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Abstract 

Worldwide coronavirus disease 2019 (COVID-19) outbreak is still threatening global health since its outbreak first reported 
in the late 2019. The causative novel virus has been designated as severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Although COVID-19 emergent with significant mortality, there is no availability of definite treatment measures. 
It is now extremely desirable to identify potential chemical entities against SARS-CoV-2 for the treatment of COVID-19. 
In the present study, a state-of-art virtual screening protocol was implemented on three anti-viral specific chemical librar-
ies against SARS-CoV-2 main protease  (Mpro). Particularly, viewing the large-scale biological role of  Mpro in the viral 
replication process it has been considered as a prospective anti-viral drug target. Herein, on collected 79,892 compounds, 
hierarchical multistep docking followed by relative binding free energy estimation has been performed. Thereafter, imply-
ing a user-defined XP-dock and MM-GBSA cut-off scores as −8.00 and −45.00 kcal/mol, chemical space has been further 
reduced. Exhaustive molecular binding interactions analyses and various pharmacokinetics profiles assessment suggested 
four compounds (ChemDiv_D658-0159, ChemDiv_F431-0433, Enamine_Z3019991843 and Asinex_LAS_51389260) as 
potent inhibitors/modulators of SARS-CoV-2  Mpro. In-depth protein–ligand interactions stability in the dynamic state has 
been evaluated by 100 ns molecular dynamics (MD) simulation studies along with MM-GBSA-based binding free energy 
estimations of entire simulation trajectories that have revealed strong binding affinity of all identified compounds towards 
 Mpro. Hence, all four identified compounds might be considered as promising candidates for future drug development spe-
cifically targeting the SARS-CoV-2  Mpro; however, they also need experimental assessment for a better understanding of 
molecular interaction mechanisms.
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Introduction

The coronavirus disease 2019 (COVID-19) has emerged 
as a very important public health concern since its out-
break was first reported at the end of December 2019, 
somewhere in Wuhan city in Hubei Province of China [1]. 
Initially, the causative agent of the COVID-19 outbreak 
was believed to be unknown [2]; however, later based 
on the report from several independent laboratories, the 
responsible agent identified as a severe acute respiratory 
syndrome—coronavirus 2 (SARS-CoV-2) also known as 
novel 2019-nCoV [3–5]. Evaluating the severity in spread-
ing of COVID-19 and the contagious nature of infections, 
on January 30, 2020, World Health Organization (WHO) 
officially stated the COVID-19 situation as an epidemic 
and also announced such occurrence as “Public Health 
Emergency of International Concern” [6]. Afterward, on 
March 11, 2020, the Director-General of World Health 
Organization (WHO) declared the COVID-19 situation as 
a “pandemic” on the basis of “alarming levels of spread 
and severity, and inaction” [7]. However, till now no effec-
tive chemical entity has been identified or developed for 
curing or managing the emerging high-threat pathogen 
SARS-CoV-2. As per “Weekly Operational Update on 
COVID-19” on March 16, 2021, the explosive pandemic 
outbreak of COVID-19 reported 119, 791, 453 confirmed 
cases and 2,652,966 confirmed deaths. Such a scenario has 
explained the steadiness and persistent threat of this res-
piratory tract infectious disease to global health security 
as the infection rate still remains active almost after 1 year 
passed by since its outbreak. Hence, as of now maintain-
ing social distancing is only the mainstay of COVID-19 
management by means of preventing the spread of severe 
SARS-CoV-2 infection through respiratory droplets.

Ongoing researches have provided structural informa-
tion of key proteins of SARS-CoV-2 and the other infected 
host as well that increases the possibility for the employ-
ment of structure-based drug design approach as the most 
promising strategy for COVID-19 therapeutics develop-
ment [8]. Among many structurally well-characterized 
key proteins of SARS-CoV-2, the so-called main protease 
 (Mpro) (also known as 3C-like protease or  3CLpro)–a pro-
teolytic enzyme has gained extremely important attention 
to the research communities for future drug development 
against COVID-19 [9–13]. Impeding the essential bio-
logical role of  Mpro by small molecule or peptidomimetic 
inhibitor or peptide substrate has proved to be one of 
the most potential scientific basis for chemotherapeutics 
exploration to combat the COVID-19 pandemic [9, 12–16]. 
Particularly, blocking or modulating the SARS-CoV-2 
 Mpro protein activity subsequently may act as the inhibi-
tion of viral entry and reduced viral infectivity to the host 

cell [17]. SARS-CoV-2 encodes two proteolytic enzymes 
or cysteine proteases namely  Mpro and papain-like cysteine 
protease  (PLpro), and each enzyme specifically catalyzes 
the maturation or cleavage events of two overlapping poly-
proteins (replicase polyproteins 1a and 1ab) those are actu-
ally translated from the corona viral RNA genome [13, 
14, 16, 18], which are necessarily mediate most of the 
biological functions required for the corona viral replica-
tion processes. As the key proteolytic enzyme, the  Mpro 
specifically cleaves both the polyproteins to release a set 
of functional non-structural proteins, viz. nsp4–nsp16 
[13, 14, 16, 18]. Specifically,  Mpro can cleave or digest 
at least 11 conserved sites within large viral polyproteins 
[13, 14, 16, 18]. So, viewing the essential biological func-
tions such as proteolytic processing of the polyproteins 
by hydrolysis and subsequent associations in the viral life 
cycle, SARS-CoV-2  Mpro is accounted as the most attrac-
tive and best-characterized drug targets among all proteins 
in coronaviruses [11–13, 18]. Another important factor for 
considering the  Mpro protein as most the attractive drug 
target also lies in its high level of sequence conservation 
among other coronaviruses. Besides these two consider-
able facts, another reason for opting the SARS-CoV-2  Mpro 
protein for structure-based drug design strategy against 
COVID-19 therapeutic development is that no human 
proteases were found to pose similar substrate specificity 
like  Mpro protein of SARS-CoV-2, therefore targeting the 
 Mpro protein of SARS-CoV-2 for development of potential 
therapeutic against COVID-19 undoubtedly counted as a 
robustly significant approach [8].

