REVIEW

PHYSICS

Structure and superconductivity of hydrides at high pressures

Defang Duan, Yunxian Liu, Yanbin Ma, Ziji Shao, Bingbing Liu and Tian Cui*

ABSTRACT

Hydrogen atoms can provide high phonon frequencies and strong electron–phonon coupling in hydrogen-rich materials, which are believed to be potential high-temperature superconductors at lower pressure than metallic hydrogen. Especially, recently both of theoretical and experimental reports on sulfur hydrides under pressure exhibiting superconductivity at temperatures as high as 200 K have further stimulated an intense search for room-temperature superconductors in hydrides. This review focuses on crystal structures, stabilities, pressure-induced transformations, metallization, and superconductivity of hydrogen-rich materials at high pressures.

Keywords: superconductivity, metallization, crystal structure, high pressure, hydride

INTRODUCTION

Since superconductivity of 4.2 K in mercury was first discovered by Onnes in 1911 [1], searching for high critical temperature superconductors has been one of the major activities in condensed matter physics. There is a great progress in the study of unconventional superconductors such as copper oxides and iron-based compounds which often show high superconducting transition temperature $(T_{\rm c})$. Although their superconducting mechanisms are still a controversy, the highest T_c of copper oxides and iron-based superconductors reach 133 K [2] and 56 K [3] at ambient pressure, respectively. But the situation is not optimistic for the conventional superconductors. Magnesium diboride-the best known conventional superconductor with T_c of 39 K [4] observed in 2001 is far lower than that of copper oxide superconductor.

Pressure is one of the thermodynamic parameters that controls the structures and properties of condensed matter. High pressure can effectively reduce the distance between atoms, shorten the bonds, and change electronic structure, leading to new phases with unusual structures and properties that hardly occur at atmospheric pressure. For example, high pressure can make the insulator transform to a metal state [5], increase T_c of superconductors (T_c of copper oxides is raised to 164 K at 31 GPa) [6], etc. To note, superconductivity under pressure has been extended to most elements of periodic table.

Back in the year 1935, Wigner and Huntington theoretically predicted that solid hydrogen would be metallized at high pressure, that is metallic hydrogen [7], which is believed to be a room-temperature superconductor [8]. Therefore, searching for metallic phase of solid hydrogen becomes a very important topic in physics. There are so many experimental research works on the hydrogen under high pressures. But these works reveal that the metallization of hydrogen is very difficult. Up to date, there is no experimental evidence for the predicted metallic state in the pressure range up to 388 GPa [9]. One of the important topics is how to reduce the metallic pressure of hydrogen system. In 2004, Aschroft [10] proposed a great idea that hydrogen-rich materials can be metallized at much lower pressures due to 'chemical pre-compression'. Because these materials are dominated by hydrogen elements, which can provide high phonon frequencies and strong electron-phonon coupling (EPC), high temperature superconductivity can be found after metallization. Therefore, they are considered as good candidates to search for high $T_{\rm c}$ superconductors within the reach of the experimental diamond anvil cell (DAC).

State Key Laboratory of Superhard Materials, College of physics, Jilin University, Changchun 130012, China

*Corresponding author. E-mail: cuitian@jlu.edu.cn

Received 21 January 2016; **Revised** 24 March 2016; **Accepted** 27 April 2016

Based on this idea, scientists began to search for likely the high-temperature superconductors in hydrogen-rich materials. Because there are some difficulties in the experimental studies of the metallization and superconductivity of hydrogen-rich materials under high pressure, theoretical research works have been at the forefront of this field and made outstanding contributions. The carbon group hydrides with highest content of hydrogen in naturally existed hydrides were first widely studied. Theoretical investigations revealed that silane (SiH₄), germane (GeH_4) , stannane (SnH_4) , and disilane (Si_2H_6) are metallized at much lower pressure than pure hydrogen with high T_c . For example, SiH₄ is predicted to be 20–75 K [11]. These theoretical predictions really excite the research works on the hydrogen-rich systems under high pressures. Then, can the other hydrogen-rich compounds be expected to be potential candidates for high- T_c superconductivity?

Mixed closed-shell systems and H₂ at high pressure can form new H₂-containing van der Waals compounds, such as SiH₄(H₂)₂ and GeH₄(H₂)₂, which were predicted to be superconductors with high T_c values of 107 K [12] and 90 K [13] at 250 GPa, respectively. Superconductivity was also reported in alkali metal and alkaline-earth metal hydrides KH₆ [14] and CaH₆ [15], where T_c is 82 K at 300 GPa and 235 K at 150 GPa, respectively. However, only a low $T_c \sim 17$ K of silane at 90 and 120 GPa in these hydrides has been observed through experiment [16], though debates remained. Little experimental research has made the studies of hydrogen-rich materials in depression, but the step has never stopped.

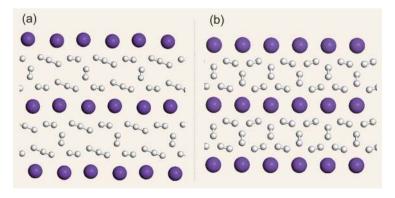
Recently, the novel sulfur hydrides H_3S [17,18] with Im-3m symmetry was predicted theoretically by our group to be a high-temperature superconductor with T_c reaching as high as 191–204 K at 200 GPa. Subsequently, Drozdov et al. observed a high $T_{\rm c} = 203 \,\mathrm{K}$ in H₂S sample at 155 GPa based on the resistant transition, isotope effect, and Meissner effect [19]. The observed T_c values and its pressure dependences are close to our theoretical predicted, suggesting that high T_c in H₂S sample mainly comes from H₃S. Moreover, the Im-3m structure was confirmed experimentally by synchrotron X-ray diffraction (XRD) more recently [20]. In addition, Mazin specially emphasizes [21] 'this is the first time that a previously unknown material predicted to be a high-temperature superconductor has been experimentally confirmed to be one.'

The discovery of $T_c \sim 200$ K at high pressure in sulfur hydrides by theoretical prediction and experimental measurement reveals that high- T_c in hydrogen-rich materials indeed can be achieved. Therefore, many theoretical predicted stable hydrogen-rich materials are potential candidates for high-temperature superconductors. This review is organized as a systematic summary of the superconducting behavior of the stable hydrides. Beginning from alkali metal hydrides, and ending with halogen hydrides, we discuss structures, metallization, and superconductivity of hydrogen-rich materials at high pressures.

ALKALI METAL HYDRIDES

Up to now, among the alkali metals (Li, Na, K, Rb, Cs) hydrides, only LiH_n and KH_n (n > 1) systems were predicted to be superconductors under pressure [14,22]. Except for LiH_n, linear H₃⁻ units emerge in alkali metals (Na, K, Rb, Cs) hydrides. Moreover, LiH₂, LiH₆, NaH₃, and NaH₇ have been synthesized experimentally [23,24].

Lithium hydrides


 LiH_n (n = 2-8) was systematically investigated under high pressure in theory [25]. LiH₂ with P4/mbmsymmetry is energetically stable relative to LiH and H₂ at \sim 120 GPa, which contains two types of hydrogen: H⁻ and H₂ units. LiH₆ (space group R-3m) has the lowest enthalpy of formation above 150 GPa, and it possesses Li and H₂ units. By analyzing the density of states (DOS) for LiH_2 and LiH_6 , both of them are insulators at 0 GPa and metalize at 100 GPa. However, the metallization nature of LiH₂ and LiH₆ is different. For the former, pressureinduced band-gap closed between the H⁻ ('impurity donor band') and H $_2 \sigma_u^*$ bands, while for the latter, electron transfers from Li to H₂ σ_{u}^{*} levels. For LiH₈ with *I*422 symmetry, its stable pressure range is 100-200 GPa. The superconductivity of three stoichiometries (LiH₂, LiH₆, and LiH₈) was extensively studied in another theoretical work [22]. LiH₂ is not a superconductor, while LiH₆ and LiH₈ are superconductors. The critical temperatures (T_c) for LiH₆ and LiH₈ are 38 K (150 GPa) and 31 K (100 GPa), respectively, which are mostly due to the intermolecular vibrations of H_2 units. And the T_c of LiH₆ increases with increasing pressure, while the value of $T_{\rm c}$ for LiH₈ keeps almost no change. The theoretical prediction promotes people to synthesize the lithium hydrides in experiment. In 2012, Howie et al. synthesized LiH at 50 MPa, but LiH_x (x > 1) was not found [26]. Recently, LiH_2 and LiH_6 were observed above 130 GPa at 300 K. However, when pressure is up to 215 GPa, they both kept insulating [23]. There are some differences in metallization between experiment and theory. Therefore, more research works are needed to study the Li-H system at high pressure.

