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Abstract—In this paper, we consider the problem of real-time
transmission scheduling over time-varying channels. We first for-
mulate this transmission scheduling problem as a Markov deci-
sion process and systematically unravel the structural properties
(e.g., concavity in the state-value function and monotonicity in
the optimal scheduling policy) exhibited by the optimal solutions.
We then propose an online learning algorithm that preserves
these structural properties and achieves ε-optimal solutions for an
arbitrarily small ε. The advantages of the proposed online method
are given as follows: 1) It does not require a priori knowledge of the
traffic arrival and channel statistics, and 2) it adaptively approx-
imates the state-value functions using piecewise linear functions
and has low storage and computation complexity. We also extend
the proposed low-complexity online learning solution to enable
prioritized data transmission. The simulation results demonstrate
that the proposed method achieves significantly better utility (or
delay)–energy tradeoffs compared to existing state-of-the-art on-
line optimization methods.

Index Terms—Delay-sensitive communications, energy-efficient
data transmission, Markov decision processes (MDPs), scheduling,
stochastic control.

I. INTRODUCTION

W IRELESS systems often operate in dynamic environ-

ments where they experience time-varying channel con-

ditions (e.g., fading channel) and dynamic traffic arrivals. To

improve the energy efficiency of such systems while meet-

ing the delay requirements of the supported applications, the

scheduling decisions (i.e., determining how much data should

be transmitted at each time) should be adapted to the time-

varying environment [1], [7]. In other words, it is essential to

design scheduling policies that consider the time-varying char-

acteristics of the channels and the applications (e.g., backlog in

the transmission buffer and priorities of traffic). In this paper,

we use optimal stochastic control to determine the transmission

scheduling policy that maximizes the application utility given

energy constraints.

The problem of energy-efficient scheduling for transmission

over wireless channels has intensively been investigated in

[1]–[12]. In [1], the tradeoff between the average delay and the
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average energy consumption for a fading channel is character-

ized. The optimal energy consumption in the asymptotic large-

delay region (which corresponds to the case where the optimal

energy consumption is close to the optimal energy consump-

tion with bounded queue length constraint) is analyzed. In

[6], joint source–channel coding is considered to improve the

delay–energy tradeoff. The structural properties of solutions

that achieve the optimal energy–delay tradeoff are provided

in [3]–[5]. It is proved that the optimal amount of data to be

transmitted increases as the backlog (i.e., buffer occupancy)

increases, and the amount of data decreases as the channel

conditions degrade. It is also proved that the optimal state-

value function (representing the optimal long-term utility start-

ing from one state) is concave in terms of the instantaneous

backlog.

We note that the aforementioned solutions are characterized

by assuming that the statistical knowledge of the underlying

dynamics (e.g., channel-state distribution and packet arrival

distribution) is known. When the knowledge is unavailable,

only heuristic solutions are provided, which cannot guarantee

the optimal performance. For example, to cope with the un-

known environment, stability-constrained optimization meth-

ods are developed in [8]–[11], where instead of minimizing

the queue delay, the focus is on achieving queue stability

(i.e., the queue length is always bounded). The order optimal

energy consumption is achieved only for asymptotically large

queue sizes (corresponding to asymptotic large delays), which

is often not suitable for delay-sensitive applications such as

video streaming.

Other methods for coping with transmission in an unknown

environment rely on online learning algorithms that were de-

veloped based on reinforcement learning for Markov decision

processes (MDPs), in which the state-value function is learned

online, at transmission time [13], [14]. It has been proved that

online learning algorithms converge to optimal solutions when

all the possible states are infinitely often visited [31]. However,

these methods have to learn the state-value function for each

possible state, and hence, they require large memory to store the

state-value function (i.e., exhibit large memory overhead), and

they take a long time to learn (i.e., exhibit a slow converge rate),

particularly when the state space is large, as in the considered

wireless transmission problem.

In this paper, we consider a transmission model similar to

the approach in [1], which consists of a single transmitter

and a single receiver on a point-to-point wireless link, where

the system is time slotted, and the underlying channel state

can be modeled as a finite-state Markov chain [17]. We first

formulate the energy-efficient transmission scheduling problem

0018-9545/$31.00 © 2012 IEEE
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as a constrained MDP problem. We then present the structural

properties that are associated with the optimal solutions. In

particular, we show that the optimal state-value function is

concave in terms of the backlog. Different from the proofs given

in [4] and [5], we introduce a postdecision state1 (which is

a “middle” state, in which the transmitter finds itself after a

packet transmission but before the new packets’ arrivals and

new channel realization) and postdecision state-value function,

which provide an easier way of deriving the structural results

and build connections between the MDP formulation and the

queue stability-constrained optimization formulation. In this

paper, we show that the stability-constrained optimization for-

mulation is a special case in which the postdecision state-

value function has a fixed form that is computed based only

on the backlog and without considering the impacts of the time

correlation of channel states.

To cope with the unknown time-varying environment, we

develop a low-complexity online learning algorithm. Similar

to the reinforcement learning algorithm [19], we update the

state-value function online when transmitting the data. We

approximate the state-value function using piecewise linear

functions, which allow us to represent the state-value function

in a compact way while preserving the concavity of the state-

value functions. Instead of learning the state-value for each

possible state, we only need to update the state value in a limited

number of states when using piecewise linear approximation,

which can significantly accelerate the convergence rate. We

further prove that this online learning algorithm can converge

to the ε-optimal2 solutions, where ε is controlled by a user-

defined approximation error tolerance. Our proposed method

provides a systematic methodology for trading off the complex-

ity of the optimal controller and the achievable performance.

As previously mentioned, the stability-constrained optimization

uses only the fixed postdecision state-value function (only con-

sidering the impacts of backlog), which can achieve the optimal

energy consumption in the asymptotic large-delay region, but

often exhibits poor performance in the small-delay region,

as shown in Section VI. However, our proposed method can

achieve ε-optimal performance in both regions. To consider the

heterogeneity of the data, we further extend the proposed online

learning algorithm to a more complicated scenario, where the

data are prioritized and buffered into multiple priority queues.

In this paper, we emphasize the structure-aware online learn-

ing for the energy-efficient and delay-sensitive transmission

with the following contributions.

• Unlike in the existing literature, we exploit the fact that the

unknown dynamics are independent of certain components

of the system’s state. We utilize this property to perform

a batch update on the postdecision state-value function

at multiple postdecision states in each time slot. Prior

to this paper, it was believed that the postdecision state-

based learning algorithm must necessarily be performed

one state at a time, because one learns only about the

current state being observed and can therefore update

1Similar ideas have been proposed in [14] and [23].
2ε-optimal solutions mean that the solutions are within the ε-neighborhood

of the optimal solutions.

only the corresponding component [14]. Importantly, our

experimental results illustrate that virtual experience can

improve the convergence rate of learning twice faster

compared to “one state at a time” postdecision state-based

learning. Furthermore, we proposed to update the post-

decision state-value function every T (T ≥ 1) time slots,

thereby allowing us to make a tradeoff between the update

complexity and converge rate.

• Instead of updating the state-value function in each state

as shown in [13] and [14], we propose a piecewise linear

approximation of the postdecision state-value function

that exploits the concavity of the postdecision state-value

function. We further introduce an approximation error

parameter δ to control the number of states to be updated

each time, which allows us to perform tradeoffs between

the update complexity and the approximation accuracy.

Note that this paper is different from the method in [23]

in the following two important ways: 1) Unlike in our

method, where the value function is directly updated, the

method in [24] updates the slopes of the piecewise linear

function, thereby requiring the slope to be observable in

each state, which is not the case in our problem; and 2)

the method in [24] cannot control the accuracy, whereas

our method can do this through the approximation error

threshold δ.

• When heterogeneous traffic data (e.g., video packets to be

transmitted) are considered, priority queues are employed

to take into account the unequal importance of the traffic

data. An online learning algorithm is proposed to up-

date the postdecision state-value function for each queue,

which can take into account the mutual impact among the

queues, given their priorities. Our solution considerably

differs from the methods in [28] and [29]. In [28], although

the precedence between jobs (which is similar to the data

priority in our problem) is considered, the update of the

state-value function is not presented when the experienced

dynamics are unknown. In [29], the multidimensional

state-value function is approximated by the span of a set

of linear functions, which does not take into account the

priorities between the dimensions (corresponding to the

different traffic priorities in our formulation).