The SARS-CoV-2  Mpro protein consists of three func-
tional domains, viz. domain I extending from amino acid 
residues 10–99, domain II extending from amino acid 
residues 100 to 182, and domain III extending from amino 
residues 198 to 303. Domains I and II hold to be as an 
antiparallel β-barrel like structure, and the active site of 
SARS-CoV-2  Mpro protein is located in the cleft between 
these two domains [13, 16]. The SARS-CoV-2  Mpro protein 
contains two catalytic residues histidine/cysteine (His41 
and Cys145) or catalytic dyad and also some binding pock-
ets denoted as P1, P1′, P2, P3, and P4 [14]. Precisely, dur-
ing the first step of the hydrolysis reaction residue Cys145 
acts as the nucleophile; such reaction is majorly assisted 
by another residue His41 that acts as a base catalyst [16]. 
Alternately, the substrate binding pockets or sites (S1′-S1-
S2-S4) of SARS-CoV-2  Mpro protein composed a number 
of amino acid residues, such as His41, Ser46, Met49,Tyr54, 
Phe140, Leu141, Asn142, Glu143, Cys145, His163, His164, 
Met165, Glu166, Leu167, His172, Phe185, Asp187, Gln189, 
Tyr190, Ala191, and Gln192 [8]. On the other hand, domain 
III owns as a globular cluster of five helices [10, 14–16] and 
is primarily associated with regulation of the dimerization of 
the  Mpro protein by the formation of salt-bridge interaction 
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between amino acid Glu290 of one protomer and another 
residue Arg4 of the other protomer of  Mpro protein [13]. 
Moreover, the oxyanion loop extends from residues 138 
to 146 of SARS-CoV-2  Mpro protein formed by the back-
bone amido groups of two amino acid residues Gly143 and 
Cys145 [16].

Herein, in the present study, employing a set of highly 
exhaustive computational methods comprising multistep 
molecular docking, long-range 100 ns molecular dynamics 
simulations studies, MM-GBSA-based binding free energy 
estimation of small molecules, and pharmacokinetics profile 
assessment have facilitated to identify of four compounds 
as potent inhibitors/modulators of SARS-CoV-2  Mpro pro-
tein. The outcomes of the present study provide valuable 
insights into the potential interaction mechanism upon bind-
ing of four small molecules inside the active catalytic site of 
SARS-CoV-2  Mpro that can direct the future structure-based 
drug design against COVID-19, specifically for highly selec-
tive potent inhibitors development for SARS-CoV-2  Mpro. 
Nevertheless, searched out potential compounds also may 
need further optimization for exhibiting much better interac-
tion mechanism and hence inhibition or modulation of the 
SARS-CoV-2  Mpro can be achieved.

Materials and methods

Virtual screening (VS) is a computational approach to 
retrieve therapeutically effective molecules for a specific 
biomolecular receptor/protein target against any chemical 
database. It is increasingly being used by researchers in 
academia and pharmaceutical industries across the globe in 
order to tactically expediting the hit identification and lead 
optimization processes [19]. VS has become a very popular 
and effective approach due to its capability to screen out 
millions to billions of small molecules in a short time that 
minimize the timeline as well as the cost of the drug discov-
ery crusade. The molecular docking-based VS is one of the 
widely used SBVS strategies in which the active binding 
mode and binding affinity of the molecules towards the tar-
get are estimated [20, 21]. The current study has been con-
sidered to screen three anti-viral specific chemical library 
databases through the multistep molecular docking followed 
by binding free energy estimation, in silico ADME and tox-
icity evaluation, and binding interactions stability assess-
ment through MD simulation studies.

Ligand and protein preparation

A pool of 79,892 small molecules was collected in 2D 
structural data format (sdf) from three databases: ChemDiv 
anti-viral (www. chemd iv. com), Enamine anti-viral (www. 
enami ne. net) and Asinex anti-viral (http:// www. asinex. com) 

databases. The entire set of molecules was prepared using 
the LigPrep module [22] of Schrödinger suite. After success-
ful execution of LigPrep module, three-dimensional (3D) 
coordinates of the molecules were generated. Hydrogen 
atoms and appropriate charges were added to the molecules 
and followed by bad valencies corrected where required. 
The protonation and tautomeric states at pH 7.2 ± 2.0 of the 
molecules were generated using the Epik tool [23] implying 
OPLS forcefield [24]. Finally, for each molecule, the low-
energy stereoisomers were developed and kept all molecules 
aside until considered for VSW protocol.

The 3D coordinates of the SARS-CoV-2  Mpro crystal 
structure were obtained from the RCSB-Protein Data Bank 
(PDB) [25] having PDB ID: 6LU7 [18]. The resolution 
and R-value of the selected  Mpro were found to be 2.16 Å 
and 0.235, respectively. This protein consists of 306 amino 
acid residues with no mutation. To prepare the  Mpro crystal 
structure, the “Protein Preparation Wizard” [26, 27] tool of 
Schrödinger suite was used. All water molecules and other 
heteroatoms were removed. Hydrogens were added, and 
missing atoms, side and backbone chains were corrected. 
Appropriate bond order and formal charges were adjusted. 
The protonation states of the protein were determined 
through PROPKA function of “Protein Preparation Wizard.” 
Using the OPLS3 forcefield, the  Mpro protein was minimized 
to remove the steric clashes present in the protein structure. 
Thereafter, the prepared protein was considered for the grid 
generation using the “Receptor Grid Generation” panel of 
Glide (Grid-Based Ligand Docking with Energetics) [28] 
module of Schrödinger’s suite. For grid generation, the 
information of the catalytic active site and substrate bind-
ing site residues coordinates was used and thereby coordi-
nates defined as −12.0, 18.0, 65.0 Å along X-, Y- and Z-axes, 
respectively. Grid box dimension was considered as 26 × 26 
× 26 Å along X-, Y- and Z-axes, respectively. During grid 
generation, it was manually inspected and confirmed that 
all catalytic active site residues (such as His41 and Cys145) 
and substrate binding site residues were properly confined 
within the rectangular grid box.

Virtual screening of chemical databases

Herein, to screen all three anti-viral specific chemical librar-
ies, the employed DBVS protocol comprises three levels of 
molecular docking such as Glide-HTVS (high-through-
put virtual screening), Glide-SP (standard precision) and 
Glide-XP (extra precision) and implemented under “Vir-
tual Screening Workflow” (VSW) utility tool in the Maestro 
interface of Schrödinger’s suite [29]. Precisely, the VSW 
protocol is comprised of three consecutive docking meth-
ods/approaches where the outcome of one docking method 
becomes the input of the next level of the docking method 
and so on. In each docking approach, a user-defined certain 

http://www.chemdiv.com
http://www.enamine.net
http://www.enamine.net
http://www.asinex.com
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percentage of docked molecules can be retained. The Glide 
uses the Emodel scoring function [28] which has much 
weightage to pick the “best” pose of a ligand. The main 
components of Emodel are Glide score and protein–ligand 
coulomb-vdW energy. The Glide score is an important 
function used to identify the active over inactive molecules. 
The QikProp module was checked to wipe out non-drug-
likeness molecules. Molecules that remained after the final 
approach of docking such as Glide-XP were considered 
for binding energy calculation through Prime-MM-GBSA 
approach. Based on user-defined XP-score and binding free 
energy, top-ranked molecules were considered for further 
assessment.

