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ARTICLE

Structure-based protein function prediction using
graph convolutional networks
Vladimir Gligorijević 1✉, P. Douglas Renfrew1, Tomasz Kosciolek 2,3, Julia Koehler Leman 1,

Daniel Berenberg1,4, Tommi Vatanen 5,6, Chris Chandler1, Bryn C. Taylor7, Ian M. Fisk8, Hera Vlamakis 5,

Ramnik J. Xavier 5,9,10,11, Rob Knight 2,12,13, Kyunghyun Cho14,15 & Richard Bonneau 1,4,14,16✉

The rapid increase in the number of proteins in sequence databases and the diversity of their

functions challenge computational approaches for automated function prediction. Here, we

introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by

leveraging sequence features extracted from a protein language model and protein struc-

tures. It outperforms current leading methods and sequence-based Convolutional Neural

Networks and scales to the size of current sequence repositories. Augmenting the training set

of experimental structures with homology models allows us to significantly expand the

number of predictable functions. DeepFRI has significant de-noising capability, with only a

minor drop in performance when experimental structures are replaced by protein models.

Class activation mapping allows function predictions at an unprecedented resolution,

allowing site-specific annotations at the residue-level in an automated manner. We show the

utility and high performance of our method by annotating structures from the PDB and

SWISS-MODEL, making several new confident function predictions. DeepFRI is available as a

webserver at https://beta.deepfri.flatironinstitute.org/.
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P
roteins fold into 3-dimensional structures to carry out a
wide variety of functions within the cell1. Even though
many functional regions of proteins are disordered, the

majority of domains fold into specific and ordered three-
dimensional conformations2–6. In turn, the structural features
of proteins determine a wide range of functions: from binding
specificity and conferring mechanical stability, to catalysis of
biochemical reactions, transport, and signal transduction. There
are several widely used classification schemes that organize these
myriad protein functions including the Gene Ontology (GO)
Consortium7, Enzyme Commission (EC) numbers8, Kyoto
Encyclopedia of Genes and Genomes (KEGG)9, and others. For
example, GO classifies proteins into hierarchically related func-
tional classes organized into three different ontologies: Molecular
Function (MF), Biological Process (BP), and Cellular Component
(CC), to describe different aspects of protein functions.

The advent of efficient low-cost sequencing technologies and
advances in computational methods (e.g., gene prediction) have
resulted in a massive growth in the number of sequences available
in key protein sequence databases like the UniProt Knowledge-
base (UniProtKB)10. UniProt currently contains over 100 million
sequences, only about 0.5% of which are manually annotated
(UniProtKB/Swiss-Prot). Due to considerations of scale, design,
and costs of experiments to verify a function, it is safe to posit
that most proteins with unknown function (i.e., hypothetical
proteins) are unlikely to be experimentally characterized.
Understanding the functional roles and studying the mechanisms
of newly discovered proteins is one of the most important bio-
logical problems in the post-genomic era. In parallel to the
growth of sequence data, advances in experimental and compu-
tational techniques in structural biology has made the three-
dimensional structures of many proteins available11–18. The
Protein Data Bank (PDB)19, a repository of three-dimensional
structures of proteins, nucleic acids, and complex assemblies, has
experienced significant recent growth, reaching almost 170,000
entries. Large databases of comparative models such as SWISS-
MODEL also provide valuable resources for studying
structure–function relationships13,20.

To address the sequence-function gap many computational
methods have been developed with the goal to automatically
predict protein function. Further, related work is directed at
predicting function in a site- or domain-specific manner21–24.
Traditional machine learning classifiers, such as support vector
machines, random forests, and logistic regression have been
used extensively for protein function prediction. They have
established that integrative prediction schemes outperform
homology-based function transfer25,26 and that integration of
multiple gene- and protein-network features typically outperform
sequence-based features even though network features are often
incomplete or unavailable. Systematic blind prediction challenges,
such as the Critical Assessment of Functional Annotation
(CAFA127, CAFA228, and CAFA329) and MouseFunc30, are cri-
tical in the development of these methods and have shown that
integrative machine learning and statistical methods outperform
traditional sequence alignment-based methods (e.g., BLAST)26.
However, the top-performing CAFA methods typically rely
strongly on manually-engineered features constructed from either
text, sequence, biological networks, or protein structure31. In
most cases, for newly sequenced proteins, or proteins of poorly
studied organisms these features are difficult to obtain because of
limited information (e.g., no text features or biological network
available). Here, we focus on methods that take sequence and
sequence-based features (such as predicted structure) as inputs
and do not focus on, or compare to, the many methods that rely
on protein networks like GeneMANIA32, Mashup33, DeepNF34,
and other integrative network prediction methods. As a result, we

present a method applicable to hundreds of thousands of
sequences of proteins from unknown organisms, lacking the
required network data.

