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Structure and Texture Filling-In of Missing
Image Blocks in Wireless Transmission and

Compression Applications
Shantanu D. Rane, Guillermo Sapiro, and Marcelo Bertalmio

Abstract—An approach for filling-in blocks of missing data
in wireless image transmission is presented in this paper. When
compression algorithms such as JPEG are used as part of the
wireless transmission process, images are first tiled into blocks
of 8 8 pixels. When such images are transmitted over fading
channels, the effects of noise can destroy entire blocks of the image.
Instead of using common retransmission query protocols, we aim
to reconstruct the lost data using correlation between the lost
block and its neighbors. If the lost block contained structure, it is
reconstructed using an image inpainting algorithm, while texture
synthesis is used for the textured blocks. The switch between the
two schemes is done in a fully automatic fashion based on the
surrounding available blocks. The performance of this method
is tested for various images and combinations of lost blocks. The
viability of this method for image compression, in association with
lossy JPEG, is also discussed.

Index Terms—Compression, filling-in, inpainting, interpolation,
JPEG, restoration, texture synthesis, wireless transmission.

I. INTRODUCTION

G
ENERAL purpose images are most commonly com-

pressed by lossy JPEG. JPEG divides the image into

blocks of 8 8 pixels and calculates a two-dimensional (2-D)

discrete cosine transform (DCT), followed by quantization and

Huffman encoding; see [1]. In common wireless scenarios,

the image is transmitted over the wireless channel block by

block. Due to severe fading, we may lose an entire block,

even several consecutive blocks of an image. In [2] the authors

report that average packet loss rate in a wireless environment

is 3.6% and occurs in a bursty fashion. In the worst case, a

whole line of image blocks might be lost. Note that JPEG

uses differential encoding for storing the average (dc) value

of successive pixels. Hence, even if a single block is lost,

the remaining blocks in that line (or reset interval) might be
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received without their correct average (dc) value. Two common

techniques to make the transmission robust are forward error

correction (FEC) and automatic retransmission query protocols

(ARQ). Of these, FEC needs extra error correction packets to

be transmitted. As noted in [3], ARQ lowers data transmission

rates and can further increase the network congestion which

initially induced the packet loss. Instead, we show that it is

possible to satisfactorily reconstruct the lost blocks by using the

available information surrounding them.1 This will result in an

increase in bandwidth efficiency of the transmission. The basic

idea is to first automatically classify the block as textured or

structured (containing edges), and then fill-in the missing block

with information propagated from the surrounding pixels. In

the case of structured blocks, the inpainting algorithm in [4]

is used, while for textured regions we follow [5].2 We test the

proposed scheme with a variety of images and simulated block

losses. We also combine this approach with JPEG compression

itself, where the encoder voluntarily skips blocks, and these

are reconstructed at the decoder in the same fashion as in the

wireless scenario. This process improves the compression ratio,

at little or no quality degradation.

II. PREVIOUS RELATED WORK

Most schemes reported in the literature deal with image trans-

mission in error-prone environments using a combination of

source and channel coding. The authors in [2] describe a pack-

etization scheme in which the DCT coefficients array generated

by JPEG is grouped such that bursty (consecutive) packet loss

during transmission is scattered into a pseudo-random loss in

the image domain (i.e., consecutive blocks are rarely lost in

the image domain). The ensuing reconstruction scheme bene-

fits because, most frequency components can be recovered from

adjacent blocks. However, large bursts may cause the errors

to cluster in the image, and reconstruction suffers. It should

be noted that the packetization scheme proposed in [2], when

used with the reconstruction scheme described in our paper, is

expected to further improve on the results reported here, and

provide satisfactory reconstruction results even for very large

bursts.

1The location of lost data, that is, lost image blocks, is known in common
wireless scenarios.

2Other algorithms could be used as well, e.g., [6]–[10], but the ones we use
were shown in the literature to produce state-of-the-art results at an acceptable
low computational cost.
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Fig. 1. Texture synthesis procedure.

