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Abstract
The ever increasing number of protein structures determined by structural genomic projects has spurred much
interest in the development of methods for structure-based function prediction. Existing methods can be roughly
classified in two groups: some use a comparative approach looking for the presence of structural motifs possibly
associated with a known biochemical function. Other methods try to identify functional patches on the surface
of a protein using only its physicochemical characteristics. This review will cover both kinds of approaches to
structure-based function prediction as well as their use in real-world cases. The main issues and limitations in
using protein structure to predict function will also be discussed.These are mainly: the assessment of the statistical
significance of structural similarities and the extent to which these methods depend on the accuracy and availability
of structural data.
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INTRODUCTION
Before the advent of structural genomics the main

interest in solving the structure of a protein was to

understand and better analyse the determinants of its

function, which was already assigned after biochem-

ical or genetic experiments. The increasing number

of fully sequenced genomes together with the pro-

gress in homology modelling of protein structures

shifted the interest on characterizing the largest

number of different folds to have the best possible

sampling of structure space. The rationale is that, as

more and more structural folds are characterized,

homology modelling of an increasing number of

proteins should become possible and more reliable.

In light of this goal, targets for structure determina-

tion are selected among proteins with very low

sequence identity to proteins of known structure.

As a consequence a large number of structures (over

one-third of those solved by the Midwest Center for

Structural Genomics [1] just to cite an example)

belong to proteins of unknown function. This fact

has enormously increased the interest in computa-

tional methods for structure-guided functional

inference. Such methods have therefore already

been included in numerous reviews about function

prediction [2–5] and have also been the subject of

dedicated papers [6–10].

The availability of structural information is

generally believed to be a very strong aid in function

prediction for two essential reasons:

(1) Structural comparison methods are potentially

able to identify very distant evolutionary rela-

tionships between proteins. Moreover, only

structural data makes the identification of

independently evolved functional sites possible

[11–13].

(2) Function depends on structure. Therefore, the

structure of a protein directly reveals the

mechanistic determinants of its function.

These distinctions immediately suggest the classifica-

tion of functional annotation methods that has been

used in this review (Figure 1). A first group of

methods uses a comparative approach searching

for common features between the query protein

and some database of protein structures. Other

methods analyse the physicochemical characteristics
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of a protein surface to identify patches that have

features (e.g. shape, electrostatic properties, etc.)

characteristic of functional sites.

Whatever the approach all the methods discussed

in this review can be used to infer the biochemical

function of a protein, i.e. for example, whether it

binds a particular ligand or catalyses a chemical

reaction. As such they do not (at least directly) tell

anything about its biological role, i.e. for example,

whether it is involved in a certain biological pathway

or has a role in the development of some disease.

Such kind of predictions can sometimes be made

once the biochemical function is known but falls

outside the scope of these methods.

COMPARATIVE APPROACHES
Similar to sequence comparison methods, structural

comparison algorithms can be classified as global

or local. Global comparison algorithms, summarized

in Table 1, are mainly used in protein structure

classification and to identify evolutionary links

between distant homologues. They can also be

used for function prediction but one should be aware

that the relationship between fold and function is

extremely complex and numerous examples are

known of folds hosting a great variety of functions

[42]. It should indeed be noted that the function of

a protein usually depends more on the identity and

location of a few residues comprising the active site

than on the overall fold. Therefore, the usefulness of

global comparison methods is essentially indirect and

lies in their capability of identifying remote homol-

ogy relationships. In order to directly analyse and

compare the residues effectively involved in protein

function, local structural comparison methods have

been developed.

Local structural comparison refers to the possibil-

ity of detecting a similar 3D arrangement of a small

set of residues, possibly in the context of completely

different protein structures. In applying such algo-

rithms one can either:

(1) compare two entire protein structures in search

for local similarities, without any a priori assump-

tion; or

(2) use a pre-defined structural template to screen a

structure. A template represents the spatial

arrangement of the residues involved in some

biochemical function and can be regarded as

a 3D extension of the linear sequence motif

concept.

