure of the solution for both ingoing and outgoing shocks generated at t = 0 by a 'piston' situated at r = \. The gas is
ideal and y = \. The rows show density, velocity and pressure. The first column shows these quantities initially, and the next three
columns show the subsequent evolution of the solution as the shock implodes. The final column shows the solution when the reflected

shock has started to move outwards
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518 C. C. WU AND P. H. ROBERTS

Figures 8(a, b) display, for ft = 0 and y = \, the shock radius as a function
of position for the piston problem (full curves) and the results of fitting
similarity solutions (dashed curves) to them. Figure 8(b) shows the fit on a
magnified scale. It may be seen that, on the extended scale of Fig. 8(a), the
similarity solution agrees with the reflected shock only over a small fraction
of the time interval shown. The reason is apparent from an inspection of
Fig. 6. The compression of the incoming shock covers only a small r-range,
so that the reflected shock soon encounters the much reduced p behind the
piston. The corresponding results for B = 0-25 are shown in Figs 11. These
exhibit some interesting features. The time dependence of Rs cannot
initially be well-fitted to a power law corresponding to the a determined
from integration of the similarity equation, which is a «0-534; see Fig.
l l (a ) . The best fit (a *=0-59) corresponds to a smaller B but is close to the
value, namely a = 0-5886, predicted by the CCW approximation for
B =0-25.t This suggests that, initially while the strength of the shock is
comparatively small, the CCW approximation gives a good account of the
evolution of the shock by the piston; it is only as the Mach number
approaches » that the approximation fails. Close to the moment of collapse,
the solution makes a surprisingly abrupt change to the correct exponent; see
Figs l l (b ) and (c). The reflected shock also takes that exponent, at least for
small t-tQ. Qualitatively similar results hold for other 5. If 6 is
small ( 5 ^ 0 - 1 ) , no abrupt change, of the type seen in Fig. l l(c) ,
can be discerned and, if B is close to 1, the correct exponent (that is,
the one derived from the full theory) is achieved early in the collapse.
There is a continuous transition between these two extremes; if, for example
0 - 1 ^ 5 <0-25, the change in exponent occurs closer to the moment of
collapse than is seen in Fig. ll(c); if B > 0-25 it occurs nearer to t = 0.

Some other differences between the 5 = 0 and B = 0-25 solutions may be
noted. The shocks are initiated in an identical fashion, but the one in the
non-ideal gas focuses first, at t = t0 = 0004752, as compared with t = to =

0006454 for the case of the ideal gas. This is due to the greater shock
speeds in the van der Waals gas. The speed of the ingoing shock when
Rs = 0-005 is 510 for B = 0 but 3680 for B = 0-25. This difference may be
mostly attributed to the different values of a. The speed of the outgoing
shock, also at Rs = 0-005, is 190 for b = 0 but 42,000 for B = 0-25. This is a
consequence of the very different values of Ao/Ah which are 0-492 for B = 0
but 3-66 for B = 0-25.

4. Shock stability

We now investigate the hnear stability of the spherical shock studied in
section 3. We now add a suffix 0 to variables in that solution; a suffix 1 will

fit is only for constant X(M) that (3.11) will lead to a similarity solution. The value of
a = 0-5886 - 0-59 cited here is derived from A(»), but A(Af) does not depend sensitively on M.
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SPHERICAL SHOCK WAVE 519

distinguish perturbed quantities. We substitute

G = GO(1 + G,), V = Vo + Vlf Z = ZO + ZX (4.1)

into (2.18) to (2.20). After linearization, we obtain

- ¥±
a dt

- ^ I . V , , (42)

. v)z, +1(- - vo)zl

(y + i)5G0

'Vl ~ a ^ o 7 ZoV • (^Vo)Gi

. ( T O + V. (fVo)Zi], (4-3)

i£Xl = (1_Ko)(S.V)V1 + (--21

a dt \a

- —t [(1 - 5 G O ) V ( ^ 2 Z 1 ) + (1 - 25G0)f
2Z0VG1]

^ ^ 1 6 . (4.4)
Go -I

We suppose that the equation of the shock front after perturbation is given
by

f = l+ / , ( 0 ,* ,O , (4-5)

where (r, 6, <j>) are spherical coordinates; the deviation of n from the unit
radial vector l r is negligible. The velocity of the front along its normal is, by
(2.23),

l/ = £/0+tfi = ! + - — • (4.6)
a dt

Equations (4.2) to (4.6) admit solutions that are the real parts of

(4.7)

(4-8)

; l ( 0 V " » (4.9)
sin f j

(4.10)

where PJ1 is the Legendre function; without loss of generality the functions
of f and the constant a are real. Corresponding to (4.5) and (4.10), the
equation of the shock front in physical space is

(4-11)
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520 C. C. WU AND P. H. ROBERTS

(a) Imploding shocks (b) Reflected shock

P'P,

Fio. 7. Comparisons between density, velocity and pressure in the piston
solution (full curves) and the Guderley solution (dashed lines) for the same

cases as shown in Fig. 6

If Re (0) < - 1 , the shock is unstable by any criterion. If - 1 < Re 03) < 0,
the surface distortion decreases in time but, because the surface is
contracting more rapidly, the relative surface distortion increases. We shall
therefore regard as unstable any mode for which Re (£) < 0; if Re (/3) > 0,
the mode is linearly stable.

Substituting (4.7) to (4.9) into (4.2) to (4.4), we obtain

(1 " = t^J+ ( 7 ? + 3)v, - n(n + l)Wlt (4.12)
(If w 0 /

a
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SPHERICAL SHOCK WAVE 521

-7 x 10" 0 3xl0"
J
 -4-x 10 4x10"

FIG. 8. Detailed comparison of the shock position as a function of time for
the same case as Fig. 6; the piston solution is the full curve and the

Guderley solution is the dashed curve

(y-l+25G0)

i + 3V0)Z0G1
'o)

1 - n ( n + l)Z0W1],

(4.13)

-
a

= i [(1 - 6G0)(f ^ + 2ZX) - i + 2Z0)G,

, (4.14)

( 1 " V0)f ^ - (2V0 - ^ + 0)W, = - [(1 - 5Go)Z! + (1 - 2BG0)Z0Gl].

