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We perform molecular dynamics simulations on a bead-spring model of pure polymer grafted

nanoparticles (PGNs) and of a blend of PGNs with a polymer melt to investigate the correlation

between PGN design parameters (such as particle core concentration, polymer grafting density, and

polymer length) and properties, such as microstructure, particle mobility, and viscous response. Con-

stant strain-rate simulations were carried out to calculate viscosities and a constant-stress ensemble

was used to calculate yield stresses. The PGN systems are found to have less structural order, lower

viscosity, and faster diffusivity with increasing length of the grafted chains for a given core concen-

tration or grafting density. Decreasing grafting density causes depletion effects associated with the

chains leading to close contacts between some particle cores. All systems were found to shear thin,

with the pure PGN systems shear thinning more than the blend; also, the pure systems exhibited a

clear yielding behavior that was absent in the blend. Regarding the mechanism of shear thinning at

the high shear rates examined, it was found that the shear-induced decrease of Brownian stresses and

increase in chain alignment, both correlate with the reduction of viscosity in the system with the latter

being more dominant. A coupling between Brownian stresses and chain alignment was also observed

wherein the non-equilibrium particle distribution itself promotes chain alignment in the direction of

shear. © 2011 American Institute of Physics. [doi:10.1063/1.3657831]

I. INTRODUCTION

Polymer nanocomposites have been a topic of interest in

recent years as their unique properties have been exploited for

applications such as desalination, CO2 capture, photovoltaics,

and immersion lithography.1–4 Unlike colloids which tend

to agglomerate irreversibly, suspensions of polymer grafted

nanoparticles (PGNs) are stabilized by polymer-polymer

steric interactions. Nanoscale organic hybrid materials, which

are a class of such materials, consist of an inorganic nanopar-

ticle core, functionalized with a corona of organic oligomers.

These differ from common nanocomposites in which the

tethered corona is the suspending medium for the cores;2–6

the grafted polymers tend to fill in the space between the

inorganic cores to form the suspending fluid “phase”. The

hybrid nature of the suspension allows the fabrication of ma-

terials with tunable properties by varying parameters of both

the organic polymers (such as molecular weight and grafting

density) and the nanoparticle cores (such as chemistry, shape,

and size). The properties exhibited by these composites vary

from solids, stiff waxes, and gels for systems of high core

content to solvent free fluids4–6 for systems of low core

content.

Theoretical, experimental, and computational studies

have been carried out to elucidate the transport properties

of polymer grafted nanoparticles in a polymer matrix;1, 7–11

a wetting regime was identified where the surrounding poly-

mer matrix interpenetrates the grafted nanoparticles, effec-

tively wetting and stabilizing them. Various theoretical and

a)Author to whom correspondence should be addressed. Electronic mail:
fe13@cornell.edu.

computational studies have also been carried out on the

structural effect of tethering chains, chain length, and tether

location.5, 8, 9 For pure PGN systems, various experimen-

tal studies have been carried out to characterize the rhe-

ology of brush-type PGNs where the thickness of grafted

polymers is comparable to the nanoparticle radius, finding

a distinctive shear thinning behavior and a marked influ-

ence of polymer chemistry on viscosities.3 Molecular simu-

lation studies of these systems have been initiated only very

recently.12

Given the different ways in which a single PGN can be

modified, molecular simulations can help elucidate how their

bulk properties are affected (and can be optimized for spe-

cific applications), by changes in molecular design. To this

end, we have applied molecular dynamics to get a better un-

derstanding of structure and transport properties of these sys-

tems. In this work we investigate the equilibrium and rheolog-

ical properties of PGNs. The simulated systems were chosen

to roughly mimic some experimental systems made of sil-

ica cores and PEO chains (having high grafting density and

short chains2) and to isolate the contributions of core and

corona on PGN’s dynamics by varying the core volume frac-

tion and polymer length. PGNs with varying core density and

corona size were hence simulated wherein non-equilibrium

methods were implemented to obtain both viscosities (by

imposing a homogeneous steady state shear) and the yield

stress. A non-Newtonian shear thinning behavior is observed

in all cases with a lower shear thinning slope for PGNs in

a blend as compared to pure PGNs. In Sec. II we introduce

our model followed by the methodology used to calculate the

system’s properties (Sec. III). We then present and analyze

our results in Sec. IV and give some concluding remarks in

Sec. V.
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FIG. 1. Schematic of a typical PGN.

II. MODEL

Figure 1 represents a schematic of a single PGN particle.

The nanoparticle component is modeled as a hollow spheri-

cal shell made of 80 Lennard Jones (LJ) beads forming the

surface and a single bead in the center. All LJ beads have a

diameter of σ which gives the nanoparticle core an outer di-

ameter of D = 6 σ (Fig. 2(a)). To fix the LJ beads on a spher-

ical surface, each bead on the surface is attached to its neigh-

boring beads and also to the center bead by harmonic bonds

(Figs. 2(b) and 2(c)). These surface LJ beads are used as graft-

ing points to permanently anchor polymers to the surface of

the nanoparticle. Tethered polymers are freely jointed chains

of Nm beads. For the blend system (PGNs + polymer melt),

the surrounding fluid has chains of Nfp beads each and the ra-

tio of number of tethered chain beads to number of free chain

beads is given by Pf.

