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Abstract: We present an ARXPS study on the surface composition and interfacial behavior of com-
mercial [Rh(COD)2][TfO] in [C2C1Im][TfO], [C4C1Im][TfO], [C8C1Im][TfO], and [C2C1Im][EtOSO3].
The complex was found to be non-intact in a solution of these ILs through the loss of COD ligands,
accompanied by the depletion of the metal center from the IL/vacuum interface. Increasing the chain
length of the aliphatic substituent on the imidazolium cation of the [TfO]−-based ILs led to a more
pronounced depletion from the interface, due to the higher surface affinity of the solvent cations
with the longer alkyl chains. The loss of COD ligands offered facile in situ ligand substitution with
surface-active TPPTS to afford a moderate increase in the surface concentration of Rh. We propose the
formation of a Schrock−Osborn-type catalyst [Rh(COD)(TPPTS)2][TfO]. Information on the surface
composition and targeted design of the gas/IL interface is highly relevant for applications in IL-based
catalytic systems, such as in supported ionic liquid phase (SILP) catalysis.

Keywords: catalysis; ionic liquids; rhodium catalysts; surface analysis; X-ray photoelectron
spectroscopy (XPS)

1. Introduction

Ionic liquids (ILs) are low-melting salts representing an innovative class of solvents
and electrolytes [1–8]. These compounds typically feature extremely low vapor pressures,
high thermal stability, and wide electrochemical windows. One particularly fascinating
aspect is the tuneability of their chemical structure, which allows for adjusting their physic-
ochemical properties, such as miscibility, solvation, and coordination behavior, over a wide
range. This adaptability gives rise to a rich spectrum of potential applications, e.g., in
organic [5,6,9–12], organometallic [13–15], and nanoparticle synthesis [16–18], as well as
in electrocatalysis [19–21], biocatalysis [22,23], and other fields of catalytic approaches. In
terms of catalysis, the unique properties of ILs create novel concepts for heterogeneous
and heterogenized systems [24,25]: The solid catalyst with an ionic liquid layer (SCILL)
approach is based on coating a classical heterogeneous catalyst with a thin film of IL to
mainly improve the selectivity of the process [26,27]. In supported ionic liquid phase (SILP)
catalysis, a homogeneous catalyst is dissolved in a thin IL film, which is immobilized on an
inert solid support material [28–30]. For both concepts, the interfacial behavior, that is, the
structural and chemical properties at the solid/liquid, liquid/liquid, and/or liquid/gas
interface of the IL film strongly influences the overall performance of the process [24].

Interfacial properties of IL-based materials have been intensively studied under am-
bient conditions by means of various spectroscopic, microscopic, and scattering tech-
niques, such as sum frequency generation (SFG) [31–34], second harmonic generation
(SHG) [35–37], atomic force microscopy (AFM) [38–40] and spectroscopy (AFS) [41], scan-
ning tunnelling microscopy (STM) [39,40,42], and X-ray reflectivity (XRR) [43,44] tech-
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niques, to name a few. In addition, owing to the negligible volatility of ILs, ultra-high
vacuum (UHV)-based surface science methods have also been successfully applied to access
interfacial phenomena, for instance through low-energy ion scattering (LEIS) [45,46], mass
spectrometry (MS) [47,48], high resolution electron energy loss spectroscopy (HREELS) [49],
ultraviolet photoelectron spectroscopy (UPS) [49–51], metastable induced electron spec-
troscopy (MIES) [49,50], reactive atom scattering (RAS) [52–54], and UHV-based STM and
AFM techniques [51,55–59].

X-ray photoelectron spectroscopy (XPS) has shown to be a particularly powerful tool
for the analysis of the interface-near region of neat ILs [49–51,60–66], IL mixtures [67–72],
and IL solutions [14,73–79]. With special interest in catalysis, significant effort has been
dedicated to elucidate the nature and the interfacial behavior of organometallic complexes
in IL solutions over recent years. Based on XPS core level shifts, it has been shown that the
basicity of the IL anion has a significant influence on the electronic environment of the metal
center [80,81], even affecting the reaction rate in catalyzed transformations [82]. In addition,
the non-innocent character of IL cations has been reported, e.g., by coordination to the metal
center forming N-heterocyclic carbene (NHC) complexes, [83] or via functional groups [14].
By performing angle-resolved XPS (ARXPS), a detailed structural picture of the IL/vacuum
interface can be obtained, because in organic matter, the information depth (ID) decreases
from 6–9 nm at 0◦ (normal electron emission), to 1.0–1.5 nm at an 80◦ (grazing electron
emission) angle [84]. With ARXPS, preferential surface orientations and configurations, as
well as the enrichment and depletion effects, are accessible [24,60,67–72,85–89], which has
successfully been shown for IL-based catalyst solutions [14,73–76].

In this study, we address the composition and behavior at the IL/vacuum interface
of the commercially available [Rh(COD)2][TfO] (COD = cyclooctadiene) metal complex
in IL solution under well-defined UHV conditions using ARXPS. This metal complex
is interesting for several reasons. (a) In an early study by Dupont et al. [90] on homo-
geneous catalysis in ILs, a [Rh(COD)2]+ catalyst showed a higher overall conversion in
hydrogenation of cyclohexene than the more common Wilkinson catalyst. (b) Furthermore,
[Rh(COD)2][TfO] was successfully employed for in situ preparation of Schrock−Osborn-
type catalysts [Rh(COD)(L)2][TfO] (L = phosphine ligand) for asymmetric catalysis, through
substitution of one of the COD ligands [91]. (c) As an ionic compound, [Rh(COD)2][TfO]
promises high solubility in ILs, which should yield adequate signal intensities in XPS.