(4.15)

When we linearize the boundary conditions, we obtain a = - G
and

(4.16)

(4.17)

(4.18)

where for brevity we have written K\ = Gi(l)G0(l)/G0(l). Equation (4.14)
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l = 749 x 1(T

P !

5x 10-

I

0

-60

-30

1/

\

5x 10' 1 5 x 104

Fio. 9. The structure of the solution for both ingoing and outgoing shocks generated at / = 0 by a piston situated at r = \. The medium is a van
der Waals gas with b = 0-25 and y = $. See caption to Fig. 6
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SPHERICAL SHOCK WAVE 523

(a) Imploding shocks
= 0-02

(b) Reflected shock

10

FIG. 10. Comparisons between density, velocity and pressure in the piston
solution (fuU curves) and the similarity solution (dashed lines) for the same

cases as shown in Fig. 9

and condition (4.18) do not apply in the case of n =0, for which Wj = 0.
Like (3.2) to (3.4), equations (4.12) to (4.15) possess a singular point at
£ = £c, where (3.19) and (3.20) hold. The condition that the perturbation is
bounded there is

(1 - V0)
2
[ap(l - BGO) + (2 - 2a -

- Vo) ^ j2 - (2 - 2a - a

- V0)\2ay(\ - Vo)^- 2(1 - a)(l - £G0) - y(l - a/3)

(4.19)
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15-42 (/„-/)'0-59

0-05
(b)

V 9-48 (/„-/)'
0-534

0 -6x10'

002

-10
log(/0-f)

Fio. 11. Detailed comparison of the shock position as a function of time for
the same case as Fig. 9; the piston solution is the full curve and the
similarity solution is the dashed curve. Panels (a) to (c) show the path of
the incoming shock; it is noteworthy how the solution (full curves) switches
quite suddenly from one similarity structure to the correct exponent
(dashed curves) as the shock approaches the origin. Panel (d) shows that
the reflected shock path (full curve) follows the correct similarity path

(dashed curve) as it leaves the origin

This condition, together with (4.12) to (4.18), defines an eigenvalue problem
for/3.

There are some obvious tests to which one can subject (4.12) to (4.18):

A. Consider the difference between two of the solutions obtained in section 3
corresponding to infinitesimally different At. That difference, which is
proportional to

V, = (4.20A)
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SPHERICAL SHOCK WAVE 525

must satisfy (4.12) to (4.14), (4.16), (4.17) and (4.19), for n = 0 and /3 = 0,
which it does;

B. Consider the difference between two of the solutions obtained in section 3
corresponding to infinitesimally different origins of t. That difference, which
is proportional to

(4.20B)
a O0 a

must satisfy (4.12) to (4.14), (4.16), (4.17) and (4.19) for n = 0 and
/3 = -I/a, which it does;

C. Consider the difference between two of the solutions obtained in section 3
corresponding to infinitesimally different centres of implosion. That
difference, which is proportional to

Vi = V0 + —, Gx = —, Z1 = Z0 + ——, W1=—, (4.20C)

must satisfy (4.12) to (4.19) for n = 1 and /3 = - 1 , which it does.

Although /3 < 0 for two of these solutions, they cannot be classed as
instabilities. Solution A applies when the initial perturbation slightly
changes the energy of the configuration, solution B when the initial
perturbation causes the shock to focus at a time slightly different from t = 0,
and solution C when the initial perturbation causes the shock to focus at a
point slightly displaced from the origin. We do not consider that these three
solutions are of any physical interest. We found them useful, however, as
checks on the analytic and numerical accuracy of our work.

The eigenvalue problem just defined was investigated numerically, again
by applying a fourth order Runge-Kutta method. In the case of n = 0, we
recovered the two solutions (4.20A) and (4.20B). Based on the analysis of
section 5 (which admittedly only applies in the limit y —>1), we conjecture
that these are the only discrete spherically symmetric modes, and that the
remaining modes belong to a continuum. If the analysis of section 5 is a
reliable guide to the case of general y, it appears that, for any n > 0 and for
every admissible choice of y and 6, the spectrum of eigenvalues is discrete,
with limit point at fi = °°. In Table 2, we show the most unstable modes,
that is, the ones for which Re(/3) is smallest, but excluding the mode
(4.20C). We also located some higher modes; these are not listed in the
table, but are reported in section 5. The two columns labelled y = 0-05 refer
to the two possible types of solution located in section 3. The results in the
third column refer to the lower intersection point; those in the fourth and
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TABLE 2. Values of fi for y = \ for various 5 and n

n

1
2
3

4
5
6
7
8

10
14
18
22
26
30
34
38
42

5=C
-0-47
-0-78 ±
-0-83 ±
-0-87 ±
-0-91 ±
-0-94 ±
-0-96 ±
-0-98 ±
- 1 0 0 ±
-0-99 ±

-0-95 ±
-0-89 ±
-0-82 ±
-0-75 ±
-0-68 ±
-0-61 ±
-0-54 ±

)-0

0-82/
1-31/
l-74i
214/
2-53/
2-90/
3-27/
4 01/
5-47/
6-96/
8-46/
9-98/

11-51/
1305/
14-61/
1617/

5=0
-0-70
-0-83 ±
-0-90 ±
-0-91 ±
-0-92 ±
-0-94 ±
-0-94 ±
-0-93 ±
-0-91 ±
-0-83 ±

