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Abstract— A central goal of robotics and AI is to be able to
deploy an agent to act autonomously in the real world over an
extended period of time. To operate in the real world, autonomous
robots rely on sensory information. Despite the potential richness
of visual information from on-board cameras, many mobile
robots continue to rely on non-visual sensors such as tactile
sensors, sonar, and laser. This preference for relatively low-
fidelity sensors can be attributed to, among other things, the
characteristic requirement of real-time operation under limited
computational resources. Illumination changes pose another big
challenge. For true extended autonomy, an agent must be able to
recognize for itself when to abandon its current model in favor
of learning a new one; and how to learn in its current situation.
We describe a self-contained vision system that works on-board
a vision-based autonomous robot under varying illumination
conditions. First, we present a baseline system capable of color
segmentation and object recognition within the computational
and memory constraints of the robot. This relies on manually
labeled data and operates under constant and reasonably uniform
illumination conditions. We then relax these limitations by
introducing algorithms for i) Autonomous planned color learning,
where the robot uses the knowledge of its environment (position,
size and shape of objects) to automatically generate a suitable
motion sequence and learn the desired colors, and ii) Illumination
change detection and adaptation, where the robot recognizes for
itself when the illumination conditions have changed sufficiently
to warrant revising its knowledge of colors. Our algorithms are
fully implemented and tested on the Sony ERS-7 Aibo robots.

Index Terms— Color Learning, Illumination Invariance, Real-
time Vision.

I. INTRODUCTION

MOBILE robotic systems have recently been used in

fields as diverse as medicine, surveillance, rescue, and

autonomous navigation [1]–[3]. One key enabler to such ap-

plications has been the development of powerful sensors such

as color cameras and lasers. Visual input, in the form of color

images from a camera, can be a rich source of information,

considering the sophisticated algorithms recently developed in

the field of computer vision, for extracting information from

images. Even so, most robots continue to rely on non-visual

sensors such as tactile sensors, sonar, and laser [4].

This preference for relatively low-fidelity sensors rather than

vision can be attributed to three major discrepancies between

the needs of robots and the capabilities of state-of-the-art

vision algorithms.

1) Most state-of-the-art approaches to challenging com-

puter vision problems, such as segmentation [5], [6],

blob clustering [7], object recognition [8]–[10] and

illumination invariance [11]–[13] require a substantial

amount of computational and/or memory resources.

However, mobile robotic systems typically have strict
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constraints on the computational and memory resources

available, but still demand real-time processing.

2) Most mobile robot platforms are characterized by a

rapid nonlinear motion of the camera, especially legged

robots. But most vision algorithms assume a stationary

or slowly moving camera [10], [14].

3) Most current vision algorithms require extensive manual

color calibration, making them inapplicable in domains

with changing illumination conditions; robots, while

moving around the world, often go into places with

changing illumination. The very same pixel values cor-

responding to a color under one illumination may corre-

spond to a different color in another illumination. Many

current mobile robot applications ignore color because

of this sensitivity to illumination, thereby overlooking

potentially useful information.

This paper aims to address these challenges by exploiting the

structure that is often present in a robot’s environment. We

define structure as the objects of unique shapes and colors

that exist at known locations – a color-coded world model.

We show that a robot can use this structure to model the color

distributions, thereby achieving efficient color segmentation.

Specifically, knowing that it is looking at an object of known

color allows it to treat certain image pixels as labeled training

samples. The domain knowledge also helps develop object

recognition algorithms that can be used by the robot to localize

and navigate in its complex world towards additional sources

of color information.

We have developed a mobile robot vision system that

learns colors using the uniquely color-coded objects at known

locations, and adapts to illumination changes. Specifically, this

article makes the following contributions:� First, it describes a baseline vision system that tackles

color segmentation and object recognition on-board a

robot with constrained computational and memory re-

sources. The baseline system is robust to jerky nonlinear

camera motion and noisy images. However, it relies on

manually labeled training data and operates in constant

and uniform illumination conditions.� Second, it exploits the structure inherent in the envi-

ronment to eliminate the need for manual labeling. The

image regions corresponding to known objects are used

as labeled training samples. The learned color distri-

butions are used to better identify the objects, thereby

localizing and possibly moving to other sources of color

information. We introduce a hybrid color representation

that allows for color learning both within the controlled

lab settings and in un-engineered indoor corridors.� Third, it provides robustness to changing illumination
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conditions. We introduce an algorithm that enables the

robot to detect significant changes in illumination. When

a change in illumination is detected, the robot au-

tonomously adapts by revising its current representation

of color distributions. As a result, the robot is able to

function over a wide range of illuminations.

The focus of this article is on the design of efficient robot

vision algorithms that address challenging problems such as

color segmentation, object recognition, color learning and

illumination invariance. Using our algorithms the robot is able

to operate autonomously in an uncontrolled environment with

changing illumination over an extended period of time. The

vision system is fully implemented and tested on a commercial

off-the-shelf four-legged robot, the Sony ERS-7 Aibo [15]. We

also illustrate the general applicability of our algorithms with

the running example of a vision-based autonomous car on the

road; we refer to it as the car-on-the-road task.

The remainder of the article is organized as follows. After a

brief description of our test platform (Section II), we present

our baseline vision system (Section III), which tackles the

problems of color segmentation, object recognition and line

detection, in real-time. Section IV extends the baseline system

by eliminating the offline color calibration phase: the robot

uses the environmental structure to autonomously generate a

suitable motion sequence to learn the desired colors. Section V

further enables the robot to detect significant illumination

changes and adapt to them. We compare our approaches to

related work in Section VII and present our conclusions and

directions for future research in Section VIII.

II. TEST PLATFORM

The experiments described in this paper were performed on

the Sony ERS-7 Aibo four-legged robot [15]. It is � 280mm
tall and � 320mm long. It has 20 degrees of freedom: 3 in its

head, 3 in each leg, and 5 more in its mouth, ears and tail. Its

primary sensor is a CMOS color camera with a limited field-

of-view (56:9o horz. and 45:2o vert.). Images are captured at30Hz in the YCbCr image format, with a resolution of 208�160 pixels. In addition to 64MB on-board memory, the robot

has noisy touch sensors, IR sensors, and a wireless LAN card

for inter-robot communication.

The Aibo is popular in part due to its use as the standard

platform in the RoboCup Legged League1, where teams of

four Aibos play a competitive game of soccer on an indoor

field of size � 4m � 6m (Figure 1). The goal is to direct a

ball into the opponents’ goal while preventing the other team

from scoring a goal. All processing for vision, localization,

locomotion and action-selection, is performed on board using

a 576MHz processor. Not operating at frame rate places the

robot at a severe disadvantage in terms of reaction time. Games

are currently played under constant and reasonably uniform

illuminations, but the ultimate goal of the RoboCup initiative

is to create a team of humanoid robots that can beat the

human soccer champions by the year 2050 on a real, outdoor

soccer field [16]. The computational (and memory) constraints

and the rapid nonlinear camera motion make the Aibo a

1www.tzi.de/4legged

Fig. 1: An Image of the Aibo and the field.

challenging representative test platform. Other robot platforms

may have more (or less) computational resources, and different

camera parameters. But, in all mobile robot domains there are

some hard constraints on these properties, within which the

robot has to operate. Though we use the Aibo as a case study,

our algorithms are described in general terms and are hence

applicable to other mobile robot domains as well.

III. BASELINE VISION SYSTEM

We first present a real-time vision system that runs on a

mobile robot platform with limited computational and memory

resources, and rapid camera motions. Within these constraints

that are characteristic of mobile robots we tackle the tasks of

color segmentation, object recognition, and line detection.

Our baseline vision system takes as input a stream of

limited-field-of-view images, the robot’s initial position, and

its joint angles over time, including the tilt, pan and roll

of the camera. Additional sensory inputs, if available, can

also be considered. On the Aibo, accelerometer values can be

used to determine the body tilt and roll. The desired outputs

are the distances and angles, with an associated probability

measure, to a set of color-coded objects. In order to operate at

frame rate (30Hz), each complete cycle of operation, including

localization, locomotion, and decision-making, can take a

maximum of 33msec. Throughout this section, we provide

timing data for our algorithms. Though motivated by the robot

soccer domain, this problem formulation is characteristic of

other common mobile robot vision applications. In the car-on-

the-road task for example, the camera mounted on a rapidly

moving car has to deal with a noisy, distorted stream of images

and detect color-coded objects such as stop and yield signs.

Our vision algorithm proceeds in two stages: i) color

map generation and region/blob formation (Section III-A) ii)

marker and line recognition (Section III-B). Figure 2 shows

four representative images from the robot soccer environment,

which we use to illustrate the results of each stage of our vision

system (Figures 3–6). Sample videos showing the robot’s view,

after each stage of processing, are available online.2

2www.cs.utexas.edu/users/AustinVilla/?p=research/robust vision
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(a) (b) (c) (d)

Fig. 2: Sample Images in the RGB color space.

A. Color Segmentation and Region Merging

The first step in our baseline vision system is color seg-

mentation, mapping image pixels to color labels. 3 A complete

mapping identifies a label for each point in YCbCr space:8p; q; r 2 [0; 255℄; fYp; Cbq ; Crrg 7! l jl2[0;8℄ (1)

Though prior research has produced several good segmen-

tation algorithms [5], [17], [18], they are computationally

expensive to perform on robots such as the Aibo, given

its computational constraints. A variety of approaches have

been implemented in the RoboCup domain, including decision

trees [19] and axis-parallel rectangles in color space [20].