For computational efficiency, we coarse grained our sys-

tem to reduce the number of particles required. We have not

used the usual dissipative particle dynamics soft potential as it

contains only repulsive interactions which would not capture

non-ideal chain conformational behavior arising from attrac-

tive interactions and the non-crossability of chains. We have

instead used a coarse grained chain model with Lennard Jones

beads and stiff bonds noting that an Nm-bead oligomer could

not only represent a chain with Nm Kuhn segments but also

approximate a bundle of a few oligomer chains. To roughly

map LJ units into real units, a value of σ ≈ 1 nm can be esti-

mated by mapping the core diameter to the smallest diameter

of silica particles typically used experimentally.2, 6

The grafting density (GD) gives what percentage of the

maximum possible number of chains has been attached to the

nanoparticle surface. It is calculated in our model as

GD =
Number of chains attached

Number of surface beads
× 100. (1)

When GD < 100, grafting points are chosen randomly from

the 80 surface beads so as to produce a relatively uniform

FIG. 2. Schematics of (a) approximate dimensions of PGNs, (b) surface

beads and bonds joining neighboring particles without center bead, and

(c) core structure showing center bead and bonds with surface beads.

coverage. The volume fraction of cores (φc) is calculated

as

φc =
(number of cores) × π

6
D3

Volume of simulation box
. (2)

Figures 3(a) and 3(b) show snapshots of some of the systems

simulated and Fig. 3(c) and Table I summarize the key char-

acteristics of the systems simulated in this study.

To identify the various simulated systems we use a three

variable naming scheme where we represent each system us-

ing the formulae Nm – GD – φc, which gives the chains length

(Nm), grafting density (GD), and core volume fraction (φc).

For the case when we have simulated a blend, we use the for-

mula Nm – GD – φc (Nfp – Pf), which specifies the needed

additional parameters, namely, chain length (Nfp) of free poly-

mers and the volume ratio of free chains to total chains

(Pf).

TABLE I. Simulation parameters of the various systems studied.

System Nm GD φc Number of cores Box length, Lbox

A 5 80 0.23 256 50.41

A-100 5 100 0.19 256 53.41

A-50 5 50 0.32 256 45.10

B 10 80 0.13 256 61.25

B-50 10 50 0.19 256 53.55

C 20 40 0.13 108 45.93

Blend Nm Pf φc Number of cores Nfp Lbox

D 5 0.5 0.13 108 5 45.93
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FIG. 3. Snapshots of sample simulated systems: (a) System A with φc

= 0.23, Nm = 5, and GD = 80%; (b) System D, PGNs in blend with polymer

with φc = 0.13, Nm = 5, and Nfp = 5. (c) Summary of pure PGN systems ex-

plored in the GD vs Nm/D space with isolines shown for different φc values.

The meaning of the symbol legends is described in Sec. IV.

The pair interaction potential used between non-bonded

beads is the cut-shifted Lennard Jones force potential which

gives a continuous potential and force, the potential is given

as13

νsf =

⎧

⎪

⎨

⎪

⎩

ν − νcutoff − (r − rc)

(

dv

dr

)

rc

, rij < rc

0, rij > rc

⎫

⎪

⎬

⎪

⎭

,

ν = 4ε

[

(σ

r

)12

−
(σ

r

)6
]

, (3)

νcutoff = v for r = rc,

where ν is the Lennard Jones potential and rc is the cutoff

distance which is taken as 21/6 for surface-surface beads and

2.5 between polymer-polymer beads and between surface-

polymer beads. The interaction parameter ε is 1 for surface-

surface and polymer-polymer bead interactions and 0.5 for

surface-polymer bead interactions.

Bonded interactions are taken to comprise of terms with

2nd and 4th power of the distance between bonded beads:

vij =
1

2
k1(rij − req1)2 +

1

4
k2(rij − req2)4, (4)

where, the 2nd power term gives a suitable description of the

potential at small deviations from equilibrium bond lengths,

while the 4th power term which dominates at larger devia-

tions gives a stiffer restoring force at these distances. The val-

ues of req1, req2, k1, and k2 are 2.47, 2.57, 500, and 60 000

for center and surface beads; 0.97, 1.07, 500, and 40 000 for

both surface-polymer and polymer-polymer beads; and 1.00,

1.09, 300, and 40 000 for surface-surface beads, respectively.

To prevent chains from penetrating into the cores, the core

center bead and chain beads interact via a repulsive potential:

v = 500(r − 2.5)2 for r < 2.5, and ν = 0 otherwise.

