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Dear Editor,
The ongoing COVID-19 pandemic caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in
unprecedented public health and socioeconomic crises, requiring
urgent developments of effective COVID-19 therapeutics and
vaccines. Humoral immunity is essential for protection against
coronavirus infections and passive immunization has been
demonstrated to be effective in curing SARS-CoV-2-challenged
nonhuman primates.1,2 A deep understanding of the molecular
basis of neutralizing antibody (NAb) responses to SARS-CoV-2
could facilitate vaccine design and drug discovery. Spike (S)
protein, the major protective antigen, utilizes its receptor-binding
domain (RBD) to engage the host receptor ACE2 for viral entry into
host cell. Subsequently, a number of RBD-targeting NAbs against
SARS-CoV-2, which block the binding of S to ACE2 have been
reported and characterized.2–5 However, a major concern is the
emergence of numerous viral mutations within RBD, in particular,
when selective pressure is applied in immunotherapies, resulting
in resistance against these antibodies. Recently, two antibodies
targeting N-terminal domain (NTD) of S exhibited potent
neutralizing activities against SARS-CoV-2.6,7 When used in
combination with RBD-targeting and NTD-directing NAbs, the
protective effect was magnified.5,6 Thus, a combination of
antibodies could not only increase the potency of protection,
but also prevent viral escape of immune responses via mutations.
These preliminary results highlight the benefits of using a cocktail
of antibodies for treating COVID-19 and provide a framework for
rational design of antibody cocktail therapeutics that target both
RBD and NTD regions. Furthermore, the structural characteriza-
tions of S in complex with potential NAb cocktails reported
recently inform strategies for the development of vaccines for
protection against COVID-19.
Successful antibody cocktail therapeutics for Ebola were

generated by mixing NAbs from humanized antibodies from mice
and human survivors. This indicates that NAb diversity plays
critical roles in the design of antibody cocktails, and that this
diversity can be achieved through various approaches. We have
recently described parallel efforts, involving use of humanized
antibodies developed from libraries of mouse origin and
antibodies screened from libraries constructed from peripheral
blood mononuclear cells (PBMCs) of convalescent humans. A large
collection of highly potent NAbs targeting both RBD and NTD of
SARS-CoV-2 S protein were obtained.3–6 Among these, two
humanized RBD-targeting NAbs, named H014 and HB27, are
pan-SARS-CoVs cross-reactive and SARS-CoV-2-specific NAbs,
respectively.3,4 The other two fully human NAbs, FC05 and P17,
recognize NTD and RBD of S, respectively.5,6 All four NAbs
individually exhibited potent neutralizing activities at sub-nM
concentrations and conferred effective protection against SARS-
CoV-2 in animal models.3–6 These preliminary results allowed us to
rationally design two-antibody cocktails of the NTD-targeting
FC05 in combination with the RBD-targeting NAbs. We firstly
evaluated the simultaneous binding of FC05 and three

RBD-directing NAbs to S by competitive surface plasmon
resonance (SPR). The CM5 sensor labeled with SARS-CoV-2 S
trimer was saturated with FC05 and flooded with H014 or HB27 or
P17 in the flow through (Fig. 1a). As expected, the binding of FC05
does not affect the attachment of any of the three RBD-specific
NAbs to the SARS-CoV-2 S trimer, underlining the potential of
these antibodies in formulating cooperative two-antibody cock-
tails as they bind simultaneously to distinct domains (Fig. 1a).
Although more recently, synergistic effects between pairs of non-
competing RBD-targeting NAbs have been reported for SARS-CoV-
2, such as a pair consisting of H014 and P17,5 combinations of
FC05 and H014 or HB27 or P17 that bind to NTD and RBD,
respectively, of S, provide opportunities to develop more optimal
antibody cocktail therapeutics for COVID-19.
A deep understanding of the molecular basis for synergistic

neutralization by antibodies of cocktails and the identification of
additional neutralizing epitopes for a hypothetical 3rd or 4th

antibody partner to further reinforce the cocktail would aid the
development of powerful rationally designed vaccine and
therapeutics. Structural investigations of mechanisms underlying
the cooperativity between the antibodies of cocktails during
neutralization via targeting different domains, however, have not
yet been carried out for SARS-CoV-2. In our previous studies, near-
atomic structures of a prefusion stabilized SARS-CoV-2 S trimer in
complex with individual Fab fragment (FC05 or H014 or HB27 or
P17) have been determined by cryo-electron microscopy (cryo-
EM) and epitopes for these four NAbs have been well
characterized.3–6 Here, we further performed cryo-EM analysis of
the SARS-CoV-2 S trimer in complex with three pairs of antibody
cocktails (FC05 and H014; FC05 and HB27; FC05 and P17) with
overall resolution of 3.4 Å–3.7 Å (Fig. 1b; Supplementary informa-
tion, Figs. S1–S3 and Table S1). For each two-antibody cocktail,
there are in total six copies of Fabs bound to one S trimer, where
three FC05 Fabs bind on the side of each NTD and three RBD-
directing Fabs bind at the side (H014) or top of each RBD (HB27
and P17), shielding most of the regions of S1 (Fig. 1b). Distinct
from most structural studies of the apo SARS-CoV-2 S trimer in
which multiple conformational states corresponding to 0–3 RBDs
open were observed,3–8 only one conformational state was
observed in the structures of S in complex with each two-
antibody cocktail (Fig. 1b), which also differed from the structural
insights gained from the SARS-CoV-2 S in complex with FC05 or
H014 or P17 alone. Furthermore, each of the two-antibody cocktail
limits the conformational transitions of RBD, suggesting an
additional benefit conferred during the cooperative neutralization
carried out by the cocktail antibodies via interfering with viral
membrane fusion. Functional assays have previously shown that
obstruction of conformational transitions of S protein by NAbs,
can activate or inhibit fusion of the coronavirus with the host cell
membrane.4,5,9