Figure 1: An overview of structure-based function prediction methods as classified in this review. Comparative
methods can be either global or localwith the latter class including template-basedmethods.Methods based on struc-
tural calculations are based on the observation that the functional patches of a protein have characteristics that set
themapart from the surface as awhole. Suchdistinctive features canbeused alone or combinedusingmachine learning
methods.
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Table 1: Global structural comparisonmethods

Method Structure representation Search strategy Webserver Ref.

DaliLite Ca^Ca distance matrix Branch and bound http://www.ebi.ac.uk/DaliLite/ [14]
SSM Graph with nodes representing secondary

structure elements and edges their spatial
relationship

Subgraph isomorphism followed by Ca
alignment in 3D

http://www.ebi.ac.uk/msd-srv/ssm/ [15]

GRATH Graph with nodes representing secondary
structure elements and edges their spatial
relationship

Subgraph isomorphism ^ [16]

SSAP Ca, Cb. Several other structural features
are used in scoring

Double dynamic programming http://www.cathdb.info/cgi-bin/
cath/SsapServer.pl

[17]

CATHEDRAL Combines GRATH and SSAP Combines GRATH and SSAP http://www.cathdb.info/cgi-bin/
cath/CathedralServer.pl

[18]

VAST Graph with nodes representing secondary
structure elements and edges their spatial
relationship

Subgraph isomorphism [19]

CE Ca atoms Extension of seed matches using a greedy
heuristic; optimization of best alignments

http://cl.sdsc.edu/ce.html [20]

LSQMAN User-defined atom types (tipically Ca) Alternates structural superposition and
alignment to improve an initial
transformation

Downloadable from:
http://xray.bmc.uu.se/usf/s

[21]

DEJAVU Matrices of distances and angles between
vectors of secondary structure elements

Recursive search, branch and bound http://portray.bmc.uu.se/cgi-bin/
dejavu/scripts/dejavu.pl

[22]

LOCK 2 Vectors of secondary structure elements Dynamic programming using
orientation-independent scores.
Refinement using orientation-dependent
scores

http://foldminer.stanford.edu/ [23]

MATRAS Vectors of secondary structure elements Branch and bound strategy to pair
secondary structures. Refinement using
dynamic programming.

http://biunit.aist-nara.ac.jp/matras/ [24]

FATCAT Ca atoms Similar to CE but takes flexibility into
account

http://fatcat.burnham.org/ [25]

TOPS Graph with nodes representing secondary
structure elements and edges their spatial
relationship

Branch and bound http://www.tops.leeds.ac.uk/ [26]

This table is intended as a quick overview, please refer to the original papers for details about the algorithms involved. See Novotny et al. [27] and
Kolodny et al. [28] for a comprehensive evaluation of fold comparisonmethods.

Table 2: Local structural comparisonmethods

Method Structure representation Search strategy Webserver Ref.

ASSAM Vector from Ca to functional part of
residue

Subgraph isomorphism ^ [29]

CavBase Physicochemically labelled surface
points

Subgraph isomorphism ^ [30]

eF-Site Curvature and electrostatic potential of
surface points

Subgraph isomorphism http://ef-site.hgc.jp/eF-seek/ [31]

C-alpha Match Coordinates of Ca atoms Geometric hashing http://bioinfo3d.cs.tau.ac.il/c_alpha_match/ [32]
Prospect Each residue is represented as a

triangle using the N, Ca and C atoms
Geometric hashing ^ [33]

SiteEngine Physicochemically labelled surface
points

Geometric hashing http://bioinfo3d.cs.tau.ac.il/SiteEngine/ [34]

ProteMiner-SSM Coordinates of Ca atoms Geometric hashing http://proteminer.csie.ntu.edu.tw/ [35]
PINTS Ca, Cb, functional atom of each residue Recursive search, branch and bound http://www.russell.embl-heidelberg.de/

pints/
[36]