In silico pharmacokinetic and toxicity analyses

Molecules that remained after VSW approach were con-
sidered for pharmacokinetic assessment through the online 
SwissADME web server tool [30]. A number of parameters 
such as pharmacokinetic and drug-likeness were recorded. 
These parameters included physiochemical, lipophilicity, 
water-solubility, pharmacokinetic, drug-like properties, 
Lipinski’s rule of five (ROF) [31] and Veber’s rule [32] 
were calculated. The drug-likeness can be assessed using 
ROF which stated that to be a potential drug-like molecule, 
molecular weight, hydrophobicity, hydrogen bond (HB) 
acceptors and HB donors should not be more than 500 kDa, 
5, 10 and 5, respectively. For being a promising drug-like 
molecule, Veber’s rule explained that total polar surface area 
(TPSA) and the number of rotatable bonds should not be 
higher than 140Å2 and 10, respectively. Two crucial phar-
macokinetic parameters such as human intestinal absorption 
(HIA) and blood–brain barrier (BBB) can also be used to 
select drug-like molecules [33]. The percentage of absorp-
tion by the intestine can be assessed using the HIA param-
eter [33]. The penetrability competence of the molecule in 
the brain can be estimated using BBB parameter.

On the other hand, the pkCSM, a web server tool [34], 
was used to evaluate the toxicity of the selected molecules. 
This tool is widely used by research communities across 
the globe due to the mathematical formulation integrated 
in terms of graph-based signatures algorithm to generate 
predictive models of different pharmacokinetics and toxicity 
properties for any given molecule. A number of parameters 
related to the toxicity including AMES toxicity, maximum 
tolerated dose (human), hERG-I/hERG-II inhibitor, oral 
rat acute toxicity, oral rat chronic toxicity (LOAEL), hepa-
totoxicity, skin sensitization toxicity were generated after 
the SMILES formatted input of each compound. The above 
parameters are extremely essential to evaluate the toxicity 
for drug-like molecules, and the molecules having values in 
unacceptable range for further assessment can be removed.

Molecular dynamics simulation

MD is an excellent computer simulation approach that 
is highly being explored in the field of drug discovery 
research to understand behavioral changes of the pro-
tein–ligand complex in the dynamic environment at 
the atomic level. It is also an essential tool to evaluate 
the intra- or interatomic interaction stability of the pro-
tein–ligand complex against user-defined specified time 
span. In the present study, four promising small molecules 
complex with  Mpro protein were subjected to 100 ns clas-
sical MD simulation production run. The MD simulation 
execution was performed in the Desmond platform [35] 
integrated into the Schrödinger suite. Each protein–ligand 
complex system was confined within the orthorhombic 
box having the size of 10 × 10 × 10 Å. The TIP3P water 
model [36] was used to solvate the system. The appropri-
ate number of counter ions was adjusted to neutralize the 
system. The salt concentration was maintained as 0.15 M. 
Followed by setting up the system builder, each system 
was minimized through the Steepest Descent followed 
by limited memory Broyden–Fletcher–Goldfarb–Shanno 
(LBFGS) algorithms with maximum iterations of 2000. 
The short-range coulombic interactions were evalu-
ated using the cutoff radius of 9 Å. On the other hand, 
long-range coulombic interactions cutoff was considered 
through the smooth particle mesh Ewald method (PME) 
[37]. To equally distribute the ions and solvent around 
the protein–ligand complex, each system was equilibrated 
using the NPT (N—number of the particle, P—system 
pressure, T—temperature) ensemble with Nose–Hoover 
chain thermostat. The temperature was kept constant at 
300 K throughout the simulation. The Langevin thermostat 
was used to regulate the temperature with a relaxation time 
of 1 ps span. Moreover, 2 ps relaxation time of barostat 
pressure was regulated by isotropic position scaling. A 
total of 1000 frames were saved for the simulation system 
for further analysis using “Simulation Interactions Dia-
gram” and “Simulation Event Analysis” modules embed-
ded in the Desmond program. On successful completion 
of the MD simulation, a number of parameters including 
RMSD of the protein backbone and ligand, root-mean-
square fluctuation (RMSF) of individual amino acids and 
atoms of ligand, and, the radius of gyration (RoG) were 
calculated from each MD simulation trajectory.

The binding free energy of each proposed small mol-
ecules was estimated through MM-GBSA approach. This 
approach is widely used and trustworthy to calculate the 
binding affinity of the molecules towards the target bio-
macromolecules. The detailed methodology can be found 
in our previous publications [38, 39].
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Results and discussion

Virtual screening of chemical databases

The molecular docking has become an important and inte-
grated protocol for SBVS of chemical databases to find 
out the promising molecules for a specific target. Due to 
its computationally cheaper and trustworthy nature and 
availability of extensive parameter selection features, it is 
widely used in the pharmaceutical research community. 
In the current study, considering the  Mpro as the target 
molecule, initially three levels of molecular dockings, such 
as Glide-HTVS, Glide-SP and Glide-XP, were executed to 
screen the entire anti-viral chemical libraries of ChemDiv, 
Asinex and Enamine databases consisting of 79,892 com-
pounds. A stepwise flow diagram of the presented work 
is given in Fig. 1.

The VSW module is the successive filtering approach 
in which relatively inactive molecules are filtered out in 
each step of Glide-HTVS, Glide-SP and Glide-XP dock-
ing, sequentially. Herein, from each step of docking top 
10% docked molecules (based on Glide dock score) were 
considered for the next level of docking assessment. 
Therefore, in the first step, altogether molecules of three 
databases (i.e., 79,892 compounds) were given as input 
in Glide-HTVS and a total of ~ 7988 molecules were 
retained after completion of the Glide-HTVS docking 

step. Thereafter, the above-retained number of molecules 
(~ 7988) were again used as input for the Glide-SP dock-
ing and the top 10% compounds (i.e., 798) docked com-
pounds were obtained/retained. Finally, retained molecules 
in the previous step were further docked through Glide-XP 
and the top 10% molecules were considered for subse-
quent analysis. The XP-dock score of each retained mol-
ecule was recorded, and it was found to be in the range of 
−5.27 to −9.51 kcal/mol. A total of 79 molecules were 
found in the preceding step and were further subjected 
to binding free energy calculation through the Prime-
MMGBSA approach. For further reduction of chemical 
space, a user-defined cut-off XP-score and Prime-MMG-
BSA-based binding free energy were considered as −8.00 
and −45.00 kcal/mol, respectively. It was observed that 
a total of 28 molecules were failed to satisfy the above 
criteria. Therefore, the remaining 51 molecules were sub-
jected to in silico pharmacokinetic and toxicity assess-
ment through SwissADME [30] and pkCSM [34] web 
server tools. On detailed analysis, it was found that 16 
molecules possess acceptable ADME and toxicity pro-
files. The binding interactions of each molecule retained 
in the previous step were explored in detail using the PLIP 
(Protein–Ligand Interaction Profiler)—a web-based server 
[40] widely used for characterization of interactions for 
any given protein–ligand complexes. Four molecules were 
found to have crucial binding interactions with catalytic or 
active site residues of  Mpro protein by means of formation 