-0-72 ±
-0-57 ±
-0-45 ±
-0-34 ±
-019 ±
-010 ±

05

0-95/
1-49/
1-95/
2-41/
2-86/
3-29/
3-74/
4-61/
6-36/
816/
9-97/

11-82/
13-68/
15-55/
17-47/

003 ± 19-29/

5=0'
-116
-010 ±
-007 ±
-0-04 ±
-002 ±

001 ±

05

1-20/
1-31/
1-41J
1-50/
1-56/

b=0-25 5=0-4 b=0-6 5=0-8

-0-63 -0-39 -012 009
-0-75 ±1-43/ -0-46 ±1-49/ -019 ±1-48/ 0-38 ± 1-30/
-0-68 ±2-29/ -0-22 ±2-50/ 0-20±2-41i
-0-59±3-10i 0-05 ±3-49/
-0-47 ± 3-89/
-0-33 ± 4-69/
-015 ±5-50/

001 ± 6-36/

5=0-999

0-35
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subsequent columns to the upper intersection point. It is evident that, as n is
increased for fixed 5, the shock becomes increasingly stable. It appears,
however, that the Guderley solution (6 = 0) is unstable for every n,
although Re 03) tends to zero as n-» °°; see Appendix B and (4.23) below.
The Guderley-like LIP solution for 5 = 0-05 (third column), though very
unstable, ultimately becomes stable near n = 41. In contrast, the instability
of the corresponding UIP solution (fourth column) is quenched at n = 6. In
the sense that the transitional value of n at first increases with 5 for the UIP
solutions (compare columns 4 and 5), they are at first increasingly unstable
with increasing 5, but this situation is later reversed and all states are
linearly stable for 5 > 0-8 (approximately).

The linear-stability problem for the ideal gas has also been attacked by
Gardner et aL (12) who used the CCW approximation. For n = 1 they
obtained 0 = 1 - a~\ which for y = \ gives /} = -0-397 (taking the CCW
value of a, namely 0-7173), which may be compared with the value shown in
the second column of Table 2. For n > 1 they obtained

according to which Re 03) is independent of n and negative (instability),
and also, using (3.15),

n ^ o o . (4.22)

Our results confirm that all n > 0 modes are unstable but, in contrast to
their result, we find that, for the most unstable mode, Re (/3) increases with
n. An asymptotic analysis (Appendix B) indicates that 0 is purely imaginary
as n —* °°; in fact, instead of (4.22), we find that

n^oo. (4.23)

According to CCW theory there are at most two discrete modes of
instability for any n. Our work strongly suggests, however, that there is an
infinite spectrum of such modes for all n > 0.

The analysis of (12) can be applied with almost no change to the case of
the van der Waals gas. It is necessary only to use the general expression
(3.14) for A rather than the particular case of A for B = 0 used to obtain
(4.21). The consequences seem however to conflict badly with the numerical
results obtained above. For example, it predicts that 0 = -2/A < 0 for n = 1
and all 5. We see from Table 2 however that the n = 1 modes are stable for
all sufficiently large 5. Perhaps this disappointing lack of agreement is not
surprising in view of the fact (section 3) that the spherical shock itself is
poorly represented by CCW theory, for all but small 5.
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528 C. C. WU AND P. H. ROBERTS

One disappointing feature of the linear-stability analysis is that it gives no
information about n = 0 modes. In particular, in parameter domains where
both UIP and LIP exist, it does not determine which, if either, is unstable. It
was partly for this reason that we examined the piston problem in section 3.
For y = I, we found that, if £ « 0 1 , the shock created by the piston
approaches an LIP solution at the moment of collapse; for 5 ^ 0 - 1 , it
develops into a UIP solution instead. When 5 =0-1 , the central density, pc,

is approximately the same in both solutions, and it is tempting to conjecture
that, whenever two solutions are possible, the disturbance will evolve to the
one in which the central density is the smaller. We performed an experiment
in which, instead of a piston, we set up an initial state where the UIP
solution exists everywhere. We followed the evolution of that state during
the time that Rs decreased from 1 to 1CT\ at which point numerical
resolution was lost. We found that during that time the UIP solution
remained a UIP solution. When we repeated the experiment at the same
value 0-07 of 5 but with an initial LIP state, the solution again did not make
a transition to the other solution. We speculate that, when more than one
solution exists, each is relatively stable with respect to the other, and that, in
other circumstances (as when the shock is generated by a piston), either
solution may be the relevant similarity solution at the moment of collapse,
depending on the condition of excitation.

5. The limit y -* 1

As has been mentioned in section 1, sonoluminescence has recently been
observed from a bubble of ethane, a gas in which the ratio of specific heats,
y, is close to unity. If ethane were an ideal gas, the shock heating would
vanish for y—*\, for then pip a T = constant. But for a van der Waals gas,
pi is limited by lib. By equations (2.6) and (2.7) it follows that
Tj^PzlP2~ M

2
bpi<*M

2 for M—»°°. It is therefore reasonable that shock
heating, due to the imperfections of ethane, can explain its ionization and
the emission of light. This provides a strong motive for studying the
similarity shock and its stability in the limit y—»1 with B fixed (0<£ <1).
The problem is solved by matched asymptotic expansions.

Consider first the unperturbed shock. In the outer, large £, region, the
variables are rescaled in the following way:

(5.1)

(5.2)

[ l ( 7 - l ) G ( | ) ] ) (5.3)

Z = Z(f), (5-4)

where A is a scaling constant that is determined below. We assume that G,
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Z and V are 0(1) in the limit y-» 1, as are all derivatives with respect to f.
To leading order, (32) and (3.4) become

f («+2)V f [ | | ( « 2 ) z ] . (5.6)

The Larraza invariant (3.5) reduces to

G = Cr ( " + 2 ) Q Z-1 , (5.7)

where C is a constant. After some algebraic reductions, it is found that

K)Z
2
 = 0. (5.8)

The requirement that dZld\ be bounded at the critical point, f = fc(6),
where Z = 1, determines a unique solution to (5.8). Although (5.8) can, like
(3.18), be reduced to the problem of solving an Abel equation of the second
kind, it does not appear that that solution can be written in a closed analytic
form. It is, however, readily seen that the general solution of the limiting
form of (5.8) for small \ is Z ~ Y 4 0 | K ~ 4 ( 1 + f/fo). where Ao and £0 are
arbitrary constants. It follows that

Z~Aot*-\ f-*Q. (5.9)

(It also follows from (5.8) that Z«f~K~2 for | -»°° , which agrees with
(3.22).)