Sodium hydrides

It was theoretically reported that NaH_n (n > 1) can be stable under pressure [27]. With respect to Li, the ionization potentials of Na is lower, results in that NaH_n can be synthesized at lower pressure than LiH_n. At \sim 25 GPa, the NaH₉ becomes thermodynamically stable. Moreover, the phase Cmc21-NaH9 adopts H⁻ and H₂ units and its metallization occurs at 250 GPa. For NaH7 and NaH11, their stable pressure ranges are 25-100 and 25-150 GPa, respectively. The metallization mechanism and structures between odd and even NaHn are different. By comparing, the odd NaH_n possesses H^- and H_2 units, and the Na-p deters their metallization, although some can metalize. But the even NaH_n only contains H_2 units, and the $H_2 \sigma_u^*$ bands are partially filled by Na-s elections which induce metallic behavior. After a few years, it is reported that NaH3 and NaH7 can be synthesized in a laser-heated DAC above 40 GPa and 2000 K [24]. Furthermore, H_3^- units were found in NaH₇.

Potassium hydrides

KH₆ was predicted energetically stable above 70 GPa by our group, which possesses two-layered structures C2/m and C2/c [14], as shown in Fig. 1. The former owns H₂ and H₃ units, forming a 1D network. The latter only contains H₂ units, and its arrangements of H atoms are similar to that of solid hydrogen (*Cmca* phase). For C2/m, it metalizes at 145 GPa, while C2/c keeps metallic all the time that is a 1D conductor attributed to hydrogen-bonded network. Based on the BCS theory, the calculation showed that the EPC parameter λ and T_c for C2/c reach 0.91 and 58.66-69.84 K at 166 GPa. By further analysis, the potassium atom vibration makes mainly contribution to λ . In addition, C2/chas a negative pressure dependence of T_c in the pressure range from 166 to 300 GPa. In the same

Figure 1. The structures of KH_6 with space group (a) C2/m at 100 GPa and (b) C2/c at 166 GPa [14]. Copyright 2012 American Physical Society.

year, another group also studied the KH_n (n > 1)under pressure by first-principles calculation [28]. The KH₅ consists of H₃⁻ molecules which become stable at 3 GPa, and it keeps the lowest enthalpy and remains insulator in the studied pressure range. But some metastable phases exhibit metallic properties.

Rubidium hydrides and cesium hydrides

Rubidium hydrides and cesium hydrides were also studied under pressure [29,30]. For RbH_n (n >1), some species begin to stabilize at 2 GPa, which contain Rb⁺, H₂ and linear H₃⁻ units [29]. Below 100 GPa, two compounds RbH₉ (Pm) and RbH_5 (*Cmcm*) are most preferred. RbH_3 is stable above 100 GPa consisting of Rb^+ and H_3^- . While for RbH₆, the polymeric chains $(H_3^-)_{\infty}$ emerge. Moreover, RbH₃ and RbH₆ are good metals. CsH_n (n > 1) are similar to RbH_n, which become stable at 2 GPa and also possess H_3^- units [30]. The compound CsH₃ is preferred in the pressure range of 30 to 200 GPa, while CsH7 is stable up to 150 GPa. Meanwhile, the author indicated that the metallic phases Cmmm and Cmma of CsH3 are attributed to the hydrogen formation.

ALKALINE-EARTH METAL HYDRIDES

For the alkaline-earth metal (Be, Mg, Ca, Ba, and Sr) hydrides, except for SrH_n (n > 2), they are predicted to have high T_c . Especially, the T_c of CaH₆ reaches 220–235 K (150 GPa), which is mostly due to the 'H₄' units [15]. Unfortunately, there is no experimental study up to now.

Beryllium hydrides

Beryllium hydrides have been extensively explored by first-principles calculation. Except the wellknown BeH₂, no stoichiometry was found to be thermodynamically stable up to 400 GPa [31,32]. Then, the structures and properties of BeH₂ at high pressure were studied [32,33]. The phase transition sequence at high pressure is *Ibam* \rightarrow *P*-3*m*1 \rightarrow *R*-3*m* \rightarrow *Cmcm* \rightarrow *P*4/*nmm*. The first three phases are insulator and the last two phases are metallic. Moreover, the *T*_c of metallic *Cmcm* and *P*4/*nmm* phases were calculated with 32–44 and 46–62 K at 250 and 400 GPa, respectively. For both phases, the tendency of *T*_c with pressure is first increased and then decreased.

Magnesium hydrides

Magnesium hydrides under pressure were theoretically searched [34]. MgH_4, MgH_{12}, and MgH_{16}

were found to have lower enthalpy than MgH₂ and H₂ at 92, 122, and 117 GPa, respectively. MgH₄ possesses H⁻, H₂, and Mg²⁺, while MgH_{12,16} adopts H₂^{δ -}. The metallic phases *Cmcm*-MgH₄ and *R*3-MgH₁₂ show superconductivity with *T*_c of 29–37 and 47–60 K at 100 and 140 GPa, respectively. Although they both have comparative EPC λ , the average logarithmic frequency of MgH₁₂ is larger than that of MgH₄. Therefore, the *T*_c value of MgH₁₂ is higher than that of MgH₄.

Calcium hydrides

Recent theoretical work indicated that by compression, three stoichiometries CaH₄, CaH₆, and CaH₁₂ become energetically stable [15]. In addition, the formation of hydrogen in CaH₄, CaH₆, and CaH₁₂ is different, which is present for H atoms and H₂ units, H₄ units, and only H₂ units, respectively. Owing to the exotic 'H₄' units which are susceptible to a Jahn-Teller distortion, the electronic property, the bonding feature, and superconductivity of CaH₆ were investigated. And the covalent bond in H4 units is obvious by calculated electron localization function (ELF). The 'H₄' contributes more to EPC. Further calculation shows that the λ and T_c are 2.69 and 220-235 K at 150 GPa, respectively. And the $T_{\rm c}$ shows a decreasing trend with pressure. Although CaH₆ has been predicted as a good superconductor, it has not been observed in experiment.

Strontium hydrides and barium hydrides

Sr-H and Ba-H systems at high pressure were investigated theoretically in detail. For Sr-H system, SrH₄, SrH₆, SrH₁₀, and SrH₁₂ become thermodynamically stable under compression [35,36]. While for Ba-H system, pressure induced BaH₆, BaH₈, and BaH₁₂ are stable, in which the hydrogen sublattices are H⁻, H₃,⁻ and H₂ units [31]. In addition, P4/mmm-BaH₆ possesses lower enthalpy and the calculated T_c is 30–38 K at 100 GPa.

BORON GROUP HYDRIDES

Except for thallium element, the other boron group hydrides have been intensively studied. For boron hydrides, the estimated T_c of B_2H_6 and BH are 125 and 14.1–21.4 K at high pressure [37,38]. There are an amount of research works on AlH₃, however, the argument about its superconductivity is existent. GaH₃ is stable above 160 GPa, and its calculated T_c reaches 86 K [39]. For indium hydrides, the T_c of *R*-3-InH₃ and $P2_1/m$ -InH₅ at 200 and 150 GPa are 34.1–40.5 and 22.4–27.1 K, respectively [40].

Boron hydrides

For boron hydrides, the well-known stoichiometry is diborane B_2H_6 . But theoretical prediction revealed that B_2H_6 ($P2_1/c$) became unstable and decomposed into BH (*Ibam*) and H_2 at 153 GPa [37]. Moreover, BH can coexist with B_2H_6 between 50 and 153 GPa. It is interesting that B_2H_6 re-stabilizes again with *Pbcn* symmetry beyond 350 GPa, and the calculated T_c is 125 K at 360 GPa [38]. For BH, it has two structures, a semimetallic *Ibam* and a metallic *P6/mmm*. The calculated T_c of *P6/mmm* reaches 14.1–21.4 K at 175 GPa and decreases with increasing pressure.

Aluminium hydrides

Aluminum hydride (AlH₃) at high pressure gains people's attention and has been widely explored both in theory and experiment. In 2007, the phase transition at high pressure was given as R-3c (phase I) \rightarrow Pnma (phase II) \rightarrow Pm-3n (phase III) at 24 and 73 GPa, respectively. Moreover, both R-3c and Pnma are insulators, whereas Pm-3n becomes metallic [41]. The calculated T_c of Pm-3n was 24 K at 110 GPa, but its superconductivity was not observed in experiment [42]. Later, a theoretical work provided an explanation about why the experimental and theoretical data on T_c of AlH₃ is distinct [43]. Considering anharmonic self-energy, the calculated value of T_c reduces to as low as 2 K. Therefore, the distinction between experimental and theoretical data is attributed to the anharmonicity that suppresses the EPC parameter. In addition, the metallic phase Pm-3n can be stabilized at ambient condition once a finite electronic temperature is considered [44].

AlH₃ (H₂) was also investigated from 25 to 300 GPa in theory by our group [45]. It undergoes two phase transitions, from insulating P1 to semiconductor P-1, then to metallic P2₁/m at 75 and 250 GPa, respectively. In addition, H₂ units were found in P2₁/m phase. The calculated T_c of metallic P2₁/m is 132–146 K at 250 GPa, having a large λ of 1.625. It is noted that the total λ is mostly from mediate modes, while contribution of H₂ is little.