The authors in [3] also note that interleaving the image data

before packetization avoids loss of contiguous areas in an image,

facilitating reconstruction. This paper demonstrates reconstruc-

tion in the transform domain by expressing the lost data as a

linear combination of blocks in the 4-neighborhood of the lost

block. Four optimal weights (coefficients) need to be calculated

per block based on combinations of available adjacent blocks.

These weights, which result in a 10% space overhead, are used

later in reconstruction. Strong diagonal edges are not well re-

constructed by this method, as explained in [3].

Additional work on the reconstruction of missing data in

block-based compression schemes is reported in [11], where

the DCT coefficients of a missing block are interpolated from

those with the same position in the neighboring blocks.

The novelty of our proposed scheme is in the separation of

the lost blocks into different classes, followed by the use of

state-of-the-art image filling-in algorithms for textured and

structured regions. This is done in a complete automatic fashion

and without any side information.

III. PROPOSED ALGORITHM

The reconstruction of lost blocks follows three computation-

ally efficient steps:3

a) classify lost blocks into texture and structure;

b) synthesize blocks which were classified as texture (use

texture synthesis);

c) fill in blocks which were classified as structure (use image

inpainting).

We now proceed to describe each one of these components.

A. Block Classification

The first step in the reconstruction is to classify the lost blocks

into texture or structure. This decision is taken at the receiver

by querying the region surrounding the lost block. Lost blocks

are, of course, excluded from the querying process. (Alterna-

tively, we may perform this procedure at the transmitter, and

3Recall that the missing blocks locations are given.

then transmit one bit per block, indicating the presence of tex-

ture or structure. This entails the overhead of one extra bit per

block.) At the core of this classification, is the method proposed

in [12],4 which inspired the approach here presented. To de-

termine whether or not a block has texture (or noise), we use

a simple coarseness measure given by the number of local ex-

trema in the neighborhood of the lost block. The number of local

extrema are simply the pixels which are local row extrema as

well as local column extrema.

Using the method of [12], the number of local extrema in a

window of side is given by

(1)

where and are respectively the upper and lower bounds

for texture coarseness and are selected by the user. These coarse-

ness values vary from 0 (no extrema) to 1 (all pixels in the se-

lected window are extrema). We have used and

as suggested in [12]. In this implementation, ,

giving . Thus, if a 8 8 block has fewer than extrema,

it is classified to have structure, else is considered to contain tex-

ture (which includes noisy blocks).

The above technique is applied for each available block of

8 8 pixels in the immediate neighborhood of the lost block.

Even if a single block from this neighborhood contains struc-

ture, we first consider a decision in favor of structure. However,

reconstruction being our primary goal, this criteria alone might

be insufficient, as we illustrate now. Consider for example that

we have lost a block containing an edge between two textured

regions. The edge between two regions is certainly an expres-

sion of structure, and needs to be given precedence over tex-

ture even if the block in question has more than the necessary

coarseness. The logic behind this will be understood in the next

section, wherein, we require the textured region surrounding the

block to fill it up. If we were to classify a block containing an

edge as texture, we would not be able to reconstruct the edge

later, as will become clear after examining the texture synthesis

algorithm.

To overcome this limitation, we impose an additional con-

straint as follows. We consider the 8-neighborhood of a 8 8

block and calculate differences between the average values of

the blocks on opposite sides of the center block (considering

only available blocks). If the four resulting differences are above

a threshold, we decide that an edge does indeed pass through

the textured block. We then designate the block as structure,

notwithstanding its high coarseness. This simple additional con-

straint has provided a correct classification in all tested images.

B. Texture Synthesis

From the earlier classification, we conclude that when a block

is classified as having texture, the entire 8-neighborhood of that

block has texture. The missing block is then filled-in with the

texture from its surrounding, following [5].

Let the region to be filled be denoted by . The lost block

will now be filled, pixel by pixel, in a raster fashion. Let be a

4A similar method was used by the research group at the Navy facilities in
China Lake (C. Schwartz, personal communication).
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Fig. 2. Reconstruction results for 1, 2, or 3 contiguous lost blocks.

Fig. 3. Reconstruction results for more drastic losses.

representative template touching the left of a pixel .