In the inner solution £ and V are unsealed, but G and Z are scaled as

[ l ( l ) G ] (5.10)

where, according to (3.6),
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We assume that 6, 2 and V are 0(1) in the limit y—»1, as are all
derivatives with respect to f To leading order, (3.2) and (3.4) become

f^+3K = 0, (5.13)

The Larraza invariant (3.5) reduces to

C = Cr
Va

2~
l
(l - V)-"

6
, (5.15)

where C is a constant that, according to (5.12), is given by

C2 = i£ K / 3 ( l -£) 2 . (5.16)

It follows from (5.12)3 and (5.13) that

V = (l-5)r3- (5.17)

Now use (5.15) and (5.17) to reduce (5.14) to an equation for Z alone. This
equation may be integrated to give

where the constant K is determined from (5.12)2 as

*-i-5-^. (5.19)
a 2

It is now necessary to match the inner solution (for £ - • °°) to the outer
solution (for £-»0). We readily see from (5.9) and (5.18) that K = 0, that is,

(5.20)

Values of a obtained by numerical integration of the full equations for
values of y close to 1 are shown in Table 3. The final line displays values
given by (5.20). The agreement seems satisfactory.

To complete the matching of the solutions we note that, according to
(5.18) and (5.20),

Comparing (5.21)j with (5.9), we see that A and C are given by

( 5 2 2 )

(5.23)
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TABLE 3. Values of a for small y - 1

y

1-667
1-4
1-2
1-1
105
101
1-005
1-0001
1

5=0-2

0-595
0-530
0-471
0-447
0-434
0-421
0-419
0-418
0-417

5=0-6

0-563
0-544
0-520
0-501
0-486
0-467
0-463
0-456
0-455

6=0-9

0-571
0-565
0-555
0-545
0-535
0-517
0-512
0-502
0-500

In integrating (5.8) backwards from the critical point £., we may place that
point at any convenient location, but now (5.1) and (5.22) determine £c

uniquely. We obtained the values shown in Table 4. We also verified, by
direct integration of (3.2)-(3.6) that £. scales with y as indicated_ in (5.1).
For y = l-0005_we obtained the values Afc = 0-632 for 5 = 0-2, A|c = 0-551
for 5 = 0-4, A& = 0-603 for 5 = 0-6, and A& = 0-788 for 5 = 0-999. The
agreement with the values shown in Table 4 seems reasonable when it is
recalled (see (5.1)) that £. is large for small y and that some precision is
necessarily lost when the general equations are integrated to very large £

We now turn to the stability problem. We shall henceforth add a suffix 0
to the unperturbed variables, to distinguish them from the corresponding
perturbed quantities, which carry the suffix 1. Consider first the outer
region. The scaling is analogous to (5.1):

(5.24)

(5.25)

(5.26)

(5.27)

TABLE 4. Values of Afc for various 5 in the limit y —* 1

5
0-0001
0001
0-01
0-05
0 1

A,

799-83
79-718
7-9279
1-69044
0-96218

5
0-2
0-25
0-3
0-4
0-45

A&

0-64578
0-59911
0-57707
0-57036
0-57764

5
0-5
0-6
0-8
0-9
0-999

He

0-58935
0-62202
0-71018
0-76158
0-81593
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532 C. C. WU AND P. H. ROBERTS

After some reductions, we then find that to leading order

^ I ^ (5.28)

where

* , = G0Zl + ZOGV (5.32)

It follows from (5.29) and (5.32) that, for some constant B,

^ ' (5.33)

(5.34)

Substituting (5.34) into (5.28) we obtain

^ + 3f, - n(n + l)Wi] = [ | ( ~ |-°) - fi]x, + Bp+1G^0. (5-35)

Comparison of (5.30) with (5.35) shows that these equations have a critical
point also at | = | c , where ZQ = 1. As for the case of the unperturbed shock,
it appears to be impossible to obtain a solution in closed analytic form, but
the asymptotic behaviour of the solution for £—»0 can be determined.

Consider first the case when n = 0. It follows from (5.28) and (5.30) that
the leading terms in the asymptotic expansion of V, and Xt are

v w r 3 + er2 + f i , l ^o , (5.36)

*>~^(i + £ + 2/3)pr3+^(i + 5-20)<2r2+* + *,r2 , l ^o , (5.37)

where P, Q and kx are constants. The final term in (5.37), which arises from
integration of (5.28), is too small to be retained in what follows. By
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integrating (5.35) using (5.36), we obtain an alternative expression to (5.37)
but one that must be equivalent to it. For some constant Ax, we have

X, ~ -B?G0Z0 - 2-sl
Q
p t~

2+B2
°

 + Al
^

2
°' ^ °' (538)

2+B
k + 1Ai('§?. ?-tt (5.39)
( Oj 0

The three terms of (5.39) are O(r
l
-

B+P
), Oir

1
'
5
) and

respectively. We return to (5.39) after considering the interior solution later.
Consider next the case when n^O. It follows from (5.30) and (5.31) that,

for some constant R,

V, = ( f j f + 2)wi + flf-*
5
"
5
-
2
"). (5.40)

We now have, for some constants Q and 5,

^ i ~ O r ~ 2 + i(l + 5+2)3)5r i (5"f i"W. |->0, (5.41)

Vi - nQf
1
'
2
 + [R - i ( l + B + 2p)

2
S]£-H

5+B
-

2
<

3
\ | _ » 0, (5.42)

^ 5 , | - 0 , (5.43)

where (5.42) and (5.43) follow from (5.41) by (5.31) and (5.40). By (5.41)
and (5.42) we have

at,

~ i(l + 5 + 20)[7? - i(l + 5 + 2p)
2
S -n(n+ l)S]r

i(5
~

B
~

2f>
\ !-»• 0.

