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Abstract

Face clustering is a promising method for annotating un-

labeled face images. Recent supervised approaches have

boosted the face clustering accuracy greatly, however their

performance is still far from satisfactory. These methods

can be roughly divided into global-based and local-based

ones. Global-based methods suffer from the limitation of

training data scale, while local-based ones are difficult to

grasp the whole graph structure information and usually

take a long time for inference. Previous approaches fail to

tackle these two challenges simultaneously. To address the

dilemma of large-scale training and efficient inference, we

propose the STructure-AwaRe Face Clustering (STAR-FC)

method. Specifically, we design a structure-preserved sub-

graph sampling strategy to explore the power of large-scale

training data, which can increase the training data scale

from 105 to 107. During inference, the STAR-FC performs

efficient full-graph clustering with two steps: graph parsing

and graph refinement. And the concept of node intimacy is

introduced in the second step to mine the local structural

information. The STAR-FC gets 91.97 pairwise F-score on

partial MS1M within 310s which surpasses the state-of-the-

arts. Furthermore, we are the first to train on very large-

scale graph with 20M nodes, and achieve superior infer-

ence results on 12M testing data. Overall, as a simple and

effective method, the proposed STAR-FC provides a strong

baseline for large-scale face clustering. Code is available

at https://sstzal.github.io/STAR-FC/.

1. Introduction

Recent years have witnessed the great progress of face

recognition [9, 28, 29, 38, 39, 41]. Large-scale datasets are

an important factor in the success of face recognition and

there is an increasing demand for larger-scale data. Face

* Corresponding author

55

60

65

70

75

80

85

90

95

100

105

0 10 20 30

Training data#

55

65

70

86

88

60

90

92

94

96

P
a

ir
w

is
e 

F
-s

co
re

STAR-FC

DBSCAN

K-Means

GCN-D

GCN-V+E

0.4M 4M 12M 20M

Figure 1: Method comparison when training with differ-

ent scales of data and testing on 12M data from Web-

Face42M [55]. The proposed STAR-FC can fully explore

the power of large-scale training data. GCN-V+E fails to

handle larger training graph while GCN-D’s performance is

severely restricted due to the less consideration of the global

structural information.

clustering [22, 30, 42, 48, 50, 51, 52] is a natural way to

solve the data annotation problem so as to make better use

of massive unlabeled data. Face clustering is also one possi-

ble approach to organize and file large volumes of real face

images in social media or other application scenarios.

Recently a variety of efforts have been devoted to face

clustering. Traditional unsupervised methods [16, 53] in-

cluding K-Means [30] and DBSCAN [10] usually depend

on some manually designed clustering strategies. They per-

form well on small datasets, however they are less effec-

tive when dealing with large-scale data as shown in Fig-

ure 1. Recent research trends [12, 42, 47, 49, 50] turn to the

GCN-based supervised learning. These methods are per-

formed based on the affinity graph and can be roughly di-

vided into global-based and local-based ones according to

whether their GCN input is the whole graph or not. The rep-

resentative global-based method GCN-V+E [47] uses the

entire graph for GCN training. As shown in Figure 1, it

boosts the face clustering performance greatly compared

with unsupervised methods, however the training data scale
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is limited by the GPU memory which makes it difficult to

further explore the power of larger-scale training sets. Al-

though local-based methods such as GCN-D [49] shown in

Figure 1 don’t suffer from memory restrictions, its perfor-

mance is limited since it lacks the comprehension of global

graph structure. Besides, it organizes the data as overlapped

local subgraphs which leads to inefficient inference.

For many computer vision tasks [7, 8, 11, 15, 25, 34],

large-scale training data is one of the most important

engines to promote the performance. With the emer-

gence of some new large-scale benchmarks such as Web-

Face42M [55] whose data volume is ten times that of

MS1M [13], we have more data available for training.

Therefore, exploring the power of these rich training data

is imperative. For testing, efficiency matters, we are there-

fore eager to perform full graph inference. Based on the

above motivations, we propose a structure-aware face clus-

tering method STAR-FC to address the dilemma of large-

scale training and efficient inference. Specifically, we de-

sign a GCN [20] based on the KNN [6] affinity graph to

estimate the edge confidence. Furthermore, a structure pre-

served subgraph sampling strategy is proposed for larger-

scale GCN training. During inference, we perform face

clustering with two steps: graph parsing and graph refine-

ment. In the second step, node intimacy is introduced to

mine the local structural information for further refinement.

In the inference process, the entire graph is taken as the in-

put for efficiency.

The experiments demonstrate that with these structure-

aware designs, the STAR-FC can not only perform sample-

based training but also implement full-graph inference.