Gallium hydrides and indium hydrides

As we know, unlikely BH₃ and AlH₃, GaH₃ and InH₃ are thermodynamically unstable at ambient conditions. Up to now, it is theoretically reported that GaH₃ with *Pm*-3*n* symmetry is thermodynamically stable relative to Ga and H₂ above 160 GPa [39]. The calculated T_c reaches 86 K at 160 GPa, and H atoms play an important role in superconductivity.

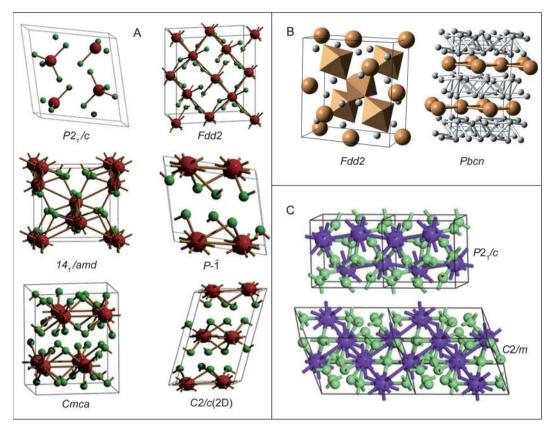


Figure 2. The selected high-pressure crystal structures of silane. Adapted from [11,53,55]. Copyright 2008 and 2009 American Physical Society.

The theoretical study of indium hydrides in a wide pressure range of 0-300 GPa was performed by our group [40]. Two stoichiometries InH₃ and InH₅ were found to be stable by compressing. The InH₅ can be synthesized at 120 GPa by $2In + 5H_2 \rightarrow$ 2InH₅. And then the decomposition happened by $InH_5 \rightarrow InH_3 + H_2$, which demonstrated that InH_3 becomes favorite stoichiometry till 300 GPa. The lowest-enthalpy stable phases of InH3 and InH5 are R-3 and $P2_1/m$ symmetry, respectively. And they both possess H₂ or H₃ units. In addition, electrons move from In atoms to H atoms by Bader analysis. The EPC calculations show that the metallic R-3-InH₃ and $P2_1/m$ -InH₅ have a large λ of 0.92 and 0.85, resulting in the estimated T_c of 34.1–40.5 K at 200 GPa and 22.4-27.1 K at 150 GPa, respectively.

CARBON GROUP HYDRIDES

The concept of 'chemical pre-compression' first appeared by doping the IVa group elements to hydrogen [10] and the hydrides with carbon group elements were widely studied even now. For the first element with the lowest mass, CH_4 , the results were not very satisfactory [46]. The metallization of CH_4 did not occur up to 520 GPa by first-principle calculation [47]. But many works suggested that the other carbon group (Si, Ge, Sn, and Pd) hydrides may realize the metallization and become superconductors under pressure.

Silicon hydrides

For silane (SiH₄), a great deal of theoretical and experimental works [11,16,48-55] were carried out to explore the crystal structures, metallization, and superconductivity under high pressure. It is found that there are at least 10 high-pressure phases (Pman, C2/c, P63, P-1, Cmca, P4/nbm, Pbcn, P-3, P21/c, and C2/m) of SiH₄ in the pressure range of 50 and 606 GPa, as shown in Fig. 2. Among them, one phase $(P6_3)$ was found in the experiment and others were from the theoretical prediction [16]. All of these structures could achieve metallization and exhibit superconductivity with T_c of 16–166 K at lower pressure than pure hydrogen. Except for extreme pressures (383-606 GPa) [55], there still exist controversies on the most stable structures of SiH₄ at the corresponding pressures. Specifically, Degtyareva et al. explained that the metallization of P6₃-SiH₄ might be due to the decomposition of SiH₄ and the reaction between H and the environment materials like Pt or Re [56].

Based on the above explorations, our group performed more extensive study on disilane (Si₂H₆) [57], and found three crystalline structures *P*-1 (135–275 GPa), *Pm-3m* (275–300 GPa), and C2/c (300–400 GPa). Furthermore, the estimated T_c of *P*-1 at 200 GPa, *Pm-3m* at 275 GPa, C2/c at 300 GPa is 92, 153, 42 K, respectively. Afterwards, Flores-Livas *et al.* proposed a new metallic phase of disilane with *Cmcm* symmetry [58] at 190–280 GPa with $T_c \sim 13$ K at 220 GPa.

Besides the silicon hydrides naturally existed, a new molecular compound SiH₄(H₂)₂ was observed from silane-hydrogen mixtures at ~6.8 GPa by XRD and Raman experiments [59,60]. And a possible group space *F*-43*m* [59] of SiH₄(H₂)₂ was provided. Later, theoretical works [61–64] were attempted to study structures and superconductivity at high pressure. They proposed three phases *F*-43*m* [61], *I*-4*m*2 [62–64], *Pmn*2₁ [63] at ~6.8 GPa, and two new metallic phases with P1 (125 GPa) [64] and *Ccca* (248 GPa) [12] at higher pressures. Furthermore, calculation showed that *Ccca* phase possesses a *T*_c of 98–107 K at 250 GPa [12].

Germanium hydrides

The research works on GeH₄ were mainly concentrated on theoretical predictions [65-67]. It is found that there are at least seven phases (I4/mmm, P-43m, I-42m, Pman, C2/m, Ama2, and C2/c) in the pressure range of 0 and 500 GPa and all phase can become metal with the increasing pressure. Moreover, three metallic phases (C2/m, Ama2, and C2/c) exhibited superconductivity with T_c of 40-84 K at high pressures. In addition, our group study revealed that GeH₃ with *Cccm* symmetry is stable above 280 GPa, and has a T_c of 80 K at 300 GPa [68]. A new molecular compound GeH₄(H₂)₂ can be synthetized at 7.5 GPa by experiment [69]. Furthermore, the metallic phase $P2_1/c$ of GeH₄(H₂)₂ was proposed to have the T_c of 76–90 K at 250 GPa [13].

Stannum hydrides

For SnH₄, Tse, Yao and Tanaka proposed a *P6/mmm* structure with $T_c \sim 80$ K at 120 GPa [70]. They claimed that soft phonons and Kohn anomalies play an important role in improving the electron–phonon interaction. Later, Gao *et al.* [71] predicted two metallic phase of SnH₄ with *Ama2* symmetry at 96–180 GPa and *P6*₃/*mmc* symmetry above 180 GPa. *Ama2* phase has a T_c of 15–22 K at 120 GPa and the T_c in *P6*₃/*mmc* is 52–62 K at 200 GPa.

Plumbum hydrides

For PbH₄, two-layered metallic phases *Imma* (132–296 GPa) and *Ibam* (above 296 GPa) were predicted [72]. In both phase, electrons near Fermi level are analogous with free electrons which exhibit not only metallic but also diffusive or liquid-like properties. Another theoretical work explored the high-pressure crystal structure, metallic and superconductivity of PbH₄(H₂)₂ [73]. Their calculations revealed that the PbH₄(H₂)₂ with C2/*m* symmetry could become metal above 133 GPa and exhibit T_c of 107 K at 230 GPa.

For carbon group hydrides, some potential regular patterns can be summarized. First, H₂ units gradually prefer to appear in MH₄ (Ge, Sn and Pb) with the increasing radius of impurity elements (Si, Ge, Sn and Pb). Second, the EPC parameter in SiH₄ is mainly contributed by H-Si-H vibration. While in GeH_4 , SnH_4 , $GeH_4(H_2)_2$ and $SnH_4(H_2)_2$, the EPC parameter are mainly derived from the intermediate frequency region, mostly corresponding to the vibration of H-M-H or the interaction of M and H₂ units. Third, for $MH_4(H_2)_2$ (Ge, Sn and Pb) systems, with the increasing pressure, charges transform from intra-molecular of MH4 units to two sites: one is H₂ units, and the other is the interstitial between MH₄ and H₂ units. Besides, their superconducting transition temperatures are always higher than the corresponding MH4, which means the additive hydrogen plays an important role in improving the superconductivity of hydrides.

PNICTOGEN HYDRIDES

As the pnictogen element, NH₃ have been studied widely, but they have difficulty in achieving metallization under high pressure. Unluckily, the hydrides of phosphorus, arsenic, and antimony are seldom to be studied under high pressure. The H₃S-*Im*-3*m* with a high superconducting transition temperature values of 191–204 K at 200 GPa predicted by our group [17] and proved by Drozdov *et al.* [19] has been broadly accepted. Later, our group executed a series of systemic research works to explore the high pressure crystal structures and superconductivity in antimony and bismuth hydrides [74,75]. We found that T_c of SbH₄ at 150 GPa reaches 118 K and T_c of BiH₅ at 300 GPa reaches 119 K.