RIGOR/SPASM Ca, geometric centroid of side chain Recursive search, branch and bound http://portray.bmc.uu.se/cgi-bin/spasm/
scripts/spasm.pl

[37]

Query3d Ca, geometric centroid of side chain Recursive search, branch and bound http://pdbfun.uniroma2.it [38]
JESS Template expressed as a series of

arbitrary constraints
Recursive search, branch and bound http://www.ebi.ac.uk/thornton-srv/

databases/profunc/
[39]

PDBSiteScan Coordinates of N, Ca and C atoms Recursive search, branch and bound http://wwwmgs.bionet.nsc.ru/mgs/
systems/fastprot/pdbsitescan.html

[40]

SuMo Triangles of chemical groups Graph-based heuristic http://sumo-pbil.ibcp.fr/ [41]
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The various methods available for local struc-

ture comparison, summarized in Table 2, differ

essentially in two aspects: the way the protein

structure is represented and the computational

strategy that is used to search for similarities. The

level of detail in the representation goes from

very approximate, i.e. only the Ca atoms, to

elaborate schemes that take into account the

presence of different chemical groups along the

amino acids side chains. We will not go into

the details of the different representation schemes

since constructing elaborate representations is usually

quite easy in that one only has to decide which

residues are allowed to match. Once the pairing

rules are established the actual search strategy (see

further) is usually independent of the way residues

are represented. Increasing the level of detail is

not necessarily advantageous. Torrance et al. [43]

compared the performance of templates using only

the Ca and Cb with that of templates using

three functional atoms to describe each residue.

Ca/Cb templates were found to consistently

outperform the others. Different levels in the quality

of the structures as well as alternative residues

conformations, e.g. a bound/unbound transition

in a ligand-binding site, can determine structural

differences even in genuinely identical sites.

Because of these differences a higher level, i.e.

less detailed, description might be better for practical

purposes.

The work by Kolodny and Linial [44] is one of

the most interesting theoretical results about the

approximability of the problem of structural com-

parison, and the effectiveness of various algorithmic

approaches in solving it. They first discretized rota-

tion and translation space and showed that its size

depends polynomially on the lengths of the proteins,

n, and on 1/e for an approximation parameter e. On

the other hand the possible correspondences

between two protein structures grow exponentially

with the number of residues. Their algorithmic

strategy is therefore to search exhaustively the

transformation space (whose size is polynomial in

n) and then choose the best solution according to

some scoring function. Their theoretical algorithm

runs in O(n10/e6) time. This strategy is possible

because the structures reside in a three-dimensional

Euclidean space. They were also able to show that, if

one uses a representation of protein structure that

does not take this fact into account e.g. distance

matrices, the problem becomes significantly harder,

and therefore such an algorithm either fails to find

optimal solutions or is inefficient.

In terms of search strategy, three approaches

prevail in practice: detection of sub-graph isomorph-

ism [45], geometric hashing and recursive enumera-

tion using a branch and bound strategy. It should

be emphasized that graph methods are presented

separate from those based on recursive enumeration

only to follow the way these methods are reported in

the literature. There is really no algorithmic

difference since sub-graph isomorphism (at least as

applied in the methods discussed) relies on clique

detection algorithms (e.g. the Bron–Kerbosch algo-

rithm [46]) that use a branch and bound strategy.

These two approaches can therefore be mapped one

onto the other. In general terms, the core of these

methods is a recursive procedure that is used to

extend initial candidate solutions. The extension

stops when the algorithm determines that the current

path cannot lead to solutions that are better than the

current best one. In such case, the recursion goes

back one level and the candidate is extended in

another direction or another candidate is selected.