Fig. 1  Schematic representation of virtual screening of chemical databases against  Mpro
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of several numbers of hydrogen bond and hydrophobic 
contacts, and salt bridge interaction, etc., and hence, con-
sidered to be promising  Mpro inhibitors for SARS-CoV-2 
inhibition. It is an important matter to mention that among 
all four proposed molecules, two are from ChemDiv data-
base (ChemDiv_D658-0159 and ChemDiv_F431-0433) 
and one of each from Enamine (Enamine_Z3019991843) 
and Asinex (Asinex_LAS_51389260) databases. The 2D 
chemical representation of the final selected molecules is 
given in Fig. 2. On close inspection, it was found that all 
molecules consisting of a diverse type of functional groups 
or pharmacophoric features might be crucial to form bind-
ing interactions with catalytic amino residues of  Mpro.

Binding interactions analysis

The Glide XP-dock score and Prime MM-GBSA-based bind-
ing free energies of the proposed molecules were found to 
be −8.59 and −61.67 kcal/mol; −8.96 and −62.85 kcal/mol; 
−8.44 and −58.86 kcal/mol; and, −8.49 and −61.06 kcal/
mol for ChemDiv_D658-0159, ChemDiv_F431-0433, 
Enamine_Z3019991843 and Asinex_LAS_51389260, 
respectively. A number of biologically important amino 
acid residues of  Mpro were found to be interacted with all 
the proposed molecules. The list of ligand-interacting amino 
acids along with XP-score and Prime-MMGBSA binding 
free energy is given in Table 1. It is important to note that 
XP-score was varied from −8.44 to −8.96 kcal/mol, and 
binding free energy was found in the range of −58.86 to 

Fig. 2  Two-dimensional (2D) 
representation of proposed 
 Mpro inhibitors. Each molecule 
was found to consist of crucial 
pharmacophoric features

Table 1  XP-score, Prime-MMGBSA-based binding free energy and ligand-interacting amino acids

Compounds Glide XP/MM-GBSA 
score (Kcal/mol)

Interacting residues in H-bond 
interaction

Other type of molecular interactions

ChemDiv_D658-0159 −8.59/−61.67 Asn142, Gly143, Glu166 Thr25, Leu27, Asn142, Met165, Gln189 (Hydropho-
bic) Glu166 (Salt bridge)

ChemDiv_F431-0433 −8.96/−62.85 Gly143, Glu166, Thr190 Thr25, His41, Met165, Gln189 (Hydrophobic)
Enamine_Z3019991843 −8.44/−58.86 Asn142, Gly143, Gln189 Thr25, His41, Met165, Glu166, Asp187 (Hydrophobic)

Asinex_LAS_51389260 −8.49/−61.06 Thr26, His41, Tyr54, Glu166 Met165, Glu166, Gln189 (Hydrophobic)
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−62.85 kcal/mol. The above-mentioned obtained energy 
scores clearly explained that all molecules possess somewhat 
energetically similar binding affinities towards the SARS-
CoV-2  Mpro protein.

The intermolecular binding interactions of each proposed 
molecule were assessed, and interactions profiles are given 
in Fig. 3. Particularly, residues Asn142 and Gly143 were 
found to form hydrogen bond interactions with both com-
pounds ChemDiv_D658-0159 and Enamine_Z3019991843. 
In addition, ChemDiv_F431-0433 was found to interact 
with residue Gly143 through a hydrogen bond interaction. 

Another acidic amino acid Glu166 was critically formed 
hydrogen bond interaction and hydrophobic contacts with 
both the compounds ChemDiv_D658-0159 and Asinex_
LAS_51389260. Moreover, Glu166 was also observed to 
establish hydrogen bond and hydrophobic interactions with 
ChemDiv_F431-0433 and Enamine_Z3019991843, respec-
tively. Only Enamine_Z3019991843 created a hydrogen 
bond interaction with residue Gln189, while same amino 
acid residue establishes hydrophobic interactions with all 
other three proposed compounds. Polar amino acid residue, 
Thr190 interacted with ChemDiv_F431-0433 through a 

Fig. 3  Binding interaction profile of  Mpro protein with selected inhibitors/modulators. Solid lines (in blue color) are represented as hydrogen 
bonds and dotted lines are as hydrophobic interactions (in gray color) and yellow dotted line as salt bridge interaction
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hydrogen bond interaction. Asinex_LAS_51389260 pos-
sessed a slightly different kind of binding interaction profile 
in comparison with the other three proposed compounds. 
Three other amino acids including one catalytic residue of 
 Mpro such as Thr26, His41 and Tyr54 successfully inter-
acted with Asinex_LAS_51389260 through hydrogen 
bond interactions. Docking analyses revealed that amino 
acid residue Thr25 was found to be a common residue for 
establishing hydrophobic contacts with various atoms or 
functional groups of compounds ChemDiv_D658-0159, 
ChemDiv_F431-0433 and Enamine_Z3019991843. The 
basic and active site residue His41 of  Mpro protein was 
critically formed hydrophobic interactions with compounds 
ChemDiv_F431-0433 and Enamine_Z3019991843. Another 
amino acid residue Met165 was also observed to form hydro-
phobic contacts with all four proposed inhibitors. Beyond 
the above-mentioned residues association in interaction par-
ticipation with SARS-CoV-2  Mpro protein, residue Asp187 
was found to form a hydrophobic contact with compound 
Enamine_Z3019991843. All the observed binding interac-
tions certainly demonstrated the efficiency and presence of 
numbers of hydrogen bond acceptors and donors group/
atoms in the proposed  Mpro inhibitors. Majorly, all critical 
binding interactions found between the proposed inhibi-
tors/modulators and catalytic amino acid residues of  Mpro 
might play a crucial role by means of holding all the ligands 
inside the receptor cavity tightly and to exhibit some level 
of energetically profound binding kinetics underlying the 
protein–ligand binding mechanism and hence can display 
desirable therapeutic or pharmacologic effect.