Phosphorus hydrides

More recently, Drozdov, Eremets and Troyan performed resistivity measurements on covalent phosphine (PH₃) samples which metallize at 40 GPa, show superconductivity at 83 GPa with $T_c \sim 30$ K

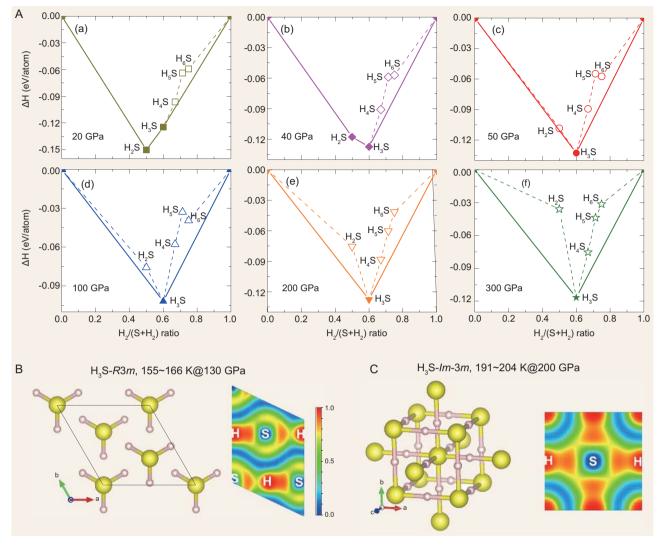
and the maximum $T_{\rm c}$ reaches 103 K at \sim 207 GPa [76]. But the exact composition and crystal structure of the superconducting phase are not determined. Subsequently, density functional theory calculations show that PH_2 [77] with C2/m symmetry consisting of two formula units in the primitive cell could be a candidate hydride with $T_c \sim 82 \,\mathrm{K}$ at 200 GPa. But other theoretical calculations show that all the phosphorus hydrides are thermodynamically unstable with respect to P and H₂ in the pressure range 100–300 GPa [78,79]. The calculated T_c of PH₂ with I4/mmm symmetry is 40 K at 100 GPa, and reaches a maximum value of 78 K at 220 GPa. In addition, the T_c dependence on pressure of PH is in agreement with experiment. Although the calculated T_c of PH, PH₂, and PH₃ with respect to pressure are comparable to experiments, the superconducting phase remains unclear.

Arsenic hydrides and antimony hydrides

For arsenic hydrides, there is only AsH and AsH₈ stable above 300 GPa and AsH₈ is predicted to exhibit T_c values of ~150 K above 350 GPa [80]. The metallic SbH₄-P6₃/mmc phase with nontrivial binding stable above 127 GPa was uncovered to have the most negative enthalpy among all of the researched antimony hydrides [74]. In P6₃/mmc-SbH₄, there exists unequivalent hydrogen marked H1 and H2 which occupy on 4e and 4f sites. One kind of hydrogen (H1) is bound with strong covalent interaction to form H₂ units and the other kind of hydrogen (H2) binds with the nearest Sb atom to form weak covalent bonds. Startlingly, the apparent charge localizes between Sb and H2 atoms when the isosurface value of 0.7 is selected but the value of ELF fades in 0.75, implying the nearest Sb and H2 atoms form startling weak polar covalent bonds. Besides, the T_c of 118 K was obtained in P6₃/mmc-SbH₄ at 150 GPa. With the increasing pressure, T_c decreases (118 K at 150 GPa and 86 K at 300 GPa for $\mu^* = 0.10$) at a descendant gradient (dT_c/dP) of -0.21 K/GPa, which means T_c has only a weak dependence on pressure. Subsequently, the same highsymmetry structure of SbH4 was found by using two different structural search techniques [80]. Moreover, they obtained the T_c of 102 K at 150 GPa, which confirms our theoretical prediction.

Bismuth hydrides

For BiH_n (n = 1-6), except for BiH₃, all stoichiometries are stable at high pressure [75]. The remarkable structural feature is the emergence of H₂ units in BiH₂, BiH₄, and BiH₆. BiH₅ adopts a startling layered structure intercalated by H₂ and the linear H₃ units. The ionic bonding feature in Bi-H system is quite different from the same group covalent hydride of SbH₄, and the discrepancy of bonding feature depends on the existing form of hydrogen atoms and individual crystalline structures. In SbH4, except for H₂ units, it also contains Sb-H weak interaction. However, except for BiH, only H₂ or H₃ units were found in Bi-H system and no excrescent hydrogen can bind with Bi atoms. On the other hand, the elemental nature could determine the discrepancy. In pnictogen group, nitrogen (N) and phosphorus (P) are nonmetal, and arsenic (As) and antimony (Sb) are regarded as semimetal, while bismuth (Bi) is the sole 'real metal'. Compared with other pnictogen elements, bismuth has the heaviest atomic mass and the weakest electronegativity. In Bi-H system, H atoms may have a stronger ability in attracting electrons than Bi and then form the ionic bonding. Furthermore, the calculated T_c of BiH, BiH₂, BH₄, BiH₅, and BiH₆ at 300 GPa are 20, 65, 75, 119, and 113 K, respectively, which indicates all these stable bismuth hydrides are potential high-temperature superconductors. It also can be seen that the T_c increases with the increasing hydrogen content with the maximum value of 119 K in BiH₅. The results of Bi-H system verify the idea that hydrogen content has a great influence on the superconducting transition temperature. In addition, the T_c of BiH and BiH₄ decrease with the increasing pressure, while the $T_{\rm c}$ increases with the increasing pressure in BiH₂, BiH₅, and BiH₆.


CHALCOGEN HYDRIDES

As the lightest chalcogen hydrides, H_2O has a rich phase diagram: amorphous, hydrogen bond symmetry, ionic phase and so on [81]. Unfortunately, it has difficulty in achieving metallization up to 2 TPa [82]. For other chalcogen hydrides, they show metallic properties and high-temperature superconductivity at lower pressure; especially for new sulfur trihydrides H_3S , it sets a record high critical temperature of 200 K [17–19].

Sulfur hydrides

In 1990s, the structures and molecular dissociation of solid H_2S at high pressure have been studied extensively, but this remains controversial. In 1997, infrared-absorption spectral measurement at room temperature showed that H_2S molecules dissociate and metalize at 46 and 96 GPa, respectively [83]. In 2010, our group theoretically predicted that protons are delocalized and can move back and forth along the S–S separation in phase V of H_2S [84]. It is

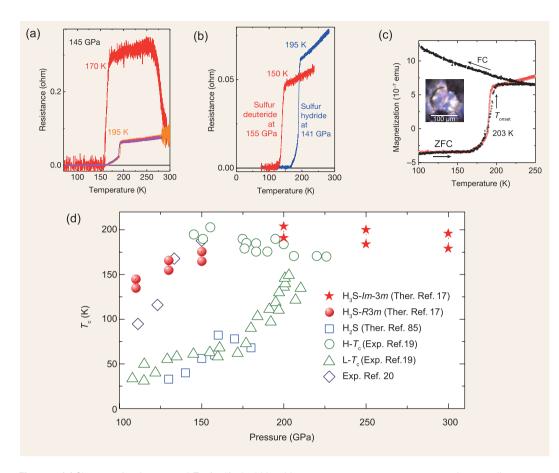


Figure 3. (A) Predicted formation enthalpies of H_nS with respect to decomposition into S and H₂ under pressure [18]. Dashed lines connect data points, and solid lines denote the convex hull. Copyright 2015 American Physical Society. (B) Crystal structures of H₃S-*R*3*m* and its corresponding ELF [17]. (C) Crystal structures of H₃S-*Im*-3*m* and its corresponding ELF [17].

indicating that the decomposition of H₂S under high pressure is not simple. In 2014, it was theoretically predicted that H₂S cannot decompose into sulfur and hydrogen up to 200 GPa [85]. Moreover, two metallic phase *P*-1 and *Cmca* were proposed with the highest $T_c \sim 80$ K at 160 GPa.