The running time of these methods depends

dramatically on how similar the proteins to be

compared are. If the structures are very similar, then

there will be a large number of seed matches to

explore or, in graph theoretic terms, a very dense

product graph to analyse. This fact, combined with

other considerations about the interpretation of the

results (see further), makes local structural compar-

ison algorithm not suited to the comparison of two

homologous protein structures.

Geometric hashing [47], first used for structure

comparison by Fischer etal. [32] is a technique where

the coordinates of a structure are expressed relative to

several reference frames, for example, one for each

set of three points of the protein. Since the points

used as a reference belong to the structure itself this

representation is invariant under both rotation and

translation. For each frame the positions in which the

other points end up are used as keys to a hash table.

The value stored in the table is the reference frame

itself. Once such representation has been calculated it

is possible to compare two structures using a series of

fast look-ups.

In general, local structural comparison methods

can also be used to search for templates. Algorithms

more specialized for templates, however, allow for

a semantically more complex description. As an

example they may allow different geometric
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constraints or substitution rules for different portions

of the template. The JESS [39] algorithm even gives

the possibility of expressing the template as a set of

high-level constraints of arbitrary nature. To over-

come the difficulty that structural templates must be

derived manually some authors have developed

methods for the automatic discovery of structural

motifs characterizing a protein family [48–50].

Polacco and Babbitt [48], for example, used a

genetic algorithm to derive specific motifs that

distinguish proteins belonging to a given enzymatic

family from a background of unrelated structures.

Their approach involves randomly modifying a set of

structural motifs so as to maximize their discrimina-

tive power in successive rounds of structural

comparisons. Oldfield [51] derived templates by

constructing a hash table from inter-residue distance

in order to count over-represented residue config-

urations. The program DRESPAT [50] uses a graph

theoretic method to enumerate patterns recurring in

a set of structures. The authors also empirically

derived a function for assessing the significance of the

patterns discovered.

Significance assessment
The problem of assessing the statistical significance of

a local structural similarity is, at the time of this

writing, largely unresolved. The biggest gap, in terms

of statistical analysis, between sequence comparison

and structure comparison is that in the latter case

there is no universally accepted random model that

can be used as a basis for significance assessment. The

definition of ‘random’ is especially problematic

in this case and much depends on what sort of

information one wants to derive from the compar-

ison of two protein structures. Proteins are subjected

to strong constraints in order to achieve stability; this

is reflected in the fact that the same scaffolding

elements (helices, sheets and supersecondary struc-

tures, for example) are reused all across structure

space. How should similarities between these

elements be considered? A perfect match between

two Greek-key motifs could be considered very

interesting in the context of a fold comparison

application, and would definitely stand out if the

reference state (or background distribution) consists

of points randomly positioned in space.

Alternatively, if one is using structural compar-

isons for functional annotation, such a match would

probably be considered irrelevant since it only

reflects the fact that proteins are composed of similar

fragments. In other words, one would like to be able

to separate structural similarities between residues

that are due to the fact that they perform similar

functions (e.g. active sites) from those that simply

derive from the necessity to attain a stable con-

formation in solution, and therefore carry no

functional information. RMSD alone is not of

much help here because matches between secondary

structure elements will in general tend to be better

than matches between, for example, active sites.

In this case, the choice of reference state should take

into account scaffolding elements as opposed to

randomly scattered points.

In order to solve this problem, different authors

have either used empirical methods, i.e. using

similarities between random pairs of structures to fit

a distribution to be used as a background, or semi-

emipirical approaches. In the latter case, theoretical

considerations are used to build a model that is

parametrized by some terms that are eventually

estimated by fitting to various runs of comparisons.

Empirical approaches are also often used by

template-based methods. Since templates are con-

structed from the analysis of a protein family one can

usually derive template-specific RMSD thresholds in

order to discriminate true positives from random

similarities (e.g. see Torrance et al. [43], and Arakaki

et al. [52]).

Betancourt and Skolnick [53] used structural

comparisons between randomly selected protein

fragments of different lengths to derive a similarity

measure (‘relative RMSD’, RRMSD) which is

dimensionless and independent of protein size.