For better understanding, the binding mode of each mol-
ecule, the detailed geometric orientation of all molecules in 
the active site cavity or its close vicinity of  Mpro protein was 
generated as 3D surface view presentation and is depicted 
in Figs. 4a–d. It can be seen that each of the selected mol-
ecules was perfectly fitted inside the receptor cavity of  Mpro 
protein. From the intermolecular interaction profiles and 
binding mode analyses of each molecule, it can be postu-
lated that all selected molecules probably accorded its active 
state conformation and hence possibly can exhibit essential 
inhibition or modulation effect to the  Mpro protein.

The binding site subdivision of  Mpro was reported by 
Zhang and associates [13] with four different regions termed 
as S1, S2, S3 and S4. The binding mode inside the different 
binding site subdivision of the selected molecules is given 
in Fig. 4e. The S1 site was created with the amino acid resi-
dues Phe140, Asn142, Ser144, Cys145, His163, His172, and 
Glu166, and the backbone of Leu141, Gly143, His164, and 
Met165. The side chains of residues His41, Val42, Asn119, 
Thr25, Cys145, Gly143, and the backbone of residue Thr26 
were involved in S2 sub-binding site. Subsite S3 was created 
by the side chains of Tyr54, Asp187, Met49, and His41 as 
well as the backbone of Arg188. Subsite S4 was involved 

with the side chains of residues Met165, Leu167, Pro168, 
Ala191, and Gln192, and the backbones of residues Glu166, 
Arg188, and Thr190 [41]. It is interesting to note that all 
proposed molecules were involved in binding interactions 
with at-least one amino acid residue from each subsite. The 
above observation was explained that proposed molecules 
perfectly occupied the entire binding site of the  Mpro which 
increases the probability for the formation of biologically 
relevant interactions and hence inhibition or modulation of 
protein activity can be achieved.

Recently, Mazzini et al. [42] have explored the screen-
ing of an in-house library of natural and nature-inspired 
products to identify promising  Mpro inhibitors. The said 
study reported nine potential molecules through structure-
based virtual screening. The binding profile reported in the 
mentioned work was found to be almost similar in terms 
of binding interaction outcomes found in the present study. 
Particularly, few crucial amino acids, such as His41, Leu27, 
Asn142, Gly143, Cys145, Met165, Glu166, Gln189, and 
Thr190, were revealed as critical residues for the creation 
of intermolecular interaction with the proposed molecules. 
The majority of the above-mentioned amino acid residues 
 Mpro were also found to be common residues that interacted 
with all the proposed compounds, obtained in the current 
study. In another study, Gahlawat et al. [43] performed a 
comparative study to check the insight of the mutations at 
the active site followed by the screening of natural and drug 
databases to propose potential  Mpro inhibitors. In that study, 
authors explored binding interactions between proposed 
molecules and  Mpro. Interestingly, all the catalytic amino 
acid residues found to interact with their reported molecules 
are also found to be common residues in interactions crea-
tion obtained in our current study outcomes. Another study 
by Kanhed et al. [44] was performed to screen the drug 
library and Asinex database against the  Mpro protein. The 
XP-docking score of the proposed molecules was found to 
be relatively similar as the present study findings. In that 
reported molecular docking analyses, the authors mentioned 
few important catalytic amino acid residues that are Thr25, 
His41, Asn142, Gly143, Met165, Glu166, Gln189 and 
Thr190, etc., crucial for the formation of binding interac-
tions with the  Mpro and postulated for biological inhibition 
of that proteolytic enzyme. Interestingly, the majority of the 
substrate-binding site residues were found to interact with 
the reported molecules except for non-involvement of one 
catalytic site residue Cys145. In such similar fashion, our 
docking study outcomes also demonstrated somewhat alike 
binding interactions maps for all proposed molecules where 
the absence of any intermolecular interaction with the resi-
due Cys145 was observed. The appearance of such obser-
vation might be due to protein flexibility issues. Because 
the XP-docking was conducted following the rigid receptor 
docking protocol where flexibility to the side or backbone 
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chain to any of amino acids was not provided. In some other 
study, where the drug re-purpose approach through a com-
bined ligand- and structure-based screening was presented 
by Ferraz et al. [17] and finally, two oral and one buccal 
drug were identified as effective molecules against the  Mpro. 
The above-mentioned study also reported similar binding 
interaction profiles as obtained in the docking analyses of 
the current study.

Pharmacokinetic and toxicity assessment

The SwissADME online tool was used to calculate the phar-
macokinetic and drug-likeness characteristics, and these 

are given in Table 2. All selected molecules were found to 
possess highly absorbable to the GI and soluble in nature. 
Not a single molecule was found to violate ROF, Veber’s 
and Ghose’s rules. The molecular weight (MW) of the mol-
ecules was found to be in the range of 325 to 453 g/mol that 
fairly suggested good absorption. The total polar surface 
area (TPSA) less than 140 Å2 of any molecule suggested 
good intestinal permeability. All four selected molecules 
were found to have TPSA less than 108 Å2 that indicated 
good permeability in the intestine. The number of rotatable 
bonds was found to be 8, 8, 7 and 6 for ChemDiv_D658-
0159, ChemDiv_F431-0433, Enamine_Z3019991843 and 
Asinex_LAS_51389260, respectively, that indicated the 

Fig. 4  Binding mode of four proposed  Mpro inhibitors at the active 
and substrate binding sites displayed in surface view representa-
tion. Four substrate binding sites (S1-S4) are marked. a ChemDiv_
D658-0159 in yellow, b ChemDiv_F431-0433 in blue, c Enamine_

Z3019991843 in green, d Asinex_LAS_51389260 in magenta colors, 
e. Binding mode of all selected molecules in different subdivision of 
substrate binding sites/pockets of SARS-COV-2  Mpro protein
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reasonable rigidity and flexibility of the molecules. The 
synthetic accessibility of the molecules was observed to be 
in the range of 3 to 4.30. The above observation of synthetic 
accessibility undoubtedly suggested that molecules can eas-
ily be synthesized.

