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Keratinases belong to a class of proteases that are able to degrade keratins into

amino acids. Microbial keratinases play important roles in turning keratin-containing

wastes into value-added products by participating in the degradation of keratin. Keratin

is found in human and animal hard tissues, and its complicated structures make it

resistant to degradation by common proteases. Although breaking disulfide bonds are

involved in keratin degradation, keratinase is responsible for the cleavage of peptides,

making it attractive in pharmaceutical and feather industries. Keratinase can serve

as an important tool to convert keratin-rich wastes such as feathers from poultry

industry into diverse products applicable to many fields. Despite of some progress made

in isolating keratinase-producing microorganisms, structural studies of keratinases,

and biochemical characterization of these enzymes, effort is still required to expand

the biotechnological application of keratinase in diverse fields by identifying more

keratinases, understanding the mechanism of action and constructing more active

enzymes through molecular biology and protein engineering. Herein, this review covers

structures, applications, biochemistry of microbial keratinases, and strategies to improve

its efficiency in keratin degradation.
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INTRODUCTION

Keratin is an important structural protein in some hard tissues in which it plays a protective role
by forming a barrier between the organ and its environment. Keratin is a fibrous protein that is
insoluble in water and other solvents. Due to the structure of keratin stabilized by disulfide bonds
and hydrogen bonds, keratin is resistant to degradation by common proteases such as trypsin and
pepsin. Keratin is one of the ubiquitous proteins in nature and found in many organs such as
feather of birds, hair, wools, and nails of mammals (McKittrick et al., 2012; Chilakamarry et al.,
2021). Keratin is among the most abundant renewable organic polymers in nature after cellulose,
lignin, hemicellulose, pectin, and chitin (Lange et al., 2016; Bealer et al., 2020). Keratin-containing
wastes such as feathers from poultry industry represent an attractive resource for carbon, sulfur,
and nitrogen that can be converted into other products (Bhari et al., 2021).

Frontiers in Microbiology | www.frontiersin.org 1 June 2021 | Volume 12 | Article 674345

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.674345
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.674345
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.674345&domain=pdf&date_stamp=2021-06-23
https://www.frontiersin.org/articles/10.3389/fmicb.2021.674345/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Li Keratinase and Applications

Keratinous wastes are rich in amino acids (Qiu et al.,
2020) and could affect the atmosphere, water sources, and
soil if they are not treated properly (Hassan et al., 2020).
On the other hand, this type of wastes serves as a low-cost
resource for amino acids or can be converted into animal
feeds and fertilizers (Pettett and Ipek, 2004; Gurav and Jadhav,
2013). Compared with other natural polymers such as cellulose,
starch, and collagen, extraction of keratin is a challenging
process. Quite a few strategies such as physical, chemical, and
biological methods are applied in keratin extraction. Although
chemical and physical treatments are efficient strategies to
treat keratinous wastes, a large amount of energy is needed
and amino acids were destroyed during treatment. As keratin
does not accumulate in nature, microorganisms are playing
the major role in its degradation and recycling. Therefore,
keratinous wastes threatening the environment can be converted
into value-added products by using microbial treatment (de
Menezes et al., 2021; Nnolim and Nwodo, 2021). Extensive
studies have been carried out to search suitable microorganisms
and obtain optimized processes to make full use of keratinous
wastes (Gradišar et al., 2000; Sangali and Brandelli, 2000; Kim
et al., 2001; Rai and Mukherjee, 2011). It has been shown
that wastes such as feathers can be degraded by bacteria and
fungi to produce other important products such as amino
acids or proteins with added values (Callegaro et al., 2018;
Shanmugasundaram et al., 2018; Bohacz, 2019; Tamreihao et al.,
2019; Chaudhary et al., 2021). Therefore, conversion of the wastes
using microorganisms is the most environmentally friendly
method while more studies are still needed to improve the
degradation efficiency of keratins. As the amount of keratin-
containing wastes is increasing rapidly due to various reasons,
keratin derived from the wastes should be fully utilized by serving
as a source of proteins, amino acids, and a low-cost resource for
producing other products.

The structure of keratin explains their relatively stable
existence and resistance to chemicals. Keratin can be classified
as α-keratin and β-keratin according to the composition of
amino acids and the secondary structure of polypeptide chains
(Fraser and Parry, 2008, 2011; Lange et al., 2016). It is shown
that α-keratin is mainly present in mammals and β-keratin
is in avian and reptilian tissues. The polypeptide chains are
packed into the final structure through disulfide bonds formed by
cysteine residues, hydrogen bonds, and hydrophobic interactions
(Vidmar and Vodovnik, 2018). Cysteine residues play a key
role in the structural stability of keratin by forming intra- or
intermolecular disulfide bonds (Barone et al., 2005). Keratin
is also classified as hard keratin and soft keratin based on
the content of cysteine (Jin et al., 2017). As basic units of
keratin are polypeptides, keratinases play a major role in keratin
degradation by breaking the disulfide bonds and peptidic bonds
(Fraser and Parry, 2008; Hassan et al., 2020; de Menezes et al.,
2021). One of the features of keratinases is that they are able
to cleave a sequence with hydrophobic residues at the P1
position (Brandelli et al., 2010). Most keratinases were reported
to degrade keratins in the presence of disulfide reducers or
reducing agents while such reducing environment should not
be required for a true keratinase (Qiu et al., 2020). Currently,