They first defined an aligned correlation coefficient

(ACC) which is a measure, strictly related to

RMSD that expresses the similarity of two chains

after optimal superposition. They subsequently

calculated the average and SDs of the ACC from

continuous N-residues fragments of almost 1300

non-homologous structures chosen at random from

the PDB [54]. The plot of this quantity as a function

of fragment length defines two characteristic lengths

approximately given by 4.7 and 37 residues. They

argue that fragments of less than five residues have

very restricted conformations: similarities of this

length should therefore be considered not significant

since they are simply the result of the general

constraints imposed by protein folding. Fragments

between 5 and 37 residues on the other hand have

significant correlations generated by the recurring

types of secondary structure elements. They then
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defined a new similarity measure between two

polypeptides, RRMSD, as the RMSD relative to

the approximate average RMSD between two

random protein fragments of equivalent size. An

RRMSD value of 0.0 means that the two structures

are identical, while a value of 1.0 means that they

are as different as random structures on average. An

important shortcoming of their work relative to the

problem of local structural similarity is that they

considered only fragments of residues contiguous in

sequence while local comparison methods usually

do not have this restriction.

Stark et al. [55] used a semi-empirical method to

derive a formula for the statistical significance of a local

structural match as a function of the number of

residues involved, their RMSD, their abundance in

the data set under analysis and the number of atoms

used to represent each residue during the comparison.

They used a series of geometric considerations to

derive a crude formula for the expected number of

matches with RMSD under a given threshold. If a

search algorithm uses more than one atom to represent

a residue, their model takes into account the mutual

dependence of the atomic positions. The formula

includes a number of parameters that have been

estimated by selecting random patterns of residues and

searching for them in a background database.

Since no definitive way exists to identify

statistically significant matches, it is very important

to integrate structural comparison methods with

detailed functional annotations in order to steer the

search towards functionally significant residues.

When a match between two proteins involves

residues for which functional annotations are avail-

able, one can more easily derive clues about the

significance of a correspondence even in the absence

of a rigorous statistical framework. Various tools have

been developed to ease the functional annotation of

protein structures. The E-MSD structure database

[56] aggregates an enormous amount of functional

information about protein structures, coming from

a variety of sources. SPICE [57] is a graphical client

for the DAS [58] system; it allows annotations

from different laboratories hosting a DAS server to

be mapped and displayed on the structure of

a protein of interest. The pdbFun [59] webserver

integrates residue-level functional annotations with

the Query3d [38] local structural comparison

method so that the residues to be used in a

comparison run can be selected on the basis of

functional information.

METHODS BASEDON
STRUCTURALCALCULATIONS
In general, all these methods are based on the

observation that the functional patches of a protein

have physicochemical characteristics that set them

apart from the surface as a whole. Indeed, these

peculiarities ultimately are the reason why these

patches possess a function at all. The aim of

these methods is usually to predict either the location

of a ligand-binding site or that of an enzyme active

site. This review is focused on purely structure-based

methods; therefore, algorithms that also use sequence

analysis (residue conservation, in particular) have

been excluded. Table 3 provides a summary of

publicly available programs.

Countless algorithms exist that employ the notion

that functional sites are usually located in clefts on

the protein surface [60]. This simple fact is used

either directly to predict the location of functional

sites, or as a first step to identify candidate residues

before further scoring procedures are applied.

Methods for identifying cavities in a protein surface

include PASS [61], CASTp [62], LIGSITE [63],

VOIDOO [64], SURFNET [65], APROPOS [66],

CAVER [67] and PocketPicker [68]. Besides being

located in clefts various authors have reported active

site residues as being close to the centroid of the

structure [69], having a destabilizing effect on the

structure [70], interacting with a high number of

residues of the same protein [71], having perturbed

pKa values [72] and inducing peaks in the electro-

static potential around the protein [73]. All these

observations have been used to develop methods

aiming at the inference of active site location from

structure. Electrostatic calculations have also been

used to predict DNA binding sites. In particular, they

have been combined with the analysis of the

curvature of the molecular surface [74] and the

detection of specific structural motifs [75].