(5.44)

When this is substituted into (5.28) it is apparent that it will dominate that
equation unless

(5.45)

a relation that is henceforth subsumed. If Re (/3) > J(2n + 1 - 5), the
dominant terms in (5.41) and (5.42) are 0(f~ 2 ) but we shall later find that
these cannot be matched to the inner solution in this range of B, so that in
this case Q =0 and the dominant terms of Vt and Wl are oQ~^

5
~

B
~

2p)
). If

Re(/3)<i(2n + l - 5 ) the O(C
hi5

~
B
~

2f>)
) terms dominate the 0 ( r ~ 2 )

terms. Thus, in all circumstances we have

(5
~

E
~

2fi
\ ?-»0. (5.46)
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Consider now the inner region. The scaling is similar to (5.10) and (5.11),

G1 = - ( y - l ) ( 5 1 ) (5.47)

Z, = 2 1 / ( ? - l ) . (5.48)

After some reductions we find that, to leading order,

^ + 2 * , , (5.51)

\=ku (5.52)

where
% =fl 9 + 9 ft f\ ^\

Initial conditions equivalent to (4.16) to (4.18) are

V,(l) = - 3 - / 3 , Z,(l) = ^ p - , * , ( l ) = ^ (3 -95 -45 /3 ) , Wi(l) = l.

(5.54)

Consider first the case when n = 0. By (5.49) and (5.54)j we have

(5.55)

Substituting this into (5.50) and (5.51) and integrating, taking note of (5.54),
we obtain

* , = [1(1 + 5 + 2/3) - VQ]VX + 1/8(5 - 5 + 2/3)r2, (5-56)

The final term in (5.56) dominates as f —• » unless its coefficient is zero, that
is, unless £ = 0 or /3 = - I / a . These correspond, in fact, to the two special
solutions (4.20A) and (4.20B). For these B = (5 - 5)/(l - 5) and 0, respec-
tively, as may be verified by matching (5.57) to (5.38). Consider now other
values of /3. Then (5.57) shows that Z « {-" if Re (/3) < 1 and Z <* ^-^~

B+
^ if

Re (0) > 1, for f —»oo. These cannot be matched to (5.39). We conclude that
the two special solutions (4.20A) and (4.20B) are the only solutions
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belonging to the discrete spectrum of the linear stability problem when
n=0 .

Consider next the case when n^O. Eliminating Wx and %x between
(5.49), (5.51) and (5.52), we obtain

^ ) V , + \ (15 - B - 2/3 - 8 V 0 ) ( ^ ) \

i (37 - 5B - 10/5 - 2 V 0 ) ^ + 3(5 - 5 - 2/3 + 2V0)K,

- Vo)i^£ + \{5-5 -2p + 2V0)V1j. (5.58)

On solving this subject to the initial conditions implied by (5.54), we obtain

(5.59)

where n = i(2]8 + 5 - 1 ) .
The case of greatest interest is

-£(2/i + l -£ )<ReO3)< i (2 r t + l - 5 ) , (5.60)

when it follows from (5.49) and (5.59) that

( 5 6 1 )

(5.62)

where

5 "(I - fi)1^-^!-^ - /*fM), (5-63)

and fl,(a, 6) is the incomplete beta function, which is defined for Re (a) > 0
by

fV l, (5.64)

and which can be analytically continued to all complex a and b, apart from
non-positive integral a. To match (5.61) and (5.62) to (5.46), we require that

« = 0. (5.65)
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536 C. C. WU AND P. H. ROBERTS

We note that this is satisfied by the special solution (4.20C) for which n = 1
and /3 = - 1 .

The result of solving (5.65) for n = 1 is shown in Table 5. Entries marked
with an asterisk were confirmed, to three-decimal-point accuracy, by direct
integration of (5.49) to (5.54), together with the condition (see (5.61)) that
Vj = 0(£~J(5~5~2^>) for f->°o. A few values of p, obtained by direct
integration of (4.12) to (4.18) for y = 1-005, agreed with those shown, to an
accuracy of two decimal places. These cases are marked with a dagger.
Higher modes (that is, modes with smaller growth rates) were located, and
are shown in the lower portion of Table 5. As B increases between 0-35 and
0-355, the complex roots coalesce and become real. It is easily demonstrated
from (5.65) that, for the most unstable mode, /3-» -1-5 as £—»0 and that
/3-> 1 as B -» 1. The latter limit is a uniform one, and the results derived for
B—>1 are in fact valid for 5 = 1; see Appendix A. The marginal case,
separating unstable and stable solutions, occurs at B = 0-46537
(approximately).