This paper is organized as follows. Section II formulates

the transmission scheduling problem as a constrained MDP

problem and presents the methods for solving it when the

underlying dynamics are known. Section III introduces the con-

cepts of postdecision state and postdecision state-value function

for the considered problem. Section IV presents approximate

online learning for solving the MDP problem by exploring the

structural properties of the solutions. Section V extends the

online learning algorithms to scenarios where the incoming

traffic is heterogeneous (i.e., has different priorities). Section VI

presents the simulation results, followed by the conclusions in

Section VII.

II. FORMULATING TRANSMISSION SCHEDULING

AS A CONSTRAINED MARKOV DECISION PROCESS

In this paper, we first consider a scheduling problem in which

a single user (a transmitter–receiver pair) transmits data over



FU AND VAN DER SCHAAR: STRUCTURE-AWARE STOCHASTIC CONTROL FOR TRANSMISSION SCHEDULING 3933

Fig. 1. Transmission scheduling model for a single user.

a time-varying channel in a time-slotted fashion, as shown in

Fig. 1. At time slot t (t = 1, 2, . . .), the user experiences the

channel condition (e.g., channel gain) ht, which is assumed

to be constant within one time slot but varying across time

slots. The channel condition ht takes values from a finite set

H. To capture the fact that the time-varying channel conditions

are correlated with each other, we model the transition of the

channel conditions from time slot to time slot as a finite-state

Markov chain [17], with the transition probability denoted as

pc(ht+1|ht). In most deployment scenarios, it is reasonable

to assume that the transition process of channel conditions is

independent of the supported traffic.
At each time slot t, the following process is performed. Be-

fore the transmission, the user observes the transmission buffer
with backlog xt ∈ Z+ (representing the number of packets
that are waiting for transmission) at the transmitter side [2].
Then, the user transmits the amount of data yt ∈ Z+ (yt ≤ xt),
followed by the data arrival of at ∈ Z+. For ease of exposition,
we also assume, as done in [1], that the traffic arrival at is an
independent and identically distributed (i.i.d.) random variable3

with a probability of pt(a), which is independent of the channel
conditions and buffer sizes. Then, the buffer dynamics across
time slots is captured by the following expression:

xt+1 = xt − yt + at. (1)

When the amount of data yt is transmitted, the user receives
the immediate utility of u(xt, yt) and incurs the transmission
cost c(ht, yt). Note that the immediate utility can take negative
values. For example, when minimizing the delay, u(xt, yt) =
−(xt − yt), as considered in the simulation in Section VI. One
example of transmission cost is the consumed energy. In this
paper, we assume that the utility function and the transmission
cost function are known a priori and satisfy the following
conditions.

Assumption 1: u(x, y) is bounded and supermodular, and
−u(x, y) is multimodular in (x, y).

Assumption 2: c(h, y) is increasing and multimodular in y
for any given h ∈ H.

The supermodularity4 in our considered problem means that,
when the user has a longer backlog (x′ > x), transmitting
additional data (y′ − y) will lead to higher utility. This assump-
tion is valid for most streaming applications. We note that the
assumption of supermodularity on the utility functions is rea-
sonable and has widely been used in previous works [13]. The
supermodularity allows us to establish the monotonic structure
of the optimal scheduling policy, as shown in Section III.

3The method that is proposed in this paper can easily be extended to the case
in which the data arrival is Markovian by defining an extra arrival state [6].

4A function f(x, y) is supermodular if, for all x′ ≥ x, y′ ≥ y, f(x′, y′)−
f(x′, y) ≥ f(x, y′)− f(x, y) [5].

The multimodularity5 extends the convexity in the contin-
uous function to the discrete function. It is proved [32] that
the extension of u(x, y) is concave, where the extension is
performed as follows. It takes the same value as u(x, y) in the
integer pair (x, y) and takes values obtained as the correspond-
ing linear interpolation of u(x, y) valued in the four extreme
points for other (x, y) ∈ R

2
+.

The increasing assumption on the transmission cost c(h, y)
represents the fact that transmitting more data results in higher
transmission cost at the given channel condition h. We intro-
duce the multimodularity on the transmission cost to capture
the self-congestion effect [4] of the data transmission.

We define the scheduling policy as a function that maps the
current backlog xt and channel condition ht into the current
action yt and denote it by π(xt, ht). We focus on policies
that are independent of time and called stationary policies.
The objective of the user is to maximize the long-term utility
under the constraint on the long-term transmission cost, which
is expressed as follows:

max
π∈Φ

E

[ ∞
∑

t=0

αtu (xt, π(xt, ht))

]

s.t. E

[ ∞
∑

t=0

αtc (ht, π(xt, ht))

]

≤ c̄ (2)

where α is the discount factor in the range [0, 1), Φ is the
set of all possible stationary policies, and c is the maximum
transmission cost. Note that the utility is bounded, and the
maximum in (2) is attainable. In this formulation, the long-term
utility (transmission cost) is defined as the discounted sum of
utility (transmission cost). The discount criteria here put more
emphasis on the finite-horizon performance of the scheduling
policy with the effective length of the horizon, depending on
α. As shown in [33], when α → 1, the effective length is
increasing with the order of − ln(1 − α)/(1 − α), and the op-
timal solution to the optimization in (2) approaches the optimal
solution to the problem that maximizes the average utility under
the average transmission cost constraint, as considered in [1].

The optimization in (2) can be formulated as a constrained

MDP. We define the state at time t as st = (xt, ht), and the ac-

tion at time t is yt. Then, the scheduling control is a Markovian

system with the state transition probability

p ((x′, h′)|(x, h), y) = pc(h
′|h)pt (x′ − (x− y)) . (3)

The long-term utility and transmission cost associated with

the policy π are denoted by Uπ(s0) and Cπ(s0) and can be

computed as

Uπ(s0) =E

[ ∞
∑

t=0

αtu (xt, π(st)) |s0
]

(4)

Cπ(s0) =E

[ ∞
∑

t=0

αtc (ht, π(st)) |s0
]

. (5)

5A function f(x, y) is multimodular if, for all (x, y)∈R
2
+

, (v1, w1),

(v2, w2) ∈ F , (v1, w1) �= (v2, w2), f(x+ v1, y + w1) + f(x+ v2, y +
w2) ≥ f(x, y) + f(x+ v1 + v2, y + w1 + w2), where F = {(−1, 0),
(1,−1)(0, 1)}.
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Any policy π∗ that maximizes the long-term utility under the

transmission cost constraint is referred to as the optimal policy.

The optimal utility that is associated with the optimal policy

is denoted by U ∗
c (s0), where the subscript indicates that the

optimal utility depends on c. By introducing the Lagrangian

multiplier associated with the transmission cost, we can trans-

form the constrained MDP into an unconstrained MDP prob-

lem. Based on [15], we know that solving the constrained MDP

problem is equivalent to solving the unconstrained MDP and its

Lagrangian dual problem. We present this result in Theorem 1

without proof. The detailed proof can be founded in [15].

Theorem 1: The optimal utility of the constrained MDP

problem can be computed by

U ∗
c̄ (s0) = max

π∈Φ
min
λ≥0

Jπ,λ(s0) + λc̄

= min
λ≥0

max
π∈Φ

Jπ,λ(s0) + λc̄ (6)

where

Jπ,λ(s0)=E

[ ∞
∑

t=0

αt(u (xt, π(st))− λc (ht, π(st))) |s0
]

(7)

and a policy π∗ is optimal for the constrained MDP if and

only if

U ∗
c̄ (s0) = min

λ≥0
Jπ∗,λ(s0) + λc̄. (8)

We note that the maximization in the rightmost expression

in (6) can be performed as an unconstrained MDP, given

the Lagrangian multiplier. Solving the unconstrained MDP is

equivalent to solving the Bellman equation, which is presented

as follows:

J∗,λ(x, h)

= max
π∈Φ

⎡

⎢

⎣

u (x, π(x, h))− λc (h, π(x, h)) + α
∑

h′∈H
pc(h

′|h)·
∞
∑

x′=x−π(x,h)

pt (x
′ − (x− π(x, h))) J∗,λ(x′, h′)

⎤

⎥

⎦
.