Our studies under vacuum conditions indicate that the dissolved catalyst loses COD
ligands, which is accompanied by its depletion from the IL/vacuum interface. This behavior
is observed for dissolving the catalyst in [C2C1Im][TfO], [C4C1Im][TfO], [C8C1Im][TfO],
and [C2C1Im][EtOSO3]. Upon increasing the length of the aliphatic side chain on the
imidazolium cation in the [TfO]−-based solvent ILs, the depletion of the metal center from
the interface is even more pronounced. This facile loss of COD from the initial complex
opens an interesting route for modifying the complex, namely offering a surface-active
ligand, such as trisodium 3,3′,3′ ′-phosphanetriyltri(benzene-1-sulfonate) (TPPTS), which
already has been shown to strongly increase the surface concentration of Rh complexes
in a previous study [73]. We propose the formation of a Schrock−Osborn-type catalyst,
as depicted in Scheme 1. Our ARXPS measurements indicate a particular enhancement
in the Rh concentration at the IL/vacuum interface upon ligand substitution, and with
that they also expand the surface-active character of the substituting ligand to this system.
The structures of complexes and ILs employed in this work are shown in Figure 1, with
color-coding referring to the assignment of XP signals to the molecular structures.
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[Rh(COD)(TPPTS)2][TfO] in [C2C1Im][EtOSO3] under vacuum conditions starting from 
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[C2C1Im][TfO] (middle top left) TPPTS (middle top right), [C4C1Im][TfO] (middle bottom left), 
[C2C1Im][EtOSO3] (middle bottom right), and [C8C1Im][TfO] (bottom left) with the assignment of 
carbon and oxygen species detected in XPS. 
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Figure 1. Molecular structures of [Rh(COD)2][TfO] (top left), [Rh(COD)(TPPTS)2][TfO] (top right),
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[C2C1Im][EtOSO3] (middle bottom right), and [C8C1Im][TfO] (bottom left) with the assignment of
carbon and oxygen species detected in XPS.
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2. Results and Discussion
2.1. [Rh(COD)2][TfO] in [CnC1Im][TfO] (n = 2, 4, 8)

We found [Rh(COD)2][TfO] to be highly soluble in [TfO]−-based ILs. As a starting
point, we prepared a mixture with 20%mol catalyst concentration in [C2C1Im][TfO] and
characterized it using ARXPS. Figure 2a depicts the Rh 3d and C 1s spectra of this solution
in 0◦ (black, more bulk-sensitive) and 80◦ (red, more surface-sensitive) emission geometry.
The full set of spectra is shown in Figure S1 in the Supporting Information (SI), where in
addition, the F 1s, O 1s, and S 2p signals of the anion and the N 1s signals of quasi-equivalent
nitrogen atoms of the [C2C1Im]+ cation are shown, along with a wide scan.
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Figure 2. Rh 3d (left) and C 1s (right) XP spectra of solutions of [Rh(COD)2][TfO] in [C2C1Im][TfO]
with (a) 20%mol concentration and (d) 9%mol concentration in 0◦ (black) and 80◦ (red) emission
recorded at room temperature. For the assignment of peaks to the molecular structure, see color-
coding in Figure 1. (b) Applied deconvolution of the Rh region for the solution depicted in (a).
(c) Deconvolution applied for the C 1s region recorded for the solution depicted in (a) and contrasted
with the spectrum expected from nominal composition with the one actually detected (see Table 1).
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Table 1. Quantitative analysis of ARXPS core level spectra of solutions of [Rh(COD)2][TfO] in
[C2C1Im][TfO], [C4C1Im][TfO], and [C8C1Im][TfO] (note that the exact weighed proportions and
concentrations are given in Table S8 in the SI). The experimental uncertainty of the denoted com-
position values is 5–10%; to avoid rounding errors, three decimal digits are sometimes provided in
the tables).

(a) 9%mol
[Rh(COD)2][TfO] in
[C2C1Im][TfO]

Rh 3d5/2 Rh 3d5/2 ox C 1s
TfO

C 1s
C2

C 1s
hetero

C 1s
alkyl/COD N 1s F 1s O 1s S 2p

Binding Energy/eV 309.4 310.7 292.9 287.8 286.9 285.5 402.2 688.8 532.3 169.4

Nominal 0.099 0.00 1.10 1.00 4.00 2.58
1.00/1.58 2.00 3.30 3.30 1.10

Experimental, 0◦ 0.053 0.012 1.22 1.04 4.15 1.43 2.09 3.57 3.70 1.20
Experimental, 80◦ 0.033 1.33 1.02 4.09 1.23 1.99 4.17 3.40 1.21

(b) 20%mol
[Rh(COD)2][TfO] in
[C2C1Im][TfO]

Rh 3d5/2 Rh 3d5/2 ox C 1s
TfO

C 1s
C2

C 1s
hetero

C 1s
alkyl/COD N 1s F 1s O 1s S 2p

Binding Energy/eV 309.2 310.2 292.9 287.8 286.9 285.4 402.2 688.8 532.4 169.4

Nominal 0.250 0.00 1.25 1.00 4.00 5.00
1.00/4.00 2.00 3.75 3.75 1.25

Experimental, 0◦ 0.158 0.026 1.40 1.11 4.44 2.91 2.22 4.20 4.37 1.40
Experimental, 80◦ 0.125 1.54 1.13 4.50 2.35 1.97 5.03 4.05 1.40

(c) 20%mol
[Rh(COD)2][TfO] in
[C4C1Im][TfO]

Rh 3d5/2 Rh 3d5/2 ox C 1s
TfO

C 1s
C2

C 1s
hetero

C 1s
alkyl/COD N 1s F 1s O 1s S 2p

Binding Energy / eV 309.3 310.2 292.9 287.8 286.9 285.4 402.3 688.8 532.4 169.4

Nominal 0.256 0.00 1.26 1.00 4.00 7.10
3.00/4.10 2.00 3.77 3.77 1.26

Experimental, 0◦ 0.140 0.017 1.46 1.18 4.72 4.83 2.28 4.06 4.34 1.39
Experimental, 80◦ 0.083 1.48 1.16 4.62 4.83 2.22 4.68 3.93 1.41

(d) 20%mol
[Rh(COD)2][TfO] in
[C8C1Im][TfO]

Rh 3d5/2 Rh 3d5/2 ox C 1s
TfO

C 1s
C2

C 1s
hetero

C 1s
alkyl/COD N 1s F 1s O 1s S 2p

Binding Energy/eV 309.3 310.4 292.9 287.8 286.9 285.3 402.3 688.8 532.4 169.4

Nominal 0.250 0.00 1.25 1.00 4.00 11.0
7.00/4.00 2.00 3.75 3.75 1.25

Experimental, 0◦ 0.144 0.017 1.38 1.16 4.65 9.33 2.14 3.87 4.16 1.39
Experimental, 80◦ 0.066 1.19 1.06 4.23 11.7 1.97 3.56 3.18 1.29

The spin−orbit-resolved Rh 3d3/2 and 3d5/2 signals are detected at 313.9 and 309.2 eV,
respectively. From the fitted 0◦ spectrum in Figure 2b, an additional small feature at about
1 eV higher binding energy with respect to the major signal can be identified (indicated
by an arrow), which indicates an oxidized species. Notably, the corresponding signal in
the 80◦ emission is not detected to a significant extent, and thus is not quantified. The
quantitative analysis shown in Table 1b reveals that the 0◦ signal of the oxidized species
amounts to ~14% of the total Rh 3d signal.