With sample-based training, the training data scale can be

increased by two orders of magnitude from 105 to 107 and

beyond. As shown in Figure 1, with the increase of training

data, our method has been consistently improved and finally

achieves 95.1 pairwise F-score. Interestingly, we find that

such sampling method does not lead to performance loss

and brings some extra accuracy gain since it enhances the

generalization of the model. In inference, with full-graph as

input, the efficiency can be guaranteed. We achieve state-

of-the-art face clustering results on partial MS1M within

310s. What’s more, we can complete inference on 12M data

within 1.7h thus provide a strong baseline for face cluster-

ing. To summarize, we make the following contributions:

• To fully explore the power of large-scale training

dataset, we propose a structure-preserved subgraph

sampling strategy which can break through the limi-

tation of training data scale from 105 to 107.

• For inference, we take the entire graph as input to en-

sure efficiency. We transform face clustering into two

steps: graph parsing and graph refinement. Node in-

timacy is introduced in the second step to explore the

local structure for further graph refinement.

• The proposed STAR-FC achieves 91.97 F-score on

partial MS1M within 310s. Moreover, we are the first

to conduct large-scale training on 20M data which pro-

vides a strong baseline for large-scale face clustering.

2. Related Work

Face Clustering. Face clustering has been extensively stud-

ied as a classic task in machine learning. It provides an

alternative way to exploit massive unlabeled data. Tradi-

tional algorithms including K-Means [30], spectral cluster-

ing [16], hierarchical clustering [53] and DBSCAN [10]

laid a good theoretical foundation for clustering. However,

they generally rely on simple data distribution assumptions

thus are ineffective when dealing with real data. To im-

prove the robustness in complex distributed face clustering,

Lin et al. [27] proposed the proximity-aware hierarchical

clustering. Zhu et al. [54] and Otto et al. [32] designed

the rank-order connection metric. However, since [32, 54]

did not establish the graph structure and lacked preliminary

analysis for neighbor relations, they achieved poor results.

Lin et al. [26] tried to measure density affinities between lo-

cal neighborhoods. [36] modeled face clustering as a struc-

tured prediction problem using conditional random field.

Methods above make less use of supervised information

in face clustering. More recently, the research trends turn to

GCN-based supervised face clustering and have achieved

impressive results [12, 42, 47, 48, 49, 50, 52]. These meth-

ods can be roughly divided into two categories: local-based

face clustering [42, 49, 50] and global-based one [47]. In

these local-based methods, Zhan et al. [50] designed a me-

diator network to aggregate information in the local graph.

Wang et al. [42] predicted the linkage in an instance pivot

subgraph. Yang et al. [49] generated a series of subgraphs

as proposals and detected face clusters thereon. These

methods pay more attention to local graph information and

rely heavily on redundancy subgraph operations which limit

their performance and lead to slow inference. Represen-

tative global-based method [47] took the entire graph as

input and predicted the confidence and connectivity of all

vertices. In [47], the holistic graph structure is better con-

sidered, however due to GPU memory limitation, it may be

out of memory when dealing with larger training data. We

therefore propose the STAR-FC to simultaneously tackle

the challenges of large-scale training and efficient inference.

Graph Convolutional Networks. Graph Convolutional

Networks (GCNs) [4, 35, 40, 43] extend the convolution

idea of CNNs [5, 21, 33] to process non-Euclidean struc-

tured data. GCNs have shown impressive capability on var-

ious tasks [2, 20, 23, 24, 45, 46]. More recently, to im-

prove GCN’s ability in handling larger-scale training graph,

some GCN training algorithms have been proposed. Graph-

SAGE [14] traded off the performance and runtime via sam-
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Figure 2: Overview of the proposed STAR-FC framework. In the training process, we use the structure-preserved subgraph

sampling strategy to get a variety of subgraphs which are used to train the GCN-based edge confidence estimator. The cross-

entropy loss is employed to supervise the training. During inference, based on the built affinity graph, we transform the face

clustering into two steps: graph parsing and graph refinement. For the first step, the trained GCN takes the entire graph as

input and estimates all edge confidence scores simultaneously. The affinity graph is parsed with these predicted scores. In the

second step, node intimacy is employed for further graph refinement. After these two steps, the cluster structure will become

clear and the face clusters can be directly read from the graph. For details about the node intimacy, please refer to Figure 4.

pling a fixed number of neighbors for aggregation. Fast-

GCN [3] interpreted graph convolutions as integral trans-

forms of embedding functions under probability measures

and proposed to sample vertices rather than neighbors for

controllable computation cost. Whereas the key differences

between the above methods and the proposed one lie in the

sample mode. These previous methods perform graph sam-

pling with nodes as the smallest unit, while the proposed

method implements sampling on clusters with near neigh-

bor relationships trying to approximate global structure.