We used reduced LJ units with T ∗ = kBT /ε, P ∗

= Pσ 3/ε, and ρ∗ = N/V σ 3 throughout and employ an in-

house molecular dynamics code which implements the veloc-

ity Verlet algorithm where temperature is kept constant at T*

= 1.0 using the Lowe-Andersen thermostat with the coupling

constant (fraction of collision pairs whose velocities are ad-

justed at each time step) set to 0.0003. The Lowe-Andersen

thermostat is used to preserve hydrodynamic interactions.14

The equilibration pressure was P* ≈ 0.2 for systems B, C, and

D, and P* ≈ 0.7 for systems type A (i.e., A-100, A, and A-

50); this is done to always have a number density for the fluid

of ∼0.82 (defined as the ratio of number of chain beads to the

volume not occupied by the cores); i.e., a suspending poly-

mer media of equal density as is the case in experiments. All

systems were pre-equilibrated by using the Berendsen baro-

stat with a coupling constant as 0.0005 and volume moves

enacted after every 15 steps. The time step for simulations is

�t = 0.005.

III. EVALUATION OF PROPERTIES

A. Corona thickness and interdigitation

The corona thickness, ξ , is estimated as the distance from

the nanoparticle surface at which 90% of the grafted chain

beads are found. This is illustrated in Fig. 4(a) for systems A

and C (see Table I), showing that longer chains have wider,

longer-tailed distributions than shorter chains. Interdigitation,
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FIG. 4. Schematics of (a) corona thickness and interdigitation in PGNs, (b)

probability of finding grafted chain bead from surface of nanoparticles for

short and long chains, and (c) volume excluded for calculation of gαc(r) (for

c �=α)

a measure of overlap between chains of neighboring particles

with respect to corona thickness, is defined as

Interdigitation = 2 −
(D1 − D)

ξ
, (5)

where D1 is the distance between neighboring cores which is

calculated from the location of the first peak of the core-core

radial distribution function (Fig. 4(a)); D1 – D is the distance

between core surfaces.

B. Pair distribution functions

Three radial distribution functions of interest are the

core-core, gcc(r), core-grafted polymers, gcg(r), and core-free

polymers, gcf(r). These functions are defined as follows:

gαβ(r) =
Number of β type particles at distance r from α

Number of ideal gas particles at distance r from α
.

(6)

For the calculation of gcg(r) and gcf(r), the denominator con-

tains the number of ideal gas particles in the volume ele-

ment at distance r that is available for chains to occupy. This

volume is obtained by subtracting the volume occupied by

nanoparticle cores from each volume element at distance r as

shown in Fig. 4(c).

C. Diffusion

Translational and rotational diffusivities for various

PGN’s are calculated by the Stokes-Einstein and Stokes-

Einstein-Debye relations15–17 which are given by

Dt,calculated = lim
�t→∞

1

6�t
〈r2(�t)〉,

Dr,calculated = lim
�t→∞

1

4�t
〈ϕ2(�t)〉.

(7)

The terms r2(�t) and ϕ2(�t) are the mean squared displace-

ment for position and orientation (angle), respectively. The

translational motion is measured by tracking the center of core

particles. For the calculation of rotational diffusivity we de-

fine a principle unit vector which extends from the center of

the nanoparticle to a fixed bead on the surface ( 
pi). The ro-

tation is tracked by the vector angle traced by 
pi in time �t,

the magnitude of which is given by cos−1( 
pi,t . 
pi,t+�t ) and the

direction by 
pi,t × 
pi,t+�t . As the cosine function is periodic,

we cannot distinguish between rotations of θ and (2π + θ )

and therefore we calculate 
ϕ by adding the rotation vectors

δ 
ϕ for every time interval between 0 and t to obtain the net

angle using


ϕ(t) =

∫ t

0

(δ 
ϕ)dt ′. (8)

For a system in diffusive regime, the distribution of particles

is given by the Van Hoove distribution and the deviation from

this is quantified by using the nongaussianity parameters

α2(t) =
3〈ϕ4(t)〉

5〈ϕ2(t)〉2
− 1,

α2(t) =
3〈r4(t)〉

5〈r2(t)〉2
− 1,

for rotation and translation, respectively. Nongaussianity pa-

rameter increases from ballistic to sub- diffusive regime and

attains maxima when system enters diffusive regime. We used

the location of the peak of this function to identify crossover

to diffusion for our systems.18

The absolute diffusivity values reported are in reduced

LJ units. To facilitate comparison to experiments, a ratio of

the calculated diffusivity is taken with respect to the ideal dif-

fusivity of an identical nanoparticle (core) in a polymer melt

as calculated by the Stoke-Einstein and Stoke-Einstein-Debye

relations given by

Dt,ideal =
kBT

6πηR
; Dr,ideal =

kBT

8πηR3
, (9)
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where T is the temperature, η is the zero shear viscosity of the

fluid, kB is the Boltzmann constant, R is the radius of nanopar-

ticle, and the polymer melt is taken to consist of chains of the

same length as those grafted to the PGNs. We refer to this ra-

tio of diffusivity to ideal diffusivity as the relative diffusivity:

Dt =
Dt,calc

Dt,ideal

; Dr =
Dr,calc

Dr,ideal

. (10)

D. Constant-rate uniaxial extension

Simulations that probe the dynamic response of the sys-

tem to a uniaxial deformation have often been used to char-

acterize the strength and failure of adhesives and glassy

polymers.19–21 We implemented this technique in our system

having periodic boundary conditions (along all axes) by grad-

ually elongating the box along the z axis while keeping the

xy cross section constant. The system starts inside a cubic

box and is pre-equilibrated at T* = 1.0 and a density con-

sistent with P* = 0.2. While the dynamic response depends

on the strain-rate applied, we adopt here a single rate value

of 0.02 σ /�t (perturbations enacted every 100 equilibration

steps) which is consistent with typical values used with such

simulations for polymeric materials.21 As the box elongates,

“volume” is being created which forces the system to eventu-

ally become heterogeneous and break up into filled and empty

domains. This constant cross-section uniaxial stretching dif-

fers from constant-volume stretching experiments (where the

sample cross-section is concertedly reduced); the former is

indicated to probe the failure of glassy films with relatively

large xy cross-section, while the latter is more suited to probe

the elastic response of rubbery materials.

E. Viscosities and yield stress

For calculating the shear-dependent viscosity of the

systems, SLLOD,22, 23 a commonly used non-equilibrium

molecular dynamics (NEMD) technique is used along with

Lees-Edwards boundary condition.24 SLLOD imposes a ho-

mogenous steady shear strain on the system and measures the

resulting steady state stress. Similar to diffusivities, we reduce

the viscosities by a factor η0 which is the zero-shear viscosity

of the melt comprising of chains identical to the grafted poly-

mers, to obtain relative viscosities ηrel = ηactual/η0. To relate

our results with experiments, we convert shear rates to a ratio

of convective motion to diffusive motion given by the Peclet

number (Pe) defined as

Pe =
6πη0γR3

kBT
, (11)

where γ is the shear rate and R is the core radius. To estimate

yield stresses we use the constant stress algorithm of Hood,

Evans, and Morriss25 (using their Eq. (3) and adopting a value

of τ y. = 100 for the feedback response time).

We study the effect of corona thickness and GD on vis-

cosity and yield stress. We vary the corona thickness by

changing chain length and GD for pure PGNs. Chain length is

varied while keeping φc constant to help us isolate and under-

stand the effect of corona thickness on both equilibrium and

rheological properties.

F. Brownian stress

On application of shear, the flow induced disturbance in

the system perturbs the equilibrium structure; the resulting

particle diffusion induces a stress.26 The viscous contribution

of this stress is known to reduce with the Peclet number thus

causing shear thinning. This so-called Brownian stress is cal-

culated by26–28

n〈SB〉 = −n2kBT R

∫

r=2a

r̂ r̂g(
r)d�, (12)

where n is the number density of nanoparticles in the system,

R is the particle radius taken as the radius of nanoparticle (≈3

σ ), g(
r) is the radial distribution function at 
r , and r̂ is the

unit vector of 
r . g(
r) is calculated by storing the separation

vectors between pairs of particles and creating a histogram of

these vectors on a grid of spherical coordinates r, θ , and φ

and normalizing it by the number of ideal gas particles in the

same volume element:

g(r, θ, φ)

=
Number of PGN centers in elemental volume at r,θ,φ

Number of ideal gas particles in elemental volume V (r,θ,φ)
,

(13)

where V(r, θ , φ) = r2sin θdrdθdφ, we have taken only the

contact integral into account as it is known to give an ac-

curate description of the Brownian stress.26, 27 Equation (12)

was developed for colloidal particles suspended in a contin-

uum fluid and hence it is not strictly applicable to pure PGNs;

however, it is expected to give a semiquantitative description

of Brownian stresses for PGNs given that the grafted chains

provide a relatively homogeneous (self-suspending) media for

the cores.

G. Chain orientation

Due to shear, grafted and free chains (if present) in PGN

systems tend to align in the direction of shear; this makes

the polymers more streamlined and reduces viscosity.29, 30 To

study this phenomenon in our systems, we calculate the angle

(θ ′) made by the end-to-end vector of each polymer with the

shear axis (the x axis here, see Fig. 5). A probability distribu-

tion for θ ′ is obtained from

fθ ′ =
Pθ ′

sin θ ′
, wherePθ ′ =

Frequency of angle θ ′

Total number of polymers
.

(14)

Pθ ′ has been divided by sinθ ′ to obtain the ratio with respect to

the ideal distribution which is proportional to the solid angle

being sample around θ ′; i.e., ∼sinθ ′dθ ′dφ. Note that Eq. (14)

will produce a flat distribution for an isotropic distribution of

angles but will tend to overemphasize Pθ ′ for small values of

sin θ ′.
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FIG. 5. Schematic of anisotropic distribution of particles under shear and

definition of chain orientation angle under shear θ ′.