the identified keratinases produced by microorganisms can be
classified into at least 14 protease families (Qiu et al., 2020). In
addition to journal publications, quite a few patent literatures
reported preparation, extraction, and recombinant production of
keratinases. The related patents can be obtained from different
resources (Yahaya et al., 2021). Over 20,000 records can be
obtained in google patent when keratinase was used as a
searching keyword1. In this review, the structure and function
of keratinases from bacteria and fungi are discussed. With
accumulated knowledge in understanding microbial degradation
of keratin, keratin-rich wastes are considered as a valuable and
low-cost resource that can be converted into diverse products
such as feed and fertilizers.

MECHANISM OF ACTION FOR
KERATINASE

Keratinases can be understood as a class of proteases that
are able to degrade keratin by cleaving the peptide bonds
(Gupta and Ramnani, 2006; Sahni et al., 2015). Although
the identified keratinases are serine and metalloproteases that
are able to break the peptide bond in peptide chains, they
recognize hydrophobic substrates and affect the disulfide bonds.
Most keratinases require other enzymes to break the disulfide,
and two steps, namely, keratin peptide releasing and peptide
degradation are included in keratin degradation. Reduction
reaction can be catalyzed by disulfide reductases or reducing
agents (Sangali and Brandelli, 2000; Rahayu et al., 2012; Lange
et al., 2016). Microbial keratinases are usually secreted into
the medium when the microorganism was cultivated in a
keratin-containing medium (Friedrich et al., 1999; Monod, 2008;
Jayalakshmi et al., 2010). This is not surprising as keratins are
not soluble and not able to be transported into cells. Studies have
shown that diverse keratinases with different molecular weights,
optimal pH values, and optimal temperatures are produced by
microorganisms. Most microbial keratinases are secreted into
the extracellular matrix in the presence of keratin or keratin-
containing substrates (Vidmar and Vodovnik, 2018; Nnolim
and Nwodo, 2021). Some microorganisms are able to produce
extracellular and intracellular keratinases simultaneously. Cell-
bound keratinases are also identified, and this type of enzymes
might be of great interest for industrial application as well,
which is due to the fact that they are immobilized on the
cell surface and can be easily used in waste treatment. With
the development of molecular biology and accumulation of
genome sequences of microorganisms, microbial keratinases
and their mechanism of keratin degradation can be predicted
through bioinformatics (Li et al., 2018; Song et al., 2018;
Pinski et al., 2020; Zolfaghari Emameh et al., 2021). A recent
report showing a careful and detail classification of current
keratinases provides a clear view to understand their mechanism
of action and explains the requirement of multiple enzymes to
achieve complete degradation of keratin or keratinous wastes
(Qiu et al., 2020).

1https://patents.google.com/
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FIGURE 1 | A strategy to screen keratinase-producing microorganisms. In this strategy, a method to identify keratinase-producing strain is critical. Molecular

biology, bioinformatics, biochemistry, and sensitive analytical methods such as MS are critical in the screening. In addition, as keratin degradation is a complicated

step, sample isolation and enriching steps are important to make sure that the desired strains are sustained. Many keratinase-producing strains have been isolated

and identified from the environment (Nnolim and Nwodo, 2021).

Keratinase-Producing Microorganisms
Keratinase-producing microorganisms are widely distributed in
nature, and they can be readily isolated from the environment
(Vidmar andVodovnik, 2018). Bacteria, fungi, and actinobacteria
are able to produce keratinases and use keratin as the
carbon and nitrogen sources in the minimal medium. To
isolate a keratinase-producing microorganism, keratins or
keratin-containing wastes such as feathers are usually present
in the cultural medium, implying that microbial keratinase
production is an inducible process (Brandelli et al., 2010).
To isolate keratinase-producing microorganisms, the following
steps including sample collection, assay development, strain
identification, and characterization are usually applied (Figure 1).
First, samples need to be collected from the environment.
The samples can be soils, keratin-containing wastes, or water
that was contaminated with wastes (Jeevana Lakshmi et al.,
2013; Gegeckas et al., 2014). Feathers are one of the most
commonly used substrates in screening, and degradation of
feathers can be readily monitored by observing the changes in
shapes and releasing of proteins into the solution. It has been
noted that several factors such as location, water content, keratin
composition, and weather of the local environment need to be
considered to make sure that a collection of microorganisms
can be obtained. Second, a medium for the microorganism
growth needs to be set up. As the media for enriching bacteria
or fungi are different, a suitable medium is important in the
screening (De Azeredo et al., 2006; Fakhfakh et al., 2011; Mazotto
et al., 2013; Parrado et al., 2014; Arokiyaraj et al., 2019). In
addition, other parameters such as cultural time and temperature
should be considered based on the experimental objectives. For
example, if a team plans to isolate a thermally stable keratinase,
a higher temperature in screening might enhance the rate of
success (Wu et al., 2017). In the case of isolating microbial
consortia, the enrichment step might not be important as it
might reduce the content of certain microorganisms. Third,
an assay for measuring protease activity should be set up