(9)

We denote the optimal scheduling policy that is associated

with the Lagrangian multiplier λ as π∗,λ. The long-term trans-

mission cost that is associated with the scheduling policy π∗,λ

is given by

Cπ∗,λ

(s0) = E

[ ∞
∑

t=0

αtc
(

ht, π
∗,λ(st)

)

|s0
]

. (10)

It was proved in [5] that the long-term transmission cost

Cπ∗,λ

(s0) is a convex function of the Lagrangian multiplier

λ. Then, a simple algorithm for finding the optimal Lagragian

multiplier λ∗ can be found through the following update:

λn+1 = max
(

λn + γn

(

Cπ∗,λn
(s0)− c

)

, 0
)

(11)

where γn = 1/n. The convergence to the optimal λ∗ is ensured,

because Cπ∗,λ

(s0) is a piecewise convex function of the La-

grangian multiplier λ.

Fig. 2. Illustration of the postdecision state.

III. POSTDECISION-STATE-BASED

DYNAMIC PROGRAMMING

In this and the subsequent sections, we will discuss how

we can solve the Bellman equations in (9) by exploring the

structural properties of the optimal solution for our considered

problem. Based on (9), we note that the expectation (over the

data arrival and channel transition) is embedded into the term to

be maximized. However, in a real system, the distribution of the

data arrival and channel transition is often unavailable a priori,

which makes it computationally impossible to compute the ex-

pectation exactly. It is possible to approximate the expectation

using sampling, but this approach significantly complicates the

maximization.

Similar to [14] and [23], we define

V (x̃, h̃) =
∑

h′∈H
pc(h

′|h̃)
∞
∑

x′=x̃

pt(x
′ − x̃)J(x′, h′) (12)

where x̃ (h̃) represents the backlog (channel condition) after

scheduling the data but before the new data arrives and new

channel state is realized. It is clear that x̃t = xt − yt and

h̃t = ht. We refer to the state s̃ = (x̃, h̃) as the postdecision

state, because this state is incurred after the scheduling decision

has been made at the current time slot. To differentiate the

“postdecision” state s̃t from the state st, we refer to the state st
as the “normal” state. The postdecision state at time slot t is also

illustrated in Fig. 2. If J(x′, h′) represents the long-term state

value starting from the normal state (x′, h′) at the next time slot

t+ 1, then V (x̃, h̃) represents the long-term state value starting

from the postdecision state (x̃, h̃) at time slot t. Based on

(12), we note that the postdecision state-value function V (x̃, h̃)
evaluated at the current time slot is shown as the “weighted

average” version of the normal state-value function J(x′, h′)
evaluated at the next slot by taking the expectation over the

possible traffic arrivals and possible channel transitions.

The optimal postdecision state-value function V ∗,λ(x̃, h̃) is

computed as in (12) by replacing J(x′, h′) with J∗,λ(x′, h′).
The Bellman equations in (9) can be rewritten as follows:

J∗,λ(x, h) = max
0≤y≤x

[

u(x, y)− λc(h, y) + αV ∗,λ(x− y, h)
]

.

(13)

The aforementioned equation shows that the normal state-

value function at the current time slot is obtained from the

postdecision state-value function V ∗,λ(·, ·) at the same slot

by performing the maximization over the possible scheduling

actions. This maximization is referred to as the foresighted

optimization, because the optimal scheduling policy is obtained

by maximizing the long-term utility. Because −u(x, y) and

(h, y) are multimodular, it can be proved that −J∗,λ(x, h) and

−V ∗,λ(x, h) are multimodular, and as shown in Section II, their
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extension are convex functions. When allowing the scheduling

action to take real values (which can be achieved by the mixed

policy [5]), the optimization in (13) becomes a convex opti-

mization by replacing the state-value function and postdecision

state-value function with their corresponding extended version.

Furthermore, the optimal policy π(x, h) is nondecreasing as the

backlog increases, given the channel state h.

As shown in [14] and [23], introducing the postdecision state

and corresponding value functions allows us to perform the

maximization without computing the expectation and, hence,

without knowledge of the data arrival and channel dynamics.

More discussions on postdecision states can be found in [14]

and [23]. We can further show that the postdecision state-value

function for our considered problem is multimodular (and the

extension is concave) in the backlog x in Section IV. Hence,

the foresighted optimization in (13) is a one-variable convex

optimization. Due to the concavity, we can compactly represent

the postdecision state-value functions using piecewise linear

function approximations that preserve the concavity and the

structure of the problem. As depicted in Fig. 1, we notice that

the channel and traffic dynamics are independent of the queue

length6, which enables us to develop a batch update on the

postdecision state-value function described in Section IV.

The Bellman equations for the scheduling problem can be

solved using value iteration, policy iteration, or linear program-

ming, when the dynamics of the channel and traffic are known

a priori. However, in an actual transmission system, this in-

formation is often unknown a priori. In this case, instead of

directly solving the Bellman equations, online learning algo-

rithms have been developed to update the state-value func-

tions in real time, e.g., Q-learning [13], [14] and actor-critic

learning [19]. However, these online learning algorithms often

experience slow convergence rates. In this paper, we develop a

low-complexity online learning algorithm by exploiting the

structure properties of the optimal solutions, which can signifi-

cantly increase the convergence rate.

IV. ONLINE LEARNING USING

ADAPTIVE APPROXIMATION

In this section, we will first show how the postdecision

state-value function can efficiently be updated on the fly when

the channel and traffic statistics is unavailable. To deal with

the continuous space in backlog, we develop the structural

properties of the optimal postdecision state-value function,

based on which we will then discuss the approximation of the

postdecision state-value function. The approximation allows us

to compactly represent and efficiently update the postdecision

state-value function.

A. Batch Update for the State-Value Function

As shown in Section III, we still face the following two

challenges: 1) Because the queue length (backlog) is infinite,

6If the channel and traffic dynamics depend on the queue length, we
can still separate the maximization and expectation. However, the update on
the postdecision state-value function is much more complicated and will be
investigated in the future.

the state space is very large, thereby leading to expensive com-

putation costs and storage overheads; and 2) the channel states

and incoming traffic dynamics are often difficult to characterize

a priori, such that the Bellman equations cannot be solved

before the actual traffic transmission.

The Bellman equations provide us with the necessary foun-

dations and principles to learn the optimal state-value functions

and optimal policy online. Based on the observation presented

in Section III, we note that the expectation is separated from the

maximization when the postdecision state is introduced.

We define the postdecision-state-based dynamic program-

ming operator as

TV λ(x̃, h̃) =
∑

h′∈H
pc(h

′|h̃)
∞
∑

x′=x̃

pt(x
′ − x̃)

max
0≤y≤x′

[

u(x′, y)− λc(h′, y) + αV λ(x′ − y, h′)
]

. (14)

Based on this equation, we note that, if we know the post-

decision state-value function V λ(x̃, h̃), we can perform the

foresighted decision (i.e., maximization) without the channel

and traffic statistics.

As we know, the statistics of the traffic arrival and channel

state transition is not available beforehand. In this case, instead

of computing the postdecision state-value function as in (12),

we can update online the postdecision state-value function

using conventional reinforcement learning [14], [19]. In partic-

ular, we can update the postdecision state-value function on the

fly as follows.

One-State-per-Time-Slot Update:

We have

V t,λ(x̃t−1, h̃t−1) = (1 − βt)V
t−1,λ(x̃t−1, h̃t−1)

+ βtJ
t,λ(x̃t−1 + at−1, ht) (15)

where βt is a learning rate factor [19] that satisfies
∑∞

t=1 βt =
∞,
∑∞

t=1(βt)
2 < ∞, e.g., βt = 1/t, and

J t,λ(x, h) = max
0≤y≤x

[u(x, y)− λc(h, y)

+ αV t−1,λ(x− y, h)
]

. (16)

For postdecision states, (x̃, h̃) 	= (x̃t−1, h̃t−1)V
t,λ(x̃, h̃) =

V t−1,λ(x̃, h̃).
This method updates only the postdecision state-value func-

tion in the postdecision state (x̃t−1, h̃t−1) that is visited at the

current time slot, which is referred to the one-state-per-time-

slot update. However, in our considered transmission system,

we notice that the data arrival probabilities and channel-state

transition are independent of the backlog x. In other words,

at time slot t, the traffic arrival at−1 and new channel state

ht can be realized at any possible backlog x. Hence, instead

of updating the postdecision state-value function only at the

state (x̃t−1, h̃t−1), we can update the postdecision state-value

function at all states with the same channel state h̃t−1 but

different backlogs, which is shown as follows.