IV. RESULTS AND DISCUSSION

A. Structure and diffusivity

To understand the effect of core concentration or φc, we

calculate the relative diffusivity of a single PGN with Nm

= 5 and GD = 80% in a melt of Nm = 5, i.e., in our notation it

is given by 5-80-0(5-1). The relative diffusivity of this single

PGN isolates the effect of tethering chains on the nanoparticle

and is not affected by caging or interdigitation. The value of

the relative translational diffusivity is 0.55 for such a single

PGN which is much larger than the value of 0.0052 obtained

for a system of pure identical PGNs (system A: 5-80-0.19).

This shows that with the addition of more cores, the particles

get caged and translational diffusivity is reduced. For rota-

tion, the relative diffusivity for a single PGN in the chain melt

is 0.36 which is close to the diffusivity of 0.16 for system

A, indicating that the friction between tethered chains is only

slightly larger than that between tethered and free chains.

We focus next on the effect of corona size for a fixed

value of core volume fraction. The systems under study are

system B (10-80-0.13), C (20-40-0.13), and D [5-80-0.13(5-

0.5)], where always φc = 0.13 while tethered chain length

varies. Figure 6(a) shows the core-core radial distribution

functions for these systems. System C shows a very even

gcc(r) with a short first peak, consistent with a well dispersed

liquid-like system, while system B shows a more pronounced

structure (higher peaks and deeper troughs) suggestive of a

more ordered material. System D [5-80-0.13(5-0.5)] consti-

tutes an intermediate case as the free chains can here spread

out more evenly than the attached chains in system B. This

is also supported by Fig. 6(b) which shows the distribution of

gcc(r), gcg(r), and gcf(r) for system D, where the latter distri-

FIG. 6. (a) Radial distribution function for system B, C, and D where φc

= 0.13 is fixed while chain length varies. (b) Distribution functions for cores,

tethered, and free chains in the blend system D.

bution of free chains is observed to be close to that of the ideal

gas.

Table II lists the values of diffusivities and interdigita-

tion for systems A, B, C, and D. For system C the inter-

digitation is greater than 1, indicating that chains extend be-

yond the nearest neighboring cores due to the long tail of the

corona thickness distribution (ξ ). From the relative diffusiv-

ity we can clearly see that for pure PGNs, translational mo-

tion increases significantly as chain length increases (A < B

< C) while rotational motion remains almost unchanged. This

supports our earlier observation that when the chains become

longer, the corona becomes more uniformly dispersed, caging

of the nanoparticles is reduced, and translational diffusivity

increases. The enhanced mixing of chains from neighboring

particles with longer chains is also evident in the increasing

values of interdigitation for systems B and C. The rotational

diffusivity remains almost constant in all cases and is unaf-

fected by any change in corona, possibly because interdig-

itation values remain nearly constant resulting in a similar
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TABLE II. Effect of variation in corona on diffusivities for various systems.

System /Diffusivities Translation (Absolute) Translation (Relative) Rotation (Absolute) Rotation (Relative) Interdigitation

A 2.36 × 10−5 0.0052 2.0 × 10−5 0.16 0.95

B 1.47 × 10−4 0.066 1.95 × 10−5 0.078 0.86

D 4.42 × 10−4 0.0812 1.375 × 10−5 0.11 0.50

C 9.7 × 10−4 0.76 2.39 × 10−5 0.17 1.17

A-50 5.35 × 10−5 0.012 3.5 × 10−5 0.24 Some cores touch

A-100 1.18 × 10−5 0.0026 1.40 × 10−5 0.11 0.76

effective “friction” of a PGN with its surroundings. In

Fig. 3(c), systems B and C are simply marked as liquids while

system A is loosely marked as a “soft glass” due to the strong

caging of its cores. Both translation and rotation diffusivities

of the blend system D are slightly larger than those for system

B but less than those of system C; this result and those for the

equilibrium structure discussed before suggests that blends

exhibit a more uniformly dispersed corona compared with a

pure PGN system of the same grafting density and φc. This

can be attributed to the extra mobility of free chains which

allows the blend (D) to relax more readily.

We also studied the effect of changing GD with fixed

Nm on the structure and mobility of pure PGNs. We used

systems A-50, A, and A-100 where we have kept Nm = 5

and changed GD from 50 to 100 (see Fig. 3(c) and Table I).