Our method can keep most of the inter-cluster edges which

can be provided as hard negative samples during training.

3. Methodology

3.1. Overview

To address the dilemma of large-scale training and ef-

ficient inference, we propose a structure-aware face clus-

tering method. An overview of the proposed STAR-FC is

shown in Figure 2. During training, the GCN-based edge

confidence estimator is trained with the structure-preserved

subgraph sampling strategy. We aim to approximate the full

graph structure with the sampled subgraph and it retains

most of the hard negative edges which contribute a lot for

training. In this way, the potential of large-scale data can be

fully unleashed. We specifically model the edge prediction

as a binary classification problem and use the cross-entropy

loss for supervising. During inference, we transform the

face clustering into two steps: graph parsing and graph re-

finement. For graph parsing, we take the whole graph as the

input of the trained GCN to estimate all edge confidence

scores simultaneously. Then edges with low scores are re-

moved and graph structures will become clearer. However

there still exist a few wrong connections. They have rel-

atively high scores thus hard to be eliminated. To further

refine the graph, we introduce the node intimacy for edge

pruning again. After these two steps, face clusters are natu-

rally formed by those connecting groups in the graph.

3.2. Large-Scale GCN Training

In this section, we detail the large-scale training process

of the proposed STAR-FC.

Design of the GCN. In this step, we design a GCN-based

edge confidence predictor on the basis of KNN affinity

graph. We first get the feature matrix F ∈ R
N×D with a

trained ResNet-50, where N is the number of face images

and D is the feature dimension. To build the KNN affinity

graph, each sample can be treated as a node in the graph and

is linked to its K nearest neighbours [6]. The corresponding

sparse symmetric adjacency matrix is A ∈ R
N×N .
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Since the CNN is trained under the strong supervision

of classification loss, the extracted features F actually con-

tain rich identity information. However, due to intra-class

variance and the fixed K value in KNN algorithm, the affin-

ity graph may contain many wrong edge connections. We

therefore try to directly predict the existence of the edges

employing a GCN for propagating neighbor information.

Following [42, 47], we use the more effective modified

GCN as our backbone and the computational process of a

L-layer modified GCN can be formulated as:

Fl+1 = σ
(
[FT

l , (ÃFl)
T ]TWl

)
, (1)

where Ã = D̃−1 (A+ I). D̃ is a diagonal degree matrix

with D̃ =
∑

j Ãij . Fl denotes the embeddings at l-th layer

and F0 is the input face features. Wl ∈ R
Din×Dout is a

learnable matrix that maps the embeddings to a new space.

σ is a nonlinear activation and we use ReLU [31, 44] in this

work. FL indicates the output features of L-layer.

Since FL aggregates many messages from the neighbor-

hood and encode graph structural information, it is more

suitable for the face clustering task. To predict the exis-

tence of the edges in the affinity graph, we design a binary

classifier employing a 2-layer MLP [17] with the objective

to minimize the cross-entropy loss between the predicted

edge confidence and the ground-truth edge labels. Partic-

ularly, we take pair features corresponding to the edges in

the affinity graph as the input of the MLP and get the two-

dimension predicted edge confidence. The ground-truth la-

bel of an edge is 1 if the two nodes connected by this edge

belong to the same class, otherwise it will be 0.

Under this simple supervision of binary signals, the dis-

tribution of the predicted confidence will appear as two

sharp peaks approaching 0 and 1 as shown in Figure 3.

Therefore, for inference we can use a single threshold τ1
to effectively eliminate most of the wrong edges. This op-

eration may lead to two types of misjudgments: (1) it may

cut off a small number of real edges; (2) it may leave a

few wrong connections hard to be identified via confidence.

Since the original affinity graph is densely connected, the

lost correct edges in the former case have a slight effect

on the connectivity of the final graph. Those remaining

wrong edges will be processed in the following procedure

with node intimacy in Section 3.3.

Structure-Preserved Subgraph Sampling. Previous

methods [47, 49] usually use 10% of MS1M (0.5M face im-

ages) [13] for GCN training. For global-based method [47]

this has approximated to the memory threshold of a typical

1080Ti GPU. Although local-based methods [42, 49] can

alleviate the GPU storage burden through local graph oper-

ation, they rely heavily on numerous overlapped subgraphs

which severely affect their efficiency and accuracy.