In the last decade, deep learning has led to unprecedented
improvements in performance of methods tackling a broad
spectrum of problems, ranging from learning protein sequence
embeddings for contact map prediction35 to predicting protein
structure36,37 and function38. In particular, convolutional neural
networks (CNN)39, the state-of-the-art in computer vision, have
shown tremendous success in addressing problems in computa-
tional biology. They have enabled task-specific feature extraction
directly from protein sequence (or the corresponding 3D struc-
ture), overcoming the limitations of standard feature-based
machine learning (ML) methods. The majority of sequence-
based protein function prediction methods use 1D CNNs, or
variations thereof, that search for recurring spatial patterns within
a given sequence and converts them hierarchically into complex
features using multiple convolutional layers. Recent work has
employed 3D CNNs to extract features from protein structural
data40,41. Although these works demonstrate the utility of struc-
tural features, storing and processing explicit 3D representations
of protein structure at high resolution is not memory efficient,
since most of the 3D space is unoccupied by protein structure. In
contrast, geometric deep learning methods42,43, and more speci-
fically graph convolutional networks (GCNs)44, overcome these
limitations by generalizing convolutional operations on more
efficient graph-like molecular representations. GCNs have shown
tremendous success in various problems ranging from learning
features for quantitative structure-activity relationship (QSAR)
models45, to predicting biochemical activity of drugs46, to pre-
dicting interfaces between pairs of proteins47.

Here, we describe a method based on GCNs for functionally
annotating proteins and detecting functional regions in proteins,
termed Deep Functional Residue Identification (DeepFRI), that
outperforms current methods and scales to the size of current
repositories of sequence information. Our model has a two-stage
architecture that takes as input a protein structure and a sequence
representation from a pre-trained, task-agnostic language model,
represented as graphs derived from amino acid interactions in the
3D structure. The model outputs probabilities for each function
(see Fig. 1) and identifies residues important for function pre-
diction by using the gradient-weighted Class Activation Map
(grad-CAM)48 approach, that we adapted for post-training ana-
lysis of GCNs. We provide several examples where we auto-
matically and correctly identify functional sites for various
functions where binding and catalytic sites are known.

Results
DeepFRI combines protein structure and pre-trained sequence
embeddings in a GCN. In the past few years, it has been shown
that features extracted from pre-trained, task-agnostic, language
models can significantly increase classification performance in
many natural language processing49 and biological problems35.
Here, we use a similar approach for extracting features from
sequences and learning protein representations. The first stage of
our method is a self-supervised language model with a recurrent
neural network architecture with long short-term memory
(LSTM-LM)50. The language model is pre-trained on a set of
protein domain sequences from the protein families database
(Pfam)51, and is used for extracting residue-level features from
PDB sequences (see Fig. 1a). The second stage is a GCN that uses
a deep architecture to propagate the residue-level features
between residues that are proximal in the structure and construct
final protein-level feature representations (see Fig. 1b).
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We train the LSTM-LM on a corpus of around 10 million
protein domain sequences from Pfam51. Our LSTM-LM is
trained to predict an amino acid residue in the context of its
position in a protein sequence (see the “Methods” section for
details). During the training of the GCN the parameters of the
LSTM-LM are fixed; i.e., the LSTM-LM stage is only used as a
sequence feature extractor. The residue-level features constructed
for sequences, together with contact maps, are used as an input
for the second stage of our method. Each layer of the graph
convolution stage takes both an adjacency matrix and the residue-
level features described above, and outputs the residue-level
features in the next layer. We explore different types of graph
convolutions, including the most widely used Kipf & Welling
graph convolutional layer (GraphConv)44, Chebyshev spectral
graph convolutions (ChebConv)52, SAmple and aggreaGatE
convolutions (SAGEConv)53, Graph Attention (GAT)54, and a
combination of different graph convolutional layers with different
propagation rules (MultiGraphConv)55. Our comparison between
different graph convolution formulations is shown in the
“Methods” section and Supplementary Fig. 1. Three layers of
MultiGraphConv or GAT often result in the best performance
across many of our experiments. The GCN protein representation
is obtained by concatenating features from all layers of this GCN
into a single feature matrix and is subsequently fed into two fully
connected layers to produce the final protein function predictions
for all terms (see “Methods” for details on GCN architecture).