for ranking keratin degradation efficiencies caused by different
keratinases (Iglesias et al., 2017). It will be useful to monitor both
changes in the shape of keratin substrate and the composition
of the proteins secreted by the microorganisms. Last, a reliable
method formicroorganism identification is needed (Herzog et al.,
2016). In addition to identifying the amino acid sequence of
the enzyme through analyzing the MS data carefully, knowing
the genome of the screened microorganisms will provide more
information to understandmechanism of action for the identified
keratinase and a strategy to express certain types of enzymes
(Sittipol et al., 2021).

Bacillus stains are the predominate bacteria that are able to
produce keratinases. The species include Bacillus subtilis, Bacillus
pumilus, Bacillus lichenifomis, and Bacillus cereus (Zaraî Jaouadi
et al., 2015; Bhari et al., 2018; Gegeckas et al., 2018). Some
other bacteria are able to degrade feathers with a high efficiency
(Kim et al., 2005; Zaraî Jaouadi et al., 2015; Abdel-Naby et al.,
2017; Arokiyaraj et al., 2019; Hamiche et al., 2019). Keratin-
degrading fungi can be isolated from some tissues of human and
animals as the produced keratinase might be important for the
fungal infection (Friedrich et al., 1999; Bohacz and Korniłłowicz-
Kowalska, 2019; Zhang et al., 2019). It was shown that fungi
such as Chrysosporium (Bohacz, 2016; Gurung et al., 2018) and
Trichophyton (Zhang et al., 2019) were able to degrade keratins
through their produced keratinases (Shadzi et al., 2002; Hassan
et al., 2020). Due to the function of keratins, keratinases in
some pathogenic fungi might be essential for the invasion by
breaking the barrier between the tissue and the environment.
Streptomyces is the predominant actinobacterium that is able
to produce keratinases (Li et al., 2020). Quite a few reports
have shown that keratinolytic actinobacteria can be isolated
from different environment. Some actinobacteria are able to
produce thermally stable keratinases which have great potential
to be widely used in industry (Nnolim and Nwodo, 2021).
The detail introduction of keratinase-producing microorganisms
have been described in several reviews (Papadopoulos, 1989;
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Onifade et al., 1998; Korniłłowicz-Kowalska and Bohacz, 2011;
McKittrick et al., 2012; Sahni et al., 2015; Kanoksilapatham and
Intagun, 2017; Pahua-Ramos et al., 2017; Verma et al., 2017;
Kowalczyk et al., 2018; Li et al., 2018; Vidmar and Vodovnik,
2018; Li, 2019; Hassan et al., 2020; Kumar, 2020; Qiu et al., 2020;
Yahaya et al., 2021).

Although many keratinase producers have been isolated and
identified (Cavello et al., 2020; Jagadeesan et al., 2020; Moridshahi
et al., 2020; Nnolim et al., 2020b; Reis et al., 2020), the isolation
and characterization of keratinase-producing microorganisms
are still an important task. The keratin degradation efficiency
can be improved when more keratinases are applied (Peng
et al., 2019). Therefore, a mixture of microorganism-microbial
consortia might have great potential in converting keratin-rich
waste into valuable products (Kang et al., 2020; Nasipuri et al.,
2020). It is challenging to have a microbial consortium because
the amount of the organism in the system will be affected under
different conditions. It is also possible to set up a microbial
consortium to improve keratin degradation by mixing several
microorganisms which have been well characterized. This is a
feasible method in industrial applications.