In 2011, it is reported that mixing H_2S and H_2 can form a new compound $(H_2S)_2H_2$ (H_3S) , the stoichiometric ratio of H and S atoms is 3:1) near 3.5 GPa [86]. Unfortunately, the highest pressure in this study is 30 GPa. In 2014, we have extensively explored the high-pressure structures and superconductivity of H_3S through *ab initio* calculations [17]. The low pressure crystal structure with P1 symmetry (below 37 GPa) has been determined. Moreover, the XRD, Raman, and equation of states for P1 are in excellent agreement with experimental

results. Furthermore, three new high-pressure phases were firstly proposed: orthorhombic Cccm (37-111 GPa), hexagonal R3m (111-180 GPa), cubic Im-3m (180-300 GPa). Interestingly, there are H₂ units in insulating phase P1 and Cccm, whereas H₂ units disappear in metallic phases R3m and Im-3m, and hydrogen atoms cooperating with sulfur atoms form strong covalent bonding, as shown in Fig. 3. Further EPC calculations predict that the T_c of the R3*m* phase at 130 GPa is 155–166 K. Remarkably, we predicted the T_c of the *Im-3m* phase to achieve 191-204 K at 200 GPa for the first time, reaching an order of 200 K. In addition, T_c increases with increasing pressure in the R3m phase (135-145 K at 110 GPa and 165–175 K at 150 GPa), whereas T_c decreases nearly linearly with increasing pressure in the Im-3m phase (184-200 K at 250 GPa

Figure 4. (a) Changes of resistance and T_c of sulfur hydride with temperature at constant pressure—the annealing process. (b) Typical superconductive steps for sulfur hydride (blue trace) and sulfur deuteride (red trace). (c) Temperature dependence of the magnetization of sulfur hydride at a pressure of 155 GPa in zero-field cooled (ZFC) and 20 Oe field cooled (FC) modes (black circles). Adapted from [19]. Copyright 2015 Nature Publishing Group. (d) Dependence of T_c on pressure for experimental and theoretical results [17,19,20,85].

and 179-196 K at 300 GPa). Further analysis shows that H atoms play a significant role in superconductivity of H₃S. In addition, we performed the high-pressure stability of different stoichiometric H_nS (n > 1) using *ab initio* calculations [18] and determined two main ways to form H₃S crystal: $3H_2S \rightarrow 2H_3S + S$, $2H_2S + H_2 \rightarrow 2H_3S$, as depicted in Fig. 3. That is, H₃S can be obtained by directly compressing pure H_2S above 43 GPa [18] or mixing H_2S and H_2 at lower pressure [18,86]. The other theoretical research works also confirmed our results in succession [87,88]. Excitingly, superconductivity in an H_2S sample with high $T_c =$ 203 K above 155 GPa has been observed based on the resistant transition, isotope effect and Meissner effect [19], as shown in Fig. 4. Moreover, Shimizu et al. in cooperation with Eremets further confirm that the H₂S decomposes H₃S and S at high pressure by XRD measurements [20]. In addition, they also confirm that the superconducting (SC) phase is mostly in good agreement with our theoretically predicted body-centered cubic structure [17].

There is a widespread consensus that the superconducting samples are composed of sulfur trihydride (H₃S) Im-3m phase proposed by our group and is considered to be conventional in nature. Therefore, there are a lot of theoretical research works using the Im-3m structure to study the superconducting mechanism of H₃S by analysis of the electronic structure and bonding characteristics. Bernstein et al. underlined that the high-temperature superconductivity of H₃S is attributed to strong covalent bonds giving rise to large EPCs [87], which is similar to the MgB₂. In addition, a more detailed study on Van Hove singularity of H₃S proposes that increasing the electron DOS near the Fermi surface will increase the superconducting transition temperature [89]. Heil and Boeri constructed hypothetical alchemical atoms by partially replacing sulfur with chalcogen group element and showed that the critical temperatures of H₃S could be improved by increasing the ionic character of the relevant bonds [90]. Besides the substitution of S by elements in the same main group, further substitutions by

phosphorus and halogen group element, and in the optimized case of $H_3S_{0.925}P_{0.075}$, the T_c may reach a record high value of 280 K at 250 GPa [91].

Selenium hydrides

For selenium hydrides, H_3Se is stable above 166 GPa which possess *Im-3m* symmetry isostructural to that of H_3S [92]. But the predicted T_c of 116 K at 200 GPa is lower than that of H_3S , which is mainly due to the reduced λ . In addition, the other selenium hydrides, the Se-rich HSe₂ (C2/*m*), and HSe (*P*4/*nmm*) are stable above 124 and 249 GPa, respectively.

Tellurium hydride

For H-Te system, H_4Te , H_5Te_2 , HTe, and HTe_2 were found to be stable above 140 GPa [93]. H_4Te with *P6/mmm* symmetry is stable above 162 GPa, and then transforms to *R*-3*m* at 234 GPa, and both phases contain H_2 units. H_5Te_2 adopts *C2/m* symmetry with intriguing linear H_3 units. For HTe, *P4/nmm* phase is stable above 140 GPa which is isostructural to HSe. Then it transforms to *P6₃/mmc* phase near 286 GPa. The T_c for H_4Te , H_5Te_2 , and HTe are estimated to be 99, 58, and 19 K at 200 GPa, respectively.

Polonium hydrides

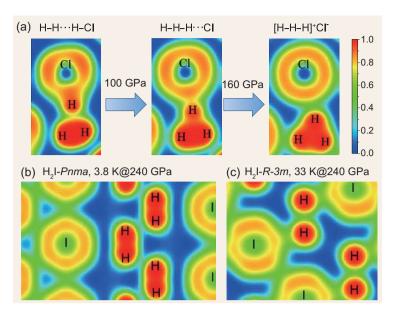
For H-Po system, several stoichiometries (PoH, PoH₂, PoH₄, and PoH₆) are stable with respect to Po and H₂ under pressure [94]. Moreover, except PoH, PoH₂, PoH₄, and PoH₆ contain H₂ units. PoH adopts $P6_3/mmc$ symmetry and it is isostructural to HTe. The T_c of PoH₄ (space group C2/c) is predicted to be 47 K at 200 GPa.

HALOGEN HYDRIDES

The consensus for HX (X = F, Cl, Br) is that $Cmc2_1$ phase transforms to hydrogen bond symmetry phase Cmcm at high pressure [95–98]. For HI, a complex triclinic phase with P1 in a different symmetry appears at low temperatures [98]. Interestingly, triangular H₃⁺ species are unexpectedly found in H₂F, H₃F, H₅F, H₅Cl, and H₅Br above 100 GPa, while there is no H₃⁺ species in H_nI (n = 1-6). With decreasing the electronegativity of halogen, HX (X = F, Cl, Br, and I) becomes unstable and decomposes into other stoichiometries at lower pressure. In addition, the metallization pressure is gradually decreased with decreasing the electronegativity. The electronegativity of bromine is between chlorine and

iodine; the structure and stability of $H_{\rm n}Br$ is not only resemble with $H_{\rm n}Cl$ but also similar with $H_{\rm n}I.$

Fluorine and chlorine hydrides


 H_nF (n = 1-5) and H_nCl (n = 1-9) have been extensively studied by our group through *ab initio* calculations [99]. The results show that HF is the only stable stoichiometry up to 300 GPa, whereas other stoichiometries $H_{2,3,4,5}F$ are metastable at high pressure. It is interesting that triangular H_3^+ species are unexpectedly found in stoichiometries H_2F with $[H_3]^+[HF_2]^-, H_3F$ with $[H_3]^+[F]^-$, and H_5F with $[H_3]^+[HF_2]^-[H_2]_3$. A perfect equilateral triangle with H–H bond length 0.854 Å is formed in H_5F .

HCl is stable up to 300 GPa with the high pressure phase sequence $Cmc2_1 \rightarrow Cmcm \rightarrow P-1 \rightarrow$ C2/m [95–97]. And stoichiometries H₂Cl, H₃Cl, H₅Cl, and H₇Cl were found to become stable at high pressure [99–101]. H₂Cl with C2/c symmetry is stable in a wide pressure range from 12 to 341 GPa, then it transforms to R-3m phase. H₃Cl adopts three high pressure phases with symmetry Cc $(12-40 \text{ GPa}), C2/c (40-60 \text{ GPa}), and P2_12_12_1 (60-$ 120 GPa). H₅Cl prefers a Cc symmetry between 120 and 250 GPa. H₇Cl (P2₁ symmetry) with the highest hydrogen content is found to be stable in a narrow pressure range from 70 to 110 GPa. Besides the H-rich compounds, a Cl-rich compound H₄Cl₇ was also found [101]. It possesses two high pressure phase C2/m (90-278 GPa) and C2/c (278-445 GPa).

For the hydrogen-rich H-Cl compounds, the stable phases contain covalent HCl zigzag chain which resembles pure HCl of $Cmc2_1$ or Cmcm phase and H₂ molecules units. Instead of covalent HCl molecular units, there exists H₃⁺ molecular cation and Cl⁻ anion in H₅Cl. Importantly, we clearly see the formation process of H₃⁺ through bond length, bond overlap population, ELF, and Bader charge as a function of pressure, as shown in Fig. 5. Moreover, formation of H₃⁺ species is mainly due to charges in hydrogen atoms transfer into chlorine atoms at high pressure. It is also reported that the T_c of HCl- C2/m at 250 GPa and H₂Cl-*R*-3m at 450 GPa are 20 and 45 K, respectively [96,101].

Bromine hydrides

Different from HF and HCl, our calculations show that HBr is unstable above 64 GPa and decomposes into new hydrides H_2Br and Br_2 [102]. In previous experimental research on HBr at high pressure, the Raman spectra of Br_2 molecules were observed after hydrogen-bond symmetrization, but Raman signals

Figure 5. (a) Electron localization function (ELF) maps of H_5 Cl-Cc with increasing pressure [99]. Copyright 2015 American Chemical Society. (b) ELF maps of H_2 l-Pnma for (010) plane. (c) ELF maps of H_2 l-R-3m for (110) plane. Adapted from [104] with permission from the PCCP Owner Societies.

of H_2 molecules were not detected [103]. Combining the theoretical calculation results, it is suggested that HBr decompose into H_2 Br and Br₂ at high pressure via the reaction 4HBr $\rightarrow 2H_2$ Br + Br₂. This phenomenon reminds us that H_2 S decomposes into new hydrides H_3 S and S at high pressure [18].