Batch Update:

We have

V t,λ(x̃, h̃t−1) = (1 − βt)V
t−1,λ(x̃, h̃t−1)

+ βtJ
t,λ(x̃+ at−1, ht) ∀x̃. (17)
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For postdecision states (x̃, h̃) with h̃ 	= h̃t−1, V t,λ(x̃, h̃) =
V t−1,λ(x̃, h̃). We refer to the update as the “batch update,”

because it can update the postdecision state-value function

V (x̃, h̃) at all the states {(x̃, h̃t−1), ∀x̃}.

However, the continuous space in the backlog makes the

aforementioned batch update still difficult to be implemented

in real systems. In the following section, we try to compactly

represent and efficiently update the postdecision state-value

function.

B. Online Learning Using Adaptive Approximation

In this section, we present the proposed method for approxi-

mating the postdecision state-value function, and we quantify

the gap between the approximated postdecision state-value

function and optimal postdecision state-value function.

The following theorem shows the structural properties of the

optimal postdecision state-value function V ∗,λ(x̃, h̃).
Theorem 2: With Assumptions 1 and 2, the postdecision

state-value function (extended version) V ∗,λ(x̃, h̃) is a concave

function in x̃ for any given h̃ ∈ H.

Proof: See [27].

In the aforementioned, we derive the structural proper-

ties associated with the optimal solutions. It can be proved

that the operator T defined in (14) is a maximum norm

α-contraction [16], i.e., ‖TV λ−TV ′λ‖∞ ≤ α‖V λ−V ′λ‖∞
and limt→∞ T tV λ = V ∗,λ for any V λ. Due to the concavity

preservation of the postdecision-state-based dynamic program-

ming operator, we choose the initial postdecision state-value

function as a concave function in the queue length x and

denoted as V λ
0 .

We notice that, unlike the traditional Q-learning algorithm,

where the state-value function is updated for one state per time

slot, our proposed batch update algorithm can update the post-

decision state-value function for all the states {(x̃, h̃t−1), ∀x̃}
in one time slot. The downside of the proposed online learning

algorithm is that it has to update the postdecision state-value

function V t,λ(x̃, h̃t−1) for all the states of {(x̃, h̃t−1), ∀x̃},

which is in an infinite space. To overcome this obstacle, we

propose to approximate the postdecision state-value function

V t,λ(x̃, h̃) using piecewise linear functions, because V t,λ(x̃, h̃)
is a concave function. Consequently, instead of updating all

the states for the postdecision state-value function, we only

update a necessary number of states at each time slot, which

is determined by our proposed adaptive approximation method

presented in the Appendix. Given the traffic arrival at−1, new

channel state ht, and the approximated postdecision state-

value function V̂ t−1,λ at time slot t− 1, we can obtain the

optimal scheduling π(x, ht), where x = x̃+ at−1, ∀x̃, and the

state-value function J t,λ(x, ht) by replacing the postdecision

state-value function V t−1,λ in (16) with the approximated

postdecision state-value function V̂ t−1,λ. We can then update

the postdecision state-value function V t,λ(x̃, ht−1) as in (17).

However, as previously mentioned, we need to avoid updating

the postdecision state-value function in all the states. It has been

proved that the postdecision state-value function V t,λ(x̃, ht−1)
is a concave function. Hence, we propose to approximate the

postdecision state-value function V t,λ(x̃, ht−1) by a piecewise

linear function that preserves the concavity of the postdecision

state-value function. In particular, we denote by Bt the largest

backlog in the postdecision state that is visited up to the

current time slot t. Then, we update the postdecision state-value

function as follows:

V̂ t,λ(x, h̃t−1) =

{

Aδ
[0,Bt]

W (x, h̃t−1); x ∈ [0, Bt]

W (Bt, h̃t−1) + kWBt
(x−Bt) x ∈ (Bt,∞)

(18)

where

W (x, h̃t−1) = (1 − βt)V̂
t−1,λ(x, h̃t−1) + βtJ

t,λ(x+ at, ht)
(19)

and Aδ
[a,b]W is the approximation operator for any concave

function W developed in the Appendix, where the subscript

[a, b] emphasizes that the approximation is performed in the

range of [a, b], and kWBt
is the slope of the last segment in

the piecewise linear approximation Aδ
[0,Bt]

. Then, Aδ
[a,b]W is

a piecewise linear concave function and satisfies 0 ≤ W −
Aδ

[a,b]W ≤ δ.

For postdecision states (x̃, h̃) with h̃ 	= h̃t−1, V̂ t,λ(x̃, h̃) =
V̂ t−1,λ(x̃, h̃). In the aforementioned equation, we update the

postdecision state-value function using δ-controlled piecewise

linear approximation in the range [0, Bt] and using the linear

function at the range of (Bt,∞). The largest backlog that has

been visited is updated by Bt = max(Bt−1, x̃t).
The online learning algorithm is summarized in Algorithm 1.

Theorem 3: Given the concave function operator Aδ and

the initial piecewise linear concave function V 0,λ(·, h) for any

possible channel state h ∈ H, if the optimal scheduling policy

stabilizes the system, then when applying the online learning

algorithm shown in Algorithm 1 every time slot, we have the

following conditions.

1) V̂ t,λ(·, h) is a piecewise linear concave function.

2) 0 ≤ V ∗,λ(·, h)− V̂ ∞,λ(·, h) ≤ δ/(1 − α).

Proof: See the Appendix.
Theorem 3 shows that, under the proposed online learning

with adaptive approximation, the learned postdecision state-
value function converges to the ε-optimal postdecision state-
value function, where ε = δ/(1 − α), and can be controlled
by choosing a different approximation error threshold δ. In
Section VI-A, we will show how the approximation error
threshold affects the online learning performance.

In Theorem 3, the statement that the optimal scheduling
policy stabilizes the system means that the backlog is always
finite and, hence, so is Bt.

Algorithm 1: Online learning with adaptive approximation

Initialize: V̂ 0,λ(·, h̃) = 0 for all possible channel states h̃ ∈ H;

postdecision state s̃0 = (x̃0, h̃0); t = 1. Bt = x̃0.

Repeat:

Step 1: Observe the traffic arrival at−1 and new channel

state ht.
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Step 2: Compute the normal state (xt, ht) with xt = x̃t−1 +
at−1.

Step 3: Batch update the postdecision state-value function, as

given in (18).

Step 4: Compute the optimal scheduling policy y∗t by solving

the following optimization and transmit the traffic:

J t,λ(xt, ht)

= max
0≤y≤xt

[

u(xt, y)− λc(ht, y) + αV̂ t−1,λ(xt − y, ht)
]

.

Step 5: Update the postdecision state s̃t with x̃t = xt − y∗t
and h̃t = ht.

Step 6: Update the largest backlog by Bt = max(Bt−1, x̃t).
Step 7: t ← t+ 1.

End

Note that the online learning algorithm with the adaptive
approximation shown in Algorithm 1 needs to be performed
at each time slot, which may still have high computation com-
plexity, particularly when the number of states to be evaluated
is large. To further reduce the computation complexity, we
propose to update the postdecision state-value function (using
the latest information about channel-state transition and packet
arrival) every T (1 ≤ T < ∞) time slots. It is shown that the on-
line learning performed every T time slots still converges to the
ε-optimal solution when the underlying channel-state transition
is an aperiodic Markov chain. When the underlying channel-
state transition is aperiodic, updating the postdecision state-
value function every T time slots will still ensure that every
state will be visited infinite times and, hence, will converge to
the ε-optimal solution.

In Section VI-A, we also show the impact of choosing
different values of T on the delay–energy consumption tradeoff.

C. Stochastic Subgradient-Based Lagrangian

Multiplier Update

Based on Section II, we notice that the Lagrangian multiplier
is updated using the subgradient, which is given in (11). In this

update, the average transmission cost Cπ∗,λn
(s0) is computed

based on the complete knowledge of the data arrival and chan-
nel conditions, which is often not available in communication
systems. In this case, we use only the realized sample path to
estimate the subgradient of the dual problem (i.e., using the
stochastic subgradient). In particular, we update the Lagrangian
multiplier as follows:

λk+1 =

[

λk + γk

(

k
∑

t=0

(α)tc(ht, yt)− c

)]+

(20)

where
∑k

t=0(α)
tc(ht, yt) is the approximate stochastic subgra-

dient available at time k, and γk is a diminishing step size
that satisfies

∑∞
k=1 γk = ∞,

∑∞
k=1(γk)

2 < ∞. Then, we can
simultaneously update the state-value function and Lagragian
multiplier on the fly. Furthermore, to enforce the convergence of
the Lagrangian multiplier and the state-value function, γk and
βk should also satisfy limk→∞ βk/γk = 0 (see [30] for details).

