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Allostery is a phenomenon that couples effector ligand binding at

an allosteric site to a structural and/or dynamic change at a distant

regulated site. To study an allosteric transition, we vary the size of

the allosteric site and its interactions to construct a series of energy

landscapes with pronounced minima corresponding to both the

effector bound and unbound crystal structures. We use molecular

dynamics to sample these landscapes. The degree of perturbation

by the effector, modeled by the size of the allosteric site, provides

an order parameter for allostery that allows us to determine how

microscopic motions give rise to commonly discussed macroscopic

mechanisms: (i) induced fit, (ii) population shift, and (iii) entropy

driven. Thesemechanisms involve decreasing structural differences

between the effector bound and unbound populations. A metric

(ligand-induced cooperativity) can measure how cooperatively a

given regulated site responds to effector binding and therefore

what kind of allosteric mechanism is involved. We apply the model

to three proteins with experimentally characterized transitions: (i)

calmodulin-GFP Ca2þ sensor protein, (ii) maltose binding protein,

and (iii) CSL transcription factor. Remarkably, the model is able

to reproduce allosteric motion and predict coupling in a manner

consistent with experiment.

frustration ∣ Gō model ∣ dynamically driven

Allostery involves coupled motion of a functionally important
regulated site to effector binding at a distant allosteric site

(1). Allostery is important, for example, in the regulation of bio-
logical pathways, drug induced inhibition, and protein biosensors.
Hemoglobin was one of the first identified allosteric systems (2,
3). Researchers discovered that oxygen binds hemoglobin’s four
subunits cooperatively, and consequently allostery was thought
for many years to occur solely in systems with symmetric quatern-
ary structures. Later, proteins with only single subunits, such as
myoglobin (4), were also shown to demonstrate allostery (4).

Allostery is a special case of protein dynamics. Protein dyna-
mics, including protein folding and binding, has been well de-
scribed using an energy landscape perspective (5). An energy land-
scape describes relative stabilities of all conformations as well as
the barriers that separate them (6, 7). Any unique chemical species
has a specific landscape that spans all the degrees of freedom of
the system. A minor chemical perturbation will change the land-
scape and can give rise to dramatic changes in the relative stabi-
lities of the conformations. Myoglobin, for instance, can exist in a
ligand bound or ligand unbound form (4), and cytochrome c can
exist in distinct states due to ionization of amino acid side chains in
solvents with varying pH (8). Allostery is yet another example of a
small chemical perturbation, one that results in potentially large
structural and dynamic changes at a distant regulated site in re-
sponse to binding of a ligand at an allosteric site.

To describe allostery, we draw a landscape for the effector
bound and unbound states (Fig. 1). For both landscapes, the
configurations of the protein are assigned to open and closed
substates, depending on the configuration of the regulated site.
An open substate occurs if the regulated site configuration is
closer to that in the effector unbound crystal structure than to

that of the effector bound crystal structure; a substate is closed
otherwise. Three commonly discussed “macroscopic” mechanisms
can be defined by the relative stabilities between the open and
closed substates, the barriers between the substates, and the struc-
tural difference between the substates. The induced fit mechanism
results when there is a significant energy difference between the
open and closed substates and/or large barriers between them;
the large energy change is associated with a significant effector-
induced structural transition (Fig. 1A). A population shift mechan-
ism results when the energy difference between the open and
closed substates is small compared to the ligand binding energy,
resulting in a shift of the population triggered by effector binding
(Fig. 1B). An entropy (or dynamically) driven mechanism occurs
when there is not a significant change of structure upon effector
binding, but there is an exchange of entropy between local regions
of the protein (9) (Fig. 1C).

Experimental studies of allostery frequently focus on deter-
mining the residues that propagate the allosteric signal (i.e., the
allosteric network) (10, 11). Most approaches to mapping an
allosteric network rely on introducing point mutations into the
studied system (12). Even a single mutation, however, can have
multiple effects on protein structure and/or stability, thus causing
difficulty when interpreting these experiments in terms of an
allosteric network. For instance, mutation of a residue that is not
part of the allosteric network can stabilize regions of the energy
landscape that forbid effector binding, thereby decreasing the
observed effect at the regulated site (Fig. 1). In such a case, the
site may be assigned as part of the allosteric network even though
the residue does not play a role in transmitting the allosteric sig-
nal. Theoretical analysis and simulation methods are often used
to construct detailed models of allostery for systems of known
structure (13–16). Computational approaches, such as elastic net-
work models that extrapolate dynamics from a native structure,
can sometimes successfully predict motions relevant to allostery
(17). Molecular dynamics studies have been used to predict allos-
teric coupling (18, 19), but are limited to systems with relatively
small and rapid motions.