Keratin Degradation by Keratinases
Several mechanisms have been proposed based on the
accumulated studies (Korniłłowicz-Kowalska and Bohacz,
2011; Li et al., 2020). The challenge in keratin degradation
is due to the presence of high content of disulfide bonds
(Korniłłowicz-Kowalska and Bohacz, 2011). As most keratinases
are proteases responsible for breaking peptide bonds, other
enzymes or chemicals are needed to affect the disulfide bonds
and reduce the forces for keratin packing to make proteins
accessible to the proteases (Kasperova et al., 2013). Therefore, at
least two steps including disulfide bond breakage and proteolysis
are involved in keratin degradation (Figure 2). It has been
noted that fungi and bacteria use similar ways to degrade
keratins with a slight difference as mechanical destruction is also
playing a role in degradation by fungi (Korniłłowicz-Kowalska
and Bohacz, 2011). It was shown that mechanical destruction,
production of inorganic sulfite, and involvement of disulfide
reductase can contribute to the step of disulfide bond breakage
(Korniłłowicz-Kowalska and Bohacz, 2011). In the protein
degradation step, keratinases are able to break polypeptides into
amino acids. There are several protease families responsible
for keratin degradation (Qiu et al., 2020). To convert keratin
into amino acids completely, multiple keratinases are required
as different enzymes prefer to different cleavage sites. The
diversity and classification of keratinase based on the amino
acid sequence and conserved domains in MEROPS have been
described in detail in a recent review (Qiu et al., 2020). Some
disulfide reductases involved in keratin degradation were shown
(Kasperova et al., 2013; Navone and Speight, 2018; Table 1).
The roles of these enzymes in keratin degradation have been
described in other literatures, which will not be described here
(Kasperova et al., 2013; Lange et al., 2016; Mercer and Stewart,
2018; Flückger et al., 2020).

Accumulated studies have shown that the crude microbial
culture exhibited higher keratin degradation efficiency than

the purified enzymes. A keratinase-degrading system can be
developed by carefully analyzing the components or enzymes
that are critical for keratin degradation. The crude culture of
a microorganism is a mixture of enzymes which can be used
in keratin treatment. Therefore, a mixture of enzymes can be
readily obtained by exploring the effects of cultural conditions
on keratin degradation. Two important elements are important
in this strategy. One is to have a good strain to work with and the
other is to have an optimized fermentation condition to produce
an enzymatic system for keratin degradation.

Structure of Keratinase
Keratinases are serine and metalloproteases, and their active
sites are formed by several conserved residues. Crystal structures
of several keratinases demonstrate the structural basis for their
activity and provide insights into designing more stable and
efficient enzymes for industrial applications (Betzel et al., 2001;
Gupta et al., 2017). These structures can also be utilized as
a template to obtain homology models of other keratinases
(Kluskens et al., 2002).

The crystal structure of a serine protease from family S8
produced by Tritirachium album was obtained (Figure 3; Betzel
et al., 2001). Crystal structures of other two members, namely,
Fervidolysin from Fervidobacterium pennivorans (Kim et al.,
2004) and rMtaKer fromMeiothermus taiwanensisWR-220 (Wu
et al., 2017) in S8 family were also determined (Figure 3).
Proteases in this family contain both α and β structures. Despite
their difference in overall folding, these proteases contain a
conserved catalytic triad formed by Asp, His, and Ser residues
which are critical for the cleavage of peptide bonds (Figure 3). In
addition to determining the folding of the active site in this type of
proteases, the structure of rMtaKer provides the molecular basis
for substrate and protease interactions (Wu et al., 2017). The
molecular interaction between P1–P4 residues and the protease
was well resolved, which paved a way to design a suitable substrate
for enzymatic assays (Wu et al., 2017; Figure 4). In addition,
the structures of these proteases also provide insights into the
structural basis for the thermal stability of the enzyme, which
is useful for improving the stability of keratinases through site-
directed mutagenesis.

A crystal structure of keratin-degrading enzyme from
Paenarthrobacter nicotinovorans was determined (Figure 3;
Teruo et al., 2015). This protease consists of mainly β-sheets
to form two β-barrels. The active site with the catalytic triad
formed by His43, Asp92, and Ser171 is located between these
two barrels (Teruo et al., 2015). The catalytic mechanism of
these serine proteases has been well described. The following
steps are critical for substrate degradation. The substrate needs
to bind to the active site, followed by the peptide cleavage
and release of the shorter segments. Proteases from M32
family have different secondary structures. A crystal structure
of FisCP from Fervidobacterium islandicum AW-1 showed
that the protease contained main helical structures with a
short β-sheet close to the active site. The active site contains
several amino acids (His253, Glue254, His257, and Glue283)
and a Co2+ atom which is important for coordination of the
substrate (Figure 3).
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FIGURE 2 | A simplified diagram showing the degradation of keratin by proteases. Two-step disulfide bond breakage and polypeptide degradation are usually

included in keratin degradation. Keratins are simplified as helices. The degradation includes the steps such as releasing of keratin and degradation of keratin by

multiple enzymes, which has been described in several reviews (Korniłłowicz-Kowalska and Bohacz, 2011; Sharma and Devi, 2018; Vidmar and Vodovnik, 2018; Qiu

et al., 2020).