Values of fi for n > 1 obtained by solving (5.65) are shown in Table 6.
The first column for B = 0-0O1 shows the most unstable mode; the second
shows the next most unstable mode. The values displayed for other B belong
to the most unstable mode. It is evident that, as B increases from zero for
any given n, Re (/3) starts negative (instability) and finishes positive (linear
stability). The marginal B, separating stable and unstable solutions, de-
creases with increasing n, that is, the n = 2 mode is the last to remain
unstable as 5 is increased, but that too becomes stable once B exceeds
0-446652 (approximately). As 5 increases for any fixed n, the pair of

TABLE 5. Values of f} for y —* 1 for various B and n = 1

b

0-005
0-01
0-03
0-05*
0-07*
0-08*
0-1*

B
0-001
001
005
0 1
0-25
0-3

P
-1-4398
-1-4030
-1-2909
-1-1994
-1-1176
-10790
-10056

P
1-4168 ±2
2-3231 ±2
3-5999 ±2
4-3825 ±2
5-4652 ±1

b

0-105*
0-11*
0-12*
0-15*

0-2*t
0-25

0-4l5t

•2508/
•7531/
•8599/
•6030/

•4496/

5.6245 ±0.9766/

P
-0-9879
-0-9703
-0-9359
-0-8370
-0-6831
-0-5397
-01530

B
0-355
0-4
0-5
0-6
0-7
0-8

b

0-6*t
0-8*
0-9*
0-95
0-99*
0-995
0-999

P
5-5697
4-9816
4-5731
4-3656
4-2297
4-1315

P
0-2913
0-6732
0-8433
0-9233
0-9849
0-9925
0-9985

P
5-8888
6-5652
6-9988
71149
7-1245
7-0944
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n

2
3
4
5
6
8

10
15
20
30
40
50

n

2
3
4
5

6
8

10
15
20
30
40
50

5 = 0001

-1-27 ±1 -22/
-1-28 ± 1-72/
-1-28 ± 2-09/
-1-27 ± 2-41/
-1-26 ± 2-69/
-1-22 ± 3-19/
-1-19 ± 3-66/
-1-21 ± 4-65/
-1-27 ± 5-43/
-1-30 ± 6-65/
-1-26 ± 7-70/
-1-21 ±8-68/

5=0-4

-0-11 ± 1-44/
0-30 ± 2-28/
0-68± 301/
1-04 ± 3-67/
l-40± 4-30/
211 ± 5-49/
2-81 ± 6-61/
4-59 ± 9-26/
6-41 ± 11-78/

1019 ± 16-69/
14-08 ±21-54/
1803 ± 26-39/

TABLE 6.

5 = 0-001

l-14±2-62i
0-98 ± 2-86/
0-86 ± 302/
0-76 ±3-14/
0-67 ± 3-23/
0-52 ± 3-34/
0-41 ±3-40/
0-31 ± 3-44/
0-31 ±3-52/
0-34 ± 3-70/
0-37 ±3-87/
0-40 ± 403/

fi=0-6

0-33 ± 1-11/
0-97 ± 1-92/
1-59 ± 2-62/
218 ± 3-26/
2-77 ± 3-88/
3-92 ± 5-05/
5-06 ± 616/
7-91 ± 8-81/

10-78 ±11-36/
16-59 ± 16-31/
22-48 ±21-20/
28-43 ± 2608/

Values of /3 for y

B = 001

-1-24 ±1-30/
-1-28 ±1-84/
-1-32 ± 2-24/
-1-35 ± 2-57/
-1-37 ± 2-86/
-1-40 ± 3-37/
-1-42 ± 3-80/
-1-41 ± 4-72/
-1-36 ± 5-53/
-1-16 ± 7-03/
-1-02 ± 8-56/
-102 ±9-96/

5 = 0-8

0-71 ± 0-38/
1-56 ± 1-20/
2-39 ± 1-7&
3-21 ± 2-31/
4-02 ± 2-82i
5-62 ± 3-77/
7-21 ± 4-69/

1115 ± 6-88/
15-08 ± 8-99/
22-95 ± 13-09/
30-87 ±17-12/
38-82 ± 21-13/

—* 1 for various B

5 = c
-l-09±
-111 ±
-1-13 ±
-1-15 ±
-1-16±
-1-18±
- M 8 ±
-1-14±
-l-04±
-0-70 ±
-0-25 ±

0-25 ±

5=(
0-20 (1
1-80 ±
2-73 ±
3-65 ±
4-57 ±
6-39 ±
8-20 ±

12-69 ±
17-16 ±
26-10 ±
35-04 ±
4400 ±

1-05

1-44/

2-07/

2-57/

2-99/

3-37/

405/
4-66/
6-02i
7-24/
9-53/

11-76/
14-00/

>9

•52)
0-45/
1-03/
1-47/
1-86/
2-60/
3-30/
4-97/
6-57/
9-69/

12-74/
15-76/

andn (>1)

5=0-1

-0-93 ± 1-51/
-0-89 ± 2-22/
-0-86 ± 2-79/
-0-83 ± 3-28/
-0-80 ± 3-74/
-0-73 ± 4-57/
-0-65 ± 5-32/
-0-40 ± 7-04/
-0-08 ± 8-63/

0-70 ± 11-65/
1-62 ±14-62/
2-61 ± 17-60/

5=0-99

0-02 (1-96)
104 (2-92)
2-08 (3-87)
3-13 (4-81)
4-20 (5-73)
6-43 (7-48)
8-94 ± 0-35/

13-91 ± 1-21/
18-87 ± 1-83/
28-78 ±2-95/
38-69 ± 4-01/
48-58 ±505/

5 = 0-25

-0-49 ± 1-55/
-0-26 ± 2-36/
- 0 0 6 ± 3-05/

0-13 ± 3-67/
0-32 ± 4-25/
0-69 ± 5-33/
l-08± 6-34/
2-07 ± 8-69/
3-13 ± 10-92/
5-39 ±15-24/
7-79 ± 19-50/

10-26 ± 23-78/

5 = 0-999

0-002 (1-996)
1-004 (2-992)
2-008 (3-988)
3-012 (4-982)
4-018 (5-976)
6032 (7-959)
8-051 (9-938)

13121 (14-864)
18-229 (19-780)
28-731 (29-236)
38-978 ± 0-809/
48-971 ±1-256/
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538 C. C. WU AND P. H. ROBERTS

complex-conjugate /3 ultimately become real, and take the values /3 = n — 2
and f5 = n as 5—• 1, a fact that is easily verified from (5.65). In agreement
with the CCW approximation, Re (/3) is almost constant for small 5; in fact,
the real part of the displayed /3 are, provided n is not too large, in
approximate agreement with the CCW values; the imaginary parts of /3 are,
however, quite different, which may not be surprising since our solution is
for the UIP branch while the CCW approximation is an LIP solution.