We train different models to predict GO terms (one model for
each branch of the GO: molecular function, cellular component,
biological process) and EC numbers. The GO terms are selected
to have at least 50 and not more than 5000 training examples,
whereas EC numbers are selected from levels 3 and 4 of the EC
tree as they are the most specific descriptors of the enzymatic
functions. We evaluate the function prediction performance by
two measures commonly used in the CAFA challenges27 (see
“Methods”): (1) protein-centric maximum F-score (Fmax) which
measures the accuracy of assigning GO terms/EC numbers to a

protein, and is computed as a harmonic mean of the precision
and recall; and (2) term-centric area under precision-recall
(AUPR) curve, which measures the accuracy of assigning proteins
to different GO terms/EC numbers. When reporting the overall
performance of a method the AUPR and Fmax scores are averaged
over all GO terms and all proteins in the test set, respectively. To
compare different methods we also report the precision-recall
curves representing the average precision and recall at the
different values of the decision threshold t∈ [0, 1].

This architecture leads to the main advantage of our method,
that it convolves features over residues that are distant in the
primary sequence, but close to each other in the 3D space,
without having to learn these functionally relevant proximities
from the data. Such an operation, implemented here using graph
convolution, leads to better protein feature representations and
ultimately to more accurate function predictions as shown in
Supplementary Fig. 2. These results illustrate the importance of
both graph convolutions and protein language model features as
components of DeepFRI. Specifically, DeepFRI outperforms a
baseline model which only takes into account contact maps in
combination with simple one-hot sequence encoding, indicating
that the LSTM-LM features significantly boost the predictive
power compared to simplified residue feature representation.
Moreover, by comparing DeepFRI with a baseline model that
takes only language model features into account, we show the
importance of protein structures and the effect of the long-range
connections in the predictive performance of DeepFRI.

DeepFRI improves performance when protein models are
included in the training. We investigate the performance of
DeepFRI trained only on experimentally determined, high-quality
structures from the PDB. Further, to explore the possibility of
including a large number of available protein models into the
training, we examine the performance when homology models
from SWISS-MODEL are included in the training procedure.
This significantly increases the number of training samples per

Fig. 1 Schematic method overview. a LSTM language model, pre-trained on ~10 million Pfam protein sequences, used for extracting residue-level features

of PDB sequence. b Our GCN with three graph convolutional layers for learning complex structure–function relationships.
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function and reduces the imbalance between positive and nega-
tive examples. GO term and EC number annotations for PDB and
SWISS-MODEL chains are retrieved from SIFTS56 and Uni-
ProtKB/Swiss-Prot repositories, respectively. We report all our
results on a test set consisting of only experimental PDB struc-
tures with varying degrees of sequence identity to the training set.
For each annotated chain in PDB and SWISS-MODEL, we extract
its sequence and construct its Cα–Cα contact map (see “Methods”
for data collection and pre-processing). We systematically explore
the effect of different Cα–Cα distance thresholds and different
types of contact maps on the predictive power of DeepFRI (see
Supplementary Fig. 3). We further explore different structure
prediction methods for both training and prediction of newly
observed sequences and find that using models from SWISS-
MODEL during training greatly improves model comprehension
and accuracy.