As shown in [30], the key idea behind the convergence proof
is characterized as follows. In (17) and (20), the updates of
the state-value function V (s) and the Lagrangian multiplier λ
are performed using different step sizes. The step sizes satisfy
limk→∞ βk/γk = 0, which means that the update rate of the
state-value function is faster than the Lagrangian multiplier.
In other words, based on the perspective of the Lagrangian
multiplier, the state-value function V (s) will approximately
converge to the optimal value that corresponds to the current
Lagrangian multiplier, because it is updated at the faster time
scale. On the other hand, from the perspective of the state-
value function, the Lagrangian multiplier appears to be almost
constant. These two time-scale updates ensure that the state-
value function and the Lagrangian multiplier converge.

D. Comparison With Stability-Constrained Online Learning

In Section IV-B, it is required that the optimal scheduling
policy should stabilize the system, which, in some case, is
difficult to verify beforehand. Although the system is stabilized
under the optimal scheduling policy, the largest backlog Bt

may be a large number, thereby leading to heavy computation
in the approximation. In this section, we aim at developing a
stability-constrained online learning algorithm that will use the
constant B for approximation. In particular, we approximate
the postdecision state-value function using the piecewise linear
function in the range [0, B] and using the Lyapunov function in
the range (B,∞).

In the stability-constrained optimization proposed in
[8]–[11], a Lyapunov function is defined for each state (xt, ht)
as U(xt, ht) = x2

t . Note that the Lyapunov function depends
only on the backlog xt. Then, instead of minimizing the tradeoff
between the delay and the energy consumption (which is de-
termined by the energy consumption constraint), the stability-
constrained optimization minimizes the tradeoff between the
Lyapunov drift (between the current state and postdecision
state) and energy consumption as

min
0≤yt≤xt

λc(ht, yt)− x2
t + (xt − yt)

2. (21)

Compared to the foresighted optimization in (13), we note
that, in the stability-constrained optimization method, the post-
decision state-value function is approximated at the whole
domain of [0,∞) by7

V λ(xt − yt, ht) =
(

(xt − yt)− (xt − yt)
2
)

/α. (22)

It has been proved [8] that the chosen Lyapunov function leads
to the system stability.

We propose to approximate the postdecision state-value

function as follows:

V̂ t,λ(x, h̃t−1) =

{

Aδ
[0,Bt]

W (x, h̃t−1), x ∈ [0, B]

γ(−x+ x2), x ∈ (B,∞)
(23)

7In [8]–[11], the utility function at each time slot is implicitly defined as
u(xt, yt) = −(xt − yt), which represents the negative value of the postdeci-
sion backlog, and the term x2

t
does not affect the decision.
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where W (x, h̃t−1) is given in (19), and γ = kWB /(2B − 1)

to ensure that V̂ t,λ(x, h̃t−1) is a concave function. Now, the

difference between our proposed method and stability-

constrained method can be summarized as follows.

1) Based on (22), we note that the approximated postdeci-
sion state-value function is only a function of the current
backlog xt and the scheduling decision yt and does not
take into account the impact of the channel-state transi-
tion and transmission cost in the whole domain [0,∞).
In contrast, we directly approximate the postdecision
state-value function based on the optimal postdecision
state-value function in the range [0, B], which explicitly
considers the channel-state transition and the transmis-
sion cost. As shown in the experiments in Section VI-A,
the method significantly improves the delay performance
in the small-delay region.

2) It has been proved [11], using the stability-constrained
optimization method, that the queue length must be larger
than or equal to Ω(

√
λ)8 when the energy consumption is

within O(1/λ)9 of the optimal energy consumption for
the stability constraint and that it asymptotically achieves
the optimal tradeoff between energy consumption and
delay when λ → ∞ (corresponding to the large-delay
region). However, it provides poor performance in the
small-delay region (when λ → 0), which is because, as
discussed in item 1, the state-value function in this sce-
nario takes into account only the impact of the channel-
state transition and cost of the future transmissions. This
point is further examined in the numerical simulations
presented in Section VI. In contrast, our proposed method
can achieve the near-optimal solution in the small-delay
region.

3) Furthermore, to consider the average energy consump-
tion constraint, a virtual queue has been maintained to
update the Lagrangian multiplier λ in [11]. It can only be
shown that this update achieves asymptotical optimality
in the large-delay region and results in very poor perfor-
mance in the small-delay region. Instead, as discussed in
Section IV-C, we propose to update λ using stochastic
subgradients, which achieves the ε-optimal solution in the
small-delay region.

E. Comparison With Other Online Learning Algorithms

In this section, we compare our online learning solution with
the algorithms that were proposed in [13], [14], and [23] when
applied to the single-user transmission.

In [13], the Q-learning algorithm10 is presented, where the
state–action function (called the Q function) is updated one
state at a time, with the constraint that the Q function is sub-
modular. The downsides of this Q-learning method are given
as follows: 1) A large table needs to be maintained to store the
state–action value function for each state–action pair, which is
significantly larger than the state-value function table; and 2) it

8Ω(
√
λ) denotes that a function increases at least as fast as

√
λ.

9In [11], the parameter V is used instead of λ.
10Q-learning algorithms may not require knowing the utility functions.

However, in this paper, the utility function is assumed to be known.

TABLE I
COMPARISON OF OUR METHOD WITH THE EXISTING LITERATURE

updates only one entry in the table in each time slot. In [14],
an online learning algorithm is presented, which updates the
postdecision state-value function. However, the update is still
performed one state at a time. The structural properties of the
postdecision state-value function are not exploited to speed up
the learning. Alternatively, in our proposed online learning with
adaptive approximation, we can exploit the structural properties
(e.g., concavity) of the postdecision state-value function and
approximate it using piecewise linear functions, which require
storing the values of only a limited number of postdecision
states. It also simultaneously updates the postdecision state-
value function at multiple states per time slot and further
preserves the concavity of the postdecision state-value function.
We show in the simulation results that our proposed online
learning algorithm significantly accelerates the learning rate
compared to the aforementioned methods.

In [23], an online learning algorithm is presented, which
approximates the postdecision state-value function as a piece-
wise linear function. However, the approximation requires the
derivatives of the function to be observable, which is not the
case in our problem setting. Moreover, the approximation error
in this method is not controllable, which makes it impossible to
perform tradeoffs between the computation complexity and the
learning efficiency.

The comparison between our method and the existing litera-
ture is further summarized in Table I.

F. Complexity Analysis

In terms of computational complexity, we notice that the
stability-constrained optimization performs the maximization
shown in (21) once for the visited state at each time slot and the
Q-learning algorithm also performs the maximization (finding
the optimal state-value function from the state–action value
function [23]) once for the visited state at each time slot. In
our proposed online learning algorithm, we need to perform
the foresighted optimization for the visited state at each time
slot. Furthermore, we have to update the postdecision state-
value function at the evaluated states. The number of states
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to be evaluated at each time slot is denoted by nδ , which is
determined by the approximation error threshold δ. If we update
the postdecision state-value function every T time slots, then
the total number of foresighted optimizations to be performed
is, on the average, equal to 1 + nδ/T . Based on the simulation
results, we notice that we can often choose nδ < T , which
means that the number of foresighted optimizations to be per-
formed per time slot is less than 2. In other words, our algorithm
is comparable to the stability-constrained optimization and
Q-learning algorithms in terms of computation complexity.

V. APPROXIMATE DYNAMIC PROGRAMMING FOR

MULTIPLE PRIORITY QUEUES

In this section, we consider that the user delivers prioritized

data, buffered in multiple queues. The backlog state is then

denoted by xt = [x1,t, . . . , xN,t] ∈ R
N
+ , where xit represents

the backlog of queue i at time slot t, and N is the number

of queues. The decision is denoted by yt = [y1,t, . . . , yN,t],
where yit represents the amount of traffic that is transmitted at

time slot t. Similar to the assumptions in Section II, we assume

that the immediate utility has the additive form of u(x,y) =
∑N

i=1 ui(xi, yi), where ui(xi, yi) represents the utility function

of queue i, and the transmission cost is given by c(h,y) =

c(h,
∑N

i=1 yi). The immediate utility and transmission cost

satisfy the following conditions.