Our approach is motivated by the desire to create mappings

from each YCbCr pixel value to a color label [21]. We

represent this mapping as a color map, or color cube, created

via an off-board training phase. A set of images (� 25)

captured by the robot’s camera are hand-labeled such that the

robot learns the range of pixel values that map to each color.

The hand-labeled data labels only � 3% of the color space,

and to generalize from this labeling, each cell in the color

map is assigned a color label that is the weighted average

of the cells a certain Manhattan distance away (a form of

Nearest Neighbor-NNr). As a result, holes and edge effects

are removed, and a good representation is created for colors

with overlap. To reduce memory requirements we subsample

the color space to have values ranging from 0–127 in each

dimension. The resulting color map, � 2MB in size, is loaded

on the robot and is used to segment subsequent images.

The segmentation in the YCbCr color space is sensitive to

minor illumination changes, such as with shadows or high-

lights. Previous research in rescue robotics has suggested that

a spherically distributed color space, LAB, inherently provides

some robustness to illumination changes [2]. To take advantage

of LAB’s properties without incurring the overhead of on-line

conversion, the initial labeling and the NNr operation are done

in LAB. Then, each cell in the YCbCr color map is labeled

based on the label of the corresponding cell in the LAB color

map. The on-line pixel-level segmentation process remains a

table lookup process taking � 0:1msec per image.

(a) (b) (c) (d)

Fig. 3: Sample Segmented Images — Compare with Figure 2.

We compared the segmentation accuracy of the two color

spaces over � 30 images captured to reflect small changes in

illumination. The classification accuracies (%) were 81:2�4:4
3pink, yellow, blue, orange, red, darkblue, white, green, black.

and 92:7� 2:5 for YCbCr and LAB respectively (statistically

significant at 95% confidence level). Figure 3 shows the

segmentation performance on the images in Figure 2.

The next step is to find contiguous regions of constant

colors, i.e. cluster pixels of the same color into meaning-

ful groups. Our approach is modeled after previous ap-

proaches [21]. As the image pixels are segmented they are

organized into run-lengths [22] represented as the start point

and length in pixels of a contiguous color strip. As an

optimization, we only encode colors that identify objects of

interest – we omit the colors of the field (green) and the

lines (white). Lines are detected by an efficient line-detection

algorithm described in Section III-B.

Next, we use an implementation of the Union-Find algo-

rithm [23] to merge run-lengths of the same color that are

within a threshold Euclidean distance from each other. We also

progressively build bounding boxes i.e. rectangular boundaries

around the regions. This abstraction provides a set of bounding

boxes, one for each region in the current image, and a set of

properties corresponding to each region, such as the number

of pixels it envelopes. Our technical report [24] has complete

details on the thresholds and properties used in this process.

Figure 4 shows the result of region formation.

(a) (b) (c) (d)

Fig. 4: Sample Regions — Compare with Figure 2.

Color segmentation and region formation, which constitute

the low-level vision module, take � 18msec per image.

Though presented in the context of the Aibo, the algorithms

presented here generalize to other mobile robot applications.

In the case of the car-on-the-road task, we would still need

to recognize colored regions in varying backgrounds, e.g. red

for the stop sign, yellow for the yield sign, and white for the

lines on the road.

B. Object Recognition and Line Detection

Once we have candidate regions, the next step is to rec-

ognize the relevant objects in the image. Segmentation errors

due to noise and/or irrelevant objects (people, chairs, walls,

computers) can lead to the formation of spurious regions

(Figure 4) and make object recognition challenging. Though

several successful approaches have been proposed for object

recognition [9], [10], they typically involve extensive compu-

tation of object features or large amounts of storage in the

form of object templates corresponding to different views.

Most robot application environments are structured and

this domain knowledge can be exploited to recognize useful

objects. The domain knowledge that gets incorporated as

geometric and heuristic constraints depends on the application.

Here, all the objects in the robot’s environment (fixed markers

used for localization and the moving objects that are tracked)

are color-coded. In the car-on-the-road task, the objects could

include the stop and yield signs, other vehicles and grass by

the side of the road.
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A set of geometric and heuristic constraints are designed to

eliminate spurious regions that do not meet constraints on size,

density and image position. For example, all objects of interest

to the robots are on or a certain distance above the ground,

and have bounding boxes with high densities. Full details of

the heuristics are available in our technical report [24]. These

heuristics are easy to apply since the required properties were

stored in the region formation stage. The degree of conformity

between expected and observed values of the properties is

used to determine the probability of occurrence of each object.

For example, if the known aspect ratio (height/width) of an

object is 2:0 and observed aspect ratio in the image is 1:5, the

probability of occurrence of the object is 0:75.

We tested the object recognition performance over eight

sequences of � 200 images each, ground truth provided by

a human observer. We performed this test both without and

with robot motion (objects stationary). The corresponding

classification accuracies were 100% and 92:7% respectively

(no false positives). The motion-based image distortion causes

a decrease in accuracy. Figure 5 shows sample results.

(a) (b) (c) (d)

Fig. 5: Sample Object Recognition — Compare with Figure 2.

Once an object is recognized in the image, the relative

distance and angle to the object are determined using trigono-

metric transforms and known sizes [24]. The vision module, up

to the object recognition phase, takes � 28msec per frame. A

video of the robot’s view, as it moves and recognizes objects,

can be seen online.4

In addition to the objects, lines with known locations are

important sources of information, especially since the robots’

main focus (during a game) is the ball, and other robots

may occlude the markers. In the car-on-the-road task, lines

help recognize lanes and pedestrian crossing zones. Previous

research has resulted in methods such as Hough Transforms,

and edge detectors such as Canny and Sobel [22]. But given

that the robot also has to localize, move, and cooperate with

team-members using its limited computational resources, these

algorithms are computationally expensive to use.

Our approach builds on a previous approach in the RoboCup

domain [25]. It utilizes environmental knowledge: edges of

interest on the field involve a white-green or green-white-

green transition corresponding to the borders and the field

lines respectively. A series of vertical scans are performed

on the segmented image, the scan lines spaced 4 � 5 pixels

apart to speed up the scanning, and to eliminate noisy lines that

extend only a few pixels across. The observation of lines closer

to the robot provides more reliable (less noisy) information.

The robot therefore scans the image from the bottom of the

top, and once an edge pixel is detected along a scan line,

the algorithm proceeds to the next scan line even though it

prevents it from finding line pixels further along the scan

4www.cs.utexas.edu/users/AustinVilla/?p=research/robust vision

line. The scan lines are suitably oriented to compensate for

the camera motion-based image rotation. The candidate edge

pixels are filtered through a set of heuristic filters whose

parameters were determined experimentally [24].

Instead of using the detected edge pixels as localization

inputs, as in previous approaches [25], lines are fit to the

edge pixels using the Least Square Estimation procedure [26].

Although line pixels (or lines) provide useful information, the

line intersections, though still not unique, involve much less

ambiguity, which can be resolved using prior robot pose. In

order to determine the line intersections, a pair of lines are con-

sidered at a time. Line intersections are accepted only if they

satisfy experimentally determined heuristic thresholds [24].

Figure 6 shows a set of images with field lines in pink and

border lines in red.

(a) (b) (c) (d)

Fig. 6: Sample Line Recognition — Pink Field Lines and Red
Borders.

We also analyzed the performance over � 2000 images

both for a stationary and moving robot. The corresponding

classification accuracies were 100% and 93:3% respectively,

with no false positives in either case. We noticed a significant

improvement in our localization accuracy (10 � 15%) once

we used lines/line intersections as inputs to our particle

filtering localization algorithm [27]. The entire baseline system

operates at � 27msec per frame so that the robot is able to

operate at frame-rate (� 33msec per frame).

C. Summary - Baseline System

We have described a baseline vision system that works

in real-time on the robot, performing color segmentation,

object recognition and line detection. This work is also

described in [28]. Though fully implemented and effective

in the robot soccer domain, the system suffers from two

major drawbacks that prevent autonomous operation. First,

even for a fixed illumination, the vision system requires time-

consuming manual color calibration. Second, the system is

highly dependent on constant and uniform illumination for

its operation, something that is not representative of a typical

mobile robot environment. In the next two sections we present

our solutions to these problems: autonomous color learning

and illumination invariance.

IV. PLANNED COLOR LEARNING

The baseline system described above (Section III-A) in-

volved hand-labeling several (� 20 � 30) images, leading to

more than an hour of manual effort before the robots can be

deployed. The calibration has to be repeated each time the

illumination changes significantly. Here, we present a novel

approach that enables the robot to autonomously learn the

desired colors, suitably planning its motion sequence based on

known positions of color-coded objects. Using a hybrid color
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representation the entire color map is learned autonomously in

less than five minutes, both within controlled lab settings and

in the less controlled settings outside it. The segmentation and

localization accuracies are comparable to those from a hand-

labeled color map.

A key defining feature of the algorithm is that there is no

a priori color knowledge or labeled color data. The method

depends only on the known positions, shapes and colors of ob-

jects. It is independent of the actual color labels (blue, yellow

etc.) assigned to each object, and is hence robust to different

illuminations and even changes of entire colors (e.g. repainting

all red objects as blue and vice versa). Even in the car-on-the-

road task, we could use objects of known colors: red-stop sign,

yellow-yield sign, white/yellow lines on the road, to learn the

desired colors. Note that we are not entirely removing the

human input: we still provide the positions of useful objects.

But, in many applications, particularly when object locations

change less frequently than illumination, it is more efficient

than hand-labeling several images.

As in the case of the baseline vision system (Section III),

the problem of color segmentation can be characterized by a

set of inputs, outputs and constraints.