We used the full equations, (4.12) to (4.18), to check answers displayed in
Table 6. We obtained the following results: 0 = -1-13 ± 2-56/ for 6 = 0-05
and n = 4; /3 = -1-01 ± 7-26/ for 5 = 0-05 and n = 20; 0 = 0-35 ± 1412/ for
5 = 0 0 5 and n = 5 0 ; /3 = 0-33±1-115/ for 5 = 0 - 6 and n = 2; and /3 =
3-38 ± 5-16/ for B = 0-05 and n = 4. In all these cases, we took y = 1-005,
and the final result (for which (5.65) gave 0 = 3-4031 ± 5-1348/) confirms
the existence of higher-order modes; this solution appears to correspond
to the modes with the second most negative growth rates for that value
of 5 and n. Higher-order modes, obtained from (5.65) for this case,
were /3 = 6-6096 ± 8-3818/, 0 =9-7785 ±11-4969/, 0 = 12-9455 ± 14-5675/
and 0 = 16-1149 ±17-6167/. It seems probable that there is an infinity
of possible 0 for each n and 5. It is easily shown from (5.63) that
0 - [ -5 ± iV(24n - 25)]/4 for £ -> 0.

It may be worth reiterating that in this section we have examined the limit
y -» 1 for any fixed non-zero 5, no matter how small, and have found only
the UIP solution exists. This agTees with the numerical work of section 3,
which indicated that, as y decreases, the LIP, Guderley-type branch exists in
an ever smaller range of 5 contiguous to 5 = 0. The LIP branch appears to
exist for the ideal case (5 = 0) for all y including y -> 1 (for which a -»1 and
£c = 1). This also is consistent with the trends revealed by the numerical
work of section 3. The limiting 5 —* 0 form of the y - » 1 solution is a UIP
solution and does not coincide with the limiting •y-*l form of the 5—>0
solution, which is an LIP solution; that is, the order in which the limits are
taken is significant; see also (3.17). Concerning the limit y -* 1 for 5 = 0, it
may be seen, by substituting

a - l - e t e , V~\-eW, Z~\e-eM, fore»y-1^0, (5.66)

into (3.18) that, to leading order, & = V2, Ve = 1/V2 and

dl (1 + V2P)(V2 + P)

This value of a agrees with the prediction of CCW theory: see (3.14) and
(3.15). Integrating (5.67) and applying the boundary conditions (3.6), we
find that
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TABLE 7. The limit y -» 1 for the Guderley solution (B = 0)

y a & Vc Gc

101 0-9019(0-8586) 1-0264(1-0300) 0-9385(0-9293) 382-35(355-56)
1-001 0-9614(0-9553) 1-0089(1-0095) 0-9791(0-9776) 3758-8 (3555-6)
1-0001 0-9866(0-9859) 1-0029(1-0030) 0-9931(0-9929) 36533 (35556)

Returning to (3.2) and (3.3) or (3.4), we deduce, again using (3.6), that

£ ~ 1 + e\V - V2 In (1 + V2 P/3)], (5.68)

G ~ 2e"1(l + V2 P/3)
2
. (5.69)

The predictions concerning the critical point,

& ~ l + 0 - 3 0 Q 3 ( y - l ) l , Vc ~ 1 - 0-7071(y - 1)1, Gc ~ 3-5556/(y - 1),

(5.70)

that follow from (5.68), (5.69) and from Vc = 1/V2 are in good agreement
with results obtained from our numerical integrations which are shown in
Table 7; the results given by the present theory are shown in parentheses.

6. Conclusions

We have demonstrated in this paper that similarity solutions exist for
spherically converging and diverging shocks in a van der Waals gas. These
represent a generalization of the corresponding and well-known Guderley
solutions for an ideal gas. For small van der Waals excluded volume, b,
there is only one branch of solutions, and these differ little from the
Guderley solution {b = 0). For larger b, a second branch of similarity
solutions arises that is distinct from the Guderley-type branch but may
coexist with it. It is characterized by large compressions, the density
approaching the van der Waals limit, lib. These solutions cannot be
obtained by the CCW approximation. For larger b, they are the only ones
available; the Guderley-type solutions do not then exist.

We have investigated the linear stability of the similarity shocks with
respect to non-spherically-symmetric perturbations. We have confirmed the
conclusions of Gardner et al. (12) that the shock is unstable in an ideal gas
for perturbations of all harmonic number n. We find, however, that the rate
of growth of the instabilities diminishes with increasing n and approaches
zero for n —* °°. We found that, as a general rule, the shocks are more stable
in a van der Waals gas than in an ideal gas. In the limit y - > l w e found that
all asymmetric modes are stable for B > 0-46537, where B = pob and p0 is the
initial uncompressed density. For y = I, we found that all modes are stable

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/q
jm

a
m

/a
rtic

le
/4

9
/4

/5
0
1
/1

8
6
4
1
3
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



540 C. C. WU AND P. H. ROBERTS

for 5 > 0-8 (approximately). It seems plausible that this transitional value of
5 increases with y, indicating that, if other factors are the same, shocks are
more stable in a gas of small y than in a gas of large y.

Our linear-stability analysis fails for spherically-symmetric perturbations
(n =0). We could show, in the case when y—»1, that there exist only two
discrete modes, neither of which is physically significant. We also failed to
find any other discrete modes when we investigated the case where y = \
numerically. It seems probable that, for all y and b, the physically
meaningful, spherically-symmetric modes belong to a continuum, which is
inaccessible to the methods described here. The n = 0 modes are, however,
of special interest for those ranges of b in which both the Guderley and the
new branch coexist, and in which their relative stability comes into question.
We therefore undertook a separate investigation in which spherical shocks
were generated by a piston, and in which we sought evidence that one
similarity solution was preferred to the other as the resulting shock
imploded at the origin. We found no such evidence.