Further, the toxicity assessment was carried out for the 
selected  Mpro inhibitors through pkCSM web server tool. 
Value of all the generated parameters related to the tox-
icity is listed in Table 3. The AMES toxicity parameter 
explained that all molecules were non-mutagenic in nature. 
The low value of maximum tolerated toxic dose clearly 
indicated the non-toxicity behavior of the molecules. Not 
a single molecule was found to have ventricular arrhyth-
mia characteristics which were substantiated by hERG I/
hERG II inhibitor parameter. Moreover, a safety concern 

for drug-induced liver injury was measured through the 
hepatotoxic indication for all compounds, which bring out 
as negative that clearly indicated no disruption of normal 
function of the liver upon administration. The skin sensi-
tivity of the molecules was found to be negative. The oral 
rat acute toxicity  (LD50) was found to be 2.69, 2.68, 2.24 
and 2.42 for ChemDiv_D658-0159, ChemDiv_F431-0433, 
Enamine_Z3019991843 and Asinex_LAS_51389260, 
respectively. The oral rat chronic toxicity (LOAEL) of the 
molecules was found in the range of 0.9 to 1.60. Both  LD50 
and LOAEL were found within the recommended value. 
Therefore, the above discussion and values of ADME 
and toxicity were revealed that all the selected inhibitors 
showed potential lead-like features and can be used for 
further estimation for SARS-CoV-2  Mpro modulation and 
biological activity.

Table 2  Predicted ADMET 
profiles of selected four 
SARS-CoV-2  Mpro inhibitors/
modulators compounds

1 Molecular weight; 2No.of heavy atoms; 3No. of aromatic heavy atoms; 4No. of rotatable bonds; 5Topo-
logical polar surface area; 6Solubility; 7Solubility class; 8Gastrointestinal absorption; 9Blood–brain barrier 
penetration; 10Violation of Lipinski’s rule of five; 11Violation of Ghose’s rule; 12Violation of Veber’s rule; 
13Bioavailability score; 14Synthetic accessibility

Parameters ChemDiv_D658-
0159

ChemDiv_F431-
0433

Enamine_
Z3019991843

Asinex_
LAS_51389260

1 MW (g/mol) 452.93 452.57 326.39 356.37
2NHA 32 32 24 26
3NAHA 16 15 15 17
4NRB 8 8 7 6
5TPSA (Å2) 62.99 101.64 56.51 107.97
6LogS −5.09 −4.1 −3.81 −3.45
7SC Highly Highly Moderately Highly

Soluble Soluble Soluble Soluble
8GI High High High High
9BBB No No No No
10vROF 0 0 0 0
11vGhose 0 0 0 0
12vVeber 0 0 0 0
13BS 0.55 0.55 0.55 0.55
14SA 3.25 3.82 3.30 3.03

iLOGp 4.18 3.78 3.09 3.14

Table 3  Predicted toxicity of 
selected Mpro inhibitors

Toxicity properties ChemDiv_
D658-0159

ChemDiv_
F431-0433

Enamine_
Z3019991843

Asinex_
LAS_51389260

AMES toxicity No No No No
Max. tolerated dose (human) 0.20 0.46 0.64 0.61
hERG I/hERG II inhibitor No/No No/No No/No No/No
Oral rat acute toxicity  (LD50) 2.69 2.68 2.24 2.42
Oral rat chronic toxicity (LOAEL) 0.95 1.29 1.46 1.60
Hepatotoxicity No No No No

Skin sensitization No No No No
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Molecular dynamics simulation analyses

The dynamic behavioral characteristics of the proposed 
molecule-SARS-CoV-2  Mpro protein complexes were 
explored through 100 ns all-atoms MD simulations study. 
Particularly, to assess the protein–ligand complex stabil-
ity, a number of parameters including protein backbone 
RMSD, ligand RMSD, RMSF of each amino acid resi-
due, atomic RMSF of each ligand and protein backbone 
RoG were estimated from the MD simulation trajecto-
ries. Maximum, minimum and average values of all above 
parameters were calculated and are listed in Table 4.

Root-mean-square deviation analyses

The deviation of the SARS-CoV-2  Mpro protein backbone 
bound with all proposed inhibitors was assessed through the 
protein backbone RMSDs.  Mpro backbone RMSD values of 
each frame obtained through MD simulation production 
bound with all four molecules were plotted against the time 
scale, and it is given in Fig. 5. The consistent RMSD val-
ues with lower deviation in the  Mpro backbone bound with 
three proposed inhibitors, viz. ChemDiv_F431-0433, Enam-
ine_Z3019991843 and Asinex_LAS_51389260, throughout 
the simulation run clearly indicated the interactions stability 
of the  Mpro protein–ligand complexes. On the other hand, 
 Mpro backbone bound with compound ChemDiv_D658-0159 
was found to deviate for a short time span, ~ at 60–70 ns 

Table 4  Maximum, minimum 
and average RMSD, RMSF and 
RoG are estimated from the MD 
simulation trajectories

Chem-
Div_D658-
0159

Chem-
Div_F431-
0433

Enamine_
Z3019991843

Asinex_
LAS_51389260

RMSD (Å) Mpro backbone Minimum 0.86 1.07 1.06 0.89
Maximum 5.87 2.94 2.51 2.66
Average 2.38 2.21 1.78 1.71

Ligand Minimum 0.62 0.50 0.30 0.74
Maximum 1.38 2.22 2.32 2.87
Average 0.95 1.19 1.29 2.16

RMSF (Å) Amino acids Minimum 0.43 0.36 0.37 0.38
Maximum 3.70 2.96 2.66 2.89
Average 1.67 0.88 0.88 0.97

Ligand Minimum 0.19 0.33 0.30 0.49
Maximum 1.52 1.81 2.22 1.94
Average 0.46 0.88 0.95 1.07

Protein RoG (Å) Minimum 4.25 4.41 3.38 3.62
Maximum 4.74 5.28 4.17 4.48

Average 4.54 4.90 3.85 4.14

Fig. 5  Mpro backbone RMSD 
bound with ChemDiv_D658-
0159, ChemDiv_F431-0433, 
Enamine_Z3019991843 and 
Asinex_LAS_51389260. The 
consistent protein backbone 
RMSDs exhibited equilibration 
of each protein–ligand complex 
system throughout the simula-
tion
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and immediately thereafter RMSD values were found to be 
progressing towards their equilibrium state. From Table 3, 
the average RMSD of  Mpro backbone bound with ChemDiv_
D658-0159, ChemDiv_F431-0433, Enamine_Z3019991843 
and Asinex_LAS_51389260 was found to be 2.38, 2.21, 1.78 
and 1.71 Å, respectively.