Table II and Fig. 7 give the simulated properties. We see in

Fig. 7(a) that compared to system A, the thicker corona in

the A-100 nanoparticles leads to a larger distance between

neighbors and a taller first peak of gcc(r). Effectively, the A-

100 system experiences stronger steric hindrance due to ex-

tra grafted chains making the net particle-particle interaction

more repulsive and the lubricating corona less fluid-like. This

causes resistance for interparticle motion and a reduction in

translational and rotational diffusivity. For the system A-50,

a thinner corona is observed along with a number of core

pairs “kissing” at a distance of 6 σ which is the diameter of

the core. This arises as regions with fewer tethered chains or

“bald spots” of two PGN surfaces come together experienc-

ing a depletion-induced attraction (associated with the grafted

chains). It should be noted that the grafting of chains at ran-

dom points on the core surface is bound to produce some

patchiness in the corona for lower GD; hence, the results for

system A-50 will depend on the specific choices of chain an-

choring points (though the effect is mild for relatively uniform

spreading). Despite having a large φc (=0.32), the diffusivi-

ties for system A-50 are larger than those for systems A and

A-100. This is explained by the decrease in the structural lay-

ering of the cores as φc increases; the presence of “kissing

cores” in system A-50 seems to further contribute to the dis-

ordering of cores and to a more uniform distribution of chains

(both of which reduce the caging of particles).

B. Viscosity and yield stress

To examine the effect of GD on relative viscosities, we

simulated the systems A-50 (5-50-0.32), A (5-80-0.23), and

A-100 (5-100-0.19) under shear (see Fig. 7(b)). As noted ear-

lier, the end-to-end distances of grafted chains increase with

GD, seemingly increasing the effective friction between par-

ticles. This results in an increase of relative viscosities for

system A-100 relative to system A (80% GD). For system

A-50 (5-50-0.32) we observe the lowest viscosities for PE

< 6, likely because at low shear rates some particles stay ag-

gregated (as in the equilibrium state) reducing the steric hin-

drance for the other particles and facilitating the overall flow.

FIG. 7. Properties of systems A, A-50, and A-100 (which only differ in GD

and hence φc). (a) Core-core radial distribution function; particles aggregate

at lower GD due to bald core surfaces sticking together. (b) Viscosities as

a function of Peclet number where a transition behavior occurs for system

A-50 as large Pe induces the separation of “kissing” particles.
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FIG. 8. (a) Viscosity for systems D, B, and C as a function of Peclet number

via constant shear-rate flow type simulation. (b) Yield stresses for systems D,

B, and C via constant stress type simulations.

As Pe increases, the shear applied is enough to separate the

particle aggregates and the viscosity becomes larger than that

of the systems with lower φc.

System A-50 is marked as “aggregating fluid” in Fig. 3(c)

as the tendency to form core-core contacts is the most dis-

tinctive characteristic. While all systems A are liquids based

on their translational diffusivity behavior, systems A and A-

100 are tentatively termed “soft glasses” in Fig. 3(c) to high-

light their marked caged structure, relatively low translational

diffusivity, and, a large low-Pe viscosity (further evidence

for system A-100 is given in Sec. IV D). This classifica-

tion is in approximate agreement with the trends observed in

Ref. 12.

To study the effect of corona variation at fixed φc = 0.13

on viscous response, we simulated the viscosities for systems

B, C, and D as shown in Fig. 8. Shear thinning behavior is

observed for all cases. This behavior is consistent with exper-

iments though we have not approached the range of Pe where

Newtonian regime is observed for experiments.2

FIG. 9. Comparison of actual viscosity and viscous contribution of Brow-

nian stresses for systems B and C. Both systems shear thin but the relative

contribution of Brownian stress is negligible at higher Pe.

With increasing chain length at fixed φc = 0.13, we ob-

serve a decrease in relative viscosity with system C always

having lower viscosity than system B. Both pure systems fol-

low power law behavior with an exponent of –0.4, while the

blend system D has a lower exponent of –0.25. At high Pe

all systems tend to have more similar relative viscosities due

to chains being strongly aligned to the direction of flow (see

Sec. IV C). As this simulation method is not efficient to obtain

low-Pe results, we also calculated the yield stress behavior.

Figure 8 shows the stress versus shear rate curves for these

systems along with the yield stress and yield strain. We ob-

serve that the pure systems require a finite stress to yield while

the blend does not show a clear yielding behavior. The region

marked by the arrow shows the regime that was not accessed

by our constant shear-rate simulations.

C. Shear thinning

1. Brownian stresses

Figure 9 shows the relative viscous contribution due to

Brownian stresses and relative viscosity as a function of the

Peclet number. The Brownian stresses show a uniform shear

thinning behavior similar to that of the total viscosities and

can be considered as one of the contributors to shear thin-

ning. Such an effect, however, is very small as evident from

the ratio of Brownian contribution to total viscosity which is

∼10−3 for the 1 < Pe < 1000. This occurs because Peclet

numbers accessible to simulation are very large which by def-

inition means a large ratio of convective to Brownian forces;

hence Brownian forces are weak and have negligible effect on

dynamics for Pe ≫1.