We proceed to find a from the available neighborhood, such

that a given distance is minimized. As per [5], is a

normalized sum of squared differences (SSD) metric. Once such

a is found, we choose the pixel to the immediate right of ,

as our candidate for . For stochastic textures, the

algorithm selects at random one of the pixels neighboring .

The template can be a simple seed-block of 3 3 pixels

as shown in Fig. 1. Then, of all possible 3 3 blocks in the

8-neighborhood, the one with the minimum normalized SSD is

found and a pixel to its right is copied into the current pixel in the

lost block, as shown. This algorithm is considerably fast when

using the improvements in [13], [14].

C. Image Inpainting

Structure in an image can be an edge between two regions or

a deterministic change in color or gray value. When the block

classification algorithm detected a structured block, this is re-

stored using the digital inpainting procedure introduced in [4].

Once again let be the region to be filled in (inpainted) and

be its boundary. The basic idea in inpainting is to smoothly

propagate the information surrounding in the direction of the

isophotes entering . Both gray values and isophote directions

are propagated inside the region. Denoting by the image, this

propagation is achieved by numerically solving the partial dif-

ferential equation ( is an artificial time marching parameter)

where , , and stand for the gradient, Laplacian, and or-

thogonal-gradient (isophote direction) respectively. This equa-

tion is solved only inside , with proper boundary conditions in

for the gray values and isophote directions.

Note that at steady state, , and .

This means that is constant in the direction of the

isophotes, thereby achieving a smooth continuation of the

Laplacian inside the region to be inpainted.
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Fig. 4. Reconstruction misses details smaller than the mask.

For details on the numerical implementation of this in-

painting technique, which follows the techniques introduced

in [15], [16], as well as numerous examples and applications,

see [4].

IV. EXPERIMENTAL RESULTS

A. Application to Wireless Transmission of JPEG Compressed

Images

Throughout our experiments, we have assumed, though it is

not completely necessary, that the average (dc) value of a 8 8

block is known at the receiver. This is not needed by the block

reconstruction algorithm, but it is needed for the available sur-

rounding blocks due to the differential encoding of dc values in

JPEG. In case the dc value is not known, the method proposed

in [17] gives a technique to estimate and correct the dc value of

the lost block and the following blocks in the same line. Retrans-

mission of the dc value of a lost block would not be a significant

overhead either, since we just need 1 byte to be retransmitted per

block.

Since we have no control over the fading channel, there is

no prior information about the relative locations and number of

blocks that can be lost in the process. We present various exam-

ples ranging from low to drastic losses of image information,

and demonstrate our proposed technique to restore the lost infor-

mation. Figs. 2–4 show the results of reconstruction (from left

to right, transmitted, received, and reconstructed image). Table I

shows the amount of missing data along with the PSNR values

after reconstruction. We can make the following observations.

a) When single blocks are missing from the image, they are

satisfactorily reconstructed from the surrounding context. Note

how the reconstructed image is almost identical to the original

one, as expected from the algorithms used for filling-in.

b) When a few contiguous blocks are missing, the algorithm

still reconstructs the blocks so as to be visually unrecognizable

from the original.

c) As a drastic condition, if an entire line is missing, then,

a good reconstruction is not always possible. See Fig. 3. This

TABLE I
PERCENT DATA LOST AND PSNR VALUES AFTER RECONSTRUCTION

is mainly due to the fact that most probably such a significant

loss will cover entire objects. In general, when feature sizes are

smaller than 8 8 pixels or are totally covered by the missing

line, it will be impossible to reconstruct the image correctly. See

Fig. 4. In such cases, we will be forced to request retransmission

of the lost block (or an error block). Such instances will be-

come increasingly rare when the image resolution is increased.

Further, as explained in Section II, if the packetization in [2] is

used, then it is extremely rare to lose an entire line in the image

domain. In that case, only independent lost blocks would need

to be reconstructed from their neighborhood, and as indicated

by Figs. 2 and 3, the above algorithm restores isolated blocks

reliably.