TABLE 1 | Some studies on other enzymes important for keratin degradation are listed.

Organism Remarks References

Bacillus halodurans PPKS-2 This strain produces multiple enzymes such as keratinases and disulfide reductase. Prakash et al., 2010b

Stenotrophomonas sp. D-1 Cooperative action of a protease and a reductase was observed. Yamamura et al., 2002

Arthroderma benhamiae Sulfite can be produced from cysteine by cysteine dioxygenase Cdo1. Grumbt et al., 2013

Bacillus licheniformis RG1 Multiple enzymes are shown to be important for keratin degradation. Ramnani et al., 2005

Trichophyton mentagrophytes Cysteine dioxygenase expression was studied. Kasperova et al., 2013, 2014

Trichophyton mentagrophytes A gene for expressing cysteine dioxygenase was obtained. Kasperova et al., 2011

Bacillus sp. MTS Cysteine reductase improved keratin degradation. Rahayu et al., 2012

Keratin-degrading fungi A study showed the classification of lytic polysaccharide monooxygenases. Busk and Lange, 2015

Streptomyces pactum Keratinases and reduction of disulfide bonds are important for feather degradation. Bockle and Muller, 1997

Biochemistry of Keratinases
Based on the identified enzymes and the sequences deposited
in databases, the molecular weights of keratinase range from 20
to 130 kDa (Kanoksilapatham and Intagun, 2017; Sharma and
Devi, 2018; Pinski et al., 2020; Qiu et al., 2020). The optimal
conditions for enzymatic activity are diverse as different enzymes
prefer different pH values, temperatures, and substrates (Tatineni
et al., 2007; Tiwary and Gupta, 2010b; Rai and Mukherjee, 2011;
Khodayari and Kafilzadeh, 2018; Arokiyaraj et al., 2019; Nnolim
et al., 2020a). The classification of keratinases based on the
amino acid sequence provides a unique and clear view toward
the function and mechanism of keratinases (Qiu et al., 2020),
which suggests that obtaining the amino acid sequence of the
newly identified keratinases is an important task. Although the
effect of keratinase producers on breaking disulfide bonds should
be measured (Jaouadi et al., 2010), most studies explored the
capabilities of breaking peptide bonds by keratinases (Benkiar
et al., 2013; Jaouadi et al., 2013; Ben Elhoul et al., 2016; Omrane
Benmrad et al., 2019). To validate the capability to degrade
keratin, several substrates were adopted in the enzymatic assay
(Böckle et al., 1995; Brandelli et al., 2010; Table 2).

Two types of the substrate were frequently used in the assays
(Table 2). One type is the natural keratin such as feathers,

wool, and pig bristles or the substrate derived from keratin-
rich materials (Laba and Rodziewicz, 2014; Jin et al., 2017). As
the solubility of the natural keratin is low, it is challenging to
compare the enzymatic activities of keratinases obtained from
different studies. Azo-keratin is frequently used as a substrate
of keratinase and can be prepared using keratin derived from
different sources (Herzog et al., 2016; Gonzalo et al., 2020).
Azo-keratin is not a commercial product and is prepared by
coupling keratins with a diazotized aryl amide to result in a
deep red-orange compound (Riffel et al., 2003). The activity of
keratinase is obtained by measuring changes of absorbance at
450 nm. Azo-keratin derived from different keratin-containing
materials will be different and might not be an ideal substrate to
compare enzymatic activities obtained from different laboratories
(Riffel et al., 2003; Qiu et al., 2020). Keratin azure is another
frequently used substrate in keratinase assay (Lin et al., 1992;
Korkmaz et al., 2004; Tork et al., 2016). The enzymatic activity
was defined according to the changes of the absorbance at 450 nm
after mixing substrate with enzyme for a certain time (Jaouadi
et al., 2010; Tork et al., 2016). Keratin azure is commercially
available and very suitable for characterization of keratinases with
a preference to degrade α-keratins. Keratin-containing materials
such as feathers are also frequently utilized in biochemical assays
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FIGURE 3 | Crystal structures of microbial keratinases. The crystal structures of five keratinases were shown to understand their mechanism of action. The PDB

access codes of the structures are indicated. The amino acids in active sites are highlighted in sticks and labeled with sequence numbers. Ca2+ and Co2+ atoms in

the structures are shown as yellow and green spheres, respectively. In the crystal structure of fervidolyis (PDB:1R6V) (Kim et al., 2004), His208 was mutated into Ala.

Ala 208 was labeled as His208 in this figure to show the active site. The β-sheet structures in FisCP (PDB: 5E3X) are highlighted in blue (Lee et al., 2015). All the

figures were made using PyMOL (www.pymol.org). The details of the structures can be found in the reports (Betzel et al., 2001; Kim et al., 2004; Teruo et al., 2015;

Wu et al., 2017).