2. Chain alignment

We next examine results of the chain orientation func-

tion fθ ′ (Fig. 10). Figure 10(a) plots fθ ′ for increasing Pe: for

Pe = 0 (at equilibrium) there is no preferential chain align-

ment, for Pe = 0.25 some alignment is evident, while for Pe

= 50 chain alignment is very significant. Figure 10(b) shows
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FIG. 10. Chain orientation function fθ ′ for various cases. Note the non-linear

scale used for the x axis to maintain a proper area normalization of fθ ′ . (a)

Variation of fθ ′ with Pe number for system B showing distortion of corona

at high Pe. (b) Variation of fθ ′ with chain length for a fixed shear rate (γ

�t = 3.5 × 10−6) showing more alignment for longer chains. (c) Varia-

tion of fθ ′ for different types of chains in the blend system D and in a pure

5-mer melt (fixed Pe = 10) showing that grafted chains (red curve) align

the most. Snapshots show the two systems with colors corresponding to fθ ′

curves.

fθ ′ for systems A, B, and C at a fixed shear rate. We observe

that longer chains align more easily than shorter chains. This

partly explains why system C has lower viscosities than sys-

tems B and A. Figure 10(c) plots fθ ′ for both grafted chains

and free polymers in the blend system D at a fixed Pe of 10.

We see that grafted chains align more than the free chains,

which is likely due to the former having less freedom to reori-

ent isotropically. Also shown in Fig. 10(c), the free chains in

the blend exhibit an extent of alignment which is intermediate

between that of the grafted chain and that of the polymers in a

melt (free of PGNs). Overall, these results indicate that chain

alignment is one of the causes for shear thinning, especially

at high Pe numbers, and blends have a lower shear thinning

slope because the free chains orient less in the direction of

shear than grafted chains.

To elucidate the coupling between the spatial distribu-

tion of cores and the alignment of chains, we examined the

existence of a “residual” chain alignment as described next.

When the system is under shear, the equilibrium core-core

distribution is altered to a non-equilibrium state (Fig. 11(a))

and polymers may have to orient anisotropically maintaining

some of the shear-induced alignment to fill the space between

nanoparticles (thus maximizing the chain conformational en-

tropy). To quantify this residual chain alignment, we carry out

the following steps: (1) starting with an equilibrium system,

steady shear is applied until steady state is reached, (2) the po-

sition of all the core centers is frozen and the shear is turned

off to only allow the chains to relax (cores are also allowed to

rotate). Figure 11(b) shows the residual alignment of chains

after shear has been turned off for system B. Figure 11(c)

plots the residual alignment for various Pe numbers and we

observe that it increases with Pe. We can then conjecture that

shear thinning at these Pe numbers is due to a coupled ef-

fect of chain alignment arising from both the shear flow and

a residual alignment associated with the non-equilibrium spa-

tial distribution of cores.

D. Uniaxial stretching and breakup

We simulated the pure PGN systems A-100 and B-50

which possess the same core volume fraction (φc = 19%)

but differ in grafted chain length. Representative results are

shown in Fig. 12. As the box elongates and its volume in-

creases, a large negative force (tension) along the z axis is

generated (to sustain the deformation) while the system’s den-

sity drops but remains uniform; this large tension eventually

leads to defects that seed a very low density region (vacuum).

The tension then starts to drop as the empty region grows

and eventually vanishes as the dense (liquid) domain becomes

fully separated by a “gas-like” interface. While the maximum

in the tension vs. strain curve is similar (in height and loca-

tion) for both systems, the post yield-point behavior is signif-

icantly different: the B-50 system (having the longer 10-mer

grafted chains) forms a characteristic liquid bridge before a

breakup that takes place at a much longer extension. In con-

trast, the A-100 system (with the shorter 5-mer chains) breaks

up earlier and more transversally with a minimal bridge; i.e., a

behavior more reminiscent of that of a soft glass or solid. This
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FIG. 11. Effect of shear on system B. (a) Radial distribution function under

equilibrium and at Pe = 0.1 showing the perturbation in structure leading

to residual chain alignment. (b) Residual chain alignment when system is

equilibrated with cores held fixed at the Pe = 0.1 structure. (c) Increase in

residual chain alignment with Pe.

liquid vs. glassy-like behavior agrees well with the difference

in the core structure (shown in the inset of Fig. 12) where the

B-50 has a much less structured and layered radial distribution

than system A-100. These results are in line with the analysis

of systems B and C (for a lower φc = 0.13), the correlations

FIG. 12. Constant cross-section uniaxial deformation of systems A-100 and

B-50. The axial stress is the product of the instantaneous zz component of the

stress tensor and the box z-length (in LJ units); the relative extension is with

respect to the initial unperturbed box length.

between their diffusivities and structure described in Sec. IV

A, and their rheological behavior described in Sec. IV B.