1. Inputs:� A color-coded model of the world that the robot in-

habits. The model contains a representation of the size,

shape, position, and colors of all objects of interest. We

did not use this in the baseline system.� A stream of limited-field-of-view images. The images

present a view of the world with many useful color-

coded objects, but also many unpredictable elements.� The initial position of the robot and its joint angles over

time, particularly those specifying the camera motion.

2. Output:� A Color Map that assigns a color label to each point

in the input color space.

3. Constraints:� Limited computational and memory resources with all

processing being performed on-board the robot.� Rapid motion of the limited-field-of-view camera with

the associated noise and image distortions.

We aim to generate a reliable mapping from the inputs to the

outputs, while operating within the constraints imposed by the

test platform. In our approach, the robot uses the color-coded

world model to plan a motion sequence that puts it in positions

appropriate to learn the desired colors. At each position, the

robot selects suitable image regions and models colors using

a hybrid color representation. The learned colors are used

to recognize objects, localize and hence move to positions

suitable for learning other colors. We begin by formally

describing the color segmentation problem (Section IV-A), a

generalization of the description in Section III-A. Section IV-

B provides details of the actual algorithm. A description of the

experimental setup and the experimental results (Section IV-C)

is followed by a summary (Section IV-D).

A. Problem Specification

In order to recognize objects and operate in a color-coded

world, a robot typically needs to recognize a certain discrete

number of colors (l 2 [0; N � 1℄). A complete mapping

identifies a color label for each point in the color space:8i; j; k 2 [0; 255℄;�E : f1;i; 2;j ; 3;kg 7! ljl2[0;N�1℄ (2)

where 1; 2; 3 are the color channel (e.g. RGB) values, andE depicts the dependence on the current illumination.

In our preliminary color learning approach [29], each color

was represented using a three-dimensional (3D) Gaussian with

mutually independent color channels, i.e. we assume that

there is very little correlation between the values along the

three color channels for any color. In practice this assumption

does not hold perfectly, depending on the color space under

consideration. For example, in the lab, the correlation coef-

ficients between Cb and Cr color channels in the Y CbCr
color space, �br = �0:71;�0:67 for yellow and orange

respectively. But for most colors in the color space we use for

segmentation (LAB), the correlation is small enough to justify

the independence assumption, which simplifies the compu-

tation considerably. Using empirical data and the statistical

technique of bootstrap [30], we determined that the Gaussian

representation closely approximates reality. In addition, the

Gaussian model only requires the computation and storage

of the mean and covariance matrix for each color, thereby

reducing the memory requirements.

For the 3D Gaussian model, the apriori probability density

functions (pdfs) for a color (l 2 [0; N � 1℄) is given by:p(jl) � 1(2�)3=2j�lj1=2 � ef� 12 (��l)t��1l (��l)g
(3)

where the random variable  = 1; 2; 3 represents the distri-

bution of color’s values along the three color channels, whileN(�l;�l) defines the 3D Gaussian for color l. Assuming

equal priors (P (l) = 1=N; 8l 2 [0; N � 1℄), each color’s

aposteriori probability is given by:p(lj) / p(jl) (4)

The Gaussian model for color distributions performs well

inside the lab, generalizing with limited samples and handling

minor illumination changes when the color distributions are

actually unimodal. However, in un-engineered settings outside

the lab, factors such as shadows and larger illumination

changes result in multi-modal color distributions which cannot

be modeled properly using Gaussians.

Color histograms provide an excellent alternative to Gaus-

sians when colors have multi-modal distributions in the color

space [31]. Here, the possible color values (0–255 along each

channel) are discretized into a specific number of bins that

store the count of pixels that map into that bin. The 3D

histogram of a color can be normalized to provide the pdf

for that color (Equation 3):p(jl) � Histl(b1; b2; b3)PHistl (5)

where b1, b2, b3 represent the histogram bin indices corre-

sponding to the color channel values 1; 2; 3. The aposteriori

probabilities for each color are then given by Equation 4.
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Unfortunately, histograms do not generalize well with lim-

ited training data, for instance for new samples produced by

minor illumination changes. Constrained resources prevent the

implementation of operations more sophisticated than smooth-

ing. Also, histograms require more storage, which would be

wasteful for colors that can be modeled as Gaussians. Here,

we combine the two representations such that they complement

each other: colors for which a 3D Gaussian is not a good fit

are modeled using 3D histograms. The decision is made online

by the robot, for each color, based on pixel samples.

Other distribution models were also found to be feasible

(exponential, mixture-of-Gaussians etc), but the Gaussian and

histogram constitute a minimal set of models that provide the

required capability to model the desired distributions, and they

perform as well as the other more sophisticated models. In

addition, the parameters of these two models can be easily

determined in real-time within the computational constraints

of mobile robot platforms.

B. Algorithm

Algorithm 1 describes our approach. Underlined function

names are described below.

Our preliminary algorithm [29] (lines 11; 12; 17� 20) had

the robot learn colors by moving along a prespecified motion

sequence, and modeled each color as a 3D Gaussian. As

mentioned above, the Gaussian assumption may not hold out-

side the constrained lab setting. The current algorithm uses a

hybrid representation that automatically chooses between two

different models for each color and automatically generates

a motion sequence suitable for learning colors for any given

robot starting pose and object configuration.

The robot starts off at a known pose with the locations

of various color-coded objects known. It has no prior color

information (images segmented black). It has a list of colors

to be learned (Colors) and an array of structures (Regions),

where each structure corresponds to an object of a particular

color and stores a set of properties, such as its size (length,

width) and its three-dimensional location (x,y,z) in the world

model. Both the robot’s starting pose and the object locations

can be varied between trials, which causes the robot to modify

the list of candidate regions for each color. Though this

approach does require human input, in many applications,

particularly when object locations change less frequently than

illumination, it is more efficient than hand-labeling images.

Due to the noise in the motion model and the initial lack

of visual information, constraints need to be imposed on

the robot’s motion and the position of objects, in order to

resolve conflicts that may arise during the learning process.

These heuristic constraints depend on the problem domain.

Here, two decisions need to be made: the order in which

the colors are to be learned, and the best candidate object

for learning a particular color. The algorithm currently makes

these decisions greedily and heuristically, i.e. it analyzes one

step at a time without actually planning for the subsequent

steps. The details of the algorithm and the corresponding

heuristics are presented primarily for the replicability of our

work. Our aim is to demonstrate that such autonomous color

Algorithm 1 Planned Autonomous General Color Learning

Require: Known initial pose (can be varied across trials).

Require: Color-coded model of the robot’s world - objects at

known positions, which can change between trials.

Require: Empty Color Map; List of colors to be learned -Colors.

Require: Arrays of colored regions, rectangular shapes in 3D;Regions. A list for each color, consisting of the properties

(size, shape) of the regions of that color.

Require: Ability to navigate to a target pose (x; y; �).

1: i = 0; N = MaxColors
2: T imest = CurrT ime, T ime[℄ — the maximum time

allowed to learn each color.

3: while i < N do

4: Color = BestColorToLearn( i );

5: TargetPose = BestTargetPose( Color );

6: Motion = RequiredMotion( TargetPose )

7: Perform Motion fMonitored using visual input and

localizationg
8: if TargetRegionFound( Color ) then

9: Collect samples from the candidate region,Observed[℄[3℄.
10: if PossibleGaussianFit(Observed) then

11: LearnGaussParams( Colors[i℄ )

12: Learn Mean and Variance from samples

13: else f 3D Gaussian not a good fit to samples g
14: LearnHistVals( Colors[i℄ )

15: Update the color’s 3D histogram using the sam-

ples

16: end if

17: UpdateColorMap()

18: if !Valid( Color ) then

19: RemoveFromMap( Color )

20: end if

21: else

22: Rotate at target position.

23: end if

24: if CurrT ime � T imest � T ime[Color℄ orRotationAngle � Angth then

25: i = i+ 1
26: T imest = CurrT ime
27: end if

28: end while

29: Write out the color statistics and the Color Map.

learning can be accomplished in a setting where it is typically

done manually.

In our task domain, the following three factors influence

these choices:

1. The amount of motion (distance) that is required to

place the robot in a location suitable to learn the color.

2. The size of the candidate region the color can be

learned from.

3. The existence of a region that can be used to learn

that color independent of the knowledge of any other (as

of yet) unknown color.
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Specifically, if a color can be learned with minimal motion

and/or is visible in large quantities around the robot’s current

location, it should be learned first. Sometimes a color can

be learned more reliably by associating it with another color

around it. For example, in our default configuration, pink has

regions of the same size associated with either blue or yellow.

The robot attempts to learn one of those two colors before it

attempts to learn pink. Essentially, these factors are used by

the robot in a set of heuristic functions to learn the colors

with minimal motion and increase the chances of remaining

well-localized. The relative importance weights assigned to

the individual factors are used to resolve the conflicts, if any,

between the factors.

The robot computes three weights for each color-object

combination (l; i) in its world:w1 = fd( d(l; i) )w2 = fs( s(l; i) )w3 = fu( o(l; i) ) (6)

where the functions d(l; i), s(l; i) and o(l; i) represent the

distance, size and object description for each color-object com-

bination. The function fd( d(l; i) ) assigns a smaller weight

to distances that are large, while fs( s(l; i) ) assigns larger

weights to larger candidate objects. The function fu( o(l; i) )
assigns larger weights if the particular object (i) for a particular

color (l) is ’unique’, which here implies that it is not composed

of any color, in addition to (l), that is currently unknown.

The BestColorToLearn (line 4) is chosen as:arg maxl2[0;N�1℄n maxi2[0;Nl�1℄ � fd( d(l; i) )+ fs( d(l; i) ) + fu( o(l; i) ) � o (7)

where the robot parses through the different objects available

for each color (Nl) and calculates the weights. For each color,

the object that provides the maximum weight is determined.