Recent years have witnessed the success of large-scale

Algorithm 1 Structure-Preserved Subgraph Sampling

Input: Training nodes reorganized in clusters C, cluster

seeds number M , parameters N .

Output: Sampled subgraph S
1: S = ∅, S1 = ∅, S2 = ∅
2: Randomly select M clusters Ci (i = 1, · · · ,M ) from C

3: for i = 1 to M do

4: Sample N nearest neighbor clusters Cij (j =
1, · · · , N ) of Ci

5: S1 = S1

⋃
Ci

⋃N

j=1
Cij

6: end for

7: Construct S2 via applying CR on S1

8: Construct S via applying SR on S2

9: return S

training in many computer vision tasks [7, 8, 11, 15, 25, 34].

To fully explore the power of large-scale training data,

we design a structure-preserved subgraph sampling (SPSS)

strategy for GCN training. The edges in an affinity graph

are mainly composed of two parts: dense intra-cluster con-

nections and sparse connections between near clusters. Try

to approximate the dense connections within clusters, our

approach treats face clusters as the smallest sampling unit,

different from previous methods [3, 14] which perform ran-

domly sampling on nodes. To further model those inter-

cluster connections, we extend the subgraph from the se-

lected cluster to its neighbor clusters. On one hand, the

sampled subgraphs preserve the important structural infor-

mation of the full graph, i.e. the edge connections within the

clusters and the connections between near clusters. On the

other hand, many near clusters are sampled in a subgraph,

and the edges between these near clusters can be treated as

hard negative examples which can contribute a lot to the

GCN training. Equipped with such a structure-preserved

subgraph sampling strategy, our method can benefit from

increasing training data. Interestingly, this sampling strat-

egy does not lead to performance loss since the structural

information of the whole graph is fully considered. Besides,

the experimetal results in Table 2 show that it brings further

performance gain since the enhancement of generalization.

Algorithm 1 shows the details of the proposed SPSS.

Given the training nodes reorganized in clusters, we ran-

domly select M clusters from them as the sampling seeds.

For each seed cluster, we extend to its N nearest neighbor

clusters which are measured by the cosine similarity of the

center. After this step, we can get a subgraph S1 consists

of M × N clusters. To further strengthen the generaliza-

tion, we introduce the cluster randomness (CR) strategy by

randomly selecting K1 clusters from S1, and the sample

randomness (SR) strategy by randomly selecting K2 nodes

from S2. Then we rebuild the KNN affinity graph based on

these sampled nodes to construct the subgraph S .
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Figure 3: Distribution of the predicted edge scores obtained

by the trained GCN. Since the GCN is trained under the

supervision of binary signals, its predicted scores appear as

two sharp peaks approaching 0 and 1 with high separability.

3.3. Efficient Face Clustering Inference

This subsection shows how to perform efficient inference

and get the final face clusters with the proposed STAR-FC

in detail. Specifically, we transform the face clustering task

into two steps: graph parsing and graph refinement.

Graph Parsing. In this step, we parse the built affinity

graph preliminarily with the trained GCN. We feed the en-

tire graph into the GCN and obtain all edge scores simulta-

neously. Figure 3 shows that the predicted scores are dis-

tributed in nearly two sharp peaks approaching 0 and 1. We

can therefore perform simple but effective pruning with a

single threshold τ1. A small number of correct edges may

be cut off wrongly in this step. Whereas since the initial

affinity graph is densely connected, this has a slight effect

on the connectivity of the final clusters. After this step, most

wrong connections are removed, and the graph structure has

become clearer. However, there still exists a minority of

false positive edges. To deal with these edges, we propose

node intimacy in the second step trying to mine the local

graph structure for further graph refinement.

Graph Refinement. The left false positive edges mistak-

enly connect different clusters, which may seriously affect

the final clustering performance. These edges can not be re-

moved directly using edge scores, we therefore try to iden-

tify them with node intimacy (NI).

The concept of node intimacy is inspired by the human

familiarity. In human societies, two familiar people usu-

ally have many mutual friends. Extending this idea to the

graph, we establish the concept of node intimacy. Partic-

ularly, given two nodes N1 and N2. There are n1 edges

connected to N1 while n2 edges connected to N2 in all.

Node N1 and N2 have k common neighbor nodes. We then

calculate the NI between N1 and N2 as follows:

NI = Aggregation

(
k

n1

,
k

n2

)
. (2)

Common aggregation operations include mean, minimum

and maximum. Comparison in Section 4.2 shows that the

maximum function has the best performance. Figure 4 il-

lustrates the NI on graph and shows the specific calculation.
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Figure 4: Illustration of the proposed node intimacy. We ob-

serve that nodes within a cluster are densely connected with

each other while there exist sparse wrong connections be-

tween clusters. Inspired by such observation, we present the

node intimacy which aims to estimate whether two nodes

should be linked by measuring their common neighbors.