V. CONCLUDING REMARKS

In this work, we have studied the equilibrium behavior,

diffusivities, and rheology of PGNs as self-suspended col-

loidal systems for varying GD and Nm, while keeping fixed

the core diameter. Comparing a system of pure PGNs with the

one in which a single PGN is infinitely diluted in an oligomer

identical to the grafted chains, we found that the translational

motion is greatly reduced due to the caging by neighboring

PGNs, while rotational motion is only mildly reduced due to

the lower mobility of the grafted oligomers. Depending on the

combination of GD and Nm employed, pure PGNs exhibited

distinctive fluid behavior that is qualitatively highlighted by

different symbols in Fig. 3(c). For combinations of GD and

Nm that result in a fixed φc, we found that for shorter grafted

chains the spatial distribution of cores becomes more struc-

tured (with better defined neighboring layers around a cen-

tral core), the translational motion is reduced due to stronger

caging by neighboring PGNs, and the rotational motion is al-

most unaffected. Consistently, simulations of uniaxial stretch-

ing (also for fixed φc) show that systems with a longer chain

length present a liquid-like breakup while the short chain

Downloaded 15 Aug 2013 to 128.84.113.7. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



184902-11 Polymer grafted nanoparticles J. Chem. Phys. 135, 184902 (2011)

system exhibits a soft-glass-like breakup. For fixed grafted

chain length Nm, a reduction of GD (which also brings a cor-

responding increase in φc) leads to a non-trivial trend in core

structure where for low enough GD some particle cores get

in close contact (touching in areas of lowest GD) promot-

ing faster translational and rotational diffusivities. Such close

contacts also lead to low-GD systems to be less viscous than

high-GD systems, a trend that is reversed as the shear rate is

increased and the structure made more homogeneous.

Our constant-shear rate simulations revealed that all sys-

tems studied exhibit shear thinning behavior with the thinning

exponent being greater for pure PGNs than for a blend system

of equal φc. We found that systems exhibiting a more homo-

geneously dispersed corona have lower viscosities. Also, the

introduction of free oligomer fluid to PGNs reduces the vis-

cosity relative to pure PGNs of equivalent φc, at least in the

range of shear rates we have simulated. The yield stress results

are consistent with the stress-strain rate trends of the constant-

shear rate simulations and also show that the blend system did

not exhibit a clear yielding behavior. We also attempted to elu-

cidate the microscopic origins of the observed shear-thinning

behavior. We found that although Brownian stresses decrease

with shear rate, their viscous contribution is too small at the

high Peclet numbers simulated to be a dominant driving force

of shear thinning. When examining the extent of alignment

of chains under shear, we find that systems with more uni-

formly dispersed corona tend to align more in the direction

of shear, giving a possible mechanism for the lower viscos-

ity of PGNs with longer chains. We also found chain align-

ment to be more pronounced for grafted polymers than for

free polymers which partly explain the flatter shear thinning

slope of the PGN-polymer blend compared to pure PGN sys-

tems. Finally, we observed a residual chain alignment present

in PGNs due to the shear-induced non-equilibrium distribu-

tion of cores, which must also affect the viscous response of

the system.

An important question that arises is to what extent the

properties of the PGN systems studied here could be de-

scribed by using much coarser force fields; e.g., using a soft-

sphere pair potential to represent the effective core-core po-

tential of mean force. Indeed, our results that softening of the

PGN corona (e.g., by grafting longer chains) leads to weak-

ened core-core pair correlations and an increase in transla-

tional diffusivity have also been observed in simulations of

Gaussian-core and Hertzian fluids.31–33 Our more detailed

PGN model, however, allows us to account for other effects

that are associated with multibody intra- and inter-chain in-

teractions, and with intrinsic or dynamic spatial anisotropies

of the corona. For example, our model allowed us to probe ro-

tational diffusivities, to find a connection between shear thin-

ning, chain alignment, and corona deformation, and to find

depletion-driven close contacts between bald-spots of cores

having low GD. Such effects could also be captured by a

coarser-grained model than ours, e.g., one using fewer ef-

fective grafted chains that have fewer but larger beads repre-

senting longer chain blobs (with softer interactions); more re-

search would be needed to define such a minimalistic model.

This study is a first step toward understanding the phys-

ical behavior of the solvent-free PGNs of varying designs. In

terms of thermodynamic behavior, it is still unclear, for ex-

ample, whether and how a liquid-to-solid transition ensues. In

terms of rheological behavior, we were only able to probe Pe

values as low as 0.1, while interesting experimental crossover

behavior (to a Newtonian regime) of related systems is usually

reached at much lower Pe values (∼0.0001).3 While constant

shear-rate simulations for Pe ∼0.001 could be attainable via

very long simulations in massively parallel computing plat-

forms, these may still be in the shear-thinning regime. Re-

garding our high-Pe shear thinning results, we note that the

viscous contribution of chain alignment to stress could be fur-

ther explored by calculating the pulling force applied by the

chains on the nanoparticles. Also, our study has been confined

to very small core sizes and monodispersed systems; polydis-

persity in particle size, chain length, and grafting density is

non-negligible in experimental systems and can significantly

affect the structural and rheological behavior. Lastly, nanopar-

ticles of non-spherical shapes will likely result in a vastly dif-

ferent viscous behavior. Work on some of these extensions is

currently under way
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