As shown in the SI, comparable features are also detected in a similar mixture prepared
under the full exclusion of air (Figure S2, spectrum b), and in the solid catalyst powder
(spectrum d), indicating an inherent presence of oxidized Rh species. Similar findings were
reported by Carvalho et al. for the XP spectra of a solid commercial sample of Wilkinson’s
catalyst [92]. Notably, we did not observe any X-ray-induced changes over the time period
required for the acquisition of all core levels (Figure S2, spectrum c), which rules out that
the high-binding energy species is due to beam damage.

The C 1s region in Figure 2a shows a signal at 292.9 eV, which is assigned to the carbon
atom CTfO of the [TfO]− anion, and the C 1s signals at 287.8 and 286.9 eV are assigned to the
C2 and Chetero carbon atoms of the IL cation, respectively. The Calkyl/COD peak at 285.4 eV
is attributed to the superposition of the signals of the aliphatic alkyl chain of the IL cation
and the COD ligand of the metal-containing cation (for comparison, the ARXPS spectra of
the neat IL [C2C1Im][TfO] is depicted in Figure S3 in the SI). It is essential to note that the
COD ligand involves sp2 and sp3 hybridized carbon species in equal amounts, which show
significant differences in C 1s binding energy, as found by XPS for carbon materials [93,94].
Nonetheless, in accordance with the binding model for olefinic ligands after Dewar, Chatt,
and Duncanson, the σ-donor and π-acceptor binding modes between the COD ligands and
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the metal center impose sp3-like character (rehybridization) for the coordinating carbon
atoms [95,96]. Peak-fitting for quantitative analysis was done following an established de-
convolution procedure for 1,3-alkylimidazolium cations [84], differentiating three different
moieties from the [C2C1Im]+ cation C2, Chetero, and Calkyl/COD, as indicated in Figure 1.

The quantitative analysis of the peak intensities detected at 0◦ emission (as shown in
Table 1b) provides information on the stoichiometric composition of the 20%mol mixture
(note that the atomic ratio values given in the following are normalized to one imidazolium
cation). Note that the nominal contributions of Calkyl (1.0) and CCOD (16/4 = 4.0) to the
joint Calkyl/COD signal are denoted below the nominal value for this peak. Interestingly,
for the major Rh 3d5/2 signal at 309.2 eV we observe a significantly lower intensity than
expected from the nominal composition (0.16 vs. 0.25; which is 63% of the nominal
value; the experimental uncertainty of the denoted composition values is 5–10%; to avoid
rounding errors, three decimal digits are sometimes provided in the tables). If we assume
complete solubility of the metal complex, this observation indicates a strong depletion of
the dissolved complex from the IL/vacuum interface, that is, the topmost surface layer. It
was recently shown that pronounced enrichment/depletion phenomena in the IL/vacuum
interface in catalyst solutions can also significantly affect the more bulk-sensitive 0◦ XP
spectra [76]. A lower than nominal signal is also observed for the Calkyl/COD signal at
285.4 eV. The intensity ratio of [C2C1Im]+-specific N 1s, C2, and Chetero signals is in perfect
agreement with that of the nominal atomic composition of the IL cation, confirming its
intactness. In addition, these signals concomitantly show a somewhat higher intensity (2.2,
1.1, and 4.4, respectively, that is, by 10%) than expected from the nominal composition of
the solution (this is in line with the complex being depleted from the topmost layer); the
same increase must also be expected for the Calkyl contribution to the joint Calkyl/COD signal.
Consequently, the observed deficiency of the Calkyl/COD signal (2.9 vs. 5.0; or for CCOD
1.8 vs. 4.0, that is, 45% of the nominal value) must be entirely assigned to the contribution of
CCOD. The decrease in CCOD to 45% of the nominal value far exceeds that observed for Rh
(63%). This indicates a partial non-intactness of the catalyst cation due to the loss of COD
ligands, in addition to the depletion of the present complex from the IL/vacuum interface.
An illustration of the detected and expected C 1s spectra from nominal proportions is
depicted in Figure 2c. As the deconvolution of the C 1s spectra is challenging, we used
different procedures for estimation of the actual COD content, which are outlined in the
SI. All of the approaches yielded a ratio of about 1.4 COD ligands per metal center, as
shown in Table S3b in the SI. The resulting free coordination sites at the Rh center could be
occupied by the [TfO]− anion coordinating via the sulfonate group in manifold binding
motifs, e.g., in η1-OS(O)2CF3, η2-O2S(O)CF3, or µ-O2S(O)CF3 fashion [97]. This assumption
is supported by comparing the O 1s region scans of the catalyst solution (black) and neat
[C2C1Im][TfO] (blue) in Figure S4. In the catalyst solution, a minor signal (broadening) at
higher binding energy with respect to the major peak at 532.4 eV is detected (indicated by
an arrow), which is likely due to coordination of the sulfonate groups of the corresponding
[TfO]− anions. However, an alternative explanation for this additional signal could be the
above-mentioned oxidized Rh species of an unknown nature.

Interestingly, the extent of ligand loss is even higher in a more diluted solution with
a catalyst concentration of 9%mol in the IL. The Rh 3d and C 1s spectra of this diluted
solution are shown in Figure 2d (full set of spectra is depicted in Figure S5 in the SI) and
the quantitative analysis of the peak intensities is shown in Table 1a. Quantification of
the ligand loss yielded 0.8 COD molecules per metal center present in the solution (see
Table S3a in the SI). This more pronounced loss of COD ligands is accompanied by a slight
shift in Rh 3d signal by 0.2 eV to a higher binding energy with respect to the 20%mol
solution, which confirms a (partially) different chemical environment for the metal centers
in the solution, depending on the concentration.

The comparison of the XP spectra recorded for the 20%mol solution of [Rh(COD)2][TfO]
in [C2C1Im][TfO] at 0◦ (normal emission) and 80◦ (grazing emission), depicted in Figure 2a
and Figure S1, provides further information on the composition of the IL/vacuum interface.
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The quantitative analysis is provided in Table 1b. The Rh 3d signal showed a decline
at 80◦, which is to be expected for a depletion of the metal complex from the topmost
molecular layer. Concomitantly, a lower 80◦ signal is also detected for Calkyl/COD. As
the ARXP spectra of neat [C2C1Im][TfO] show no significant change in the Calkyl signal
at 80◦ (see Figure S3 and Table S1 in the SI), we attribute the decrease in intensity of the
Calkyl/COD signal solely to the contribution of CCOD. Hence, as already pointed out above,
the organometallic complexes studied here are preferably located in the bulk rather than at
the IL/vacuum interface. However, it must be emphasized that the exact structure of the
metal-containing cations is unknown due to the ligand loss of the initial catalyst. Notably,
for the more diluted solution with a 9%mol catalyst concentration, the decline in Rh 3d
signal upon going from 0◦ to 80◦ emission is more pronounced, indicating a lower surface
concentration of the metal center.