 H_2Br with C2/c symmetry is stable in the pressure range from 30 to 140 GPa. Then, up to 240 GPa, a *Cmcm* phase is formed. H₃Br with P2₁2₁2₁ symmetry can be synthesized via the reaction HBr + H₂ → H₃Br above 8 GPa. It transforms into low symmetry P-1 phase at about 100 GPa. Different from H-Cl compounds, H₄Br with hexagonal P6₃/mmc structure was observed at 240 GPa. H₅Br contains three high pressure phases with symmetry C2/c (70–100 GPa), Cc (100–140 GPa), and Pmn2₁ (140–280 GPa). H₇Br with P2₁/m symmetry was found to be stable from 30 to 60 GPa.

For the stable lower pressure phases, they contain covalent HBr zigzag chain which resembles to pure HBr of $Cmc2_1$ or Cmcm phase and H_2 molecules units. In the high pressure phase Cc and $Pmn2_1$ of H_5Br , they consist of H_3^+ molecular cation, Cl^- anion, and H_2 molecules units. The structure of H_5Br -Cc is very similar to H_5Cl -Cc. For H_5Br - $Pmn2_1$ at 140 GPa, H_3 unit forms an approximate equilateral triangle with H-H length of 0.903, 0.903, and 0.911 Å. H_2Br -Cmcm consists of monatomic lattices of bromine and H_2 molecules units, which is a good metal. For the case of H_4Br - $P6_3/mmc$, H-Br forms 3D network that traps H_2 molecules arranged in a straight chain, which is also a metal. Further, EPC calculations show that hydrogen-rich H_2Br and H_4Br are superconductors with T_c of 12.1 K and 2.4 K at 240 GPa, respectively.

lodine hydrides

For HI with the smallest electronegativity of iodine, it decomposes into solids H_2 and I_2 at lower pressure of 6.7 GPa [104]. Different from the other halogen hydrides, there is no H_3^+ species in hydrogenrich H_nI (n = 1-6). Increasing pressure to 20 GPa, mixed solids H_2 and I_2 can synthetize H_5I with $P222_1$ symmetry, which consist of zigzag rectangular chains built from [I–H–I] units and H_2 molecular units. At about 114 GPa, H_5I decomposes into H_4I (P6/mmn) and H_2 . In addition, H_2I with *Pnma* is stable in a wide pressure range of 100–246 GPa, then transforms to *R*-3m phase.

In H₄I-P6/mmm and H₂I-Pnma, iodine forms a monatomic tube network that traps H₂ molecules units [104]. In the case of H₂I-R-3m, iodine monatomic still exists, but H₂ molecular units disappear forming an atomic phase, as depicted in Fig. 5. Further EPC calculations show that the T_c of H₄I-P6/mmm is 17.5 K at 100 GPa [105] and 9.9 K at 120 GPa [104]. In addition, the T_c of Pnma and R-3m phases for H₂I are 3.8 and 33 K at 240 GPa, respectively [104]. Significantly, the T_c of atomic phase R-3m is increased eight times that of Pnma, which is mainly attributed to increment EPC λ , logarithmic average phonon frequency ω_{log} , and electric DOS values at Fermi level.

CONCLUSIONS AND PROSPECTS

In summary, the 33 classes of main group elements hydrides at high pressure are surveyed above and covered in detail in this review. They exhibit a rich variety stoichiometry and new structures, and show novel superconductivity at high pressure. Above all, the recent discovery of record $T_{
m c}\sim 200\,{
m K}$ in sulfur hydrides under high pressure injects fresh energy into the field of searching high temperature superconductor in hydrogen-rich materials. For example, a high $T_{\rm c}$ \sim 100 K of pnictogen hydrides at high pressure was discovered by experimental and theoretical studies. The extensive study on room temperature superconductors in hydrogen-rich materials at high pressure is an exciting long-term research frontier. Finally, more experimental research works are needed to prove the theoretical prediction of novel high-temperature superconductors under high pressure, although experimental challenges are significant.

Table 1. Summary of the maximum superconducting tra	nsition temperature of hydrogen-rich	materials at high pressures.
---	--------------------------------------	------------------------------

Main group hydrides	Hydrides	Structure (stable pressure range GPa)	Maximum T _c (K)	Pressure (GPa)	
					Reference
Alkali metal	LiH ₆	R-3m(>140)	38	150	[22,26]
	LiH ₈	<i>I</i> 422 (100–200)	31	100	[22,26]
	KH ₆	C2/c (166–300)	70	166	[14]
Alkaline-earth	BeH ₂	<i>Cmcm</i> (202–400)	62	400	[32,33]
	MgH_4	<i>Cmcm</i> (>92)	37	100	[34]
	MgH ₁₂	R3 (>122)	60	140	[34]
	CaH ₆	Im-3m (127.7–200)	235	150	[15]
	BaH ₆	<i>P4/mmm</i> (50–100)	38	100	[31]
Boron group	BH ₃	Pbcn (350-400)	125	360	[38]
	AlH ₅	$P2_1/m(75-250)$	146	250	[45]
	GaH ₃	<i>Pm-3n</i> (160–300)	86	160	[39]
	InH ₃	R-3 (223–300)	40	200	[40]
	InH ₅	$P2_1/m$ (120–223)	27	150	[40]
GeH3 GeH4 SnH4	SiH ₄	<i>Pman</i> (> 96)	166	202	[48]
	SiH ₃	<i>Pm-3m</i> (275–300)	153	300	[57]
	SiH ₈	<i>Ccca</i> (24–300)	107	250	[63]
	GeH ₄	C2/c (196–300)	64	196	[66]
	GeH ₃	<i>Cccm</i> (280–400)	80	300	[68]
	GeH ₈	$P2_1/c$ (220–350)	90	250	[13]
	SnH ₄	$P6_3/mmc$ (180–300)	62	200	[71]
	PbH ₈	C2/m(133-300)	107	230	[73]
Pnictogen PH PH AsF SbF BiH BiH BiH	PH ₃ (exp.)	Uncertain	103	207	[76]
	PH ₂	I4/mmm	78	220	[77]
	AsH ₈	C2/c (350–450)	151	450	[80]
	SbH ₄	$P6_3/mmc$ (150–300)	118	150	[74]
	BiH ₂	$P2_1/m$ (150–300)	65	300	[75]
	BiH ₄	Pmmn (150-300)	93	150	[75]
	BiHs	C2/m(200-300)	119	300	[75]
	BiH ₆	P-1 (200–300)	113	300	[75]
Chalcogen	H ₂ S	<i>Cmca</i> (160–200)	80	160	[85]
	H ₃ S	Im-3m (180–300)	191-204	200	[17]
	H ₃ S (exp.)	Im-3m	203	155	[19,20]
	H ₃ Se	Im-3m (166–300)	116	200	[92]
	H ₅ Te ₂	C2/m(170-300)	58	200	[93]
	H ₄ Te	$P6_3/mmc$ (162–300)	99	200	[93]
	H ₄ Po	C2/c(137-300)	47	200	[94]
Halogen	H_2Cl	<i>R</i> -3 <i>m</i> (341–400)	45	450	[101]
	H_2Br	<i>Cmcm</i> (240–300)	12	240	[102]
	H_4Br	$P6_3/mmc$ (240–300)	2.4	240	[102]
	H ₂ I	R-3m (246–300)	33	240	[104]
	H ₄ I	P6/mmm(114-300)	20	150	[105]

ACKNOWLEDGEMENT

The authors would thank the collaborations and discussions with A. R. Oganov, Yanming Ma, Tao Xiao, M. I. Eremets, K. Shimizu and Lanyu Liu.

FUNDING

This work was supported by the National Basic Research Program of China (2011CB808200), National Natural Science Foundation of China (51572108, 11204100, 11574109, 11404134, 11504127), Program for Changjiang Scholars and Innovative Research Team in University (IRT1132), National Found for Fostering Talents of basic Science (J1103202), and Fund for the Doctoral Program of Higher Education (20120061120008).

REFERENCES

- 1. Onnes HK. The resistance of pure mercury at helium temperatures. *Proc K Ned Akad Wet* 1911; **13**: 1274.
- Schilling A, Cantoni M and Guo JD *et al.* Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. *Nature* 1993; **363**: 56–8.