FIGURE 4 | Structure of rMtaKer and its insights into protease and substrate interactions. Surface presentation of one keratinase in the absence and presence of a

peptide sequence binding to the active site. The crystal structure of the protease (PDB ID 5WSL) is shown (Wu et al., 2017). The orientation of the figure is similar to

those in Figure 3. The residues forming the catalytic triad are shown in green, and the peptide from the adjacent molecule in the crystal structure is shown in sticks.

The peptide sequence is shown as sticks in the figure.

in which feather degradation can be detected through observing
the release of amino acids, the shape changes of feathers, and
reduction of feather mass (Kim et al., 2005; Anbu et al., 2008;
Cãlin et al., 2017; Wu et al., 2017; Bohacz and Korniłłowicz-
Kowalska, 2019; Peng et al., 2019). The advantage of using natural

keratin is that the keratin-degrading capability of keratinases can
be evaluated directly (Gurung et al., 2018; Thankaswamy et al.,
2018). The disadvantage is that the substrate degradation requires
collaborative effort of different types of enzymes. The native
substrate might not reflect the biochemical parameters of a single
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TABLE 2 | Substrates used for analyzing keratinase activity.

Substrate Assay References

Azo-keratin Measuring absorbance

at 450 nm

Herzog et al., 2016;

Gonzalo et al., 2020

Keratin azure Tork et al., 2013, 2016

Feather Measuring absorbance

at 280 nm

Bohacz and

Korniłłowicz-Kowalska,

2019

Feather powder Fang et al., 2013; Qu

et al., 2018

Cow horn Dozie et al., 1994

Wool top Iglesias et al., 2017

Recombinant feather

keratin

Jin et al., 2017

Human hair Measuring absorbance

at 280 nm or using

other reagents

Lowry et al., 1951;

Gurung et al., 2018

Azocasein Measuring absorbance

at 366 nm

Tork et al., 2013, 2016

Suc-Ala-Ala-Pro-Phe-

pNA

Mearing absorbance at

405 nm

Böckle et al., 1995;

Mitsuiki et al., 2004;

Fang et al., 2016a

Suc-Ala-Ala-Pro-Leu-

pNA

Fang et al., 2016b

Bz-Arg-pNA Böckle et al., 1995

Bz-Phe-Val-Arg-pNa Rozs et al., 2001

Bz-Ile-Gly-Glu-Arg-pNA Macedo et al., 2008

Suc-Leu-Leu-Val-Try-

AMC

(tetrapeptide)

Fluorescence assay Bakhtiar et al., 2005

Leu-AMC Monod et al., 2005;

Silveira et al., 2009;

Brandelli et al., 2010

Short peptides Reversed-phase

chromatography

Mäkinen et al., 1994

Casein Absorbance at 660 nm Demirkan et al., 2020

enzyme. A recent study applied recombinant feather protein
in the protease assay. The recombinant protein was soluble in
solution, giving rise to accurate analysis of the keratinase (Jin
et al., 2017). Therefore, purified enzymes and modified substrates
are critical for characterizing the enzymes.

The other type of substrates soluble in solution was applied
in the enzymatic assay (Brandelli et al., 2010). Azocasein was
utilized in several studies to determine whether a protein harbors
protease activity (Tork et al., 2013, 2016). It is a non-specific
protease substrate and its hydrolysis results in releases of the
azo dye which can be detected by monitoring the absorbance at
366 nm (Tork et al., 2013, 2016). Synthetic peptides were also
useful in the protease assays. As the sequence of the peptidic
substrates can be modified easily, this type of assay can be
utilized to explore the most suitable substrate for a keratinase
(Böckle et al., 1995). The cleavage of peptides are able to
be monitored using reversed-phase chromatography while this
method is not a robust assay (Mäkinen et al., 1994). Peptidic
substrates containing p-nitroanilide (pNA)were used to study the
preference for P1 and P2 residues (Macedo et al., 2008; Benkiar
et al., 2013; Zaraî Jaouadi et al., 2015; Bouacem et al., 2016). As