The F 1s signals (see Figure S1) and, to a lower extent, the CTfO signals, show a
significantly higher intensity in grazing emission compared with the more bulk-sensitive
0◦ spectra. Furthermore, the S 2p signal shows a similar intensity at 0◦ and 80◦, and the
O 1s peak exhibits a minor decline. These findings are in line with a preferential surface
orientation of the [TfO]− anion with the CF3 group directed towards the vacuum, whereas
the sulfonate group is directed towards the bulk. This orientation is well-known for anions
carrying groups with perfluorinated carbon [24,89,98–103], and is also observed for the
pure [C2C1Im][TfO] (see Figure S3 and Table S1).

Next, we increased the chain length of the aliphatic substituent on the IL cation
from C2 to C4 and C8. Figure 3 shows the Rh 3d and C 1s spectra obtained from 20%mol
solutions of [Rh(COD)2][TfO] in [C2C1Im][TfO] (black, cf. Figure 2a), [C4C1Im][TfO]
(green), and [C8C1Im][TfO] (orange); the full sets of spectra are shown in Figure S1, Figure
S6 and Figure S8, respectively. Their quantitative analysis is provided in Table 1b–d.
Overall, we obtain similar findings for the solutions in the longer-chained IL derivatives
[C4C1Im][TfO] and [C8C1Im][TfO] as for [C2C1Im][TfO]: (a) The Rh species are detected at
similar binding energies, indicating a similar overall chemical environment for the metal in
solution when increasing the chain length on the imidazolium cation; (b) similar contents of
the oxidized minority Rh species (14 ± 3%) with respect to the total Rh signal are detected
in 0◦ emission; (c) for all solutions, the intensity of the major Rh signal is found much lower
than expected from nominal composition (59% ± 4% of the nominal value), with a weak
trend toward lower values for the longer alkyl chains ([C2C1Im][TfO]: 63%, [C4C1Im][TfO]:
55%, [C8C1Im][TfO]: 58%; as derived from Table 1). These lower values are attributed to
the depletion of the metal from the IL/vacuum interface, as discussed above.

For the [C4C1Im][TfO] solution, the contribution of the CCOD signal to Calkyl/COD
shows a larger deficit than expected from the Rh signal, similar to the [C2C1Im][TfO]
solution as described above; for both, a COD:Rh ratio of ~1.4:1 is found; see Table S3 in
the SI. However, such a deficit is not observed for the [C8C1Im][TfO] solution, where Rh
and CCOD both decrease to the same extent, yielding a nominal COD:Rh ratio of ~2.0:1 for
the intact [Rh(COD)2]+ complex. A possible explanation for the absence of ligand loss in
the [C8C1Im][TfO] solution is that the longer alkyl chains in [C8C1Im][TfO] stabilized the
complex and prevented (or lower) the ligand loss. One should note here, that the alkyl and
COD contributions to the Calkyl/COD peak in the C 1s spectrum cannot be easily separated.
Therefore, three different approaches for calculating the COD:Rh ratios are discussed in
the Supporting Information, and the most reliable numbers shown in Table S3 of SI are
used here.
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Figure 3. (a) Rh 3d and (b) C 1s XP spectra of 20%mol solutions of [Rh(COD)2][TfO] in [C2C1Im][TfO]
(black), [C4C1Im][TfO] (green), and [C8C1Im][TfO] (orange) in 0◦ (left) and 80◦ (right) emission. All
of the spectra were recorded at room temperature.

As shown in Figure 3a, the Rh 3d intensity detected in the 0◦ emission is found to
be lower for the [C4C1Im][TfO] and [C8C1Im][TfO] solutions compared with the solution
of [C2C1Im][TfO]. This effect is much more pronounced in the more surface-sensitive
80◦ spectra, where the intensity gradually decreases upon increasing the chain length
on the imidazolium cation. At the same time, the Calkyl/COD peak showed a strong in-
crease when comparing 0◦ and 80◦ spectra for the [C8C1Im][TfO] solution, while for the
[C4C1Im][TfO] solution, the intensity remains virtually constant and decreases for the
solution of [C2C1Im][TfO], as discussed above. This behavior indicates a more pronounced
depletion of the present complex from the interface, due to the higher surface affinity of the
solvent with longer substituents. It is well known that the IL/vacuum interface is preferen-
tially populated with long alkyl chains, resulting in a lower surface tension [24,98,104].

2.2. [Rh(COD)2][TfO] in [C2C1Im][EtOSO3]: Ligand Substitution Using TPPTS

In the previous section, pronounced depletion of the metal center from the IL/vacuum
interface, along with ligand loss of [Rh(COD)2][TfO] dissolved in [C2C1Im][TfO] and
[C4C1Im][TfO], was observed. The latter finding suggests a simple route towards the
Schrock−Osborn-type [Rh(COD)L2][TfO] (L = TPPTS) complex. The expected reaction
sequence is shown in Scheme 1. In a previous study, TPPTS has shown a particularly
high solubility in [C2C1Im][EtOSO3] and exhibited surface activity [73]. In parallel with
the solutions discussed above, we first consider a 20%mol solution of [Rh(COD)2][TfO]
in [C2C1Im][EtOSO3], without adding TPPTS. Figure 4 depicts the ARXPS spectra and
Table 2a shows the quantitative analysis of the peak intensities (note that the full set of
spectra is shown in Figure S10 in the SI). The spectra show similar characteristics as have
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been observed and discussed for [TfO]− ILs (see above), concerning Rh 3d binding energy,
proportion of the oxidized Rh species, deficit of COD ligand, and depletion of the metal
from the gas/IL interface. The ARXPS measurements on neat [C2C1Im][EtOSO3] (see
Figure S11 for full set of spectra) reveal only a slight increase in the Calkyl signal when
comparing the 0◦ and 80◦ emission spectra, which corresponds to a preferential surface
orientation with the ethyl substituents of the cation and anion towards the vacuum. With
this, the decrease in the Calkyl/COD signal seen in Figure 4 has to be fully assigned to the
depletion of the metal complex from the gas/IL interface. The O 1s region displays two
distinguishable species. OC-O-S corresponds to oxygen atoms bound to carbon and to sulfur
in the [EtOSO3]− anion, while the OSO3 signal includes the remaining oxygen atoms from
the IL anion and the oxygen atoms from the [TfO]− anion.
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Table 2. Quantitative analysis of ARXPS core level spectra of the solutions relevant for ligand
substitution in [C2C1Im][EtOSO3] (note that the exact weighed proportions and concentrations are
given in Table S8 in the SI; the experimental uncertainty of the denoted composition values is 5–10%;
to avoid rounding errors, three decimal digits are sometimes provided in the tables).