FC05 recognizes an extremely variable patch on the NTD; none
of the bound residues are conserved between SARS-CoV and
SARS-CoV-2, explaining the virus-specific binding and
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neutralization activities of FC05 (Fig. 1c). Contrarily, H014 targets a
highly conserved epitope on the side of RBD and the epitope is
only accessible when RBD is in the open state (Fig. 1c).
Remarkably, FC05 and H014 adopt an interdigitated arrangement
surrounding the exterior of the S trimer apex, which completely
blocks the domain swapping between protomers and prevents
the closure of RBD (Fig. 1b). It is worthy to note that the cocktail of
FC05 and H014 represents a combination of two NAbs generated
from two different approaches which confer potent neutralization
activities against pan-SARS-CoVs. Interestingly, three HB27 Fabs
bind at the top of each RBD, either in the open or closed state,

forming a “cap” layer at the trimer apex close to the pseudo-
threefold axis. This “cap” layer together with an exterior layer
formed by three FC05 molecules, fully occlude the receptor
binding site. The antibodies also prevent access to the proteolysis
sites, cutting off the proteolytic activation of S by cell surface
proteases (Fig. 1b, c). Surprisingly, P17 and FC05 exhibit a parallel
binding mode to RBD and the adjacent NTD, forming a “two-Fab
bundle” structure with contacts at the constant domains of these
two Fabs (Fig. 1b–d). Structural characterization revealed that P17
and FC05 Fabs can mimic the two “arms” of a single IgG molecule,
allowing us to rationally design a divalent antibody against

Fig. 1 Structural basis for cooperativity in antibody cocktails. a SPR kinetics of competitive binding of two-antibody cocktails of FC05 and
H014, FC05 and HB27 or FC05 and P17 to SARS-CoV-2 S. For all kinetics, S was immobilized onto sensor; FC05 was first injected, followed by
H014 (upper), HB27 (middle) or P17 (lower). Control groups are depicted by blue curves. b Orthogonal views of FC05–H014–S (upper),
FC05–HB27–S (middle), and FC05–P17–S (lower). Open-state RBD, and close-state RBD are labeled with O-RBD and C-RBD, respectively.
c Surface representation of the S monomer or RBD. The areas buried by FC05, H014, HB27, and P17 epitopes are marked in purple, forest
green, sky blue, and red lines, respectively. Sequence identities and differences between the S of SARS-CoV and SARS-CoV-2 are shown in pink
and green, respectively, mapped on the surface of SARS-CoV-2 S/RBD. The overlapped residues of HB27 and H014 epitopes are marked with
red cycles. d P17 and FC05 Fabs mimic the two “arms” of a single IgG molecule to bind S. A structure-based bivalent antibody is modeled. Fc,
NTD, RBD, S2, P17 and FC05 are labeled. e Superimpositions of complex structures of S–P17 and S–HB27 as well as S–H014. Steric clashes
between HB27 and P17 are highlighted with red cycles. f, g Orthogonal views of a three-antibody cocktail of FC05, H014, and P17 (f) and a
four-antibody combination of FC05, H014, P17 and S309 (g).
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SARS-CoV-2 (Fig. 1d). Footprint analysis of epitopes of these four
NAbs suggests a partial overlap between H014 and HB27 epitopes,
but no overlap between H014 and P17 or between HB27 and P17
epitopes (Fig. 1c). Superimposition of the structures of the
complexes of S–HB27 and S–P17 shows steric clashes between
HB27 and P17, suggesting that these two antibodies may not be
able to bind the same RBD simultaneously (Fig. 1e). Theoretically it
is plausible to develop a three-antibody cocktail consisting of
FC05, H014 and P17 that simultaneously target three distinct
regions5 (Fig. 1e, f). To further investigate whether a fourth partner
exists, available structures of NAbs against SARS-CoV-2 were
aligned to our complex structures. Interestingly, S309, another
cross-reactive NAb10 against SARS-CoV-2 and SARS-CoV has a
potential to constitute the fourth component for our cocktails
(Fig. 1g), conferring synergy in protective efficacy against pan-
SARS-CoVs as well as robustness to viral mutation escape.
In summary, we applied a rational NAb screening strategy to

two different approaches of constructing antibody libraries,
yielding potent SARS-CoV-2 neutralizing antibodies with high
diversity. SPR-based cross-competition assays and cryo-EM analy-
sis guided the development of next-generation human NAb
cocktail, which can confer broad and effective protection against
pan-SARS-CoVs.
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