The table at the bottom left shows the specific NI calcu-

lation of two pairs of nodes (i.e. A&B, C&D). The results

indicate that the positive neighbor C&D exactly have high

NI while the negative neighbor A&B have low NI.

We further implement the above calculation into a matrix

operation. Given adjacency matrix A ∈ R
N×N , the number

of mutual neighbors of all node pairs is Ã = AA, with each

element ãij in Ã denoting the number of mutual neighbours

for Ni and Nj . Then the NI is formulated as:

NI = max((ÃT sum0)
T , Ã sum1), (3)

sum0 = vec(
∑

j

a·j
−1

), sum1 = vec(
∑

i

ai·
−1

),

For inference, we use node intimacy to represent the

edge score and remove those edges whose score is below

τ2. After this step, we expect that most wrong connections

have been removed. We can thus directly read the face clus-

ters from the affinity graph.

Complexity Analysis. During inference, the main compu-

tation lies in the GCN and the node intimacy. Both of these

calculations are sparse matrix multiplication, thus the com-

plexity is O (|E |), where E denotes the edges in the affinity

graph. For a KNN affinity graph with N nodes, we have

|E | � |KN |, thus the complexity increases linearly as the

number of nodes in the graph increases.

4. Experiments

4.1. Experimental Settings

Datasets. We use MS1M [13] and a large face bench-

mark named WebFace42M [55] for training and testing in

face clustering. We follow the noisy list provided in [9]

to clean the MS1M, and the refined MS1M contains about

5.82M images from 85K identities. We follow the set-

ting in [49] to partition MS1M [13] into 10 splits with
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Figure 5: Pairwise F-score under different selections of two

thresholds τ1 and τ2.

Method Precision Recall FP FB

Naive Pruning 92.83 74.24 82.50 80.93

NI (mean) 94.21 84.97 89.35 87.58

NI (min) 95.18 81.93 88.06 86.08

NI (max) 95.50 85.91 90.45 88.06

Table 1: Comparison between the naive and the NI-based

pruning with different aggregation functions.

almost equal number of identities, while 1 part as la-

beled data (part0 train) for training and the other 9 parts

(part1 test, · · · , part9 test) as unlabeled data for testing.

Each part consists of about 0.5M images from 8.6K identi-

ties. The WebFace42M is a new million-scale face bench-

mark including about 42M images and 2M identities which

are cleaned from 260M images. It has near 7 times more

images than MS1M thus presents a new challenge for face

clustering. The MegaFace [19] is used to evaluate the face

recognition performance of the model trained using pseudo-

labeled face images. It consists of a probe set with 3,530

images and a gallery set with over 1M images.

Metrics. We evaluate the performance of our approach on

both face clustering and face recognition tasks. For face

clustering, we adopt the commonly used metric Pairwise F-

score (FP ) and BCubed F-score (FB) [1]. For face recog-

nition, we use different proportions of pseudo-label data

along with 1 part labeled data to train the face recognition

model and then test the rank-1 face identification accuracy

on MegaFace challenge 1 with 1M distractors.

Implementation Details. The affinity graph is built by

KNN algorithm [6] with K = 80 for MS1M [13] and

K = 30 for WebFace42M [55]. For structure-preserved

subgraph sampling, we set M = 2 (the number of cluster

seeds), N = 750 (the number of the sampled near clusters

for each seed), K1 = 1300 (parameter in CR) for MS1M

and M = 4, N = 1100,K1 = 4000 for WebFace42M, then

set K2 = 90% (parameter in SR) for both datasets.

4.2. Ablation Study

All models in this subsection are trained with the part0

train and tested on the part1 test in MS1M.

Method SPSS CR SR Nodes per batch FP FB

a ∼ 500K 90.45 88.06

b � ∼ 10K 91.21 89.19

c � � ∼ 10K 91.80 90.05

d � � ∼ 10K 91.92 90.06

e � � � ∼ 10K 91.97 90.21

Table 2: Comparison of different sampling strategies.

Selection of Thresholds. In our method, we refine the

affinity graph with two steps involving two thresholds τ1
and τ2. In the first step, τ1 is used to process the GCN out-

put edge scores, while in the second step τ2 is employed

to prune the edges with low intimacy. We conduct experi-

ments with different τ1, τ2. Results in Figure 5 show that

τ1 = 0.7, τ2 = 0.72 is a suitable choice, we therefore adopt

this setting in the following experiments.