(a) 20%mol
[Rh(COD)2][TfO] in
[C2C1Im][EtOSO3]

Rh
3d5/2

Rh
3d5/2 ox

C 1s
TfO

C 1s
C2

C 1s
hetero

C 1s
alkyl/
COD

N 1s F 1s O 1s
C-O-S

O 1s
SO3

S 2p P 2p Na 1s

Binding Energy/eV 309.2 310.2 292.9 287.8 286.9 285.4 402.2 688.8 533.4 532.1 169.5

Nominal 0.250 0.00 0.250 1.00 5.00 6.00
2.00/4.00 2.00 0.750 1.00 3.75 1.25

Experimental, 0◦ 0.171 0.025 0.400 1.14 5.70 3.80 2.22 0.983 1.19 4.24 1.39
Experimental, 80◦ 0.133 0.634 1.15 5.76 3.29 2.13 1.75 1.02 3.92 1.47

(b) 5.9%mol solution
of TPPTS in
[C2C1Im][EtOSO3]
(2:31.6 TPPTS:IL ratio)

Rh
3d5/2

Rh
3d5/2 ox

C 1s
TfO

C 1s
C2

C 1s
hetero

C 1s
alkyl/
phenyl

N 1s F 1s O 1s
C-O-S

O 1s
SO3

S 2p P 2p Na 1s

Binding Energy/eV 287.8 286.9 285.5 402.2 533.4 531.9 169.5 131.7 1071.9
Nominal 1.00 5.00 3.14 2.00 1.00 3.57 1.19 0.063 0.190
Experimental, 0◦ 0.959 4.80 3.58 1.74 1.12 3.58 1.20 0.060 0.122
Experimental, 80◦ 0.774 3.87 6.80 1.12 1.01 2.56 0.96 0.063

(c) [Rh(COD)2][TfO]
and TPPTS in
[C2C1Im][EtOSO3]
(1:2:31.6 Rh:TPPTS:IL
ratio)

Rh
3d5/2

Rh
3d5/2 ox

C 1s
TfO

C 1s
C2

C 1s
hetero

C 1s
alkyl/
COD/
phenyl

N 1s F 1s O 1s
C-O-S

O 1s
SO3

S 2p P 2p Na 1s

Binding Energy/eV 309.0 287.7 286.8 285.5 402.2 688.8 533.3 531.9 169.5 132.5 1071.9
Nominal 0.032 0.00 0.032 1.00 5.00 3.39 2.00 0.095 1.00 3.66 1.22 0.063 0.190
Experimental, 0◦ 0.031 1.00 4.99 3.55 1.85 0.122 1.10 3.61 1.25 0.054 0.122
Experimental, 80◦ 0.84 4.19 6.29 1.36 0.200 0.962 2.69 1.09 0.062

The peak intensity detected for the F 1s signal is significantly higher for 0◦ than
expected from the nominal composition. In addition, the peak increase at 80◦ by far
exceeded the magnitude typically observed for a pure orientational effect, as pointed
out for the [TfO]− ILs discussed above. Besides the expected preferential orientation
of the [TfO]− anion with the CF3 group pointing towards the vacuum, these effects are
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attributed to a selective enrichment of [TfO]− at the IL/vacuum interface. The much
larger than nominal CTfO signal, and its enhancement at 80◦, supported this interpretation.
Interestingly, the enrichment of the [TfO]− at the IL/vacuum interface is not accompanied
by an enrichment of the original counter ion [Rh(COD)2]+, but rather indicates an ion
metathesis at the surface with a higher surface concentration of [C2C1Im]+ and [TfO]− and
a lower surface concentration of [Rh(COD)2]+ and [EtOSO3]−. Apart from this effect, the
behavior of the Rh-containing cation is similar to that in [C2C1Im][TfO] and [C4C1Im][TfO],
in particular concerning the partial loss of the labile COD ligand.

As a next step, we address the desired ligand substitution using TPPTS according
to Scheme 1. The maximum solubility of TPPTS in [C2C1Im][EtOSO3] was reported as
16.1%mol in the literature [73]. However, the XPS analysis of a saturated solution of TPPTS
in [C2C1Im][EtOSO3] (concentration ~16.6%mol TPPTS, see experimental section and Table
S8 for details), as shown in Figure S12 and Table S7, reveals a much lower intensity of
TPPTS-specific P and Na signals than expected from the reported solubility. The intensity
of the P 2p signal in the 0◦ emission corresponds to a solubility of ~7%mol of TPPTS in
[C2C1Im][EtOSO3] (note that this finding is independent of using acetonitrile as a co-
solvent, as has been used in literature [73], or not). Due to the very low intensity of the
P 2p signal, a relatively high uncertainty must be expected for the derived solubility. For
the ligand substitution reaction, we chose a slightly lower TPPTS content (5.9%mol TPPTS)
to ensure full dissolution of the ligand before [Rh(COD)2][TfO] was added (see below).
The full set of ARXPS spectra of the 5.9%mol solution of TPPTS in [C2C1Im][EtOSO3] is
shown in Figure S13 (note that a detailed description of the relevant spectra is given below).
The quantitative analysis of all signals shown in Table 2b reveals good agreement with the
nominal composition, confirming the complete dissolution of TPPTS.

Finally, we discuss the spectra of the solution obtained by adding TPPTS to the
ligand substitution, as shown in Figure 5a (full set of spectra shown in Figure S14). The
nominal Rh:TPPTS ratio was chosen to be 1:2, as expected for the molecular structure
of [Rh(COD)(TPPTS)2][TfO], and the nominal composition of the solution was chosen
according to the 5.9%mol solution of TPPTS in [C2C1Im][EtOSO3], as discussed above.
Thus, assuming the quantitative formation of the final complex, a Rh:TPPTS:IL ratio of
1:2:31.6 must be expected (yielding a concentration of 3.1%mol of [Rh(COD)(TPPTS)2][TfO])
in the solution. The quantitative analysis is shown in Table 2c. The Rh 3d5/2 signal is
found at 309.0 eV and thus slightly shifted by 0.2 eV to a lower binding energy compared
with the 20%mol solution of [Rh(COD)2][TfO] in [C2C1Im][EtOSO3] without adding the
ligand (cf. Table 2a). Even though the extent of this shift is on the limit of experimental
uncertainty, it is in line with coordination of the strong electron donating phosphine ligands.
Further proof for successful coordination of TPPTS to the metal center can be extracted
from comparison with the spectra obtained from the equimolar solution of TPPTS in
[C2C1Im][EtOSO3], as shown in Figures 5b and S13. Comparing the P 2p spectra (middle-
right of Figure 5a,b) reveals a shift of 0.7 eV to a higher binding energy for the Rh-containing
mixture, which is in accordance with the electron donation of the phosphorus atom to the
metal center.
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Figure 5. (a) Rh 3d (left), C 1s (middle left), F 1s (middle right), and P 2p (right) XP spectra of a
solution of [Rh(COD)2][TfO] and TPPTS in [C2C1Im][EtOSO3] (ratio Rh:TPPTS:IL 1:2:31.6) and (b) C
1s and P 2p XP spectra of a solution of TPPTS in [C2C1Im][EtOSO3] (ratio TPPTS:IL 2:31.6) in 0◦