First, we explore how DeepFRI trained on PDB structures
tolerates modeling errors, by comparing its performance on
models obtained from SWISS-MODEL13 and other de novo
structure prediction protocols (see Figs. 2a, d). We extract the
sequences from about 700 experimentally annotated PDB chains
(we refer to this dataset as PDB700), carry out structure
prediction using both the Rosetta macro-molecular modeling

suite57 and the contact predictor DMPfold12, and obtain the
lowest energy model for each chain and method (see “Methods”
section). We construct two kinds of Cα–Cα contact maps for each
PDB chain—one from its experimental (i.e., NATIVE) structure
and one from the lowest-energy (i.e., LE) model. DeepFRI
exhibits higher performance (with Fmax= 0.657/0.633/0.619 for
native structures and models from DMPFold and Rosetta,
respectively) than that of the CNN-based method DeepGO
(Fmax= 0.525) even when accounting for errors in predicted
contact maps (Fig. 2a). To further test the robustness in
predicting GO terms with degrading quality of predicted models,
we compute the Fmax score on a set of Rosetta models with
different template modeling scores (TM-scores)58 and compare
them to the results from the sequence-only CNN model (see
Fig. 2b). Specifically, for each sequence in the PDB700 dataset, we
obtain 1500 Rosetta models with different TM-scores computed
against their corresponding native structure. Even for low TM-
scores we obtain better performance in GO term classification
than the sequence-only CNN-based method (Fig. 2c). For
example, Fig. 2c shows the output of DeepFRI with varying
quality (TM-score) of Rosetta models of rat intestinal lipid-
binding apoprotein (PDB id: 1IFC). For models with TM-scores
>0.58, DeepFRI correctly predicts four GO terms including lipid

Fig. 2 Performance of DeepFRI in predicting MF-GO terms of experimental structures and protein models. a Precision-recall curves showing the

performance of DeepFRI on ~700 protein contact maps (PDB700 dataset) from NATIVE PDB structures (CMAP_NATIVE, black), their corresponding

Rosetta-predicted lowest energy (LE) models (CMAP-Rosetta_LE, orange) and DMPfold lowest energy (LE) models (CMAP-DMPFold_LE, red), in

comparison to the sequence-only CNN-based method (SEQUENCE, blue). All DeepFRI models are trained only on experimental PDB structures.

b Distribution of protein-centric Fmax score over 1500 different Rosetta models from the PDB700 dataset grouped by their TM-score computed against the

native structures. Data are represented as boxplots with the center line representing the median, upper and lower edges of the boxes representing the

interquartile range, and whiskers representing the data range (0.5 × interquartile range). c An example of DeepFRI predictions for Rosetta models of a lipid-

binding protein (PDB id: 1IFC) with different TM-scores computed against its native structure. The DeepFRI output score >0.5 is considered as a significant

prediction. Precision-recall curves showing the: d performance of our method, trained only on PDB experimental structures, and evaluated on homology

models from SWISS-MODEL (red), in comparison to the CNN-based method (DeepGO) trained only on PDB sequences, and BLAST baselines are shown in

blue and gray, respectively; e performance of DeepFRI trained on PDB (blue), SWISS-MODEL (orange) and both PDB and SWISS-MODEL (red) structures

in comparison to the BLAST baseline (gray). The dot on the curve indicates where the maximum F-score is achieved (the perfect prediction should have

Fmax= 1 at the top right corner of the plot).
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binding (GO:0008289), whereas for a TM-score >0.73, DeepFRI
correctly predicts even more specific function (i.e., fatty acid
binding, GO:0005504, a child term of lipid binding). Here, we
consider DeepFRI scores above 0.5 to be significant.

Even though Rosetta models often result in noisy contact maps,
the performance of our method on the lowest energy models is
not drastically impaired (Fig. 2a), which is due to the high
denoising ability of the GCN implied by a high correlation
between GCN features extracted from NATIVE and LE contact
maps (see Supplementary Fig. 4). Moreover, the high tolerance
for predicting functions from low-quality models is due to
powerful language model features, which the model is mainly
relying on when making those predictions.

Second, we examine the inclusion of homology models into the
DeepFRI training procedure. A large number of diverse structures
in the training set is an important prerequisite for more accurate
and robust performance of our deep learning-based method. To
this end, we combine ~30 k non-redundant experimental
structures from the PDB and ~220 k non-redundant homology
models from the SWISS-MODEL repository. Inclusion of SWISS-
MODEL models not only results in more training examples and
consequently in more accurate performance (Fmax= 0.455/0.545
on structures from the PDB/PDB & SWISS-MODEL, see Fig. 2e),
but it also results in a larger GO term coverage, especially in the
number of very specific, rarely-occurring GO terms (information
content, IC >10; Supplementary Fig. 5). Comparing the
performance of our model with the CNN-based method,
DeepGO38 that operates only on sequences, and the BLAST
baseline, we observe that our method benefits greatly from
homology models (Fig. 2e).