REVIEW

- Wu G, Xie YL and Chen H *et al.* Superconductivity at 56 K in samarium-doped SrFeAsF. *J Phys-Condens Matter* 2009; 21: 142203.
- Nagamatsu J, Nakagawa N and Muranaka T *et al.* Superconductivity at 39 K in magnesium diboride. *Nature* 2001; **410**: 63–4.
- Reichlin R, Brister KE and McMahan AK *et al.* Evidence for the insulator-metal transition in xenon from optical, X-ray, and band-structure studies to 170 GPa. *Phys Rev Lett* 1989; **62**: 669–72.
- 6. Gao L, Xue YY and Chen F *et al.* Superconductivity up to 164 K in HgBa₂Ca₂Cu₃O_{8+ δ} under quasihydrostatic pressures. *Phys Rev B* 1994; **50**: 4260–3.
- Wigner E and Huntington HB. On the possibility of a metallic modification of hydrogen. J Chem Phys 1935; 3: 764–70.
- 8. Ashcroft NW. Metallic hydrogen: a high-temperature superconductor? *Phys Rev Lett* 1968; **21**: 1748.
- Dalladay-Simpson P, Howie RT and Gregoryanz E. Evidence for a new phase of dense hydrogen above 325 gigapascals. *Nature* 2016; 529: 63–7.
- Ashcroft NW. Hydrogen dominant metallic alloys: high temperature superconductors? *Phys Rev Lett* 2004; **92**: 187002.
- Chen XJ, Wang JL and Struzhkin VV *et al.* Superconducting behavior in compressed solid SiH₄ with a layered structure. *Phys Rev Lett* 2008; **101**: 077002.
- Li YW, Gao GY and Xie Y *et al.* Superconductivity at ~100 K in dense SiH₄(H₂)₂ predicted by first principles. *Proc Natl Acad Sci USA* 2010; **107**: 15708–11.
- Zhong GH, Zhang C and Chen XJ *et al.* Structural, electronic, dynamical, and superconducting properties in dense GeH₄(H₂)₂. *J Phys Chem C* 2012; **116**: 5225–34.
- Zhou DW, Jin XL and Meng X *et al*. Ab initio study revealing a layered structure in hydrogen-rich KH₆ under high pressure. *Phys Rev B* 2012; 86: 014118.
- Wang H, John ST and Tanaka K *et al*. Superconductive sodalite-like clathrate calcium hydride at high pressures. *Proc Natl Acad Sci USA* 2012; **109**: 6463–6.
- Eremets MI, Trojan IA and Medvedev SA *et al*. Superconductivity in hydrogen dominant materials silane. *Science* 2008; **319**: 1506–9.
- Duan DF, Liu YX and Tian FB *et al.* Pressure-induced metallization of dense (H₂S)₂H₂ with high-T_c superconductivity. *Sci Rep* 2014; **4**: 6968.
- Duan DF, Huang XL and Tian FB *et al.* Pressure-induced decomposition of solid hydrogen sulfide. *Phys Rev B* 2015; **91**: 180502.
- Drozdov AP, Eremets MI and Troyan IA *et al.* Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. *Nature* 2015; **525**: 73–6.
- Einaga M, Sakata M and Ishikawa T *et al.* Crystal structure of the superconducting phase of sulfur hydride. *Nat Phys* 2016; **12**: 835–8.
- 21. Mazin II. Superconductivity: extraordinarily conventional. *Nature* 2015; **525**: 40–1.
- Xie Y, Li Q and Oganov AR *et al.* Superconductivity of lithium-doped hydrogen under high pressure. *Acta Crystallogr C Struct Chem* 2014; **70**: 104–11.
- Pepin C, Loubeyre P and Occelli F *et al.* Synthesis of lithium polyhydrides above 130 GPa at 300 K. *Proc Natl Acad Sci USA* 2015; **112**: 7673–6.
- Struzhkin VV, Kim D and Stavrou E *et al.* Synthesis of sodium polyhydrides at high pressures. *Nat Comm* 2016; 7: 12267.
- Zurek E, Hoffmann R and Ashcroft NW *et al.* A little bit of lithium does a lot for hydrogen. *Proc Natl Acad Sci USA* 2009; **106**: 17640–3.
- Howie RT, Narygina O and Guillaume CL *et al.* High-pressure synthesis of lithium hydride. *Phys Rev B* 2012; 86: 064108.
- Baettig P and Zurek E. Pressure-stabilized sodium polyhydrides: NaH_n (n > 1). Phys Rev Lett 2011; 106: 237002.
- Hooper J and Zurek E. High pressure potassium polyhydrides: a chemical perspective. J Phys Chem C 2012; 116: 13322–8.

- Hooper J and Zurek E. Rubidium polyhydrides under pressure: emergence of the linear H₃⁻ species. *Chem Eur J* 2012; **18**: 5013–21.
- Shamp A, Hooper J and Zurek E. Compressed cesium polyhydrides: Cs⁺ sublattices and H₃⁻ three-connected nets. *Inorg Chem* 2012; **51**: 9333–42.
- Hooper J, Altintas B and Shamp A *et al.* Polyhydrides of the alkaline earth metals: a look at the extremes under pressure. *J Phys Chem C* 2013; **117**: 2982–92.
- Yu SY, Zeng QF and Oganov AR *et al.* Exploration of stable compounds, crystal structures, and superconductivity in the Be-H system. *AIP Adv* 2014; **4**: 107118.
- Wang ZW, Yao YS and Zhu L *et al*. Metallization and superconductivity of BeH₂ under high pressure. *J Chem Phys* 2014; **140**: 124707.
- Lonie DC, Hooper J and Altintas B *et al*. Metallization of magnesium polyhydrides under pressure. *Phys Rev B* 2013; 87: 054107.
- Hooper J, Terpstra T and Shamp A et al. Composition and constitution of compressed strontium polyhydrides. J Phys Chem C 2014; 118: 6433–47.
- Wang YC, Wang H and Tse JS *et al.* Structural morphologies of high-pressure polymorphs of strontium hydrides. *Phys Chem Chem Phys* 2015; **17**: 19379–85.
- Hu CH, Oganov AR and Zhu Q et al. Pressure-induced stabilization and insulator-superconductor transition of BH. Phys Rev Lett 2013; 110: 165504.
- Abe K and Ashcroft NW. Crystalline diborane at high pressures. *Phys Rev B* 2011; 84: 104118.
- Gao GY, Wang H and Bergara A et al. Metallic and superconducting gallane under high pressure. *Phys Rev B* 2011; 84: 064118.
- Liu YX, Duan DF and Tian FB et al. Pressure-induced structures and properties in indium hydrides. *Inorg Chem* 2015; 54: 9924–8.
- Pickard CJ and Needs RJ. Metallization of aluminum hydride at high pressures: a first-principles study. *Phys Rev B* 2007; 76: 144114.
- Goncharenko I, Eremets MI and Hanfland M *et al.* Pressure-induced hydrogendominant metallic state in aluminum hydride. *Phys Rev Lett* 2008; **100**: 045504.
- Rousseau B and Bergara A. Giant anharmonicity suppresses superconductivity in AlH₃ under pressure. *Phys Rev B* 2010; 82: 104504.
- Kim DY, Scheicher RH and Ahuja R. Dynamical stability of the cubic metallic phase of AlH₃ at ambient pressure: density functional calculations. *Phys Rev B* 2008; **78**: 100102(R).
- Hou PG, Zhao XS and Tian FB *et al.* High pressure structures and superconductivity of AIH₃(H₂) predicted by first principles. *Rsc Adv* 2015; 5: 5096–101.
- Benedetti LR, Nguyen JH and Caldwell WA *et al.* Dissociation of CH₄ at high pressures and temperatures: diamond formation in giant planet interiors? *Science* 1999; **286**: 100–2.
- Martinez-Canales M and Bergara A. No evidence of metallic methane at high pressure. *High Press Res* 2006; 26: 369–75.
- Feng J, Grochala W and Jaron T *et al.* Structures and potential superconductivity in SiH₄ at high pressure: en route to "metallic hydrogen". *Phys Rev Lett* 2006; **96**: 017006.
- Pickard CJ and Needs RJ. High-pressure phases of silane. *Phys Rev Lett* 2006; 97: 045504.
- Yao YS, Tse JS and Ma YM *et al.* Superconductivity in high-pressure SiH₄. *Europhys Lett* 2007; **78**: 37003.
- Chen XJ, Struzhkin VV and Song Y *et al.* Pressure-induced metallization of silane. *Proc Natl Acad Sci USA* 2008; **105**: 20–3.
- Kim DY, Scheicher RH and Lebegue S *et al.* Crystal structure of the pressureinduced metallic phase of SiH₄ from ab initio theory. *Proc Natl Acad Sci USA* 2008; **105**: 16454–9.