Next, the color that results in the maximum among these

values is chosen to be learned first. The functions are currently

experimentally determined based on the relative importance of

each factor, though once estimated they work across different

environments. One future research direction is to estimate

these functions automatically as well.

Once a color is chosen, the robot determines the target

object to learn the color from (best-candidate-object):arg maxi2[0;Nl�1℄n fd( d(l; i) )+ fs( d(l; i) ) + fu( o(l; i) ) o (8)

For a chosen color, the best candidate object provides the

maximum weight for the given heuristic functions.

Next, the robot calculates the BestTargetPose() (line 5) to

detect this target object. Specifically, using the known world

model, it attempts to move to a pose where the entire candidate

object would be in its field of view. Using its navigation

function – RequiredMotion() (line 6) – the robot determines

and executes the motion sequence to place it at the target pose.

The current knowledge of colors is used to recognize objects

and localize using particle filtering [27] thereby providing

visual feedback for the motion.

Once it gets close to the target pose, the robot searches

for image regions that satisfy the heuristic constraints for the

target object. The structure Regions[Color][best-candidate-

object] provides the actual properties of the target object

such as its (x,y,z) location, width and height. Based on its

pose and geometric principles, the robot uses these properties

to dynamically compute suitable constraints. The robot stops

when either TargetRegionFound() (line 8) is true or its pose

estimate corresponds to the target position.

If a suitable region is found, the robot stops with the region

at the center of its visual field. The pixel values in the region,

which satisfy simple out-lier checks, are used as verifica-

tion samples, Observed, to check goodness-of-fit with a 3D

Gaussian (PossibleGaussianFit() — line 10). The statistical

bootstrap technique is used, with KL-divergence [32] as the

distance measure (Algorithm 2). Appendix II describes the

bootstrap test and shows that the 3D Gaussian is a good fit

for the color distributions within controlled lab settings.

Algorithm 2 PossibleGaussianFit(), line 10 of Algorithm 1

1: Determine Maximum-likelihood estimate of Gaussian pa-

rameters from samples, Observed.

2: Draw N samples from Gaussian – Estimated, N = size

of Observed.

3: Dist = KLDist(Observed; Estimated).
4: Mix Observed and Estimated – Data, 2N items.

5: for i = 1 to NumTrials do

6: Sample N items with replacement from Data – Set1,

remaining items – Set2.

7: Disti = KLDist(Set1; Set2)
8: end for

9: Goodness-of-fit by p-value: where Dist lies in the distri-

bution of Disti.
If the 3D Gaussian is a good fit, the robot executes Learn-

GaussParams() (line 11). Each pixel of the candidate region

(currently black, i.e. unlabeled) that is sufficiently distant from

the means of the other known color distributions is selected.

The mean and covariance of these pixel values represent the

pdf of the color under consideration. If the 3D Gaussian is

not a good fit for the samples, the robot models the color as

a 3D histogram, the same candidate pixels now being used to

populate the histogram (LearnHistVals() — line 14).

Next, the function UpdateColorMap() (line 17) uses the

learned distributions to generate the Color Map. Assigning

color labels to each cell in the 128 � 128 � 128 map is

computationally expensive and is performed only once every

five seconds. Histograms are normalized (Equation 5) to

generate pdfs. Each cell in the color map, which corresponds

to a particular 3D vector of pixel values, is assigned a label

corresponding to the color which has the largest aposteriori

probability (Equation 4) for that vector of pixel values.

By definition, Gaussians have a non-zero value throughout

the color space. During the learning process, the robot could

classify all the color map cells into one of the colors currently

included in the map, resulting in no candidate regions for
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the other colors. Therefore, a cell is assigned a particular

color label iff its distance from the mean of the corresponding

color lies within an integral multiple of the color’s covariance.

Histograms do not have this problem.

The updated map is used to segment subsequent images

and detect objects. This helps validate the learned parameters

and remove erroneous color statistics (Gaussian/Histogram) if

necessary (line 18, 19). Furthermore, it helps the robot localize

and move to suitable locations to learn the other colors.

Our learning algorithm essentially bootstraps, the knowledge

available at any given instant being exploited to plan and

execute the subsequent tasks efficiently.

If the candidate object is not found at the target location, it

is attributed to slippage and the robot turns in place, searching

for the candidate region with slightly relaxed constraints. The

robot turns a complete circle rather than turning a certain

amount in each direction to avoid abrupt transitions. The

constraints on size and location prevent the selection of a

wrong target image region under most cases, and the validation

process handles the other cases. If the robot has turned in

place for more than a threshold angle (Angth = 360o) and/or

has spent more than a threshold amount of time on a color

(T ime[Color℄ � 20se), it transitions to the next color in the

list. The process continues until the robot has tried to learn

all the colors. Then the color map and statistics are saved. A

video of the color learning process can be seen online.5

Instead of providing a color map and/or the motion sequence

each time the environment or the illumination conditions

change, we now just provide the object descriptions in the

robot’s world and have it plan its motion sequence and learn

colors autonomously. The robot can be deployed a lot faster,

especially in domains where object locations change less

frequently than illumination conditions.

C. Experimental Results

Our algorithm is successful if the robot is able to plan a

suitable motion sequence and learn all the desired colors in

its environment. Hence, we test both the color learning and

the planning components of the algorithm. We hypothesized

that the hybrid color learning scheme should allow the robot

to automatically choose the best representation for each color

and learn colors efficiently both inside and outside the lab. Our

goal is for the hybrid representation to work outside the lab

while not resulting in a reduction in accuracy in the controlled

lab setting. We proceeded to test that as follows.

We first compared the two color representations, Gaussians

(AllGauss) and Histograms (AllHist), for all the colors, inside

the controlled lab setting. Qualitatively, both representations

produced similar results (Figure 7). We then quantitatively

compared the two color maps with the labels provided by a

human observer, over � 15 images. Since most objects of

interest are on or slightly above the ground (objects above

the horizon are automatically discarded), only suitable image

regions were hand-labeled (on average 6000 of the total33280 pixels). The average classification accuracies for AllHist

and AllGauss were 96:7 � 0:85 and 97:1 � 1:01 while the

5www.cs.utexas.edu/users/AustinVilla/?p=research/auto vis

corresponding storage requirements were 3000Kb and 0:15Kb
respectively i.e. AllHist performs as well as AllGauss but

requires more storage.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7: Images inside the lab. (a)-(c) Original, (d)-(f) AllGauss, (g)-
(i) AllHist. AllHist performs as well as AllGauss.

A main goal of this work is to make it applicable to less-

controlled settings. We next tested the robot in two indoor

corridors, where the natural setting consisted of a series of

overhead fluorescent lamps placed a constant distance apart,

resulting in non-uniform illumination and a lot of highlights

and shadows on the objects and the floor. In the first corridor,

the floor was non-carpeted and of a similar color as the walls.

The robot was provided with a world model with color-coded

objects of interest, but because of the non-uniform illumination

the floor and the walls had multi-modal color distributions.

AllGauss could not determine a suitable representation for the

ground and walls, causing problems with finding candidates

for the other colors – Figure 8).

(a) (b) (c) (d)

Fig. 8: Segmentation with: (a)-(b) 3D Gaussians, (c)-(d) 3D His-
tograms. Histograms model ground or wall colors better.

With the hybrid color representation, GaussHist, the robot,

based on the statistical tests, ended up modeling one color

(walls and ground) as a histogram and the others as Gaussians.

Figure 9 compares AllHist with GaussHist.

The AllHist model does solve the problem of modeling

ground color better. But, while Gaussians are robust to slight

illumination changes, histograms, in addition to requiring more

storage, do not generalize well to tackle minor illumination

changes that are inevitable during testing (errors in row 2

of Figure 9). The inability to generalize well also causes

problems in resolving conflicts between overlapping colors.

For example, when the robot attempts to learn red (opponent’s

uniform color) after learning other colors, it is unable to
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9: Images outside the lab: (a)-(c) Original, (d)-(f) AllHist, (g)-
(i) GaussHist. GaussHist performs better under minor illumina-
tion changes.

identify a suitable candidate region. As seen in Figure 10 (e,

f), it leads to false positives and the segmentation performance

over other colors deteriorates.

(a) (b) (c)

(d) (e) (f)

Fig. 10: Images with opponent color in map: (a)-(c) Original,
(d) GaussHist, (e)-(f) AllHist. GaussHist models overlapping
colors better.

With Gaussians, the robot has the option of varying the

spread of the known overlapping colors, such as orange and

pink. Hence GaussHist successfully learns the total set of

colors using the good features of both models.

Next, we ran the color learning algorithm in a different

corridor, where the floor had a patterned carpet with varying

shades and the illumination resulted in multi-modal distri-

butions for the ground and the walls. Once again, AllGauss

did not model the multi-modal color distributions well while

AllHist had problems when faced with the inevitable minor

illumination variations during testing. But GaussHist enabled

the robot to successfully learn the desired colors. We also ran

the color learning experiments with other objects instead of

those on the robot soccer field (trash cans, boxes etc.). These

objects were not uniform-colored, resulting in multi-modal

color distributions. But the robot successfully learned those

colors as well, as a result of the hybrid color representation.

Table I documents numerical results for the two test cases

outside the controlled lab setting. The storage requirements

reflect the number of colors represented as histograms instead

of Gaussians. Sample images for this setting can be seen

online.6 We also provide images to show that the planned color

learning scheme can be applied to different illuminations, and

can handle re-paintings — changing all yellow objects to white

and vice versa poses no problem.