The RMSDs of all proposed ligands were also assessed 
through the entire MD simulation trajectories. For all four 
proposed molecules, the RMSD values were plotted against 
the time of simulation and it is given in Fig. 6. Initially, both 
ChemDiv_F431-0433 and Enamine_Z3019991843 have 
changed the conformational orientation and deviated up to 
about 2 Å. The same trend persisted till ~ 18 ns for both com-
pounds and afterward regained conformational integrity as 
the initial or starting point. Interestingly, at ~ 85 ns, RMSD 
of both molecules deviated up to 2.5 Å. Such observations 
might be due to the opening and closing of the active site 
that gives sufficient space to the small molecule to achieve 

new orientations. ChemDiv_D658-0159 was found to retain 
an almost similar conformational state throughout the simu-
lation run. The RMSD of Asinex_LAS_51389260 deviated 
at the very beginning of the simulation, and thereafter, it 
achieved equilibration and maintained its consistency till the 
simulation end. Overall, the above-mentioned low RMSD 
values for both the protein backbone and ligands undoubt-
edly suggested protein–ligand conformational stability in 
the dynamic state for all four compounds bound with  Mpro 
protein.

Root-mean-square fluctuation analyses

The structural integrity and amino acid residual mobil-
ity can be explained through the RMSF of each amino 
acid residue during the simulation. From the MD simula-
tion trajectories, the RMSF of SARS-CoV-2  Mpro protein 
bound with ChemDiv_D658-0159, ChemDiv_F431-0433, 

Fig. 6  RMSD values of each 
proposed SARS-CoV-2  Mpro 
inhibitor/modulator vs. time of 
the simulation

Fig. 7  RMSF values of each 
amino acid residues of  Mpro 
protein calculated from MD 
simulation trajectories
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Enamine_Z3019991843 and Asinex_LAS_51389260 was 
estimated and it is given in Fig. 7. The RMSF of the termi-
nal amino acids was found to be higher as expected. A sim-
ilar pattern of change in RMSF values of  Mpro amino acid 
residues bound with compounds ChemDiv_F431-0433, 
Enamine_Z3019991843 and Asinex_LAS_51389260 was 
found. It is also important to note that RMSF of ligand-
binding amino residues (Table 1) of the above complexes 
was found to be consistent and low in comparison with 
 Mpro bound with ChemDiv_D658-0159. Such observa-
tion might be due to the existence or formation of less 
number of intermolecular binding interactions during MD 
simulations between ChemDiv_D658-0159 and key amino 
acid residues of SARS-CoV-2  Mpro protein in comparison 
with other three compounds. Although the RMSF values 
of  Mpro protein bound with ChemDiv_D658-0159 were 
comprehended to fluctuate relatively higher scale (reached 
up-to ~ 3.70 Å) in contrast to three others compounds, but 
no abnormal deviations were observed in the RMSF val-
ues. It can be hypothesized that due to weak interactions 
between catalytic amino residues of  Mpro and ChemDiv_
D658-0159 such higher RMSF was observed. Average, 
maximum and minimum RMSF values of  Mpro protein 
bound with ChemDiv_D658-0159, ChemDiv_F431-0433, 
Enamine_Z3019991843 and Asinex_LAS_51389260 are 
given in Table 3. The RMSF of all complexes was var-
ied in between 0.36 and 3.70 Å. The difference between 
the maximum and average RMSF can give an idea about 
the extension in the fluctuation of the amino acid residues 
bound with proposed  Mpro inhibitors/modulators. The dif-
ference between the maximum and average RMSF was 
found to be 2.03, 2.08, 1.78 and 1.92 Å for  Mpro bound 
with ChemDiv_D658-0159, ChemDiv_F431-0433, Enam-
ine_Z3019991843 and Asinex_LAS_51389260, respec-
tively. The above-mentioned low deviations in RMSFs 
values undoubtedly explained that  Mpro amino acids did 
not fluctuate much during the MD simulation.

Moreover, the atomic fluctuation of each ligand was also 
calculated and it is given in Fig. 8. The range of heavy atoms 
was found to be 1 to a maximum of 32. A distinct profile of 
atomic RMSF values was observed due to different struc-
tural moieties that hold all the proposed small molecules 
and also due to their different binding interactions profile in 
the dynamic state. It was observed that atoms of small mole-
cules involved in binding interactions exhibited lower RMSF 
in comparison with the rest of the atoms which did not par-
ticipate in interaction formation. Average RMSF values of 
compounds ChemDiv_D658-0159, ChemDiv_F431-0433, 
Enamine_Z3019991843 and Asinex_LAS_51389260 were 
found to be 0.46, 0.88, 0.95 and 1.08 Å, respectively. Such 
low atomic RMSF of the proposed molecules can certainly 
suggest conformational consistency and integrity during the 
MD simulation.

Radius of gyration (RoG) analyses

The compactness and rigidity of the  Mpro protein bound with 
all proposed small molecules were explored through RoG, 
calculated from the MD simulation trajectories. The RoG 
of each frame against the time of the simulation is given 
in Fig. 9. Interestingly, very consistent RoG values were 
obtained in MD simulation analyses which certainly explains 
the stably folding nature of the protein during the entire 
MD simulation span. The RoG of  Mpro bound with all four 
small molecules was seen very small magnitude of devia-
tions throughout the simulation. The difference between the 
maximum and minimum RoG values of  Mpro protein was 
found to be 0.49, 0.87, 0.79 and 0.86 Å, bound with pro-
posed compounds ChemDiv_D658-0159, ChemDiv_F431-
0433, Enamine_Z3019991843 and Asinex_LAS_51389260, 
respectively. The obtained RoG data can certainly explained 
the rigidity and compactness of  Mpro protein structure during 
the MD simulation for all compounds bound state.

Earlier, Stoddard et al. [41] executed a research study 
employing drug repurposing approach to identify a few 
promising molecules for  Mpro inhibition. The authors also 
performed MD simulation study of identified molecules 
bound with  Mpro protein for 100 ns time span. The said study 
reported the RMSDs of  Mpro backbone within the range of 
0 to 4 Å. Further, the authors also calculated the RMSD of 
ligands and maximum value found within 4 Å. The authors 
concluded that MD simulation data were favored in the sta-
bility of protein–ligand complexes in the dynamic environ-
ment. As stated earlier, Kanhed et al. [44] also performed a 
screening of  Mpro inhibitors and executed a relatively short 
(i.e., 10 ns) MD simulation study. RMSD of the protein 
backbone and ligand was noticed within 2 and 5 Å, respec-
tively. The RMSF of  Mpro amino acids was to be fluctuated 
around 1 Å. Kapusta et al. [45] explored the virtual screen-
ing of MolPort database and proposed about fifteen promis-
ing  Mpro modulators. However, they have reported higher 
RMSD score (~ 6 to 10 Å) for  Mpro protein backbone bound 
with few molecules. The available above-mentioned data in 
the literature successfully corroborated with the outcomes 
of the present study. Taken together, on the basis of RMSD 
of protein backbone and ligands, RMSF of amino acids and 
ligands and RoG values observed in the present study find-
ings certainly can explain the protein–ligand complexes sta-
bility in dynamic condition.