The THEMATICS [72] program shows the

power of computing chemical properties of the

structure in order to predict active site location. This

method starts with the observation that amino acids

involved in catalysis usually have pKa values that

differ from the standard values in solution.

Therefore, a computational procedure is used to

calculate the theoretical pKa of each amino acid side

chain of a given protein structure. Cluster of residues

with perturbed pKa values are assumed to identify

the location of the active site. THEMATICS has

recently been applied to a test set of 169 enzymes

296 Gherardini and Helmer-Citterich
D

ow
nloaded from

 https://academ
ic.oup.com

/bfg/article/7/4/291/287719 by guest on 16 August 2022



[76]. The authors distinguish between the prediction

of all the residues listed as catalytic in the data set, and

the prediction of a cluster of residues containing

some of the catalytic residues, which they call site

prediction. In the first case, THEMATICS has a

recall rate of �50% and a precision of �18%. Active

site predictions instead are more precise with a

success rate of �85%. The authors also claim that the

main improvement of THEMATICS with respect to

the other methods tested is an increase in precision,

i.e. their prediction are less spread out on the protein

surface and more tailored towards the real active site.

The high success rate for the prediction of catalytic

sites shows that this method can be useful for

functional annotation of proteins from structural

genomic projects, at least in providing clues to the

location of the active site.

Several methods exist that take into account a

combination of structural features, such as hydro-

phobicity, surface curvature, electrostatic properties,

etc. to infer the location of active sites. One of the

earliest examples of this approach is the paper by

Jones and Thornton [77]. They developed a method

to predict protein–protein interaction sites taking

into account six structural parameters, namely:

solvation potential, residue interface propensity,

hydrophobicity, planarity, protrusion and accessible

surface area. They first performed a preliminary

analysis [78] and verified that different types of

protein–protein interfaces have different properties.

This notion was used to construct three scoring

functions, one for each category of interface, that are

different linear combinations of the six parameters.

Keil et al. [79] used six physicochemical properties

to describe protein surfaces and trained a neural

network to classify surface points as not involved in

binding, or forming complexes either with other

proteins, DNA/RNA molecules or small ligands.

Similarly Nayal and Honig [80] combined several

surface descriptors to develop a method for predict-

ing ligand binding sites. Each surface cavity is

described using 408 physicochemical and structural

features. These features were then used to train a

classifier that distinguishes between those cavities that

are likely to bind a ligand and those that are not.

Interestingly, only 18 of these features proved to be

statistically significant and these are mostly related to

the size and shape of the cavity. Therefore, when

dealing with small molecule binding cavities, size and

shape seem to be more important than electrostatic

interactions.

The ProMateus server [81] took the ‘combination

of features’ approach even further. This server allows

the user to propose new structural characteristics

that may be useful in predicting protein–protein

and protein–DNA interaction sites. Researchers can

download a database and upload back the values of

the new feature whose usefulness they want to

Table 3: A summary of publicly available methods that predict functional sites by calculating physicochemical
properties of the protein structure

Name Goal Description Availability Ref.