Type Accuracy (%) (KB)AllHist� 1 89:53� 4:19 3000GaussHist� 1 97:13� 1:99 440AllHist� 2 91:29� 3:83 3000GaussHist� 2 96:57� 2:47 880

TABLE I: Accuracies and storage requirements of models in two
different indoor corridors. The results are statistically significant.

One challenge in experimental methodology was to mea-

sure the robot’s planning capabilities in qualitatively difficult

setups (objects configurations and robot’s initial position).

We described our algorithm to seven graduate students with

experience working with the robots and asked them to pick

a few test configurations each, which they thought would

challenge the algorithm. For each configuration, we measured

the number of successful learning attempts: an attempt is

deemed a success if all five colors needed for localization

(pink, yellow, blue, white, green) are learned. Table II tabulates

the performance of the robot in its planning task over 15

configurations, with 10 trials for each configuration.

Config Success (%) Localization Error
X (cm) Y (cm) � (deg)

Worst 70 17 20 20

Best 100 3 5 0

avg 90� 10:7 8:6� 3:7 13:1� 5:3 9� 7:7
TABLE II: Successful Planning and Localization Accuracy.

Table II also shows the localization accuracy of the robot

using the learned color map. The robot is able to plan its

motion to learn colors and execute it successfully in most

of the configurations that were designed to be adversarial.

The corresponding localization accuracy is comparable to that

obtained with the hand-labeled color map (� 6m; 8m; 4deg
in X , Y , and �).

4
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Fig. 11: Sample Configuration where robot performs worst.

6www.cs.utexas.edu/�AustinVilla/?p=research/auto vis
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One configuration where the robot performs worst is shown

in Figure 11. Here, it is forced to move a large distance

to obtain its first color-learning opportunity (from position 1

to 2). The large motion without visual feedback sometimes

leads the robot into positions quite far away from its target

location and it is unable to find any candidate image region that

satisfies the target object’s constraints. Currently, failure in the

initial stages strands the robot without any chance of recovery.

A suitable recovery mechanism using additional geometric

constraints is an important area for future work. Note that the

failure is largely due to external factors such as slippage: the

color-learning plan generated by the robot is quite reasonable.

A video of the robot using a learned color map to localize to

points in an indoor corridor can be seen online. 7

D. Summary - Color Learning

One major drawback of our baseline vision system (Sec-

tion III) was the need for elaborate manual sensor calibration

before deployment. Here, we have described an algorithm

that enables the robot to use the known world model (struc-

ture) to autonomously plan a suitable motion sequence and

learn colors. Using our hybrid representation allows for color

learning both within the controlled lab environment and in

less controlled settings outside it, such as indoor corridors.

The algorithm bootstraps – the color map available at any

stage is used to detect objects, thereby localizing better to

locations suitable for learning other colors. The segmentation

and localization accuracies with the learned color map are

comparable to that with the hand-labeled color map. In addi-

tion, the robot is able to plan its motion sequence for several

different object configurations that were specifically designed

to be adversarial. This approach is also described in [29], [33].

In our robot soccer domain the objects of interest are known

markers that are color-coded. In the car-on-the-road problem,

the vision system would be able to learn a yield sign colored

yellow and a stop sign painted red. Hence we use colors as

the distinctive features. But in environments with features that

are not constant-colored, other feature representations such as

SIFT [8], could be used. As long as the locations of the objects

remain as indicated on the map, the robot could robustly re-

learn how to detect them.

We have made it possible to quickly train a new color map

whenever illumination changes significantly. But it does not

provide a mechanism for automatically detecting and adapting

to illumination changes. In the next section, we tackle this

limitation of the baseline vision system, its sensitivity to

illumination changes.

V. ADAPTING TO ILLUMINATION CHANGES

A robot operating in the real world is subjected to il-

lumination changes, such as between day and night. When

illumination changes, it causes a nonlinear shift in the color

distributions in the color space [12], and the previously trained

color map ceases to be useful. On robots with color cameras,

this typically requires the repetition of the training phase that

7www.cs.utexas.edu/users/AustinVilla/?p=research/gen color

generates the color map. In real world tasks such as the car-on-

the-road example, lack of proper color information can lead

to rather disastrous consequences.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12: Sample Images showing Illumination Sensitivity.

As shown in Figure 12 the color map trained for an illumi-

nation condition works fine for minor changes in illumination

but results in very bad segmentation when the illumination

changes significantly. The top row shows segmentation results

when a color map is trained and tested on images captured

under the same illumination condition. The bottom row shows

the segmentation obtained when the same map is used to

segment images captured under a different illumination — note

that almost entire objects are segmented incorrectly.

Our autonomous color learning algorithm, described in

Section IV-B, enables the robot to learn the color map but

continuous human supervision is still required to enable the

detection of illumination changes. Stated differently, we have

enabled the robot to decide What to learn (choosing between

Gaussian and Histogram for color distributions) and How to

learn (planning motion sequence). But the robot still cannot

decide When to learn. In order to work over a range of

illuminations, the robot must be able to:

1. Detect a change in illumination conditions by extracting

suitable statistics from its input images;

2. Automatically learn a new color map if it is put in an

illumination condition which it has never seen before;

3. Transition to an appropriate color map if it is placed in

an illumination condition that it has learned a color map

for, and use that for subsequent vision processing;

4. Perform all the necessary computation efficiently without

having an adverse effect on its task performance.

We formally describe the problem and our solution in Sec-

tion V-A, followed by the algorithm (Section V-B), the exper-

imental results (Section V-C) and a summary (Section V-D).

A. Problem Specification

In order to detect significant changes in illumination, a

mechanism for representing different illuminations and dif-

ferentiating between them is needed.

We hypothesized that images from the same lighting con-

ditions would have measurably similar distributions of pixels

in color space. The original image is available in the YCbCr

format, with values ranging from [0-255] along each dimen-

sion. In an attempt to reduce storage, but retain the useful

information, we transformed the image to the normalized RGB

space, i.e. (r; g; b). By definition:
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since r + g + b = 1, any two of the three features are a

sufficient statistic. An illumination is represented by a set

of (r; g) histograms (pdfs), quantized into N bins in each

dimension, corresponding to images captured by the robot.

We then need a well-defined measure capable of detecting

the correlation between discrete distributions. Based on ex-

perimental validation (see Appendix I-C), we use the popular

entropy-based measure: KL-divergence. For two 2D (r; g)
histograms A and B with N bins along each dimension:KL(A;B) = N�1Xi=0 N�1Xj=0 (Ai;j � lnAi;jBi;j ) (10)

The more similar two distributions are, the smaller is the KL-

divergence (KLD) between them. Since KLD is a function of

the log of the observed color distributions, it is reasonably

robust to large peaks in the observed distributions, and hence

to images with large regions of a single color. The lack of

symmetry in KLD is eliminated using the Resistor-Average

KLD (RA-KLD) (see Appendix II-A for details).

Given a set of pdfs of pixel values corresponding to M
different illuminations, we have previously shown that it is

possible to effectively classify the test image histogram into

one of the illumination classes [34]. A major limitation to

this approach was that the illumination conditions had to be

known in advance, and color maps had to be trained for each

illumination. Here we make a significant extension in that we

do not need to know the different illuminations ahead of time.

In addition to a set of of (r; g) histograms corresponding to

an illumination (rgsamp[i℄), the robot calculates the RA-KLD

between every pair of histograms. The resultant distribution

of the distances between the histograms under a particular

illumination, say Di, is modeled as a Gaussian that provides

a second order statistic representing the illumination. When

the illumination changes significantly, the average RA-KLD

distance between a test (r; g) pdf and rgsamp[i℄ maps to a

point well outside the 95% range of the intra-illumination

distances (Di), providing a measure for detecting a change

in illumination conditions.

B. Algorithm

Our algorithm for detecting illumination changes is summa-

rized in Algorithm 3 and described in the text below.

The robot begins by learning the color map for the current il-

lumination, by generating a suitable motion sequence using the

world model, as described in Algorithm 1 (line 2). The color

learning process takes less than five minutes, and we implicitly

assume that the illumination does not change significantly

during this period. Next, it moves around its environment

and collects sample image histograms in (r; g) that represent

this illumination. It also computes the distribution of RA-

KLD distances, modeling it as a Gaussian (DurrIll), i.e. the

mean and standard deviation of the distances describe the

distribution (line 3).

Algorithm 3 Illumination Change Detection

Require: For each illumination i 2 [0;M�1℄, color map and

distribution of RA-KLD distances Di.
1: Begin: M = 0, urrent = M .

2: Generate motion sequence and learn colors - Algorithm 1.

3: Generate rgsamp[urrent℄[℄, N (r; g) space histograms,

and distribution of RA-KLD distances, Durrent.
4: Save color map and image statistics, M =M + 1.

5: if urrentT ime� testT ime � timeth then

6: rgtest = sample (r; g) test histogram.

7: for i = 0 to M � 1 do

8: dAvgtest[i℄ = 1N Pj KLDist(rgtest; rgsamp[i℄[j℄)
9: end for

10: if dAvgtest[urrent℄ lies within the threshold range ofDurrent then

11: Continue with current color map.

12: else if dAvgtest[i℄ lies within the range of Di; i 6=urrent then

13: Use corresponding color map, urrent = i.
14: else if 8i 2 [0;M�1℄; dAvgtest[i℄ lies outside the range

of Di then

15: Re-learn color map autonomously: Algorithm 1.

16: Save (r; g) pdfs for new illumination.

17: Generate the distribution of RA-KLD distances.

18: Transition to the new color map for subsequent

operations.