Here, we integrate an energy landscape perspective with ato-
mistically detailed comparative protein structure modeling to con-
struct a model of allostery. The model can sample the conforma-
tional transitions sufficiently well to accurately link microscopic
motions to macroscopic allosteric phenomena. In particular, the
model is able to reproduce allosteric motion and predict coupling
in a manner consistent with experiment for three allosteric proteins.
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Results and Discussion
The model is defined by pairs of potential energy functions
(i.e., energy landscapes) corresponding to the effector bound
and unbound states. Each landscape has pronounced minima cor-
responding to the effector bound and unbound crystal structures
and can therefore be described as a dual structure-based/dual
Gō model (20, 21). Our landscapes are smooth because they lack
ruggedness from interactions that must be formed and broken as
the protein switches from one substate to another. Despite having
only two basins, the model allows structural permutations that
can result in many conformations of similar energy. The land-
scapes are sampled by molecular dynamics, allowing us to map
the interconversion between the allosteric substates (Fig. S1).
Similar models are commonly used to study long timescale pro-
cesses, such as protein folding (20, 22, 23). More recently, they
have also been applied to study ligand binding (21).

For a given protein, the allostery model defines several effector
bound and unbound landscapes that differ by the size of the
allosteric site. Varying the size of the allosteric site mimics the
ligand binding reaction in a manner related to capillarity growth
in protein folding (24). The energy function that defines each
landscape is a sum of nonbonded distance terms that control
the attractive interactions between atoms and bonded terms that
maintain proper stereochemistry. The nonbonded distance terms
determine the efficient sampling of the allosteric transition and
vary with the size of the allosteric site. The allosteric site, defined
as residues within a radius of the effector ligand (rAS), involves
pairwise atomic interactions with a single energy minima corre-
sponding to distances in either the bound or unbound crystal
structure (Fig. 2A). The remaining interactions between atoms
have two energetically equivalent minima corresponding to dis-
tances from both crystal structures (Fig. S2). Varying rAS changes
how the distance energy is distributed across the structure, there-
by driving the simulation to sample different regions of the con-
formational space relevant to the allosteric transition. An order
parameter for allostery is obtained by changing rAS while restrain-
ing the allosteric site first to the unbound and then to the bound
structure. In other words, changing rAS allows interpolation be-
tween the effector bound and unbound landscapes (Fig. 1).

The robustness and accuracy of the model is assessed by vary-
ing the parameters. The depth and width of the attractive, non-
bonded distance interaction was parameterized to reproduce
folding temperatures (SI Text). The depth of the distance inter-
action was chosen to be 2 to 3 times the energy required to rotate

a backbone dihedral angle, which allows the protein to intercon-
vert between allosteric states. The width of the distance interac-
tion is small to strongly restrain atoms in the backbone, but is
given systematically larger values for interactions involving side
chains and for interactions involving residues whose atoms are
not determined in the crystal structures. We varied a number
of parameters within a wide range, without affecting our conclu-
sions based on the simulations; the absolute rates of motions
within the simulation change but the relative rates of motions re-
main similar (Fig. 3 and Fig. S3). Monitoring the variability of
results as a function of rAS, which provides an order parameter
for allostery, allows an estimate for how well each landscape is
sampled.

Constant temperature molecular dynamics (300 K) is used to
sample the landscapes. The trajectories are then analyzed using
local structural measures that reference the crystal structures.
For example, QIdiff is a residue-specific, pairwise distance simi-
larity metric that is positive if a residue’s configuration is close to
the effector bound substate and is negative if the configuration is
close to the effector unbound substate. The metric provides a
microscopic view of the structural distributions in the effector
bound and unbound states. We use these microscopic structural
measures to differentiate macroscopic allosteric mechanisms.
The model can therefore be used to predict what residues are
responsible for transmitting the signal between the allosteric
and regulated sites (i.e., the allosteric network).