Assumption 3: The utility function for each queue satisfies

Assumption 1.

Assumption 4: c(h, y) is increasing and multimodular in y
for any given h ∈ H.

Based on Assumptions 3 and 4, we know that u(x,y)−
λc(h,y) is supermodular in the pair of (x,y) and jointly

concave in (x,y). Similar to the problem with one single

queue, the following theorem shows that the optimal scheduling

policy is also nondecreasing in the buffer length x for any given

h ∈ H and the resulted postdecision state function is a concave

function.

Theorem 4: Based on Assumptions 3 and 4, the postdecision

state-value function V ∗,λ(x̃, h̃) is a concave function in x̃ for

any given h ∈ H.

Proof: The proof is similar to the proof of Theorem 2 and

is omitted here due to space limitations.

Similar to the approximation in the postdecision state-value

function for the single-queue problem, the concavity of the

postdecision state-value function V ∗,λ(x̃, h̃) in the backlog x̃

enables us to approximate it using multidimensional piecewise

linear functions [22]. However, approximating a multidimen-

sional concave function has high computation complexity and

storage overhead due to the following reasons.

1) To approximate an N -D concave function, if we sample

m points in each dimension, the total number of samples

to be evaluated is mN . Hence, we need to update mN

postdecision state-values in each time slot and store the

mN postdecision state-values. We notice that the com-

plexity still exponentially increases with the number of

queues.

2) To evaluate the value at postdecision states that are not

the sample states, we require N -D interpolation, which

is often required to solve a linear programming problem

[22]. Given the postdecision state-values at these sample

points, computing the gap requires also solving the linear

program. Hence, the computation in solving the maxi-

mization for the state-value function update still remains

complex.

However, we notice that, if the queues can be prioritized,

this can significantly simplify the approximation complexity, as

discussed next. First, we formally define the prioritized queues

as follows.

Definition (Priority Queue): Queue j has a higher priority

than queue k (denoted as j ⊳ k) if the following condition holds:

uj(xj , yj +△y)− uj(xj , yj) > uk(xk, yk +△y)

− uk(xk, yk), ∀xj , xk, yj +△y ≤ xj , yk +△y ≤ xk.

The priority definition in the aforementioned expression

shows that transmitting the same amount of data from

queue j always gives us higher utility than transmitting data

from queue k. One example is u(x, h,y) = w1 min(x1, y1) +
w2 min(x2, y2), with w1 = 1, w2 = 0. 8. It is clear that queue 1

has higher priority than queue 2. In the following theorem, we

will show how the prioritization affects the packet scheduling

policy and the state-value function representation. We assume

that the N queues are prioritized and 1 ⊳ 2 · · · ⊳ N . The follow-

ing theorem shows that the optimal scheduling policy can be

found queue by queue and the postdecision state-value function

can be presented using N 1-D concave functions.

Theorem 5: The optimal scheduling policy at the normal

state (x, h) and postdecision state-value function at the post-

decision state (x̃, h̃) can be solved as follows.

1) The optimal scheduling policy for queue i is obtained by

solving the foresighted optimization as

y∗i = arg max
0≤yi≤xi

⎧

⎪

⎨

⎪

⎩

ui(xi, yi)− λc

(

h, yi +

i−1
∑

j=1

y∗j

)

+ αV ∗,λ
i (xi − yi, h)

⎫

⎪

⎬

⎪

⎭

, ∀i. (24)

2) The optimal scheduling policy satisfies the condition of

(xi − y∗i )y
∗
j = 0 if i ⊳ j.

3) The postdecision state-value function V ∗,λ
i (x̃i, h̃), ∀i, is

a 1-D concave function for fixed h and is computed as

V ∗,λ
i (x̃i, h̃)

=
∑

a1,...,ai

∑

h′

i
∏

j=1

pt(aj)pc(h
′|h) max

0≤yi≤x̃i+ai

×

⎧

⎨

⎩

i−1
∑

j=1

ui

(

aj , z
∗
j

)

+ ui(x̃i + ai, yi)

−λc

⎛

⎝h′, yi +
i−1
∑

j=1

z∗j

⎞

⎠+αV ∗,λ
i (x̃i + ai−yi, h

′)

⎫

⎬

⎭

(25)
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where

z∗i = arg max
0≤zi≤ai

⎧

⎪

⎨

⎪

⎩

ui(ai, zi)− λc

(

h′, zi +
i−1
∑

j=1

z∗j

⎞

⎟

⎠

+ αV ∗,λ
i (ai − zi, h

′)

⎫

⎪

⎬

⎪

⎭

. (26)

Proof: The key idea is to apply the backward induction
from the higher priority queue to the lower priority queue by
taking advantage of the fact that the lower priority data will not
affect the transmission of the higher priority data. We refer the
readers to [27] for more details.

In Theorem 5, statements 1 and 2 indicate that, when queue
i has a higher priority than queue j, the data in queue i should
first be transmitted before transmitting any data from queue j.
In other words, if y∗j > 0 (i.e., some data are transmitted from
queue j), then xi = y∗i , which means that all the data in queue
i have been transmitted. If xi > y∗i (i.e., some data in queue i
are not yet transmitted), then y∗j = 0, which means that no data
are transmitted from queue j. When transmitting the data from
the lower priority queue, the optimal scheduling policy for this
queue should be solved by considering the impacts of higher
priority queues through the convex transmission cost, as shown
in (24). We further notice that, to obtain the optimal scheduling
policy, we only need to compute N 1-D postdecision state-
value functions, each of which corresponds to one queue.

Based on the aforementioned discussion, we know that, be-
cause i ⊳ j, the data in queue i must be transmitted earlier than
the data in queue j. Hence, to determine the optimal scheduling
policy y∗i , we require only the postdecision state-value function
V ∗,λ((0, . . . , 0, x̃i, . . . , x̃n), h). We further notice that the data
at the lower priority queues (i ⊳ j) do not affect the scheduling
policy for queue i. In Theorem 5, statement 3 indicates that

V ∗,λ
i (x̃i, h̃) is updated by setting xk = 0, k ⊳ i. Note that the

update of V ∗,λ
i (x̃i, h̃) is 1-D optimization and V ∗,λ

i (x̃i, h̃) is
concave. Hence, we can develop online learning algorithms

with adaptive approximation for updating V ∗,λ
i (x̃i, h̃). The

online learning algorithm is illustrated in [27].
Compared to the priority queue systems [26], where there

is no control on the amount of data to be transmitted at each
time slot, our algorithm is similar in the transmission order,
i.e., always transmitting the higher priority data first. However,
our proposed method further determines how much should be
transmitted at each priority queue in each time slot.

VI. SIMULATION RESULTS

In this section, we perform numerical simulations to high-
light the performance of the proposed online learning algorithm
with adaptive approximation and compare it with other repre-
sentative scheduling solutions.

A. Transmission Scheduling With One Queue

In this simulation, we consider a wireless user who trans-

mits traffic data over a time-varying wireless channel. The

TABLE II
CHANNEL STATES USED IN THE SIMULATION

Fig. 3. Delay–energy tradeoff with different approximation error thresholds.

objective is to minimize the average delay while satisfying the

energy constraint. Due to Little’s theorem [18], it is known

that minimizing the average delay is equivalent to minimizing

the average queue length (i.e., maximizing the negative queue

length and u(x, y) = −(x− y)). The energy function for trans-

mitting the amount of y (in bits) traffic at the channel state h is

given by c(h, y) = σ2(2y − 1)/h2, where σ2 is the variance of

the white Gaussian noise [18]. In this simulation, we choose

h
2
/σ2 = 0.14, where h is the average channel gain. We divide

the entire channel gain range into eight regions, each of which

is represented by a representative state. The states are presented

in Table II. The number of incoming data falls into the Poisson

distribution [26] with a mean of 1.5 Mb/s. To obtain the time

average delay as computed in [11], we choose α = 0. 95. The

transmission system is time slotted with a time slot length of

10 ms.