the release of pNA can be detected by measuring the absorbance
at 405 nm, pNA derivatives are very suitable to explore the
effect of environmental conditions and other chemicals on the
activity of keratinases (Rozs et al., 2001). Several keratinases
produced by Bacillus sp. have been characterized using this
type of substrates (Macedo et al., 2008). Fluorogenic substrates
containing amino-4-methylcoumarin (AMC) have been widely
utilized in the enzymatic assays of serine proteases (Bakhtiar
et al., 2005; Silveira et al., 2009). The substrate cleavage can be
confirmed with fluorescence spectroscopy. This method is very
sensitive and provides an accurate way to characterize proteases.
Effect of ions on keratinase activity was explored using AMC-
derived substrates (Bakhtiar et al., 2005). Based on accumulated
studies, it is a good strategy to adopt multiple protease assays to
characterize keratinases obtained from different microorganisms,
which will provide an insightful view to these enzymes. The
biochemical features of keratinases can be obtained from several
reviews (Onifade et al., 1998; Brandelli et al., 2010; Sahni et al.,
2015; Kanoksilapatham and Intagun, 2017; Pahua-Ramos et al.,
2017; Sharma and Devi, 2018; Zhang et al., 2019; Hassan et al.,
2020; Qiu et al., 2020). The crystal structure of rMtaKer provides
useful information for the molecular interaction between the
enzyme and a peptide sequence from the C-terminal of this
enzyme (Figure 4; Wu et al., 2017). This structure will be useful
for designing a suitable substrate for enzymatic assays.

In summary, a sensitive biochemical assay needs to be
set up as different keratinases may prefer different substrates.
In addition, effects of different additives such as reducing
reagents on keratin degradation could provide useful insights
into understanding keratin degradation and expanding the
application of these enzymes.

Microbial Production of Keratinases
Application of keratinases in industry requires a large amount
of enzymes. Therefore, fermentation is essential to produce
these enzymes in a large scale to meet the demands from
industry (Zaghloul et al., 2011). Fermentation parameters such
as carbon source, nitrogen source, temperature, and others
need to be optimized as these parameters have an impact on
the production of the keratinase. Wastes from industries such
as feathers can be added into the cultural medium (Deniz
et al., 2021). In addition, other wastes such as wheat and soy
beans can be used as a substrate for producing keratinases
(Syed et al., 2009; Prakash et al., 2010a). Interestingly, a study
showed that glucose and ammonium nitrate are not good sources
for growing Stenotrophomonas maltophilia to degrade feathers
(Qu et al., 2018). Accumulated studies suggest that different
microorganisms require various fermentation conditions for
large-scale production, indicating that careful exploratory studies
are necessary prior to the large-scale production of the enzymes
(Jagadeesan et al., 2020; deMenezes et al., 2021; Deniz et al., 2021;
Sharma and Kango, 2021). It was demonstrated that the solid-
state fermentation increased keratinase production compared
with the commonly used submerged fermentation (Inácio et al.,
2018). In addition to feathers and human hair used in solid-state
fermentation, other low-cost resources from agriculture can be
considered in fermentation (Awad et al., 2011).
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FIGURE 5 | Application of microbial keratinases in different fields. Applications of keratinases and their products are highlighted in green, which has been introduced

in multiple reports (Onifade et al., 1998; Gupta and Ramnani, 2006; Brandelli et al., 2010; Chaturvedi et al., 2014; Sahni et al., 2015; Sharma and Gupta, 2016;

Vidmar and Vodovnik, 2018).

Recombinant techniques are applied to the production of
keratinases (Descamps et al., 2003; Liu et al., 2013b; Fang et al.,
2014; Yong et al., 2020; Yahaya et al., 2021). This method
is particularly meaningful for keratinases that are produced
by pathogenic microorganisms (Muhammed et al., 2021) and
the mutants with an improved enzymatic activity and stability
(Zhang et al., 2020). The recombinant production of keratinases
does not require the application of keratin as the carbon
and nitrogen sources. It is possible to purify the recombinant
enzymes in a fast way when an affinity purification tag is
introduced. Several studies demonstrate that it is feasible to
produce recombinant keratinases. Keratinases from bacteria can
be produced in Escherichia coli (Tiwary and Gupta, 2010a).
It has been shown that the gene kerA encoding a keratinase
from Bacillus licheniformis was expressed in Escherichia coli
and Bacillus subtilis while the yield was lower than that of the
wild type. An improved yield was observed by integration of
multiple copies of kerA into the chromosome (Wang et al., 2004).
Therefore, producing keratinases using recombinant techniques
is of great interest while extensive studies are still needed to
obtain the recombinant keratinase with an improved activity.

The purification of keratinases is important for enzymatic
characterization and other application (Brandelli et al., 2015).
In waste treatment, the enzyme purification is not needed for
reducing cost and improving efficiency. To obtain a keratinase
with a high purity, several strategies can be utilized. Ammonium
sulfate precipitation, gel filtration chromatography, and ion-
exchange chromatography are commonly used methods in the
purification (Brandelli et al., 2015). For recombinant proteins,
the affinity chromatography can be used in purification based
on the affinity tag that is incorporated into the target protein.
Keratinases from different bacteria have been purified for
biochemical characterization. Techniques such as the aqueous

two-phase system are applicable to obtain a large amount of
enzymes (Bach et al., 2012; Sala et al., 2014). A carefully
experimental design is vital when a large quantity of pure
enzymes is needed as the purification could be an expensive step.