Cooperative Allostery in CaGFP and Maltose Binding Protein (MBP).

CaGFP is composed of two proteins, neither protein allosteric in-
dependently, in which a fluorescent GFP domain is inserted into
the sequence of a calcium-binding calmodulin domain (Fig. 2B).
Four calcium ions act as effector ligands that induce a partial fold-
ing transition in the calmodulin domain, which is mostly unstruc-
tured in the apo crystal structure (25). The calmodulin domain
forms a well-packed interface with GFP and protects the fluoro-
phore from solvent exposure, increasing fluorescence when cal-
cium is bound. The simulations similarly indicate that the calmo-
dulin domain forms a well-structured interface with GFP if the
calcium is bound.QIdiff , which monitors the local structure around
the fluorophore, shows that the calcium bound conformations
in the simulation are consistent with the crystal structure of the
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Fig. 1. General landscapes of allostery. In an approximation, energy land-
scapes can be projected onto an “order parameter” that separates conforma-
tions of the system based on the structure of the regulated site. There are
two landscapes pertaining to the effector bound (E þ Eeffector) and unbound
(E) states. Within each state there is an open substate, which occurs if the
regulated site configuration is closer to that in the effector unbound crystal
structure than to that of the effector bound crystal structure, and a closed
substate, which occurs otherwise. The horizontal lines indicate different
populated structures in each basin. Different proteins may have dissimilar
landscapes, in terms of the relative heights of the barriers and basins as well
as the entropy within each basin. There are three general scenarios: (A) in-
duced fit, (B) population shift, and (C) entropy driven. For allosteric proteins,
conformations not consistent with effector binding (left of the dashed line)
must be less stable than bound conformations (right of the dashed line).

A

B
C

Fig. 2. Allosteric and regulated sites. The crystal structures for (A) CaGFP,
(B) MBP, and (C) CSL. The parts of the effector bound and unbound structures
that differ from each other are shown in red and yellow, respectively. The
effector ligand is shown in black. A radius around the effector ligand
(rAS) defines the allosteric site (green). The regulated region is shown in blue.
Also shown for each structure are the distance(s) between the regulated and
allosteric sites, the Cα rmsd between the bound and unbound crystal struc-
tures, and the similarity measure ΔQ between the bound and unbound crys-
tal structures. The regulated site for CaGFP is a stretch of the sequence
responsible for fluorescence (residues 219–226).
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fluorescent protein (Fig. 3A). The simulated calcium unbound con-
formations are similar to the crystal structure of the nonfluorescent
protein. Thus, the simulations for CaGFP nontrivially reproduce
the structure of the regulated site based on the structure of the
allosteric site, even though the allosteric signal is transmitted over
a rather long distance (34 Å).

Allostery in MBP involves more subtle motions than the partial
folding transition of CaGFP. Crystal structures as well as residual
dipolar coupling measurements suggest that maltose binding
coincides with a closed hinge between two domains (26). In the
absence of maltose, the domains themselves are similar to the
holo structure but the interdomain hinge is fully open. Paramag-
netic NMR measurements in the absence of maltose suggest the
presence of a minor species (5–10%), corresponding to a partially
closed configuration that is in rapid equilibrium with the fully
open species (27). The allostery model predicts that the most
populated component in the bound and unbound simulations
is similar to the bound and unbound crystal structures, respectively
(Fig. 3B). The simulations of the apo structure also indicate tran-
sient fluctuations to a partially closed configuration (Fig. S1C), in
agreement with experiment. This transient intermediate may aid
the allosteric transition because it allows partial formation of
the effector binding site.