Protein–ligand contacts analyses during MD 
simulation

Moreover, the protein–ligand contacts/interactions were 
explored during MD simulation studies for all the com-
plexes. Detailed analyses of protein–ligand contacts revealed 
that several ligand-Mpro protein atom pairs were created 
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numbers of hydrogen, hydrophobic, ionic and water bridge 
interactions during MD simulation span and also maintained 
the same interactions profile for the certain time period. 
Particularly, several atoms of compounds ChemDiv_D658-
0159, ChemDiv_F431-0433, Enamine_Z3019991843 and 
Asinex_LAS_51389260 were found to make contacts with 
at-least 24, 26, 24 and 75 different amino acid residues of 
 Mpro protein, respectively, during MD simulation (Fig. 10).

From Fig. 10, it was interesting to note that at least 15 
different amino acid residues (namely Thr26, Leu27, His41, 
Ser46, Met49, Asn142, Gly143, Ser144, Cys145, Met165, 
Glu166, Leu167, Pro168, Gln189 and Gln192) of  Mpro 
were found to be as common residues to interact with all 
identified compounds in a dynamic state. Such important 

protein–ligand contacts monitored throughout the simulation 
undoubtedly suggested that all identified compounds specifi-
cally make multiple contacts at the substrate-binding site of 
 Mpro protein and interactions with those residues are very 
much essential for inhibition or modulation of  Mpro protein 
activity. Another important aspect was also noted from the 
protein–ligand contacts during simulations in terms of the 
appearance of new amino acid residues involvement in inter-
molecular interactions which did not appear in any docking 
based interaction analyses. Specifically, in docking-based 
analyses, the catalytic residue Cys145 was not found to form 
any types of interactions; however, MD simulation study 
confirmed the true presence and interaction frequencies of 
this important catalytic residue with all compounds. Such 

Fig. 8  Atomic RMSFs of pro-
posed compounds ChemDiv_
D658-0159, ChemDiv_F431-
0433, Enamine_Z3019991843 
and Asinex_LAS_51389260 
during MD simulation
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newly formed interactions explored from protein–ligand 
contacts might be observed due to governed flexibility and 
induce fit mechanism to both the ligands and protein as well, 
in MD simulation execution. So taken together, the observed 
geometry and frequency of atomic interactions between 
identified all four small molecules and  Mpro protein could 
possibly establish the impact of interactions on binding affin-
ity and hence for exhibiting inhibition or modulation effect 
of  Mpro protein biologically.

Binding free energy using MM‑GBSA approach

To analyze the binding affinity of the proposed  Mpro inhibi-
tors, the MM-GBSA approach was used to calculate the 
binding energy from the entire MD simulation trajectory. 
The binding free energy of each frame for all molecules was 
plotted against the frame number, and it is given in Fig. 11. 
Maximum, minimum and average binding free energy val-
ues of ChemDiv_D658-0159, ChemDiv_F431-0433, Enam-
ine_Z3019991843 and Asinex_LAS_51389260 are given in 
Table 5. Average binding free energy of ChemDiv_D658-
0159, ChemDiv_F431-0433, Enamine_Z3019991843 and 
Asinex_LAS_51389260 was found to be −54.846, −50.170, 
−49.495 and −49.320 kcal/mol, respectively. The above 
binding free energy is successfully corroborated with the 
binding free energy obtained using the Prime-MMGBSA 
approach (Table 1).

A number of recent studies have already been performed 
to estimate the binding free energy through MM-GBSA 
approach of virtually screened  Mpro modulators. Proposed 
 Mpro molecules reported by Kapusta et al. [45] demonstrated 
the highest negative MM-GBSA-based binding free energy 
value of about −60 kcal/mol. Choudhary et al. also screened 
a few interesting  Mpro inhibitors and calculated binding free 
energy using the MM-GBSA approach, and the value was 
varied in the range of about −50 to −80 kcal/mol. In another 

study, Ibrahim et al. [46] estimated the binding free energy 
of four proposed  Mpro molecules and the value was found to 
be around −56 to −58 kcal/mol. The above reported esti-
mated binding free energy of  Mpro inhibitors are also com-
parable to the binding free energy (Table 5) of ChemDiv_
D658-0159, ChemDiv_F431-0433, Enamine_Z3019991843 
and Asinex_LAS_51389260, identified in the present study.

Conclusion

A multistep molecular docking-based virtual screening 
of three anti-viral specific chemical library databases was 
performed to find out potential  Mpro inhibitors. In each 
step of three-level of molecular docking, the low-potential 
molecules were wiped out. Finally, based on binding free 
energy, in silico pharmacokinetic and toxicity assessment, 
four molecules were proposed as potential  Mpro inhibitors 
for SARS-CoV-2 inhibition. The binding interaction analy-
sis revealed a number of interesting hydrogen bonds and 
hydrophobic contacts with of catalytic amino acids. It was 
also found that all molecules were successfully fitted in all 
four substrate binding pockets. In silico ADME and toxic-
ity data of each molecule were indicated highly absorbable 
in the GI, soluble in nature, easy to synthesis and non-
toxic in nature. The drug-likeness parameters also sug-
gested that all molecules possess lead-like characteristics. 
The number of parameters from MD simulation study was 
estimated, and all data indicated the stability of the pro-
tein–ligand complex in the dynamic states. High binding 
free energy calculated from the MD simulation trajectory 
through the MM-GBSA approach has clearly adjudged 
the potentiality of the molecules towards  Mpro. However, 
study limitation can be accounted as non-accessibility 

Fig. 9  The RoG of Mpro 
bound with ChemDiv_D658-
0159, ChemDiv_F431-0433, 
Enamine_Z3019991843 and 
Asinex_LAS_51389260
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Fig. 10  Venn diagram plot showing the ligand contacts with different residues of  Mpro protein monitored throughout the simulation run

of any experimental assay that can provide absolute bio-
logical potentiality for the proposed chemical entities 
as SARS-CoV-2  Mpro inhibitors/modulators. Although 
taken together based on exhaustive computational analy-
ses, it can be proposed that all four chemical entities act 

as potential  Mpro inhibitors or modulators for managing 
COVID-19 situation by taking forward these compounds 
for expediting drug discovery research against this global 
pandemic; however, it needs to be subjected for experi-
mental validation.
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