19: urrent = M , M = M + 1.

20: end if

21: testT ime = urrentT ime.

22: end if

Periodically (timeth = 0:5, line 5), the robot generates

a test image histogram (rgtest, line 6) and computes its

average distance to each set of previously computed (r; g)
pdfs (rgsamp[i℄ — lines 7-9). If the average distance lies

within the threshold range (95%) of a known distribution of

distances (Di) other than the current one, the robot transitions

to the corresponding illumination. The corresponding color

map is used for all subsequent operations (lines 12, 13). But,

if the average distance lies outside the threshold range of all

known distribution of distances (line 14), the robot represents

the current environmental state as a new illumination. It

then proceeds to learn a color map using the autonomous

color learning approach in Algorithm 1 (line 15). It also

collects image statistics, i.e. image histograms in (r; g) and the

distribution of RA-KLD distances (lines 16, 17). The statistics

are used in subsequent comparisons for change in illumination.

Changing the threshold changes the resolution at which the

illumination changes are detected but we found that the robot

is able to handle minor illumination changes reasonably using

the color map corresponding to the closest illumination. In

more recent work, which we do not describe here, we have

found that a Bayesian update can be used to smoothly track

minor illumination changes and operate consistently at high

accuracy levels. In practice, the robot ends up learning only

three different illuminations over a range of illuminations
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intensities (� 450lux� 1600lux). With transition thresholds

to ensure that a change in illumination is accepted iff it occurs

at least 6 times in 10 tests, it smoothly transitions between the

different color maps that it has learned. The entire process is

performed without manual supervision.

C. Experimental Results

We are primarily interested in testing two facets of our

algorithm: i) the ability to decide When to learn, i.e. the ability

to detect illumination changes, and ii) the ability to quickly

transition between illuminations for which a representation has

already been learned.

1) When to Learn: In order to test the ability of the robot

to detect illumination changes accurately, we had the robot

learn colors and image histograms in (r; g) corresponding

to a particular illumination. We then had the robot move

in its environment chasing a color-coded ball, and randomly

changed the illumination on the field by controlling the in-

tensity of specific lamps. We repeated the experiment over

different starting illuminations and tested the ability of the

robot to detect significant illumination changes. Table III

presents results averaged over 1000 trials. It is essentially the

confusion matrix with the rows and columns representing the

ground truth and observed values respectively.

(%) Change Change
Change 97:1% 2:9%Change 3:6% 96:4%

TABLE III: Illumination change detection: few errors in 1000 trials.

We observe that the robot detects illumination changes with

very few false positives (second row, first column) or false

negatives (first row, second column). Highlights and shadows

are the major reasons for the errors, which are handled by not

accepting a change in illumination unless it is observed over a

few consecutive frames. Whenever the robot decides to learn

a new color map, it is able to do so using the planned color

learning algorithm (Section IV-B). When the algorithm is run

with the illumination varying between (� 450lux�1600lux),

the robot ended up learning color maps and image statistics

for three different cases corresponding approximately to 1600
lux, 1000 lux and 450 lux.

2) Transitions between illumination conditions: To test

the robot’s ability to transition between known illumina-

tions, we chose the three discrete illumination intensities

corresponding to the color maps that the robot had previ-

ously learned Bright(1600lux), Dark(450lux) and Intermedi-

ate(1000lux). The intensity of the overhead lamps was changed

to one of these conditions once every� 10 sec. Table IV shows

the results averaged over � 150 trials each.

Illumination Transition Accuracy
Correct (%) Errors

Bright 97.3 4

Dark 100 0

Intermediate 96.1 6

TABLE IV: Illumination transition accuracy: few errors in � 150
trials.

The first column represents the transitions to the corre-

sponding illumination. Once again the few false transitions,

mainly due to shadows or highlights, are quickly detected and

corrected in the subsequent tests.

Next, we tested the ability to transition between the three

illuminations while performing the find-and-walk-to-ball task,

wherein the robot, starting from a fixed position, turns in place

to find the ball (also at a fixed position) and walks up to it.

Without any change in illumination the robot takes 6:7(�0:6)
seconds to perform this task. The robot starts off under one

illumination and after 1:5 seconds (the time it takes to turn

and see the ball), the illumination is changed by adjusting the

intensity of all the lamps. The robot is timed as it performs the

task. With a single color map, when the illumination condition

changes significantly, the robot is unable to see a ball that is

right in front of it, and cannot complete the task even if given

unlimited time. With our algorithm, when the illumination

changes, the robot seems lost for a couple of seconds while

it recognizes the change and then transitions to the suitable

color map. It then functions as normal, finding the ball and

walking to it again. The results are shown in Table V.

Lighting (start/after 1.5 seconds) Time (seconds)

Bright / Interim 8.5 �0:9
Bright / Dark 11.8 �1:3

Interm / Bright 8.6 �1:0
Interm / Dark 9.6 �3:1
Dark / Interm 11.5 �1:4
Dark / Bright 10.7 �1:1

TABLE V: Time taken to find-and-walk-to-ball under changing
illumination.

The increase in the time taken to perform the task is due

to the time taken to detect the change in illumination and

transition to the appropriate color map. The values in the table

are different for different transitions because the corresponding

transition thresholds (for noise filtering) are different to reflect

the fact that different transitions have different likelihoods. For

example, a sudden transition from Bright to Dark is less likely

than a transition from Bright to Interm. Complete details on

the actual threshold values and the experiments that determine

their choice can be found in [34]. Videos showing the robots

performing under varying illuminations are available online. 8

In an attempt to explore the robustness of our approach, we

finally tested the algorithm for illuminations in between the

ones that the robot ended up learning color maps for. These

test illuminations would not register as being significantly

different from the known illumination representations, and the

robot would not learn new color maps for them. To enable

comparison of these results, we recorded the time taken by

the robot to find-and-walk-to-ball. In Table VI we present the

values corresponding to the case where the robot starts off

under the Bright illumination. About 1:5 seconds later, the

illumination is changed such that it is between the Bright and

the Interm illuminations (we also tested for the illumination

midway between Interm and dark).

8www.cs.utexas.edu/�AustinVilla/?p=research/illumination invariance
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Lighting Time (seconds)

bet. bright and interm 12.27 �0:5
bet. interm and dark 13.3 �2:0

TABLE VI: Time taken (in seconds) to find-and-walk-to-ball

We conclude that even when the illumination is changed to

one that is in between those that were significant enough to

learn a new color map for, the robot transitions to using the

closest illumination representation and is able to perform its

tasks well. The increase in the time taken to perform the task

is, once again, a result of the time taken to detect the change

in illumination and transition to the appropriate color map.

D. Summary - Illumination Invariance

We have presented an approach that enables the robot to

autonomously detect changes in illumination robustly and effi-

ciently, without prior knowledge of the different illuminations.

Each discrete illumination is characterized by a color map

and a set of image histograms in the (r; g) color space, both

of which are generated by the robot. The image histograms

are used to generate second-order statistics that represent a

particular illumination. When the robot detects an illumination

that it had already learned a representation for, it smoothly

transitions to using the corresponding color map. If it detects a

new illumination, it automatically learns a new suitable color

map and collects image statistics to be used in subsequent

comparisons for change in illumination. Even when presented

with illuminations that are in between the ones that it already

has learnt color maps for, and which, by definition, are

not significantly different from the known illuminations, it

smoothly selects the closest illumination and transitions to the

appropriate color map. The whole process is autonomous and

proceeds without human supervision.

The algorithm is also applicable to other domains. In the

car-on-the-road task, the vision system could learn a color

map for sunny conditions. When illumination changes, such

as when the sun goes behind a cloud (or sets in the evening),

the system would detect it and adapt to this change by learning

a new color map. When the sun comes back, the system would

automatically switch back to the previous color map.

VI. SUMMARY - OVERALL

The main aim of our work is to enable a mobile robot to

perform autonomously in its environment, using the structure

that is inherent in its environment. We first developed a

vision system that tackled challenging vision problems such

as segmentation, object recognition and line detection in

real-time, under rapid camera motions, though it required

manual calibration and was sensitive to illumination changes.

Next, we designed an algorithm that enabled the robot to

autonomously plan its motion sequence and learn the colors

using the structure inherent in its environment. Finally, we

also presented a scheme for the robot to automatically detect

significant changes in illumination and use the color learning

scheme to adapt to these changes. The overall system learns

colors autonomously, and detects and adapts to significant illu-

mination changes, thereby recognizing objects and performing

its tasks efficiently. Next, we describe some related approaches

to color learning/segmentation and illumination invariance.

VII. RELATED WORK

In this section, we review some related approaches to color

learning and illumination invariance, comparing them with our

algorithms to motivate our approach.

A. Segmentation and Learning

Color segmentation is a well-researched field in computer

vision with several good algorithms, for example mean-

shift [5] and gradient-descent based cost-function minimiza-

tion [6]. The mean-shift algorithm is a non-parametric tech-

nique for the analysis of complex multi-modal feature spaces

and the detection of arbitrarily shaped clusters. The feature

space is modeled as an empirical probability density function

(pdf) using a density estimation-based clustering approach.

Dense regions in the feature space correspond to local maxima,

i.e. the modes of the unknown pdf. Once the modes are found,

the associated clusters can be separated based on the local

structure of the feature space. Mean-shift is a procedure that

determines vectors aligned with the local gradient estimates,

defining a path to the desired modes. It provides good per-

formance on vision tasks such as segmentation and tracking,

but its quadratic complexity makes it expensive to perform on

mobile robots with computational constraints.