The simulations also agree with experiment on the residue
level. We define residues coupled to the effector binding as those
whose local structure and/or dynamics are sensitive to effector
binding, based on a comparison of the populations for the effector
bound and unbound states. Computationally, we predict coupled
residues by assessing the local structural differenceQIdiff between
the bound and unbound crystal structures (Fig. 3E). As the size of
the allosteric site (rAS) is increased in the simulation, the effector
bound and unbound landscapes become more dissimilar, resulting
in structural and dynamic changes for a subset of residues. These
coupled residues will have different QIdiff distributions for the
effector bound and unbound simulations. Experimentally, coupled
residues are inferred from mutation experiments. As coupled
residues are influenced by effector binding, a perturbation of a

coupled site can, but does not necessarily, affect the effector bind-
ing site. Coupled residues in MBP are thus inferred by monitoring
the effector binding affinity with and without mutation
(j logðK wt

d ∕Kmut
d Þj). In agreement with the experiment, simulations

suggest that residues 233, 95, and 92 are coupled and residues 98,
329, and 100 are less coupled (10). Given that residue 329 is rather
close to the allosteric site, the coupling is not simply related to the
residue distance to the effector binding site. The mutation sites
were chosen because their local environments are different in
the bound and unbound crystal structures, yet not all residues
are allosterically linked to maltose binding. Protein motions ob-
served in the simulation, not obvious upon inspection of the static
structures, are therefore needed to rationalize allostery in this case
(Fig. S4).

Entropy-Driven Allostery in CSL.CSL is a DNA binding protein that
is part of a large transcription complex. Studies have shown that
binding of a peptide at the allosteric site results in docking of
a helical protein over 40-Å away. Crystal structures of CSL de-
monstrate that a protruding loop at the regulated site inhibits
docking of the helical protein in the effector unbound conforma-
tion (28). The global structural differences between the two
allosteric structures are small compared to those in CaGFP and
MBP (Fig. 2). The simulations likewise show only subtle changes
in the dynamics upon effector binding. The effector peptide binds
and causes folding of a loop, likely producing a significant entropy
decrease that can drive allostery through regions that are nearly
identical in the effector bound and unbound crystal structures.
Consistent with experimental results, the loop at the regulated
site is approximately three times more likely to protrude in the
effector unbound simulations compared to the effector bound
simulations (Fig. 3C).

The simulation results for CSL are consistent with entropy-
driven allostery. The mechanism of entropy-driven allostery has
been proposed based on molecular dynamics simulations and ex-
perimental evidence for systems other than CSL (29, 30). A key
feature of this type of allostery is that the structure of the two
allosteric substates is almost the same, although the dynamics are
different. Allosteric signaling consequently occurs due to changes
in the entropy of local regions triggered by effector binding.

Three pieces of evidence are consistent with the highly dyna-
mical behavior of CSL. First, the CSL complex has been observed
to be highly dynamic due to rather weak association of the do-
mains that are sometimes unstructured in crystallographic elec-
tron density maps (31). Second, the dynamic behavior of CSL is
evident because binding of an ankyrin-repeat protein to a third
site on CSL allows binding at the regulated site, thereby eliminat-
ing the need for effector binding (28). Third, the allostery model
predicts that effector binding allows docking at the regulated site
loop of CSL by decreasing the rapid interconversion between pro-
truding and nonprotruding conformations.

Other allosteric mechanisms for CSL, although not directly
supported by experimental evidence, may be possible in a differ-
ent variation of the model. A small structural difference between
the two loop structures makes it difficult to estimate their relative
stabilities by our model. Indeed, in a study of systems related to
CSL, accuracy was improved by including more finely detailed
energy functions (21). Further difficulties to predict the dynamics
of loop structures arise because conformational ensembles at bio-
logical temperatures can vary significantly from low temperature
crystal structures (20, 32).

Predicting Microscopic Details of Allosteric Motions. Analysis of
correlated motions from simulation trajectories suggests how dy-
namic signals are transmitted through proteins. Examples include
analyses of covariance matrices of atomic positions and energy
contributions by subregions of the protein (18, 33). Here, we in-
troduce a simple method to analyze simulations in which the sys-