(black) and 80◦ (red) emission recorded at room temperature. For the assignment of peaks to the
molecular structures, see Figure 1.

As shown in Table 2c, the experimental Rh content in the solution derived from the
signal intensities in the 0◦ emission agrees well with the nominal composition, which
is in contrast with the mixtures discussed above, without adding TPPTS, where only
55–68% of the nominal concentration was found (see Tables 1 and 2a). This confirms
the presence of the metal complex in the topmost layer, that is, a significantly higher
concentration in the surface-near region upon ligand substitution with TPPTS compared
with the [Rh(COD)2][TfO] solutions. All other atomic species are in line with the nominal
stoichiometry, except for F 1s and Na 1s. For the F 1s signal, this must be assigned to the
enrichment of the [TfO]− anion at the IL/vacuum interface, as discussed for the 20%mol
solution of [Rh(COD)2][TfO] in [C2C1Im][EtOSO3]. For the Na 1s signal, this finding is
in agreement with the TPPTS-only solution and indicated preferential depletion of Na+

from the surface, whereby the SO3
− groups could be charge-compensated by [C2C1Im]+

cations [73]. In the C 1s region, the signals from the TPPTS ligand superimpose with
the Calkyl and CCOD signals to give a joint Calkyl/COD/phenyl signal. The intensity of this
signal strongly increases at 80◦, while all other signals show a decrease, except for the F 1s
signal, which is due to the enrichment and preferred orientation of the [TfO]− anion at the
surface. The increase in the Calkyl/COD/phenyl signal emphasizes the surface affinity of the
TPPTS ligand. In comparison with the TPPTS-only solution (Figure 5b middle-left), the
increase is less pronounced for the metal-containing solution, which could be attributed
to the contribution of the non-surface-active COD ligand to the signal. This indicates a
preferential surface orientation of the complex, with the TPPTS ligands terminating the
surface, while the metal center and the COD ligand are directed towards the bulk. Note
that due to the low concentration and specific orientation of the final complex, no Rh 3d
signal and P 2p signal signals could be resolved at 80◦. As can be extracted from Table 2c,
the S 2p and OSO3 signals show a decrease at 80◦, indicating that the non-polar phenyl
moieties occupy the outer surface, while the charged SO3

− groups point towards the bulk,
similar to observations made previously [73].
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3. Experimental Section
3.1. Materials and Synthesis

[Rh(COD)2][TfO] (purity 98%) and TPPTS (purity 95%) were purchased from Sigma-
Aldrich. [C2C1Im][TfO], [C4C1Im][TfO], [C8C1Im][TfO], and [C2C1Im][EtOSO3] (purity of
all ILs used was 99%) were purchased from Iolitec. The chemicals were used as delivered.

3.2. Sample Preparation

Exact weighed proportions and concentrations of the solutions employed are given in
Table S8 in the SI.

3.3. Solutions of [Rh(COD)2][TfO] in ILs

[Rh(COD)2][TfO] was dissolved in the respective IL under ambient conditions for at
least 3 h to produce clear, deep red solutions.

3.4. Saturated Solution of TPPTS in [C2C1Im][EtOSO3]

TPPTS was stirred in [C2C1Im][EtOSO3] under ambient conditions for 3 h. Bigger
excess particles of TPPTS were allowed to settle to the ground of the vessel. A white
suspension was obtained.

3.5. 5.9.%mol Solution of TPPTS in [C2C1Im][EtOSO3]

TPPTS was stirred in [C2C1Im][EtOSO3] under ambient conditions for 24 h. A small
amount of fine particles remained undissolved and were allowed to settle to the ground
of the vessel to yield a clear colorless solution. The remaining particles were assigned to
insoluble contaminations due the relatively low purity grade of TPPTS (95%).

3.6. Solution for Ligand Substitution

TPPTS was dissolved by stirring for 70 h in [C2C1Im][EtOSO3] in an inert gas atmo-
sphere to yield a solution with similar characteristics as the 5.9%mol solution described
above. [Rh(COD)2][TfO] was added and the mixture was stirred for 24 h under vacuum
conditions using standard Schlenk techniques to yield a clear, deep red solution. Note that
no co-solvent was employed for the preparation of the solution, as it had been used for a
similar ligand substitution reaction reported previously [73].

The samples were applied onto the setup-compatible [84] molybdenum sample holders
under ambient conditions. Prior to performing the XPS analyses, the samples were left for
degassing for at least 12 h in the load-lock of the UHV apparatus.

3.7. ARXPS Measurements and Data Evaluation

XPS analyses were conducted using the DASSA (dual analyzer system for surface
analysis) setup comprising two identical analyzers in 0◦ and in 80◦ emission geometry.
For details, see [84]. We used monochromatized Al-Kα radiation (Source: XM 1000, 14 kV,
238 W, hν = 1486.6 eV).

Survey scans were recorded with a pass energy of 150 eV, while high-resolution region
scans were taken with a pass energy of 35 eV. Moreover, 0◦ spectra were referenced to the F
1s signal of the [TfO]− anion at 688.8 eV, and 80◦ spectra were referenced to the binding
energy of the N 1s signals of the imidazolium ring at 80◦. For the sake of comparability,
XP spectra of neat [C2C1Im][EtOSO3] and the solutions of TPPTS in [C2C1Im][EtOSO3]
were referenced to the N 1s imidazolium peak of the 20%mol solution of [Rh(COD)2][TfO]
in [C2C1Im][EtOSO3].