It has been noted that recombinant techniques are still needed
for producing keratinases with a high purity, keratinases with
mutations, and keratinases originated from a pathogenic
microorganism (Liu et al., 2014). Recombinant protein
expression systems and host and gene cloning strategies
need to be explored (Gong et al., 2020). As the recombinant
protein is critical for exploring the function of keratinases, it is
useful in studying the function and activity of the enzymes.

APPLICATION OF KERATINASES

Keratin exists widely in nature and is a valuable source of carbon,
nitrogen, and sulfur which can be converted into diverse products
(McKittrick et al., 2012; Wang et al., 2016). Keratinases have
extensive industrial and biotechnological applications due to
their ability to degrade keratins (Onifade et al., 1998; Gupta
and Ramnani, 2006; Rai et al., 2009; Syed et al., 2009; Brandelli
et al., 2010; Sahni et al., 2015; Kanoksilapatham and Intagun,
2017; Gegeckas et al., 2018; Vidmar and Vodovnik, 2018). Their
applications are summarized (Figure 5) and have been described
in several literatures (Gupta and Ramnani, 2006; Brandelli et al.,
2010; Vidmar and Vodovnik, 2018; Hassan et al., 2020; Nnolim
and Nwodo, 2021).

IMPROVEMENT OF KERATINASES

To improve the activity and thermal stability of keratinases,
mutagenesis was applied (Fang et al., 2010; Wang et al., 2015;
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de Paiva et al., 2018; Su et al., 2019). The mutagenesis studies
were carried out by treating whole cells with reagents and
modifying genes using molecular biology. In a study, ethyl
methanesulfonate (EMS) was used to treat the whole cells of
Bacillus subtilis LFB-FIOCRUZ 1266, and the resulting mutant
strains exhibited higher feather hydrolysis compared with the
wild-type strain (de Paiva et al., 2018). Treatment of feather-
degrading Deinococcus ficus with UV resulted in mutants with an
improved and decreased keratinolytic activity (Zeng et al., 2011).
Other chemical reagents such as ethidium bromide (EtBr) and
N-methy-N’-nitro-N-nitroso-guanidine (MNG) were also able
to cause mutations in the genes, which affected the keratinase
activity (Cai et al., 2008; Vidmar and Vodovnik, 2018).

Protein engineering was also applied to cause an augmentation
of the keratinase activity (Fang et al., 2019). When the amino
acid sequence and structure of a keratinase are available, the
rational protein design can play a role in improving the activity
and thermal stability of a keratinase. When amino acids essential
for the protease activity, metal binding, and thermal stability are
identified, computer-based methods will enable researchers to
design proteins with improved enzymatic activities and thermal
stabilities. This strategy has been successfully applied to the
keratinase of Bacillus licheniformis BBE11 (Liu et al., 2013a).
Four amino acid substitutions (N122Y, N217S, A193P, N160C)
were designed, and the corresponding genes were expressed in
Bacillus subtilis WB60. A mutant keratinase with the N122Y
substitution exhibited an approximately 5.6-fold increase in
catalytic efficiency, suggesting that this is an efficient strategy
in improving activity and stability (Liu et al., 2013a). Other
methods such as PCR-based methods and direct evolution
will play a role in obtaining more potent keratinases (Vidmar
and Vodovnik, 2018). When the regulatory mechanism of a
keratinase is understood, the modification on other regions
of the keratinase can also improve its activity and stability
(Fang et al., 2016b; Peng et al., 2021). In a study, the N-
and C-terminal regions of KerSMD were replaced with those
regions of a homogenous keratinase. Replacing the N-terminal
region resulted in a mutant exhibiting more than a twofold
catalytic activity toward casein catalytic efficiency. Replacing the
C-terminal region improved keratinases activity using succinyl-
Ala-Ala-Pro-Phe-p-nitroanilide as a substrate in a biochemical
assay. Replacing both N- and C-terminal regions resulted in a
mutant with an improved thermal stability (Fang et al., 2016b).

It is important to improve the enzymatic characteristics of the
keratinase while caution has to be taken when the whole-cell-
based mutagenesis is used. All the mutant strains should meet
the safety requirement from certain authorities. Compared with
random mutagenesis, structure-guided protein engineering is of
great interest as the mutation is well managed. To carry out
such studies efficiently, the amino acid sequence and structures
need to be known. Recombinant protein production is therefore
a strategy to play an important role in this process. Researchers
have to make sure that the strains with modified genes are
acceptable in industrial applications.

CONCLUSION

Keratin is a rich resource in nature, and the amount of
keratin-rich wastes is increasing annually. Keratinases play
important roles in keratin recycle and have diverse applications
in different fields. Studies need to be carried out to obtain
active enzymes and enlarge their applications. Microbiology,
molecular biology, structural biology, computation and
biochemistry will play important roles in the research
field of keratinases.
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