A B C

D E F

Fig. 3. Coupling of distant sites. (A–C) The probability distributions of QIdiff
for the regulated sites corresponding to a large rAS (approximately half the
distance between allosteric and regulated sites) for the effector bound (red,
QIdiff > 0) and effector unbound (green, QIdiff < 0) simulations. (D–F) The
Poverlap (overlapping area between the distributions) is shown as a function
of rAS, normalized by the distance between each regulated site and the al-
losteric site. The regulated sites experimentally demonstrated to be highly
coupled to effector binding in solution are shown as lines with closed circles
and other sites are shown as lines with open squares. Error bars represent the
standard deviation calculated by randomly dividing the set of simulations
into thirds.
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tem interconverts between two states of interest, which we call
pseudocorrelation (Materials and Methods). All residues are clas-
sified usingQIdiff , in a binary fashion, as being in one or the other
allosteric substate. By analyzing the simulated structural ensem-
ble, we can estimate the likelihood that a residue i will be in a
certain substate given the substate of another residue j. A pseu-
docorrelation map [i.e., PCðj; iÞ] (Fig. 4) shows that only some of
the contacts in CSL participate in transmitting the allosteric sig-
nal, which involves regions far apart in sequence. The regulated
site loop (residues 295–299) moves in a cooperative manner and
is well correlated with several other regions of the protein.

Pseudocorrelation can be used to predict the residues involved
in the allosteric network. By identifying residues correlated with
the regulated site, we can determine what regions help transmit
the allosteric signal distant from the effector binding site (Fig. 5
and Table S1). The allosteric signal in CSL propagates through
loop structures in the most direct path between the allosteric
and regulated sites (Fig. 5C). In contrast, rather than transmitting
a signal from the allosteric site to the regulated site in a linear
path, the allosteric network for MBP is scattered across the inter-
face of the domains (Fig. 5B). Both CSL and MBP have a small
number of residues in the allosteric network as compared to
CaGFP, which involves many residues at the interface between
the two domains (Fig. 5A).

To support our model of allostery, we compare the simulation
results to a mutational study of CaGFP designed to improve its
calcium sensing functionality. Nineteen mutations were made at
nine sites with the aim to increase the fluorescence change trig-
gered by calcium binding (25) (Table S1). Three mutated sites
showed the desired increase in the calcium-induced change of
fluorescence (residues 116, 303, and 381); three other sites led to
a decrease in the change of fluorescence (residues 120, 140, and
380). Of these six coupled sites, four are predicted to be highly
correlated to the fluorophore structure, including two that in-
crease fluorescence (Table S2). Of the three sites that are
demonstrated not to be allosterically coupled (residues 81, 219,
and 377), two are predicted not to be correlated with the fluor-
ophore environment (Table S2). We correctly predict the allos-
teric role for six out of the nine residues, suggesting that our
allostery model may aid the design of allostery into a given pro-
tein structure.

The pseudocorrelation map also qualitatively agrees with
coupling inferred from MBP mutation experiments. The value
of PC tþ(regulated site, allosteric site) for different regulated site
residues can be compared to the observed coupling value from
mutation experiments (j logðK wt

d ∕Kmut
d Þj). Highly coupled resi-

dues 233, 95, and 92 have coupling values of 0.8, 0.5, and 0.4
and PC tþ values of 1.6, 0.6, and 1.4, respectively. Residues 98,
100, and 329 that are not well coupled have coupling values of
0.2, 0.1, and 0.1 and PC tþ values of 0.4, 0.2, and 0.3, respectively.
Therefore, there is indeed a strong correlation between the ob-
served coupling values and the predicted pseudocorrelation
(Fig. S4).

Ligand-Induced Cooperativity.Allostery requires an effector ligand
to stabilize interactions in the closed substate over those in
the open substate, yet the open substate must be accessible for
binding. Because most allosteric transitions involve well-folded
structures, the average energy and entropy are similar in both
substates, likely not differing more than a few kBT. In such a case,
the allostery model suggests that the effector shifts the distribu-
tion of local energies and entropies for many residues (ligand-in-
duced cooperativity), although not necessarily changing the total
energy and entropy significantly. These ligand-induced motions
involve only a small subset of the total degrees of freedom
and are therefore distinct from cooperativity related to folding.
In contrast, large changes in total energy and entropy can occur if
the allosteric mechanism involves a partial folding/unfolding
transition, such as for CaGFP.