For quantitative analysis of the intensities, atomic sensitivity factors were used [105].
XP spectra were normalized to the total intensity detected from the region scans of the
20%mol solution of [Rh(COD)2][TfO] in [C2C1Im][TfO]. For the Rh 3d spectra, a Shirley
background was subtracted, while for non-metallic species, a two-point linear background
subtraction was performed. For the C 1s spectra, a three-point linear background was
subtracted, if a CTfO signal at ~293 eV was detected. Peak fitting was achieved using a
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Gauss−Lorentzian function with 30% Lorentzian contribution. Individual fitting proce-
dures are outlined in the SI. Deconvolution of spin−orbit resolved signals was achieved
using constraints according to the degeneracy ratio of the orbitals with identical full with at
half maximum (FWHM) values. Spin−orbit-induced binding energy shifts were constraint
as follows: 4.70 eV for Rh 3d, 0.90 eV for P 2p, and 1.21 eV for S 2p. For the sake of visual
comparability, the inherently lower intensity of the 80◦ spectra was compensated for by
scaling with a factor derived from the total intensity of all region spectra obtained in the
two analyzation geometries [84].

During XPS measurements of solid [Rh(COD)2][TfO], an electron gun was used for
charge compensation.

4. Conclusions

We studied the composition and surface behavior of [Rh(COD)2][TfO] in [C2C1Im][TfO],
[C4C1Im][TfO], [C8C1Im][TfO], and [C2C1Im][EtOSO3] under well-defined UHV condi-
tions by ARXPS. In the ILs with ethyl and butyl chains, we found a deficit of COD ligands
indicating non-intactness of the catalyst under measuring conditions. In all cases, the metal
species present in the solution are depleted from the IL/vacuum interface. Increasing the
chain length of the aliphatic substituent on the imidazolium cation of the [TfO]−-based
ILs leads to a more pronounced depletion from this interface, which is most likely due
to a higher surface affinity of the solvent cations with longer chains. The stoichiometric
deficiency of COD suggests a simple route towards increasing the metal concentration
at the IL/vacuum interface by offering a surface-active ligand, such as TPPTS [73]. We
propose the formation of a Schrock−Osborn catalyst [Rh(COD)(TPPTS)2][TfO] by ligand
substitution. Indeed, ARXPS investigations show a higher concentration of the metal
center at the interface after ligand substitution, as has been observed previously when
employing TPPTS [73]. These results are highly relevant for the design of IL-based catalytic
systems with high surface areas between catalyst solutions and fluid reactant/product
surroundings, such as in SILP or biphasic catalysis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13050871/s1, Figure S1: Survey, Rh 3d, C 1s, F 1s, N 1s, O 1s,
S 2p and Si 2p XP spectra of a 20%mol solution of [Rh(COD)2][TfO] in [C2C1Im][TfO] in 0◦ (black)
and 80◦ (red) emission recorded at room temperature with assignment of peaks to the molecular
structure; Figure S2: Rh 3d XP spectra of 20%mol solutions of [Rh(COD)2][TfO] in [C2C1Im][TfO] (a)
prepared in air, (b) prepared under exclusion of air, (c) solution shown in (b) after more than 100 min
of X-radiation. (d) shows the Rh 3d XP spectrum of the solid catalyst. For sake of comparability,
the spectrum shown in (d) was referenced to the binding energy of the signal shown in (a). Note
that the spectrum shown in (d) shows broadening due to charging of the solid sample. All spectra
were recorded in 0◦ emission at room temperature; Figure S3: Survey, C 1s, F 1s, N 1s, O 1s, S 2p
and Si 2p XP spectra of neat [C2C1Im][TfO] in 0◦ (black) and 80◦ (red) emission recorded at room
temperature with assignment of peaks to the molecular structure; Figure S4: O 1s XP spectra of
the 20%mol solution of [Rh(COD)2][TfO] in [C2C1Im][TfO] shown in Figure S1 (black) and neat
[C2C1Im][TfO] shown in Figure S3 (blue) in 0◦ emission recorded at room temperature. The Arrow
indicates the additional shoulder in the black spectrum most likely due to [TfO]− anions coordinating
to the metal center (for details, see main text); Figure S5: Survey, Rh 3d, C 1s, F 1s, N 1s, O 1s, S
2p and Si 2p XP spectra of a 9%mol solution of [Rh(COD)2][TfO] in [C2C1Im][TfO] in 0◦ (black)
and 80◦ (red) emission recorded at room temperature with assignment of peaks to the molecular
structure; Figure S6: Survey, Rh 3d, C 1s, F 1s, N 1s, O 1s, S 2p and Si 2p XP spectra of a 20%mol
solution of [Rh(COD)2][TfO] in [C4C1Im][TfO] in 0◦ (black) and 80◦ (red) emission recorded at room
temperature with assignment of peaks to the molecular structure; Figure S7: Survey, C 1s, F 1s, N 1s,
O 1s, S 2p and Si 2p XP spectra of neat [C4C1Im][TfO] in 0◦ (black) and 80◦ (red) emission recorded
at room temperature with assignment of peaks to the molecular structure; Figure S8: Survey, Rh
3d, C 1s, F 1s, N 1s, O 1s, S 2p and Si 2p XP spectra of a 20%mol solution of [Rh(COD)2][TfO] in
[C8C1Im][TfO] in 0◦ (black) and 80◦ (red) emission recorded at room temperature with assignment
of peaks to the molecular structure; Figure S9: Survey, C 1s, F 1s, N 1s, O 1s, S 2p and Si 2p XP
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spectra of neat [C8C1Im][TfO] in 0◦ (black) and 80◦ (red) emission recorded at room temperature with
assignment of peaks to the molecular structure; Figure S10: Survey, Rh 3d, C 1s, F 1s, N 1s, O 1s, S 2p
and Si 2p XP spectra of a 20%mol solution of [Rh(COD)2][TfO] in [C2C1Im][EtOSO3] in 0◦ (black)
and 80◦ (red) emission recorded at room temperature with assignment of peaks to the molecular
structure; Figure S11: Survey, C 1s, N 1s, O 1s, S 2p and Si 2p XP spectra of neat [C2C1Im][EtOSO3]
in 0◦ (black) and 80◦ (red) emission recorded at room temperature with assignment of peaks to
the molecular structure.; Figure S12: Survey, C 1s, F 1s, N 1s, O 1s, S 2p, P 2p, Na 1s and Si 2p XP
spectra of a saturated solution of TPPTS in [C2C1Im][EtOSO3] in 0◦ (black) and 80◦ (red) emission
recorded at room temperature with assignment of peaks to the molecular structure; Figure S13:
Survey, C 1s, F 1s, N 1s, O 1s, S 2p, P 2p, Na 1s and Si 2p XP spectra of a 5.9%mol solution of
TPPTS in [C2C1Im][EtOSO3] in 0◦ (black) and 80◦ (red) emission recorded at room temperature with
assignment of peaks to the molecular structure; Figure S14: Survey, Rh 3d, C 1s, F 1s, N 1s, O 1s, S 2p,
P 2p, Na 1s and Si 2p XP spectra of a solution of [Rh(COD)2][TfO] and TPPTS in [C2C1Im][EtOSO3]
with 1:2:31.6 ratio in 0◦ (black) and 80◦ (red) emission recorded at room temperature with assignment
of peaks to the molecular structure; Table S1: Quantitative analysis of ARXPS core level spectra
of neat [C2C1Im][TfO]; Table S2: Atomic sensitivity factor (ASF)-corrected intensities obtained
from XPS of a 20%mol solution of [Rh(COD)2][TfO] in [C2C1Im][TfO] in 0◦ emission relevant
for the calculation of the actual COD content; Table S3: Estimation of COD content per metal
center in 20%mol solutions of [Rh(COD)2][TfO] in [C2C1Im][TfO], [C4C1Im][TfO], [C8C1Im][TfO],
[C2C1Im][EtOSO3] (a, c–e) and 9%mol solution in [C2C1Im][TfO] (b) using approaches I, I.2 and II
outlined above. As the numbers derived from approach II (bold) are the most reliable one, they are
used for the further discussion; Table S4: Quantitative analysis of ARXPS core level spectra of neat
[C4C1Im][TfO]; Table S5: Quantitative analysis of ARXPS core level spectra of neat [C8C1Im][TfO];
Table S6: Quantitative analysis of ARXPS core level spectra of neat [C2C1Im][EtOSO3]; Table S7:
Quantitative analysis of XPS core level spectra recorded in 0◦ emission of a solution of TPPTS in
[C2C1Im][EtOSO3] assuming a solubility of 16.1%mol; Table S8: Weighed proportions for mixtures
investigated in this work; Reference [106] is cited in the supplementary materials.
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7. Pešić, J.; Watson, M.; Papović, S.; Vraneš, M. Ionic Liquids: Review of their Current and Future Industrial Applications and their