B. Application to Image Compression

Since inpainting faithfully reproduces lost edges, and texture

synthesis faithfully grows lost textures, we can afford to volun-

tarily remove some blocks containing structure and texture, even

prior to compression. After intentionally removing the blocks

and replacing them with their dc values, we compress the image

using lossy JPEG with default settings. Finally, when the image

is decompressed, the above algorithm is used to reconstruct the

“lost” blocks.5 This improves the compression ratio provided

by lossy JPEG. In this situation, we have the freedom to choose

the blocks which we want to remove, and later reconstruct. A

5As in the wireless scenario, we assume that the positions of the lost blocks
are known, since many simple strategies can be devised to automatically detect
this position (e.g., blocks with only dc as nonzero coefficients). We also auto-
matically detect the block type, as before, so no overhead is needed at all.
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Fig. 5. Stages in compression of 256 � 256 Lena image.

common fixed mask to remove blocks from all images is not

advisable of course, since for example, it may totally obliterate

important details in images where feature sizes are less than 8

8 pixels, and hence cannot be reconstructed later.

The objective is to retain only the information which cannot

be correctly reconstructed (minute but important details) and to

remove as much as possible from the remainder of the image.

The problem thus reduces to finding the best possible mask for

a given image. Following the earlier distinction between texture

and structure, our algorithm uses the following general rules to

construct the mask automatically (see also concluding remarks):

a) For areas of texture, remove as many blocks as possible,

since they can be satisfactorily reconstructed from a single seed

block.

b) Remove a few, but not all blocks along an edge, so that

the direction of the edge is properly preserved. Ideally, alternate

blocks along an edge should be removed. Presently, a block con-

taining an edge is masked only if the regions on either side of

the edge are flat, i.e., the gradient is steep on both sides of the

block. This is done, because, while experimenting with various

cases in Section IV-A, it became clear that such edges are best

reconstructed by inpainting.

c) For blocks with smooth variations (i.e., structure without

edges), remove alternate blocks. Inpainting always restores

these smooth variations.

Fig. 5 shows how the algorithm is used in conjunction with

lossy JPEG. Note that the image quality is very similar to the

case in which JPEG alone is used. Other examples are shown
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Fig. 6. Other examples (1)—Result after decompression of 512 � 512 peppers image.

Fig. 7. Other examples (2)—Result after decompression of 512 � 512 jet image.

TABLE II
IMPROVEMENT IN COMPRESSION RATIO

in Figs. 6 and 7. The mask is found automatically by the algo-

rithm from the image and the output of a Canny edge detector.

The bits per pixel (BPP) and compression ratio (CR) obtained

by lossy JPEG alone, and the compression ratio obtained using

JPEG with the above algorithm, are shown in Table II. Note once

again that no overhead is needed by the proposed compression

strategy, and the bitstream it is fully JPEG compliant.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have proposed a new technique for the

filling-in of missing blocks in wireless transmission of JPEG

(or block based) compressed images. We have shown that as

long as the features in the image are not completely lost, they

can be satisfactorily reconstructed using a combination of com-

putationally efficient image inpainting and texture synthesis

algorithms. This eliminates the need for retransmission of lost
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Fig. 8. Using information from blue component to reconstruct lost blocks in red component.

blocks. When the image resolution is increased, the quality of

reconstruction improves and a retransmission request is rarely

required, resulting in a better effective data transmission rate.

Further, by intentionally (and automatically) dropping image

blocks, and using this filling-in approach, we can improve the

compression ratio provided by lossy JPEG, without altering the

existing JPEG algorithm. As seen in Table II, the improvement

in compression ratio becomes more significant as the image res-

olution is increased.

A number of research directions should be taken following

the results reported here. We have tried to use image-dependent

information, i.e., texture and structure, to enhance the perfor-

mance of JPEG. The compression ratio can be further increased

by finding better masks by providing more image information.

In a more general setting, the extension of the approach pre-

sented here, to color data needs to be investigated. Since the

missing blocks in the different channels need not be in the same

image position, information from different channels can be used

in the block classification and reconstruction. Adding this to the

current neighboring information used is expected to improve

even further the quality of the results. A preliminary example

is presented in Fig. 8. Further results on this will be reported

elsewhere.
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