ProMate Protein^protein interactions Combination of various structural
properties

http://bioportal.weizmann.ac.il/promate [86]

ProMateus Protein^protein interactions,
DNA binding sites

Builds on ProMate. Allows users to
propose new structural features and
evaluate their efficiency

http://bioportal.weizmann.ac.il/promate/
promateus.html

[81]

HotPatch Any kind of functional site Neural network which combines
structural features

http://hotpatch.mbi.ucla.edu [87]

Q-SiteFinder Ligand binding sites Computational scan of the protein
surface with a probe to identify sites
with favourable interaction energy

http://www.bioinformatics.leeds.ac.uk/qsitefinder/ [82]

THEMATICS Enzyme active sites Calculates the theoretical pKa of
each residue to identify those with
perturbed values. Cluster of such
residues define the putative active
site.

http://pfweb.chem.neu.edu/thematics/submit.html [76]

PreDs DNA binding sites Evaluates the electrostatic potential
and curvature of the protein surface

http://pre-s.protein.osaka-u.ac.jp/�preds/ [88]

HTHQuery DNA binding sites Evalautes the electrostatic potential
and the presence of specific
structural motifs

http://www.ebi.ac.uk/thornton-srv/databases/
cgi-bin/HTHquery/index.pl

[89]
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explore. ProMateus will perform a series of statistical

analyses and train a logistic regression model using

the features already present together with the new

one that is being proposed. A feature selection

procedure will determine whether the new property

is irrelevant, is relevant but overlaps with existing

features or provides new information that effectively

improves the prediction. This server is also an

interesting experiment on the applicability of an

open and community-driven research approach.

Several methods used to predict ligand binding

sites calculate the interaction energy between the

surface of the protein and a chemical probe. Cluster

of regions with favourable interaction energy are

then predicted to be ligand binding pockets.

Q-SiteFinder [82] uses a methyl group to probe

the structure. Conversely the method by Silberstein

et al. [83] uses a variety of hydrophobic compounds

to scan the structure and identifies a ‘consensus’ site

that binds the highest number of probes. Ruppert

et al. [84] developed a method that scans the surface

with three molecular fragments (hydrophobic probe,

hydrogen bond donor and acceptor). Clusters of

points with high affinity for the probes are used to

define the ‘stickiest’ regions of the surface. This

representation of molecular surface can be used

directly for small molecule docking, using the probes

virtually bound to the binding pocket as anchors for

the chemical groups of the ligand.

Since structural genomics is going to increase the

number of sequences amenable to homology

modelling it is interesting to investigate whether

structure-based function prediction methods can be

applied to models. For example, Szilagyi and

Skolnick [85] developed a method to predict DNA

binding sites and evaluated its performance as a

function of the errors in the atomic coordinates.

They used 10 easily computable features consisting in

the proportion and spatial asymmetry of some amino

acids and the dipole moment of the protein. These

features were used to train a logistic regression

model. Interestingly, their algorithm only needs the

position of the Ca atoms and can therefore be

applied to protein models and low-resolution

structures. They subsequently generated a set of

structural decoys with deviations up to 6 Å and

evaluated their method on this set of incorrect

structures. Since the properties used are quite

coarse-grained there is a very small drop in

performance when structures 6 Å away from the

native are used. Methods using more specific

properties of the structure may be more sensitive to

small coordinate errors and therefore could be much

less effective when applied to models.

PRACTICALAPPLICATIONS
Numerous cases have been reported where the

structure of a protein provided essential clues for the

discovery of its function (see Zhang and Kim [90]

and Shin et al. [91] for a review). In most of the

examples reported to date, the key to function

prediction was the usage of fold comparison

methods. Indeed such methods markedly increase

the probability of finding a homologue from which

function can be transferred to the protein of interest.

However, this approach can often give only general

indications; a detailed comparison of the active sites is

necessary in order to make fine-grained distinctions,

e.g. in ligand binding specificity or catalytic mecha-

nism. For instance, in a revealing experiment, Shin

et al. [92] determined the structure of a protein,

which has a phosphatase domain belonging to

a well-characterized protein family and a substrate

binding domain whose fold was previously

unknown. Local structural comparison methods

were used to analyse the latter domain and infer

specificity for carbohydrate molecules. Such predic-

tion was then experimentally validated [93]. Besides

such specific examples various authors have per-

formed large-scale function prediction experiments

[1, 94–97], some of which detailed further, that have

definitely shown that incorporating structure-based

methods in functional annotation pipelines provides

fundamental insights.