As noted in the introduction, a desire to understand better one aspect of
the physics of sonoluminescence provided the motivation for our study. And
we may now reflect on how far our findings can help in the search for
configurations that provide greater luminosities or, in cases with deuterium
and/or tritium present, can result in greater fusion rates (19). It seems
possible (20) that a natural limit to these processes will be set by the
stability of the imploding shock. And it is natural to seek ways of stabilizing
the shocks. As pointed out by Wu and Roberts (2), the replacement of the
air in the bubble by gaseous D2 or DT is potentially less promising than the
use of compounds, such as ethane, but in which D and/or T atoms replace
H atoms. The greater atomic weight of such compounds lowers the sound
speed and leads to greater compressions during the implosion. This idea
gains additional support from the present study, which shows that shocks in
a material, such as ethane, are more stable than they would be in gaseous
D2 or DT, which have a larger y. The following point is also of interest.
During the acoustic compression of the bubble, the trapped gas is first
compressed adiabatically. The shock that forms later cuts off the central part
of the bubble from its outside, that is, the central compression no longer
increases. It now appears, as a result of the present study, that it is desirable
to prolong the initial adiabatic compression as much as possible, in order
that the density p0 ahead of the shock, and hence 6, is as large as possible,
so promoting the stability of the shock. Such a prolongation might be
achieved by shaping the wave form of the acoustic driver. It may also be
recalled that, in many situations of practical interest, the compression of the
bubble is accompanied by two shocks in succession (1,2). The second of
these, which travels across the gas compressed by the first shock, is usually
responsible for the greater light emission and, conceivably in the thermo-
nuclear application, by the larger fusion rate. It is interesting that the
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greater value of 5 for the second shock implies, according to the present
investigation, that it will also be the more stable.
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APPENDIX A

The dense gas limit, b —• 1
We consider the solutions to the spherical shock equations (3.2), (33), (3 J ) and

(3.6) in the limit 5 -* 1. We substitute

5 = l - c , V = eV, G = \ + e-eG, (Al)

into those equations and retain only the 0(1) parts of t', G and Z, so obtaining

(A2)

e*£+£=_s_L*?+2(r+1_iy| (A3)
d£ a y +1 L <ff "y V a/ J '

1
TT- (A4)
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542 C. C. WU AND P. H. ROBERTS

The Larraza invariant (3.5) is now

(A5)

We integrated this reduced set of equations and have obtained results indistinguish-
able from those displayed in the last column of Table 3 for b = 0-999.

APPENDIX B

The limit n —* oo for the ideal gas
In this Appendix we derive the WKBJ solution for the limit n —> <*> in the case

(5 = 0) of an ideal gas. We use x = In f in place of f as independent variable, and
write

V^ = vo{x)e
SM

, G0({)=g0(x)e
s
<'\ Z0(f) = Zo(*)*5(x)

( (Bl)

with similar notation for the perturbation variables. On substituting into (4.12) to
(4.15) and anticipating that 5" and /3 are O(n), we obtain in leading order

[(1 - vo)S' - p]g, - [S'w, - n(n + 1)*,] = 0, (B2)

[(1 - vo)S' - 0\Zl -

[(1 - vo)S' - /9]t>, - ^ 5'[(1 - 5go)Zi + (1 - 2*ft)2o«i] = 0, (B4)

[(1 - vo)S' - p]Wl - i [(1 - figo)z, + (1 - 2figo)2dgi] = 0, (B5)

where

«,(<)) = -0w,(O), z,(0) =-2^zb(0)M'1(0)/i»o(0), g,(0) = 0. (B6)

If we introduce

u, = - [(1 - SftO* + (1 - 2figo)zdgt]. (B7)

p, = w,-5'w l f (B8)

we reduce these to

[(1 - vo)S' - /3]u, = Zotf'p, + [S'
2
 - n(n + 1)]M-,}, (B10)

«/,, (Bll)

O, (B12)

0. (B13)

Inspecting (B10) to (B14), we see that the eigenvalue problem factorizes; we need
only solve (B10) to (B12) to determine p and find y, subsequently, if desired.

Eliminating between (B10) and (Bll), we obtain two functions 5', the roots of

[Zo - (1 - vQ)
2
]S'

7
 + 2/3(1 - vo)S' - [p

2
 + n(n + l)zo] = 0, (B14)
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but only one of these is acceptable, the other leading to unbounded solutions at the
critical point x = xc. The only permissible choice is

S[ = -p *'?'**. (B15)

zo - (i - voy

where the sign of the square root,

R = V{(1 - v0)
2 + [zo - (1 - vo)

2
]^

1
 + n{n + l)^]/^2}, (B16)

has to be positive at x = xc, where Zo = (1 - v0)
2. For this choice of S', pi •> 0. For the

other possible 5", namely

*; = - £ - , (B17)
l - w 0

M, B 0 and 5'p, + [S'
2
 -n(n + l)]wi B 0.

We may now write the leading-order solution of (4.12) to (4.15) in an obvious
notation as

W^A^+Aie*. (B18)

U1 = [(l-v0)S[-p\A1e
s
', (B19)

P, = - [S? -n(n + I)]i4,e*/5i, (B20)

where Ai and /12 are slowly-varying functions of x. The boundary conditions require
that

( i )
0

'
 (B21)

1 = 0 (B22)

at x = 0. If B = 0, these conditions are satisfied by

) (B23)

for then S{(0) = -/} and (B21) is automatically satisfied; see also (3.6). This is not
true when B i* 0 and it appears that /32 is then complex, and that the turning point
defined by the zero of R (which falls at x = 0 when B = 0) no longer lies on the real
x-axis. The function Zo is not currently available for complex x.
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