1) Complexity of Online Learning With Adaptive Approxi-

mation: In this simulation, we assume that the channel-state

transition is modeled as a finite-state Markov chain and the

transition probability can be computed as shown in [17]. We

approximate the postdecision state-value function using piece-

wise linear functions in the range [0, B], with B = 500 and

using Lyapunov functions in the range (B,∞). As discussed

in Section IV-B, by choosing a different approximation error

threshold δ, we can approximate the postdecision state-value

function by evaluating a different number of states and at dif-

ferent accuracy. The simulation results are obtained by running

the online learning algorithm for 10 000 time slots. Fig. 3

shows the delay–energy tradeoff obtained by the online learning

algorithms with different approximation error thresholds, and

Table III illustrates the corresponding number of states that

need to be evaluated. It is easy to see that, when the approx-

imation error threshold δ increases from 0 to 30 (note that

δ = 0 indicates that the postdecision state-value functions are
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TABLE III
NUMBER OF STATES THAT ARE UPDATED AT EACH TIME SLOT

Fig. 4. Delay–energy tradeoff obtained with different update frequencies.

evaluated at each integer backlog and the obtained solution

is Pareto optimal), the tradeoff curve further moves from the

Pareto front, which means that, to obtain the same delay, the

learning algorithm with higher approximation error threshold

increases the energy consumption. We notice that the energy

increase is less than 5%. However, the number of states required

to evaluate at each time slot is significantly reduced from

500 to 5.

To further reduce the computation complexity, instead of

updating the postdecision state-value function every time slot,

as previously performed, we update the postdecision state-value

function every T time slots, where T = 1, 5, 10, 20, 30, and 40.

The delay–energy tradeoffs obtained by the online learning

algorithm with adaptive approximation are depicted in Fig. 4,

where δ = 10. On one hand, we note that, when T increases

from 1 to 40, the amount of energy consumed to achieve the

same delay performance is increased. However, the increase is

less than 10%. On the other hand, based on Table II, we note

that we only need to update ten states at each time slot when

δ = 10. If we update the postdecision state-value function every

T = 40, then, on the average, we only need to update 1.25

states per time slot, which significantly reduces the learning

complexity.

2) Convergence of Online Learning Algorithm: In this sec-

tion, we verify the convergence of the proposed online learning

algorithm, which uses adaptive approximations of the postde-

cision state-value function update and stochastic subgradients

for the Lagrangian multiplier update. The simulation setting

is the same as in Section VI-A1, with δ = 5 and T = 10.

Fig. 5 shows the convergence of the experienced average delay

under different energy constraints. It confirms that the proposed

method converges to the ε-optimal solution after 10 000 time

slots. We further compare our online learning approach with the

approach that was proposed in [14] and present the simulation

results in Fig. 6. It is shown that our proposed approach can

Fig. 5. Convergence of the average delay under different energy budget.

Fig. 6. Convergence rate comparison between the proposed approach and the
approach in [14]

achieve the optimal delay twice faster (our approach only needs

3000 time slots, and the approach in [14] needs 7000 time slots)

than the approach in [14]. This improvement is because we

can exploit the structural properties of the postdecision state-

value function and update it at multiple states at a time, whereas

the approach in [14] updates only the postdecision state-value

function one state at a time without utilizing the structural

properties.

3) Comparison With Other Representative Methods: In this

section, we compare our proposed online learning algorithm

with other representative methods. In particular, we first com-

pare our method with the stability-constrained optimization

method that was proposed in [11] for single-user transmission,

which approximates the postdecision state-value functions us-

ing Lyapunov functions in the whole range of backlog, i.e.,

[0,∞). We consider the following two scenarios: 1) i.i.d. chan-

nel gain, which is often assumed by the stability-constrained

optimization; and 2) Markovian channel gain, which is as-

sumed in this paper. In this simulation, the tradeoff parameter

(Lagrangian multiplier) λ is updated through a virtual queue in

the stability-constrained optimization and through the stochas-

tic subgradient method in our proposed method. In our method,

δ = 10, and T = 10.

Figs. 7 and 8 show the delay–energy consumption tradeoffs

when the data are transmitted over these three different chan-

nels. Based on these figures, we note that our proposed method

outperforms the stability-constrained optimization at both the
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Fig. 7. Delay–energy tradeoff when the underlying channel is i.i.d.

Fig. 8. Delay–energy tradeoff when the underlying channel is Markovian.

large-delay region (≥15) and the small-delay region. We also

note that, in the large-delay region, the difference between

our method and the stability-constrained optimization becomes

small, because the stability-constrained optimization method

asymptotically achieves the optimal energy consumption, and

our method is ε optimal. However, in the small-delay region,

our method can significantly reduce the energy consumption for

the same delay performance. We further note that the stability-

constrained method could not achieve zero delay (i.e., data

are processed once they enter into the queue), even if the en-

ergy consumption increases. This case is because the stability-

constrained optimization method minimizes only the energy

consumption at the large-delay region and does not perform

optimal energy allocation at the small-delay region, because the

queue length is small. In contrast, our proposed online learning

can take care of both regions by adaptively approximating the

postdecision state-value functions.

We then compare our proposed method with the Q-learning

algorithm as proposed in [14]. In this simulation, we transmit

the data over the Markovian channel. In the Q-learning algo-

rithm, the postdecision state-value function is updated for one

state per time slot. Fig. 9 shows the delay–energy tradeoffs.

The delay–energy tradeoff of our proposed method is obtained

by running our method for 5000 time slots. The delay–energy

tradeoff of the Q-learning algorithm is obtained by running

Q-learning algorithm for 50 000 time slots. It is shown in Fig. 9

Fig. 9. Delay–energy tradeoff obtained by different online learning algo-
rithms when the channel is Markovian.

Fig. 10. Utility–energy tradeoff of the prioritized traffic transmission when
the channel is Markovian.

that our proposed method outperforms the Q-learning algorithm

even when our algorithm learns only more than 5000 time slots

and the Q-learning algorithm learns more than 50 000 time

slots. Hence, our method significantly reduces the amount of

time to learn the underlying dynamics (i.e., experiencing faster

learning rate) compared to the Q-learning algorithm.

B. Transmission Scheduling With Multiple Priority Queues

In this section, we consider that the wireless user schedules

the prioritized data over a time-varying wireless channel. The

channel configuration is the same as shown in Section VI-A.

The wireless user has two prioritized classes of data to be

transmitted. The utility function is given by u(x, h, y) =
w1 min(x1, y1) + w2 min(x2, y2), where w1 = 1.0 and w2 =
0. 8 represent the importance of the data at classes 1 and

2, respectively. Thus, we have 1 ⊳ 2. Fig. 10 illustrates

the utility–energy tradeoffs obtained by the proposed online

learning algorithm and the stability-constrained optimization

method. Fig. 11 shows the corresponding delay–energy trade-

offs experienced by each class of data. Fig. 10 shows that, at the

same energy consumption, our proposed algorithm can achieve

utility that is 2.2 times higher than the utility obtained by the

stability-constrained optimization method. Note that class 1

has less delay than class 2, which is demonstrated in Fig. 11,
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Fig. 11. Delay–energy tradeoff of each class in the prioritized traffic trans-
mission when the channel is Markovian.

because class 1 has higher priority. Fig. 11 also shows that

the delay is reduced by 50%, on the average, for each class in

our method compared to the stability-constrained optimization

method. This improvement is because our proposed method

explicitly considers the time-correlation in the channel-state

transition and the priorities in the data.

VII. CONCLUSION

In this paper, we first established the structural results of the

optimal solutions to the constrained MDP formulation of the

transmission scheduling problems. Based on these structural

properties, we propose to adaptively approximate the postde-

cision state-value function using piecewise linear functions,

which can preserve the structural properties. Furthermore, this

approximation allows us to compactly represent the postdeci-

sion state-value functions and learn them with low complexity.

We prove that the online learning with adaptive approximation

converges to the ε-optimal solutions, the size of which is con-

trolled by the predetermined approximation error. We extend

our method to the heterogeneous data transmission, in which

the incoming traffic is prioritized.