To study allosteric mechanisms further, we introduce a metric
to quantify ligand-induced cooperativity (LIC). The metric is
useful because allosteric mechanisms can be distinguished using
LIC values more accurately than evaluation of static crystal struc-
tures. Effector bound and unbound crystal structures may contain
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Fig. 4. Pseudocorrelation map. A pseudocorrelation map [PC t−ðj; iÞ] for the
allosteric site (AS), regulated site (RS), and C-terminal (CT) domains of CSL is
obtained by assigning all residues (or subsets of residues) into the effector
bound or effector unbound substate using QIdiff. (Upper) The row corre-
sponding to the regulated site, for PCt−(297, i). A–C represent pseudocorre-
lations of single domains: Qdiff (RS), Qdiff (AS), and Qdiff(CT), respectively. D
and E represent pseudocorrelations for contacts at the interface between
domains, QIdiff(AS to RS) and QIdiff (CT to RS), respectively.

Fig. 5. Allosteric networks. The allosteric networks are shown for (A) CaGFP,
(B) MBP, and (C) CSL. Residues are colored red when in contact and well cor-
related with the regulated site (labeled with arrows). A residue is considered
correlated if PCtþ(regulated site, i) has a value greater than two standard
deviations above the mean PCtþ (Z score > 2). Residues colored orange
and yellow are in contact and well correlated with red and orange residues,
respectively. The remaining residues are either colored green if they are in
the allosteric site (within the rAS radius) or blue if they are in the regulated
region.
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structural differences that are random and not induced by the
ligand. LIC is large if a residue’s local environment differs signif-
icantly between the effector bound and unbound simulations
(small Poverlap of QIdiff in Fig. 3). Monitoring the coupling of re-
sidues along an order parameter for allostery, from low to high
rAS, provides a measure of ligand-induced cooperativity:
LIC ¼ 1∕N∑N

i log½ðPoverlapÞ
low rAS

i ∕ðPoverlapÞ
high rAS

i �, where N is
either the total number of residues in the protein or one (corre-
sponding to a single residue), a low rAS is defined as the smallest
radius sampled (typically 5 Å), and a high rAS is the value that
spans approximately half the distance to the regulated site. LIC,
in whichN is the protein length, estimates the fraction of residues
that participate in the allosteric transition. Note that LIC ranks
CSL lower than MBP and CaGFP, whereas ΔQ and rmsd do not.

Allosteric mechanisms cannot be determined by a single LIC
calculation because several sites on the same protein may be
coupled to the allosteric site to drastically different degrees. An
allosteric mechanism is therefore a function of the LIC over the
whole protein and the LIC calculated for a single residue in the
regulated site (Fig. 6A). The lines in Fig. 6A do not indicate a
sharp transition between two allosteric mechanisms. We are una-
ware of any evidence to suggest a sharp boundary; rather, the
transition between allosteric mechanisms is likely to be continu-
ous. For the induced fit mechanism, there is a significant amount
of structural change triggered by effector binding and therefore
high LIC for most residues. Highly cooperative motions imply
that many spatially distributed residues are in the allosteric net-
work that links the allosteric site to the regulated site (Fig. 6B).
For the entropy-driven mechanism, the protein does not signifi-
cantly change in structure. The allosteric network is therefore
small and can be very dispersed because the motions that transmit
the allosteric signal are minimal (Fig. 6D). The population shift
mechanism is between these two extremes. To the right of the
dotted line in Fig. 6A, effector binding induces cooperative allos-
teric transitions between two substates with similar stabilities,
not much unlike induced fit (Fig. 6C). The allosteric network
is smaller for proteins toward the left in the diagram because
residues in the structure have low ligand-induced cooperativity.
The allosteric network involved with a moderately cooperative
population shift is likely dispersed and may involve a small num-
ber of residues. LIC therefore helps to describe how microscopic

structural distributions are connected to macroscopic allosteric
mechanisms.