- Martinez-Canales M, Oganov AR and Ma Y et al. Novel structures and superconductivity of silane under pressure. *Phys Rev Lett* 2009; **102**: 087005.
- Cui WW, Shi JM and Liu HY *et al.* Hydrogen segregation and its roles in structural stability and metallization: silane under pressure. *Sci Rep* 2015; 5: 13039.
- 55. Zhang HD, Jin XL and Lv YZ *et al.* High-temperature superconductivity in compressed solid silane. *Sci Rep* 2015; **5**: 8845.
- Degtyareva O, Proctor JE and Guillaume CL *et al*. Formation of transition metal hydrides at high pressures. *Solid State Commun* 2009; **149**: 1583–6.
- Jin XL, Meng X and He Z *et al.* Superconducting high-pressure phases of disilane. *Proc Natl Acad Sci USA* 2010; **107**: 9969–73.
- Flores-Livas JA, Amsler M and Lenosky TJ *et al.* High-pressure structures of disilane and their superconducting properties. *Phys Rev Lett* 2012; **108**: 117004.
- Strobel TA, Somayazulu M and Hemley RJ. Novel pressure-induced interactions in silane-hydrogen. *Phys Rev Lett* 2009; **103**: 065701.
- Wang SB, Mao HK and Chen XJ *et al.* High pressure chemistry in the H₂-SiH₄ system. *Proc Natl Acad Sci USA* 2009; **106**: 14763–7.
- Chen XQ, Wang SB and Mao WL *et al.* Pressure-induced behavior of the hydrogen-dominant compound SiH₄(H₂)₂ from first-principles calculations. *Phys Rev B* 2010; 82: 104115.
- Michel K, Liu YD and Ozolins V. Atomic structure and SiH₄-H₂ interactions of SiH₄(H₂)₂ from first principles. *Phys Rev B* 2010; **82**: 174103.
- Li YW, Gao GY and Li Q *et al.* Orientationally disordered H₂ in the highpressure van der Waals compound SiH₄(H₂)₂. *Phys Rev B* 2010; 82: 064104.
- Yao YS and Klug DD. Silane plus molecular hydrogen as a possible pathway to metallic hydrogen. *Proc Natl Acad Sci USA* 2010; **107**: 20893–8.
- Li Z, Yu W and Jin CQ. First-principles calculation on phase stability and metallization in GeH₄ under pressure. *Solid State Commun* 2007; **143**: 353–7.
- Gao GY, Oganov AR and Bergara A *et al*. Superconducting high pressure phase of germane. *Phys Rev Lett* 2008; **101**: 107002.
- 67. Zhang HD, Jin XL and Lv YZ *et al.* Investigation of stable germane structures under high-pressure. *Phys Chem Chem Phys* 2015; **17**: 27630–5.
- Hou PG, Tian FB and Li D *et al.* Ab initio study of germanium-hydride compounds under high pressure. *Rsc Adv* 2015; **5**: 19432–8.
- Strobel TA, Chen XJ and Somayazulu M *et al.* Vibrational dynamics, intermolecular interactions, and compound formation in GeH₄–H₂ under pressure. *J Chem Phys* 2010; **133**: 164512.
- Tse JS, Yao YS and Tanaka K. Novel superconductivity in metallic SnH₄ under high pressure. *Phys Rev Lett* 2007; **98**: 117004.
- Gao GY, Oganov AR and Li PF *et al*. High-pressure crystal structures and superconductivity of Stannane (SnH₄). *Proc Natl Acad Sci USA* 2010; **107**: 1317–20.
- Zaleski-Ejgierd P, Hoffmann R and Ashcroft NW. High pressure stabilization and emergent forms of PbH₄. *Phys Rev Lett* 2011; **107**: 037002.
- Cheng Y, Zhang C and Wang TT *et al.* Pressure-induced superconductivity in H₂-containing hydride PbH₄(H₂)₂. *Sci Rep* 2015; 5: 16475.
- Ma YB, Duan DF and Li D *et al*. The unexpected binding and superconductivity in SbH₄ at high pressure. 2015; arXiv:1506.03889.
- Ma YB, Duan DF and Li D *et al.* High-pressure structures and superconductivity of bismuth hydrides. 2015; arXiv:1511.05291.
- 76. Drozdov AP, Eremets MI and Troyan IA. Superconductivity above 100 K in PH_3 at high pressures. 2015; arXiv:1508.06224.
- Shamp A, Terpstra T and Bi T *et al.* Decomposition products of phosphine under pressure: PH₂ stable and superconducting? *J Am Chem Soc* 2016; **138**: 1884–92.

- Liu HY, Li YW and Gao GY *et al.* Crystal structure and superconductivity of PH₃ at high pressures. *J Phys Chem C* 2016; **120**: 3458–61.
- Flores-Livas JA, Amsler M and Heil C *et al.* Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure. *Phys Rev B* 2016; **93**: 020508.
- Fu YH, Du XP and Zhang LJ *et al.* High-pressure phase stability and superconductivity of pnictogen hydrides and chemical trends for compressed hydrides. *Chem Mater* 2016; 28: 1746–55.
- Salzmann CG, Radaelli PG and Mayer E et al. Ice XV: a new thermodynamically stable phase of ice. Phys Rev Lett 2009; 103: 105701.
- Wang YC, Liu HY and Lv J *et al.* High pressure partially ionic phase of water ice. *Nat Commun* 2011; 2: 563.
- Sakashita M, Yamawaki H and Fujihisa H *et al.* Pressure-induced molecular dissociation and metallization in hydrogen-bonded H₂S solid. *Phys Rev Lett* 1997; **79**: 1082–5.
- Wang LC, Tian FB and Feng WX *et al.* Order-disorder phase transition and dissociation of hydrogen sulfide under high pressure: ab initio molecular dynamics study. *J Chem Phys* 2010; **132**: 164506.
- Li YW, Hao J and Liu HY *et al.* The metallization and superconductivity of dense hydrogen sulfide. *J Chem Phys* 2014; **140**: 174712.
- Strobel TA, Ganesh P and Somayazulu M *et al*. Novel cooperative interactions and structural ordering in H₂S-H₂. *Phys Rev Lett* 2011; **107**: 255503.
- Bernstein N, Hellberg CS and Johannes MD *et al.* What superconducts in sulfur hydrides under pressure and why. *Phys Rev B* 2015; **91**: 060511.
- Errea I, Calandra M and Pickard CJ *et al.* High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. *Phys Rev Lett* 2015; **114**: 157004.
- Quan Y and Pickett WE. Van Hove singularities and spectral smearing in hightemperature superconducting H₃S. *Phys Rev B* 2016; **93**: 104526.
- Heil C and Boeri L. Influence of bonding on superconductivity in high-pressure hydrides. *Phys Rev B* 2015; **92**: 060508.
- 91. Ge YF, Zhang F and Yao YG. First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution. *Phys Rev B* 2016; **93**: 224513.
- Zhang ST, Wang YC and Zhang JR *et al.* Phase diagram and high-temperature superconductivity of compressed selenium hydrides. *Sci Rep* 2015; 5: 15433.
- Zhong X, Wang H and Zhang JR *et al.* Tellurium hydrides at high pressures: high-temperature superconductors. *Phys Rev Lett* 2016; **116**: 057002.
- Liu YX, Duan DF and Tian FB *et al.* Prediction of stoichiometric PoH_n compounds: crystal structures and properties. *Rsc Adv* 2015; 5: 103445–50.
- Zhang LJ, Wang YC and Zhang XX *et al.* High-pressure phase transitions of solid HF, HCl, and HBr: an ab initio evolutionary study. *Phys Rev B* 2010; 82: 014108.
- Chen CB, Xu Y and Sun XP *et al.* Novel superconducting phases of HCl and HBr under high pressure: an ab initio study. *J Phys Chem C* 2015; **119**: 17039–43.
- Duan DF, Tian FB and He Z *et al.* Hydrogen bond symmetrization and superconducting phase of HBr and HCl under high pressure: an ab initio study. *J Chem Phys* 2010; **133**: 074509.
- Ikram A, Torrie BH and Powell BM. Structures of solid deuterium bromide and deuterium iodide. *Mol Phys* 1993; **79**: 1037–49.
- Duan DF, Huang XL and Tian FB *et al.* Predicted formation of H₃⁺ in solid halogen polyhydrides at high pressures. *J Phys Chem A* 2015; **119**: 11059–65.
- 100. Wang ZW, Wang H and Tse JS *et al.* Stabilization of H_3^+ in the high pressure crystalline structure of H_n Cl (n = 2-7). *Chem Sci* 2015; **6**: 522–6.

REVIEW

- 101. Zeng QF, Yu SY and Li D *et al.* Emergence of novel hydrogen chlorides under high pressure. 2015; arXiv:1508.01395.
- 102. Duan DF, Tian FB and Huang XL *et al*. Decomposition of solid hydrogen bromide at high pressure. 2015; arXiv:1504.01196.
- 103. Katoh E, Yamawaki H and Fujihisa H *et al.* Raman and infrared study of phase transitions in solid HBr under pressure. *Phys Rev B* 1999; **59**: 11244.
- 104. Duan DF, Tian FB and Liu YX *et al.* Enhancement of T_c in the atomic phase of iodine-doped hydrogen at high pressures. *Phys Chem Chem Phys* 2015; **17**: 32335–40.
- 105. Shamp A and Zurek E. Superconducting high-pressure phases composed of hydrogen and iodine. J Phys Chem Lett 2015; 6: 4067–72.