One extension of our method is multiuser transmission

scheduling, in which users transmit the delay-sensitive data

over the shared wireless channels. Similar to the way that we

formulate the single-user transmission scheduling, the mul-

tiuser transmission scheduling can also be formulated as a con-

strained Markov decision problem. We can also show that the

corresponding postdecision state-value function is a concave

function of the users’ backlog. However, the postdecision state-

value function is a multidimensional nonseparable function,

which is difficult to update over time. One important chal-

lenge is how we can efficiently update the postdecision state-

value function in a distributed manner in decentralized wireless

networks. In [26], we present several preliminary results on

how we can decompose the postdecision state-value function

into multiple single-user postdecision state-value functions and

update them in a distributed fashion. This approach can form a

starting point for solving the multiuser transmission scheduling

in a decentralized wireless environment. Another extension of

our method is heterogeneous data transmission, in which the

Fig. 12. Lower and upper bounds of the concave function f(x) in the range
of [xi, xi+1].

data have different delay-deadlines, priorities, and dependen-

cies [25].

APPENDIX

Approximating the Concave Function: In this section, we

present a method for approximating a 1-D concave function.

Consider a concave and increasing function f : [a, b] → R with

n points {(xi, f(xi))|i = 1, . . . , n} and x1 < x2 < · · · < xn.

Based on these n points, we can give the lower and upper

bounds on the function f . It is well known that the straight

line through the points (xi, f(xi)) and (xi+1, f(xi+1)) for i =
1, . . . , n− 1 is the lower bound of the function f(x) for x ∈
[xi, xi+1]. It is also well known that the straight lines through

the points (xi−1, f(xi−1)) and (xi, f(xi)) for i = 2, . . . , n
and the points (xi+1, f(xi+1)) and (xi+2, f(xi+2)) for i =
1, . . . , n− 2 are the upper bounds of the function f(x) for

x ∈ [xi, xi+1]. This is illustrated in Fig. 12.

This idea can be summarized in the following lemma.

Lemma: Given n points {(xi, f(xi))|i = 1, . . . , n},

where x1 = a < x2 < · · · < xn = b, and f(x) is an concave

and increasing function, the following conditions hold.

1) The piecewise linear function f̂(x) = kix+ bi if xi ≤
x ≤ xi+1 is the lower bound of f(x), where

ki =
f(xi+1)− f(xi)

xi+1 − xi

, bi =
xi+1f(xi)− xif(xi+1)

xi+1 − xi

.

2) The maximum gap between the piecewise linear func-

tions f̂(x) and f(x) is given by

δ = max
i=1,...,n−1

δi (27)

where

δi =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|k1x1+b1−k2x1−b2|√
1+k2

1

, i = 1
∣

∣

ki−1−ki
ki−1−ki+1

(bi−1−bi+1)−(bi−1−bi)
∣

∣

√
1+k2

i

, 1 < i < n− 1

‖kn−1xn+bn−1−kn−2xn−bn−2‖√
1+k2

n−1

, i = n− 1.

(28)
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Proof: The proof can easily be shown based on Fig. 12 and

basic algebra geometry knowledge. We omit the proof here for

space limitations.

In the following discussion, we present an iterative method

for building the lower bound piecewise linear function f̂(x)
with the predetermined approximation threshold δ. This iter-

ative method is referred to as the sandwich algorithm in the

literature [21].

The lower bound piecewise linear function and the cor-

responding gap are generated in an iterative way. We start

evaluating the concave function f(x) at the boundary points

x = a and x = b, i.e., I = {[a, b]}, n = 2. Then, we can ob-

tain the piecewise linear function f̂0(x) with the maximum

gap of δ0 = ‖f(b)− f(a)‖. Assume that, at iteration k, the

maximum gap is δk, which is computed at the correspond-

ing interval [xjk , xjk+1]. If the gap δk > δ, we evaluate the

function f(x) at the additional point y = (xjk + xjk+1)/2.

We partition the interval [xjk , xjk+1] into the two intervals

[xjk , y] and [y, xjk+1]. We further evaluate the gaps for the

intervals [xjk−1, xjk ], [xjk , y], [y, xjk+1], and [xjk+1, xjk+2]
using (27). The maximum gap is then updated. We repeat

this procedure until the maximum gap is less than the given

approximation threshold δ. The procedure is summarized in

Algorithm 2.

This algorithm allows us to adaptively select the points

{x1, . . . , xnδ
} to evaluate the value of f(x) based on the

predetermined threshold δ. This iterative method provides us

a simple way of approximating the postdecision state-value

function, which is concave in the backlog x.

We have presented a method for approximating a concave

function f(x) with the domain of [a, b] using piecewise linear

functions. In this method, we can control the computation

complexity and achievable performance by using different pre-

determined approximation error thresholds δ. The advantage of

the proposed approximation method is that we can approximate

the concave function only by evaluating the function at a limited

number of points and without knowing the closed form of

the function. We denote the aforementioned approximation

operator as Aδ
[a,b]f for any concave function f , where the

subscript [a, b] emphasizes that the approximation is performed

in the range of [a, b]. Then, Aδ
[a,b]f is a piecewise linear concave

function and satisfies 0 ≤ f −Aδ
[a,b]f ≤ δ. For any concave

function f(x) with the domain [0,∞), we approximate this

concave function as follows:

Aδf =

{

Aδ

[0,B]
f x ∈ [0, B]

f(B) + kfB(x−B) x ∈ (B,∞)
(29)

where kfB is the slope of the last segment in the piecewise

linear approximation Aδ

[0,B]
, and [0, B] is the range that the

piecewise approximation operator is performed. In other words,

we approximate the concave function f(x) using the piece-

wise linear function (controlled by δ) in the range [0, B]
and using a linear function (with a slope of k) in the range

of (B,∞). It is easy to show that Aδf is also a concave

function.

Algorithm 2: Sandwich algorithm for approximating the

concave function

Initialize: x0
1 = a, x0

2 = b, f(x0
1), f(x

0
2), δ

0 = f(x0
2)− f(x0

1),
j0 = 1, k = 0, and n = 2;

Repeat:

y = (xjk + xjk+1)/2; Compute f(y);
Partition the interval [xjk , xjk+1] into [xjk , y] and [y, xjk+1].
Compute the gaps corresponding to the intervals [xjk−1,
xjk ], [xjk , y], [y, xjk+1], and [xjk+1, xjk+2].

xk+1
j+1 ← xk

j for j = jk + 1, . . . , n;

xk+1
jk

← y; xk+1
j ← xk

j for j = 1, . . . , jk;

k ← k + 1; n ← n+ 1;

Update the maximum gap δk and the index jk that corre-

spond to the interval with the maximum gap.

Until δk ≤ δ.

Proof of Theorem 3: To prove condition 1, we need to show

that W (x, h) as computed in (19) is a concave function. If it

is true, then V̂ t,λ(·, h) is a piecewise linear concave function

through the piecewise linear approximation defined in (18).

Based on Theorem 2, we note that J t,λ(x, h) is a concave

function, which shows that W (x, h) is also a concave function.

To prove condition 2, we define the foresighted optimization

operator as follows:

Ta,hV (x, h) = max
0≤y≤x+a

× [u(x+ a, y)− λc(h, y) + αV (x+ a− y, h)] .

Then, the postdecision state-based Bellman equations can be

rewritten as

V ∗,λ = E
a,h

Ta,hV
∗,λ

where E is the expectation over the data arrival and channel-

state transition, and the operator is a maximum norm α-

contraction.

The online learning of the postdecision state-value function

in (17) can be re-expressed by

V t,λ = V t−1,λ + βt(Ta,hV
t−1,λ − V t−1,λ).

Similar to [20], it is shown that the convergence of the

online learning algorithm is equivalent to the convergence of

the following ordinary differential equation (ODE):

V̇ λ = E
a,h

Ta,hV
λ − V λ.

Because Ta,h is a contraction mapping, the asymptotic stabil-

ity of the unique equilibrium point of the aforementioned ODE

is guaranteed [20]. This unique equilibrium point corresponds

to the optimal postdecision state-value function V ∗,λ.

When the postdecision state-value function is approxi-

mated using the approximator Aδ
[0,Bt]

, the online learning

of the postdecision state-value function becomes V t,λ =
Aδ

[0,Bt]
(V t−1,λ + βt(Ta,hV

t−1,λ − V t−1,λ)).
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The corresponding ODE is

V̇ λ = Aδ
[0,Bt]

(

E
a,h

Ta,hV
λ

)

− V λ.

By the contraction mapping and the property of Aδ
[0,Bt]

, we

can show that ‖V ∗,λ − V̂ ∞,λ‖∞ ≤ δ/(1 − α). �
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