Design of Node Intimacy. In our method, we transform the

face clustering into two steps: graph parsing with a trained

GCN and graph refinement with node intimacy (NI). In this

subsection, we investigate the impact of NI for the final face

clustering performance, and compare three designs of NI.

For the naive pruning method in Table 1, face clusters are

obtained with dynamic edge pruning [50] based on the edge

scores predicted in the graph parsing step. Results in Ta-

ble 1 show that compared with the naive pruning strategy,

using node intimacy for further graph refinement can sig-

nificantly boost the pairwise F-score from 82.5 to 90.45.

This reveals the superiority of NI in dealing with face clus-

tering problem. We further compare three different aggre-

gation functions, i.e. mean, minimum and maximum for NI.

Results in Table 1 show that the maximum strategy outper-

forms the other two methods. Therefore, we choose the

maximum strategy in the following experiments.

Effect of Sampling Strategy. In the training process, we

propose the structure-preserved subgraph sampling (SPSS)

strategy. To add more randomness, We further introduce

cluster randomness (CR) by randomly sampling partial

clusters from the subgraph and sample randomness (SR) by

randomly sampling some nodes from the subgraph. In this

subsection, we study the effect of SPSS for GCN training.

As shown in Table 2, for the non-sampling method (a), it

needs to take the whole graph with about 500K nodes per

batch for training which leads to high GPU memory con-

sumption. Nevertheless, equipped with the struct-preserved

subgraph sampling strategy, our method only uses a sub-

graph with about 10K nodes per batch for training, and

we achieve 91.21 pairwise F-score which is comparable

with the non-sampling method with less GPU memory us-

age. This interseting performance gain demonstrates that

our sampling strategy successfully preserves most structure

message of the whole graph. Moreover, adding the cluster

and sample randomness to the SPSS can further improve

the pairwise F-score from 91.21 to 91.97. We argue that
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#unlabeled 1.74M 2.89M 4.05M 5.21M

Method / Metrics FP FB FP FB FP FB FP FB

K-Means [30] 73.04 75.20 69.83 72.34 67.90 70.57 66.47 69.42

HAC [37] 54.40 69.53 11.08 68.62 1.40 67.69 0.37 66.96

DBSCAN [10] 63.41 66.53 52.50 66.26 45.24 44.87 44.94 44.74

ARO [32] 8.78 12.42 7.30 10.96 6.86 10.50 6.35 10.01

CDP [30] 70.75 75.82 69.51 74.58 68.62 73.62 68.06 72.92

L-GCN [42] 75.83 81.61 74.29 80.11 73.70 79.33 72.99 78.60

GCN-D [49] 83.76 83.99 81.62 82.00 80.33 80.72 79.21 79.71

GCN-V+E [47] 84.04 82.84 82.10 81.24 80.45 80.09 79.30 79.25

STAR-FC 88.28 86.26 86.17 84.13 84.70 82.63 83.46 81.47

Table 3: Comparison on face clustering when training with 0.5M face images and testing with different numbers of unlabeled

face images. All results are obtained on the MS1M dataset. The proposed STAR-FC consistently outperforms other face

clustering baselines on different scale of testing data.

Method Precision Recall FP Time

K-Means [30] 52.52 70.45 60.18 11.5h

DBSCAN [10] 72.88 42.46 53.50 110s

HAC [37] 66.84 70.01 68.39 12.7h

ARO [32] 81.10 7.30 13.34 1650s

CDP [50] 80.19 70.47 75.01 140s

L-GCN [42] 74.38 83.51 78.68 5208s

GCN-D+S [49] 98.24 75.93 85.66 3700s

GCN-V+E [47] 92.56 83.74 87.93 690s

DA-Net [12] 95.88 85.87 90.60 329s

STAR-FC 96.20 88.10 91.97 310s

Table 4: Methods comparison on face clustering perfor-

mance and inference time. All models are trained with

part0 train (0.5M images) from MS1M and tested with

part1 test (0.5M images) from MS1M. The STAR-FC sig-

nificantly outperforms the state-of-the-arts, and can control

the inference time within 310s.

the introduction of randomness enhances the generalization

of the trained model. These experimental results prove the

ability of our method to handle large-scale training effec-

tively. With the proposed SPSS, we can break through the

limitation of the size of the training set and achieve excel-

lent face clustering performance.