Active contours are another set of popular methods for im-

age segmentation. The method defines initial contours and then

deforms them towards object boundaries. The methods can

be classified into three groups: edge-based, region-based and

hybrid. Manjunath et al. describe a region-based method [6]

that segments images into multiple regions and integrates an

edge-flow vector field-based edge function for segmenting

precise boundaries. The method allows the user to specify the

similarity measure based on any image characteristic, such

as color or texture. Also, the algorithm is not sensitive to the

initial curve estimates, and provides good segmentation results

on a variety of images, but the iterative optimization makes it

expensive to implement on mobile robots.

Even in the RoboCup domain, several algorithms have been

implemented for color segmentation. The baseline approach

creates mappings from the YCbCr values (0 � 255 in each

dimension) to the color labels [21]. Other methods include

the use of decision trees [19] and the creation of axis-parallel

rectangles in the color space [20]. All these approaches involve

the hand-labeling of several (� 30) images over a period of

an hour or more before the decision-tree/color map can be

generated. Our baseline approach for color segmentation is a

variant of these approaches, with some additional features to

make it more robust to shadows and highlights (Section III-A).

Attempts to learn colors or make them independent to

illumination changes have produced reasonable success [35],

[36] but the approaches either involve the knowledge of the

spectral reflectances of the objects under consideration and/or

require additional transformations that are computationally

expensive to perform in the mobile robot domain. Mobile
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robots typically require real-time operation and frequently

operate under dynamically changing environments.

The choice of color space is an important consideration

in color learning and segmentation. Gevers and Smeulders

evaluate several color spaces to determine their suitability

for recognizing multicolored objects invariant to significant

changes in viewpoint, object geometry and illumination [36].

They present a detailed theoretical and experimental analy-

sis of the following models: RGB, Intensity I, normalized

color rgb, saturation S, Hue H, and three models that they

propose 123, l1l2l3, m1m2m3. They show that assuming

dichromatic reflection and white illumination, normalized rgb,

saturation S and Hue H, and the newly proposed 123,l1l2l3 and m1m2m3 are all invariant to the viewing direction,

object geometry and illumination. Hue H and l1l2l3 are also

invariant to highlights, while m1m2m3 is independent of the

illumination color and inter-reflections under the narrow-band

filter assumption. The work provides a good reference on the

choice of color spaces.

Lauziere et al. describe an approach for learning color

models and recognizing objects under varying illumination

using the prior knowledge of the spectral reflectances of the

objects under consideration [35]. They further explain the

process of camera characterization in [37]. The color camera

sensitivity curves are measured and used to recognize objects

better under daylight illumination conditions. Mobile robots

operating the real world frequently need to be deployed in a

short period of time in previously unseen locations.

Attempts to automatically learn the color map in the legged

league have rarely been successful. Cameron and Barnes [38]

present an approach that detected edges in the image and

constructed closed figures to find image regions corresponding

to known environmental features. The color information from

these regions was used to build the color classifiers, using the

Earth Mover’s distance (EMD) [39] as the similarity metric.

The changes introduced by illumination changes are tracked

by associating the current classifiers with the previous ones.

The edge detection, closed figure formation and clustering

makes the approach time consuming even with the use of off-

board processing. Our algorithm exploits domain knowledge

but learns colors in real-time on-board the robot using an

efficient color model.

Jungel presents another approach where the color map is

learned using three layers of color maps with increasing

precision levels [40]. Colors in each level are represented

as cuboids, but colors that are close to each other are not

disambiguated. Further, the colors are defined relative to a

reference color (field green in the robot soccer domain) and

with minor illumination changes the reference color is tracked

and all the other color regions are displaced in the color space

by the same amount. But different colors do not actually shift

by the same amount with illumination changes. The generated

map is reported to be not as accurate as the hand-labeled one.

Our algorithm learns a color map in under five minutes of

robot time, and provides performance comparable to the hand-

labeled map obtained after an hour or more of human effort.

It works both within the constrained lab setting and in less

controlled settings outside the lab.

B. Illumination Invariance

In its most general form, the problem of color constancy

can be explained using the following equation [11]:mpj = Z (E(�)Sp(�)Rj(�)) d� (11)

Here, E(�) is the spectral power distribution of the illuminant,Sx(�) is the surface reflectance at a scene point x, whileRj(�) is the spectral response (relative) of the imaging de-

vice’s jth sensor. The response of the jth sensor of the imaging

device at pixel p, mpj , is the integral of the product of these

three terms over the range of wavelengths. Changing either the

surface reflectance function or the spectral power distribution

of the illuminant can change the response at the sensor. Color

constancy requires that we either transform the response mpj
to correlate with S(�) independent of E(�), or equivalently,

recover an estimate of E(�). Several approaches have been

attempted to solve this problem, with varying levels of success.

However, almost all of them have been applied to static images

and most of them have high computational complexity.

The Retinex theory was one of the first attempts to explain

human color constancy [41]. Based on the assumption that

white reflection induces maximal rgb camera responses (since

light incident on a white patch is spectrally unchanged after

reflection), it suggested that measuring the maximum r, g, and

b responses can serve as an estimate of the scene illuminant.

When it was determined that the maximum rgb in an image is

not the correct estimate for white, the technique was modified

to be based on global or local image color averages. The

“Gray World” algorithm by Buchsbaum [42] is also based on

the same principle. Unfortunately, the image average, either

local or global, has been shown to correlate poorly with the

actual scene illuminant [43]. Also this method excludes the

possibility of distinguishing between the actual changes in

illumination and those as a result of a change in the collection

of surfaces in the scene under consideration.

Forsyth proposed the gamut mapping algorithm for color

constancy [12]. Based on the fact that surfaces can reflect no

more light than is cast on them, he concluded that the illumi-

nant color is constrained by the colors observed in the image

and can hence be estimated using image measurements alone.

The algorithm generated a set of mappings that transformed

image colors (sensor values) under an unknown illuminant to

the gamut of colors observed under a standard (canonical)

illuminant using 3D diagonal matrices. Then a single mapping

was chosen from the feasible set of mappings.

Realizing that the scene illuminant intensity cannot be

recovered in Forsyth’s approach, Finlayson modified the al-

gorithm to work in 2D chromaticity space [44]. He then

proved that the feasible set calculated by his 2D algorithm was

the same as that calculated by Forsyth’s original algorithm,

when projected into 2D, and proposed the median selection

method to include a constraint on the possible color of the

illuminant into the gamut mapping algorithm [45]. More

recently he presented a correlation framework [11], where

instead of recovering a single estimate of the scene illuminant,

he measured the likelihood that each of a possible set of

illuminants is the scene illuminant. The range of sensor values
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that can occur under each of a possible set of illuminants

is calculated and once the required likelihoods are obtained

by correlating with the colors in a particular image, they are

used to determine a single estimate of the scene illuminant.

In addition to extensive computation, the approach requires

prior knowledge of the illuminations which is not feasible in

a mobile robot domain.

Brainard and Freeman tackle the problem using the

Bayesian decision theory framework, which combines all

available statistics such as gray world, subspace and physical

realizability constraints [46]. They model the relation among

illuminants, surfaces and photosensor responses and generate

a priori distributions to describe the probability of existence

of certain illuminants and surfaces. A maximum local mass

(MLM) estimator integrates local probabilities and uses Bayes’

rule to compute the posterior distributions for surfaces and

illuminants, for a given set of photosensor responses. Similar

to the above-mentioned methods, it requires significant prior

knowledge and is computationally expensive.

Tsin et al. present a Bayesian MAP (maximum a posteri-

ori) approach to achieve color constancy for outdoor object

recognition with a static surveillance camera [47]. Static

overhead high-definition color images, over several days, are

used to learn statistical distributions for reflectance and the

light spectrum. A linear iterative updating scheme is used

to converge to the classification result on the test images.

A mobile robot system needs to be robust to rapid camera

motions and dynamic changes.

In contrast to the Bayesian methods, Rosenberg et al.

present an approach where they develop models for sensor

noise, canonical color and illumination [13]. Then the global

scene illumination parameters are determined by an exhaustive

search using KL-divergence as the metric. They present results

to show that proper correction is achieved for changes in

scene illumination and compare it with the results obtained

using a MLE (maximum likelihood estimate) approach. Once

again, the method requires extensive prior knowledge and is

computationally expensive.

Schulz and Fox estimate colors using a hierarchical bayesian

model with Gaussian priors and a joint posterior on position

and environmental illumination [48]. Significant prior knowl-

edge of color distributions and illuminations, in addition to

extensive hand-labeling, are required even when tested under

two distinct illuminations and a small set of colors. In addition,

it requires almost a second of off-board processing per image.

Our approach enables the robot to model overlapping colors

with no apriori knowledge of color distributions, and detect

and adapt to a range of illuminations using autonomously-

collected image statistics.

Lenser and Veloso present a tree-based state descrip-

tion/identification technique [49], which they use for detecting

changes in lighting on Aibo robots. They incorporate a time-

series of average screen illuminance to distinguish between il-

lumination conditions, using the absolute value distance metric

to determine the similarity between distributions. We however

believe that the color space distributions could function as a

better discriminating feature. Also, their method is not run

on-board the robot while it is performing other tasks.

Anzani et al. describe an attempt at illumination invariance

in the RoboCup middle-size league [50], where teams are

made up of mobile robots (wheeled locomotion). They use

Mixture of Gaussians to generate multi-modal distributions

for the various colors. The labeling of color classes and

association with mixture components is done by human su-

pervision, and the Bayesian decision rule is used during the

classification stage. To adapt the model parameters to changing

illumination conditions, the EM algorithm [51] is used with

online adaptation of the number of mixture components too.