In evaluating these methods, it is very important

to distinguish what insights can be gained from

the structure that was not already available by analys-

ing the sequence. Watson et al. [1] recently

directly compared the usefulness of structure- and

sequence-based methods for function prediction.

They used 282 non-redundant proteins solved by

the Midwest Center for Structural Genomics, only

92 (33%) of which had a known function and

were used as a benchmark. They used a variety of

methods for function prediction, but the structure-

based ones included only comparative approaches

(both local and global). The results of their analysis

show that, when sequence similarity is strong,

sequence-based methods have the best performance.

On the other hand they could be used only for

21% of the 67% of proteins of unknown function.
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The performance of structure-based methods was

evaluated using the area under the receiver operating

characteristic curve, and global and local structural

comparison methods showed a good performance of

0.83 and 0.70, respectively. Interestingly, a number

of cases are described where template methods were

fundamental to achieve a correct prediction. The

authors also note that structure-based methods can

be useful in restricting the options when sequence

divergence is high and sequence-based methods

suggest a wide range of possible functions. This work

shows that structure-based functional inference can

be useful in practice. Obviously, their data set is

biased towards protein with low sequence identity

with known proteins. In such a niche, structure-

based methods have clear advantages. In a real-life

scenario, their usefulness obviously depends on how

often the more straightforward sequence-based

methods cannot be applied.

Ferrè et al. [96] used the SURFACE [98] database

of surface patches annotated for their binding

abilities and also by mapping PROSITE [99] and

ELM [100] patterns on the structure. The Query3d

structural comparison algorithm [38] was used to

compare this compendium of functionally character-

ized patches with a set of 513 protein chains of

unknown function and coming from structural

genomics projects. The authors identified 534

matches and were thus able to suggest one ore

more molecular functions for 191 of these chains.

Interestingly, a literature search revealed that 60%

of the functional assignments were validated by

experiments already performed, demonstrating the

power of local structural comparison methods.

Stark et al. [97] performed a similar analysis on

a different data set of 157 structural genomics

proteins. By using local structural comparison of

functional sites they were able to increase the

confidence of 17 functional assignments made by

fold comparison. More interestingly they were able

to suggest a function for 12 proteins with novel folds.

CONCLUDING REMARKS
Even though structures are generally believed to

be more informative than sequences it is not com-

pletely clear whether structure comparison can

outperform sequence comparison in the inference

of protein function. One thing that must be taken

into account is the sheer size of sequence informa-

tion available. Often this is more than enough to

compensate for the supposed lesser informativeness,

so that using structure comparison methods does not

add much to what has been discovered by sequence

analysis alone. The ideal application of these methods

is in inferring the function of a protein that has no

close homologues of known function. In this sense,

they are related to structural genomics. Alternatively,

when several structures of a protein family are

available, they can be useful in the fine-grained

distinction of function specificity (e.g. ligand binding

specificity) between homologous proteins.

This review has classified available methods

as either using a comparative approach or using

structural data to calculate some properties relevant

to function. With respect to the first class of

methods we believe that the two main areas needing

improvement are the integration of functional

annotations and the development of statistical

models for significance assessment. As already noted

above these two issues are somewhat complementary

since a better integration of existing annotations

would partly alleviate the problem of not having

reliable statistical models. Methods performing

structural calculations will become more and more

useful as both computing power and our knowledge

of what make active sites ‘special’ increase.

These limitations notwithstanding, structure-

based function prediction as a methodology has

already proven itself to be very useful, especially

when dealing with proteins that do not have

homologues of known function. Therefore, if the

combined advances in structural genomics and

modelling techniques will make it significantly

easier to obtain the structure of a protein, we may

expect structure-based methods to become standard

tools in functional annotation pipelines.
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Key Points
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� Structural genomics is going to increase the reliability and
applicability of structure-based function prediction.
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