Potential Environmental Impact. Recent Pat. Nanotechnol. 2021, 15, 225–244. [CrossRef]
8. Greer, A.J.; Jacquemin, J.; Hardacre, C. Industrial Applications of Ionic Liquids. Molecules 2020, 25, 5207. [CrossRef]
9. Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq. 2017, 227, 44–60.

[CrossRef]

https://doi.org/10.1021/cr980032t
https://www.ncbi.nlm.nih.gov/pubmed/11849019
https://doi.org/10.1016/j.ccr.2004.04.015
https://doi.org/10.1021/cr1003248
https://www.ncbi.nlm.nih.gov/pubmed/21469639
https://doi.org/10.1021/cr500411q
https://doi.org/10.1002/poc.863
https://doi.org/10.1039/D0OB02214D
https://doi.org/10.2174/1872210513999190923121448
https://doi.org/10.3390/molecules25215207
https://doi.org/10.1016/j.molliq.2016.11.123


Catalysts 2023, 13, 871 15 of 18

10. Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic Liquids in Heterocyclic Synthesis. Chem. Rev.
2008, 108, 2015–2050. [CrossRef]

11. Dhameliya, T.M.; Nagar, P.R.; Bhakhar, K.A.; Jivani, H.R.; Shah, B.J.; Patel, K.M.; Patel, V.S.; Soni, A.H.; Joshi, L.P.; Gajjar, N.D.
Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J. Mol. Liq.
2022, 348, 118329. [CrossRef]

12. Dai, C.; Zhang, J.; Huang, C.; Lei, Z. Ionic Liquids in Selective Oxidation: Catalysts and Solvents. Chem. Rev. 2017, 117, 6929–6983.
[CrossRef]

13. Dyson, P. Review: Synthesis of organometallics and catalytic hydrogenations in ionic liquids. Appl. Organomet. Chem. Appl.
Organometal. Chem. 2002, 16, 495–500. [CrossRef]

14. Hemmeter, D.; Paap, U.; Taccardi, N.; Mehler, J.; Schulz, P.; Wasserscheid, P.; Maier, F.; Steinrück, H.-P. Formation and sur-
face behavior of Pt and Pd complexes with ligand systems derived from nitrile-functionalized ionic liquids studied by XPS.
ChemPhysChem 2022, 24, e202200391.

15. Zhao, D.; Fei, Z.; Geldbach, T.J.; Scopelliti, R.; Dyson, P.J. Nitrile-Functionalized Pyridinium Ionic Liquids: Synthesis, Characteri-
zation, and Their Application in Carbon−Carbon Coupling Reactions. J. Am. Chem. Soc. 2004, 126, 15876–15882. [CrossRef]

16. He, Z.; Alexandridis, P. Nanoparticles in ionic liquids: Interactions and organization. Phys. Chem. Chem. Phys. 2015, 17,
18238–18261. [CrossRef]

17. Denicourt-Nowicki, A.; Léger, B.; Roucoux, A. N-Donor ligands based on bipyridine and ionic liquids: An efficient partnership
to stabilize rhodium colloids. Focus on oxygen-containing compounds hydrogenation. Phys. Chem. Chem. Phys. 2011, 13,
13510–13517. [CrossRef]

18. Antonietti, M.; Kuang, D.; Smarsly, B.; Zhou, Y. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other
Inorganic Nanostructures. Angew. Chem. Int. Ed. 2004, 43, 4988–4992. [CrossRef]

19. Ejigu, A.; Walsh, D.A. Electrocatalysis in Room Temperature Ionic Liquids. In Electrochemistry in Ionic Liquids: Volume 2:
Applications; Torriero, A.A.J., Ed.; Springer International Publishing: Heidelberg, Germany, 2015; pp. 483–506.

20. Zhang, G.-R.; Etzold, B.J.M. Ionic liquids in electrocatalysis. J. Energy Chem. 2016, 25, 199–207. [CrossRef]
21. Tan, X.; Sun, X.; Han, B. Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation. Natl. Sci.

Rev. 2021, 9, nwab022. [CrossRef]
22. Itoh, T. Ionic Liquids as Tool to Improve Enzymatic Organic Synthesis. Chem. Rev. 2017, 117, 10567–10607. [CrossRef] [PubMed]
23. van Rantwijk, F.; Sheldon, R.A. Biocatalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2757–2785. [CrossRef] [PubMed]
24. Steinrück, H.-P.; Wasserscheid, P. Ionic Liquids in Catalysis. Catal. Lett. 2015, 145, 380–397. [CrossRef]
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