4.3. Face Clustering on MS1M

Table 3 and Table 4 show the comparison on face clus-

tering. All results in Table 4 are obtained on the MS1M

dataset with part0 train as the training set and part1 test

as the testing set, and the inference time is obtained fol-

lowing the experimental configuration in [47]. In Table 3

we further show the face clustering performance on differ-

ent numbers of unlabeled data. Results in Table 4 show

that the proposed STAR-FC outperforms other clustering

baselines consistently. Moreover, since all modules in the

STAR-FC use full graph operation and parallel matrix com-

puting, it can perform efficient inference within 310s. For

fair comparison with DA-Net [12], this time does not in-

clude the time of computing KNN graph, and the total in-

ference time including computing KNN is 435s which can

be accelerated with parallel GPUs. Results in Table 3 show

that our method can keep superior performance when deal-

ing with larger-scale inference. What’s more, compared

with the representative clustering method GCN-V+E [47],

our method boosts the FP significantly from 79.3 to 83.46

and improves the FB from 79.25 to 81.47.

We further use these pseudo-labeled data to train face

recognition models and investigate the performance gain

brought by these extra pseudo-labeled training data. We fol-

low the experiment setting in [47, 49], and use labeled data

and various amounts of unlabeled data with pseudo-label to

train the face recognition models. Figure 6 shows the rank-

1 face identification accuracy on MegaFace [19] with 1M

distractors. As shown in Figure 6, extra unlabeled training

data with pseudo-label brings continuous performance gain

for face recognition. Owing to the superior performance

in face clustering, our method achieves higher recognition

accuracies than other face clustering baselines. With extra

5.21M unlabeled data, our method improves the recognition

performance on MegaFace from 58.2% to 79.26%.

4.4. Face Clustering on WebFace42M

In this subsection, we first compare the face clustering

performance of different methods on the WebFace42M and

then explore the training upper bound of the STAR-FC.

Recent years have witnessed the success of large-scale

training in many computer vision tasks. Large-scale train-

ing data is one of the key engines for the performance gain.

To verify the capacity of the proposed method to handle

large-scale graph, we conducte more experiments on the

million-scale face benchmark WebFace42M [55]. We ran-

domly select 4M samples from the dataset as labeled data

for training and take 4M, 8M and 12M samples respectively

as unlabeled data for testing. There is no identities overlap

between the training set and the testing set. We reproduce a
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#unlabeled 4M 8M 12M

Method / Metrics Pre Recall FP FB Pre Recall FP FB Pre Recall FP FB Time

K-Means [30] 95.99 50.05 65.80 78.29 92.20 49.91 64.34 76.47 88.75 49.69 63.71 75.04 2h

HAC [37] 98.25 59.76 74.31 85.46 96.55 58.98 73.23 84.57 OOM OOM OOM OOM OOM

DBSCAN [10] 94.77 44.12 60.21 77.87 89.97 43.55 58.69 77.02 85.57 43.76 57.91 76.38 3h

ARO [32] 99.34 62.83 76.98 88.83 98.44 62.01 76.09 88.66 97.49 62.34 76.05 88.60 4h

GCN-D [49] 98.05 52.54 68.42 71.47 96.47 51.82 67.42 71.24 95.08 53.70 68.63 72.39 8h

STAR-FC 96.77 94.00 95.36 94.93 93.95 93.99 93.97 94.77 90.86 94.06 92.43 94.63 1.7h

Table 5: Comparison on face clustering when training with 4M face images and testing with different numbers of unlabeled

data from the WebFace42M. Inference time on 12M testing data is shown in the right-most column. GCN-V+E [47] fails to

perform training on 4M data due to out-of-memory, so we don’t show it in this table. HAC [37] is able to train on large-scale

data, however it fails to perform large-scale inference with 12M testing data. The proposed STAR-FC achieves superior

results on different testing settings and can complete inference on 12M data within 1.7h.
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Figure 6: Rank-1 face identification accuracy on MegaFace

with 1M distractors. The X-axis indicates the ratio of unla-

beled to labeled data. The point where ratio is 0 indicates

that only a split of labeled data is used for training. The

upper bound is trained using data with ground-truth labels.

series of clustering baselines on the WebFace42M dataset.

Table 5 shows their clustering performance and inference

time on 12M testing data with acceleration by faiss [18].

Given the large-scale graph with 4M nodes for training,

GCN-V will be directly out of memory. HAC fails to handle

large-scale inference when the testing data size increases

up to 12M. Under such settings of large-scale training and

large-scale testing, our method once again achieves superior

face clustering performance, and can complete the inference

efficiently on 12M testing data within 1.7h.