The algorithm has been tested only over a few illuminations

in the lab, while we model colors and adapt to a range of

illuminations even in un-engineered indoor corridors.

In the domain of mobile robots, the problem of color

constancy has often been avoided by using non-vision-based

sensors such as laser range finders and sonar sensors [4].

Even when visual input is considered, the focus has been on

recognizing just a couple of well-separated colors [2], [52].

There has been relatively little work on illumination invariance

with a moving camera in the presence of shadows and artifacts

caused by the rapid movement in complex problem spaces.

Further, with few exceptions (e.g. [49], [50]), the approaches

that do exist for this problem cannot function in real-time with

the limited processing power that we have at our disposal.

In the DARPA grand challenge, Thrun et al. [3] model

colors as MoG and attempt to add additional Gaussians

and/or modify the parameters of the existing Gaussians in

response to the changes in illuminations. But, not all colors are

modeled well using MoG. Furthermore, they were interested

only is distinguishing safe regions on the ground from the

unsafe regions and did not have to model overlapping color

classes separately. Our approach (Section V) has the robot

use the autonomously built representations for illumination to

detect and adapt to significant changes in illumination, thereby

performing its tasks over a range of illuminations.

VIII. CONCLUSIONS AND FUTURE WORK

In this article we have introduced algorithms that address

some challenging mobile robot vision problems. We first

presented a prototype vision system that performs color seg-

mentation and object recognition in real-time, under rapid

camera motion and image noise. Here we used manual color

calibration and assumed a fixed and uniform illumination.

Next, we drastically reduced the color calibration time from

an hour or more of human effort to less than five minutes

of robot time by making the robot autonomously plan its

motion sequence and learn the color distributions by efficiently

utilizing the structure of the environment - known descriptions

of color coded objects. The algorithm bootstraps, with the

learned colors being used to segment and recognize objects,

thereby localizing better to locations suitable for learning other

colors. Finally, we also made the vision system robust to

illumination changes by autonomously detecting and adapting

to significant illumination changes. The illuminations were

represented by color-space distributions and image statistics,

and the robot transitions between the learned color maps, or

learns new ones, as required.
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Our on-going research includes extending the work reported

in this article in three ways. First, we are working on the

design of an algorithm that enables the robot to learn colors

outdoors. This is a much more challenging problem where

the robot may have to use other features, in addition to color,

to represent objects of interest because the objects are less

likely to be constant-colored and the range of illuminations

can be much larger. In addition, we also plan to make the

planning parts more robust to failures based on motion model

errors, especially in the initial stages of learning where the

lack of visual information makes the robot very vulnerable.

The planning aspects can also be improved by having the

robot learn the optimal functions, based on approaches such as

reinforcement learning, instead of the current greedy approach

of minimizing heuristics.

Second, the current illumination adaptation scheme has the

robot detect significant illumination changes and re-learn the

entire color map when necessary. But this approach can be

made more robust by having the robot continuously modify

its color map for minor illumination changes as well. The

algorithm needs to have some means of detecting minor shifts

in the color distributions and then adapting to these changes

by selectively updating specific color distributions.

Third, we aim to enable the robot to learn colors from an un-

known initial position. This is a challenging problem because

the robot has to reason under a lot of uncertainty. It would

need efficient error detection and correction mechanisms.

The problems in robot vision are very challenging and far

from being solved. This work represents a step towards to-

wards solving the daunting problem of developing efficient al-

gorithms that enable a mobile robot to function autonomously

under completely uncontrolled natural lighting conditions,

with all its associated variations.

APPENDIX I

COMPARISON MEASURES

In order to compare image distributions, we need a well-

defined measure capable of detecting the correlation between

distributions under similar illumination conditions. Here we

propose and examine two such measures: a correlation mea-

sure and the popular KL-divergence measure [53].

A. Correlation measure

Consider the case where we have two distributions A and

B with N bins along each dimension, the correlation between

the two can be computed as,Cor(A;B) = N�1Xi=0 (Ai �Bi) (12)

The more similar the two distributions are, the higher is

the correlation between them. This is a simple probabilistic

representation of the similarity between two distributions.

B. KL-divergence (KLD) measure

The Kullback-Liebler divergence is a popular entropy-based

measure for comparing distributions [32]. For the two distri-

butions A and B mentioned above, we have:KL(A;B) = N�1Xi=0 (Ai � lnAiBi ) (13)

As mentioned in Section V-A the more similar two distri-

butions are, the smaller is the KL-divergence between them.

Since the KLD measure is a function of the log of the observed

color distributions, it is reasonably robust to large peaks in the

observed distributions, and hence to images with large regions

of a single color.

C. Correlation vs. KL-divergence

In order to compare the performance of the two measures,

sample images were collected from the robot’s camera at

four different positions with the robot standing upright. At

each position, seven different illuminations were considered,

ordered from the brightest to the darkest, resulting in 28
samples. The illuminations were generated by adjusting the

intensity of the lamps in specific patterns. For the histogram

corresponding to each image in this set, both measures were

used to compute the closest image histogram among the others

in the set. Table VII shows the results.

Method Correct Off-by-

one

Off-by-

two

Incorrect

Correlation 8 9 8 3
KL-divergence 15 13 0 0

TABLE VII: Classification results using Correlation and KLD

The Off-by-one column refers to the case where an image

is classified as being from an illumination class that is one

illumination away from the true class. Incorrect classification

represents the cases where the classification result is 3 or

more classes away from the true illumination class. The results

are grouped in this manner because during task execution,

when the illumination is changed to conditions similar to

those under training, being off by one illumination class does

not make any significant difference in color segmentation.

The results are a lot different though when the robot is off

by several illumination classes. For the seven class problem,

the Correlation-based classification is off by two classes or

incorrect in several cases. The classification based on KLD is

correct in many cases and even when it is wrong, it is off only

by one illumination class. Based on these experiments and the

robustness to large peaks of a single color, the KLD measure

was chosen for comparing distributions. Since the measure is

not symmetric, some modifications were made, as described

in Section II-A.

APPENDIX II

VALIDATION OF GAUSSIAN ASSUMPTION

Here we present the validation for the Gaussian assumption

made in our approach to autonomous color learning on the

robot (Section IV).

We need to analyze the goodness-of-fit of the Gaussian

to the color distributions. To do so, we chose the method

of bootstrapping [30] using Resistor-Average Kullback-Liebler

divergence (RA-KLD) [53] as the distance measure.

Figure 13 shows the estimated and actual sample points for

one of the colors in the robot’s environment. The Maximum

Likelihood Estimate (MLE) [51] of the actual samples are used
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Fig. 13: Estimated and Actual samples of Orange

to define a 3D Gaussian distribution. The estimated points are

obtained by drawing random samples from this Gaussian.

We observe that the estimated Gaussian function does do a

good job of approximating the actual distributions.

A. Resistor-Average KLD

As described in Appendix I-B, KLD is a robust information

theoretic measure that has been used extensively to compare

distributions. The Krichevsky-Trofimov correction [54] is used

to handle the fact that a zero-value in one distribution with a

non-zero value in the same bin in the other distribution would

result in a KLD value of infinity. In addition, KLD is not a

true metric because it is neither symmetric nor does it satisfy

the triangle-inequality. Hence, in our experiments we use the

Resistor-Average KLD, defined as:R(A;B) = KL(A;B) � KL(B;A)KL(A;B) +KL(B;A) (14)

As mentioned in [53], one-half of the RA-KLD measure is

a close approximation to the Chernoff Bound.

B. BootStrapping

The process of bootstrapping [30] is an established statis-

tical procedure for bias removal and statistical distribution fit

analysis. We use it for our goodness-of-fit tests:� The samples of any color’s distribution are obtained by

selecting suitable image regions and building a histogram

— Observed. Assume that there are M samples.� Using the estimated Gaussian for that color, the same

number of samples M are randomly drawn — Actual.� For both histograms (observed and actual), values in the

3D bins are lined up to form the 1D distributions. RA-

KLD is determined between these distributions — Robs.� Observed and Actual are randomly mixed together.� From the jumbled up set of samples, two sets of M
samples are randomly drawn (with replacement) and

binned to determine the RA-KLD between them. This

is repeated several hundred times and the distribution of

distances is observed — Ri i 2 [1; 200℄.

� Using the distribution of RA-KLD values and the orig-

inal one (Robs), a test (Z) statistic is determined. This in

turn provides a p-value, which can be used to test the null

hypothesis (H0), also stated as: the estimated Gaussian

is a good fit for the sample points.

The results of this process are tabulated in Table VIII. The

table shows Robs in the column Orig and also shows the

mean and standard deviation of the estimated distribution of

JS distances. The significance is decided on the basis of the

p-values in the last column.

Color RA-KLdists Zstat p-val
Orig Mean Stdev

Orange 0.003808 0.004016 3:5 � 10�4 0.596 0.56

Green 4:6 � 10�4 4:73 � 10�4 6:82 � 10�5 0.18 0.86

Yellow 0.00126 0.00129 1:98 � 10�4 0.155 0.88

Blue 0.0017 0.0015 2:34 � 10�4 0.90 0.38

White 0.006 0.0057 5:7 � 10�4 0.81 0.42

TABLE VIII: Quality of fit based on RA-KLdists

The probability value (p-value) of a statistical hypothesis

test is the smallest level of significance that would lead to the

rejection of the null hypothesis H0 with the given data [55],

i.e. it is the significance level of the test for which the null

hypothesis would be just rejected. The smaller the p-value,

the more convincing is the rejection of the null hypothesis.

Stated differently, if the level of significance � is greater than

the p-value, H0 can be rejected. Based on values in the table

above (high p-values), we clearly fail to reject H0.
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