Allosteric Mechanisms. An interesting question to consider is how
often natural proteins exhibit each of these allosteric mechan-
isms. All of the discussed allosteric mechanisms appear to be ro-
bust to mutation (34). A highly cooperative allosteric mechanism
with a large allosteric network can easily tolerate individual mu-
tations without significantly affecting function. A less cooperative
allosteric mechanism can tolerate individual mutations if there
are many independent pathways that allow allosteric communi-
cation, provided that hindering one pathway by mutation triggers
compensation by another pathway. It is conceivable that an en-
tropy-driven mechanism can evolve rather easily by mutation be-
cause few residues are in the allosteric network. Entropy-driven
allostery can serve as an evolutionary bridge between a nonallos-
teric sequence and a highly cooperative and robust induced fit
mechanism. The issue is further complicated because a protein’s
allosteric mechanism may be affected by the solvent conditions
because of solvent-induced traps in the energy landscape (i.e.,
chemical frustration), which can drastically affect structure and
dynamics (35).

We proposed a description of the energy landscape for pro-
teins as well as a tool that can accurately link microscopic motions
to macroscopic allosteric phenomenon. The energy landscape is
defined by two known allosteric states of a protein. Despite its
simplicity, the model successfully predicts the relative changes
in structure and dynamics that occur due to effector binding in
three rather different proteins. These landscapes are not domi-
nated by specific, high-energy interactions and therefore require
local regions of the protein move concertedly. The model suggests
how these cooperative motions are connected to macroscopic al-
losteric mechanisms in terms of ligand-induced cooperativity me-
trics. The model is also able to predict the role of specific residues
in allosteric coupling, which is not attainable by casual observation
of the crystal structures alone. The model may therefore aid in the
rational design of allosteric proteins.

Materials and Methods
Allostery Model. In our allostery model, a landscape is given by a potential
energy function that is a sum of bonded and nonbonded terms implemented
using MODELLER (36): Ei ¼ Ebonded þ Enonbonded (SI Text). Correct stereochem-
istry is achieved by the same terms MODELLER uses for standard comparative
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modeling: Ebonded ¼ Ebond þ Eangle þ Edihedral þ Eimproper dihedral. To induce
allostery, we add a truncated Gaussian distance term to the soft-sphere atom
overlap term, to obtain total nonbonded energy: Enonbonded ¼ Esoft sphereþ

Edistance. This distance term is given by a sum over all heavy atom pairs more
than two residues apart in sequence and less than 11-Å apart in distance. The
energy function for a single atom pair has one or two minima depending on
the distance to the effector, rAS (Fig. S2). For interactions less than rAS from
the effector, the function has one energetic minimum corresponding to the
distance in either the effector bound or unbound structure. For all other in-
teractions, the function has twominima corresponding to the distances in the
bound and unbound structures.

Molecular dynamics simulations are used to sample many landscapes (Ei)
for each protein, including the effector bound and unbound landscapes with
different rAS. Thirty simulations were run for each landscape. The system is
first equilibrated and then simulated for 6 ns using 3 fs time steps and velocity
rescaling every 200 steps.

Structural Analysis. We compare structures from simulations to crystal struc-
tures using pairwise distance similarity scores (5, 21). For a given structure, an
overall fold similarity to any other structure t is given by Qt, reflecting the
fraction of similar contacts (SI Text). To determine if a simulated structure is
more similar to the effector bound (tþ) or the effector unbound (t−) crystal

structures, we calculate Qdiff ¼ ðQtþ −Qt−Þ∕ð1 − ΔQÞ where ΔQ is the struc-
tural similarity (Qt) between the two allosteric crystal structures. Restricting
the calculation to a subset of contacts, such as QdiffðXÞ, results in a score for
region X. Also, QIdiffðXÞ refers to a score of the interface between X and the
remaining protein and QIdiffðX toYÞ refers to a score of the interface be-
tween X and Y .

Pseudocorrelation maps are used to determine which subsets of residues
have correlated motions (Fig. 4 and Fig. S5). We first analyze the simulation
trajectories, for all values or rAS, and classify residues or their subsets into the
effector bound or unbound substate using QIdiff. Pseudocorrelation is deter-
mined using the log odds ratio of the probability that a residue (or subset of
residues) j is in the effector unbound substate (t−) if another residue (or sub-
set) i is also in substate t−, given by Pðj is t − ji is t−Þ, to the probability given
by Pðj is t − ji is tþÞ. This expression gives a likelihood that j will be affected
by the substate of i : PCt−ðj; iÞ ¼ log½Pðj is t − ji is t−Þ∕Pðj is t − ji is tþÞ�.
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