Furthermore, we make an exploration about the training

upper bound of the proposed STAR-FC. We gradually in-

crease the size of the training set and observe the perfor-

mance changes. Specifically, we randomly select different

scales of data (0.4M, 4M, 12M, 20M) from WebFace42M

as labeled data for training, and test their face clustering

performance on a testing set with 12M data. Experimen-

tal results in Table 6 and Figure 1 show that global-based

methods such as GCN-V fail to handle large-scale train-

ing while the local-based method GCN-D has poor perfor-

mance. Nevertheless, with the increase of training data, our

method has been consistently improved and finally achieves

95.1 pairwise F-score. These experiments prove the perfor-

Training set Pre Recall FP Pre Recall FB NMI

0.4M 96.7 84.6 90.2 99.6 75.9 86.1 97.8

4M 90.9 94.1 92.4 99.0 90.7 94.6 99.1

12M 95.4 92.9 94.2 99.4 88.3 93.5 99.0

20M 97.8 92.5 95.1 99.4 88.1 93.4 99.0

Table 6: Face clustering performance of the STAR-FC with

different scales of training data from the WebFace42M and

testing on 12M unlabeled data from the WebFace42M.

mance superiority of the STAR-FC and its ability to han-

dle large-scale training. What’s more, we are the first to

conduct face clustering training on a very large-scale graph

with 107 nodes, thus provide a strong baseline for large-

scale face clustering. Our method is promising to perform

excellently when a larger training set appears.

5. Conclusion

In this paper, we have proposed a structure-aware face

clustering method STAR-FC which addresses the dilemma

of large-scale training and efficient inference. A structure-

preserved subgraph sampling method is introduced to ex-

plore the power of larger-scale training data, and it can

achieve satisfactory performance with less GPU memory

usage. Moreover, a two-step graph refinement strategy with

full-graph operation is developed to perform efficient infer-

ence. For the first time, a face clustering model is trained on

a very large-scale graph with 107 nodes. Extensive exper-

iments on MS1M and WebFace42M demonstrate the supe-

rior face clustering performance of the proposed STAR-FC.
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scale similarity search with GPUs. TBD, 2019. 8
[19] Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel

Miller, and Evan Brossard. The MegaFace Benchmark: 1

million faces for recognition at scale. In CVPR, 2016. 6, 7
[20] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. In ICLR, 2017.

2
[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

ImageNet classification with deep convolutional neural net-

works. In NeruIPS, 2012. 2
[22] Peizhao Li, Han Zhao, and Hongfu Liu. Deep fair clustering

for visual learning. In CVPR, 2020. 1
[23] Wanhua Li, Yueqi Duan, Jiwen Lu, Jianjiang Feng, and Jie

Zhou. Graph-based social relation reasoning. In ECCV,

2020. 2
[24] Wanhua Li, Yingqiang Zhang, Kangchen Lv, Jiwen Lu, Jian-

jiang Feng, and Jie Zhou. Graph-based kinship reasoning

network. In ICME, 2020. 2
[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV, 2014. 2, 4
[26] Wei-An Lin, Jun-Cheng Chen, Carlos D Castillo, and Rama

Chellappa. Deep density clustering of unconstrained faces.

In CVPR, 2018. 2
[27] Wei-An Lin, Jun-Cheng Chen, and Rama Chellappa. A

proximity-aware hierarchical clustering of faces. In FG,

2017. 2
[28] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha

Raj, and Le Song. Sphereface: Deep hypersphere embedding

for face recognition. In CVPR, 2017. 1
[29] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang.

Large-margin softmax loss for convolutional neural net-

works. In ICML, 2016. 1
[30] Stuart Lloyd. Least squares quantization in pcm. TIP, 1982.

1, 2, 7, 8
[31] Vinod Nair and Geoffrey E Hinton. Rectified linear units

improve restricted boltzmann machines. In ICML, 2010. 4
[32] Charles Otto, Dayong Wang, and Anil K Jain. Clustering

millions of faces by identity. TPAMI, 2017. 2, 7, 8
[33] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman.

Deep face recognition. BMVC, 2015. 2
[34] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In NeurIPS, 2015. 2, 4
[35] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne

Van Den Berg, Ivan Titov, and Max Welling. Modeling re-

lational data with graph convolutional networks. In ESWC,

2018. 2
[36] Yichun Shi, Charles Otto, and Anil K Jain. Face clustering:

representation and pairwise constraints. TIFS, 2018. 2
[37] Robin Sibson. Slink: an optimally efficient algorithm for the

single-link cluster method. The Computer Journal, 1973. 7,

8
[38] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang.

Deep learning face representation by joint identification-

verification. In NeurIPS, 2014. 1
[39] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior

Wolf. Deepface: Closing the gap to human-level perfor-

mance in face verification. In CVPR, 2014. 1
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