DeepFRI outperforms other state-of-the-art methods. To
compare the performance of our method with previously pub-
lished methods, we use a test set of PDB chains with experi-
mentally confirmed functional annotations, comprising of subsets
of PDB chains with varying degrees of sequence identity to the
training set. We compare our method to two sequence-based
annotation transfer methods (i.e., BLAST27 and FunFams24), one
state-of-the-art deep learning method (DeepGO38), and one
feature engineering-based machine learning method (FFPred31).
CAFA challenges commonly use the BLAST baseline, in which
every test sequence receives GO terms that are transferred from
the sequence in the training set with the score being the pairwise
sequence identity. FunFams is one of the top-performing meth-
ods in CAFA challenges in which test sequences are scanned
against a library of HMMs of CATH superfamilies. A test
sequence is first mapped to a most likely FunFam (i.e., with the
highest HMM score); then GO terms and EC numbers of that
FunFam are transferred to the test sequence. The confidence
score for each predicted GO term is computed as the annotation
frequency of that GO term among the seed sequences of the
FunFam24. DeepGO is a state-of-the-art CNN-based method
trained on the same number of protein sequences as DeepFRI.
DeepGO uses 1D convolution layers with varying sizes of con-
volutional filters to extract hierarchical features from the protein
sequences (see “Methods” for the architecture details).

The performance of our method in comparison to state-of-the-
art and baseline methods is shown in Fig. 3. In terms of both
protein-centric Fmax, our method outperforms other methods on
MF- and BP-GO terms (Fig. 3a, e). Moreover, DeepFRI learns
general structure–function relationships more robustly than other
methods by predicting MF-GO terms of proteins with low
sequence identity to the training set. To investigate this, we
partitioned our test set into groups based on maximum sequence
identity to the training set and computed the protein-centric Fmax

score within each group (Fig. 3b). DeepFRI robustly predicts MF-
GO terms of proteins with ≤30% sequence identity to the training
set (with a median Fmax= 0.545 compared to a median of Fmax=

0.514 for FunFams and Fmax= 0.491 for DeepGO), and outper-
forms both FunFams and DeepGO at other sequence identity
cutoffs. Even though DeepFRI achieves somewhat higher
precision in low recall region in predicting EC numbers at 30%
sequence identity (see Fig. 3c), FunFams outperforms both
DeepFRI and DeepGO with the higher Fmax score across different
sequence identity thresholds (Fig. 3c, d); This is especially the case
for PDB chains in our test set from underrepresented protein
families. However, this not the case for PDB chains belonging to
protein families well represented in our training set, on which
DeepFRI outperforms or has a comparable performance to
FunFams (see Supplementary Fig. 19). DeepFRI outperforms the
sequence-only CNN (DeepGO) and the BLAST baseline for more
specific MF-GO terms (IC > 5) with fewer training examples (see
Fig. 3f). In addition to testing the robustness of DeepFRI in
case when a certain level of homology relationships between the
training and the test set is allowed (Fig. 3b, d), we also test its
robustness when the test set is comprised of non-homologous
PDB chains. That is, the PDB chains belonging to protein families
(i.e., Pfam51 IDs) and structural/fold classes (i.e., CATH4 IDs)
different than the ones in the training set. To do this we remove
PDB chains belonging to 23 largest protein families covering 3224
PDB chains from our training set, train the model on the rest, and
report the results on the held our (i.e., unseen) Pfams. See
Supplementary Fig. 21 for the performance results and the list of
Pfam IDs in the test set. Similarly, we perform another train/test
split by composing a test set of PDB chains associated with the 4
most common (and largest in our set of) folds obtained from
CATH database: TIM barrel, Immunoglobulin-like, Jelly Rolls
and Alpha-Beta plaits, covering in total 4759 PDB chains. We
trained the model on the rest of the PDB chains, covering other
structural/fold classes, and report the performance results on the
test set (see Supplementary Fig. 22). In the first case, we observe
higher performance of DeepFRI (Fmax= 0.6) than in the second
case (Fmax < 0.3 across all 4 CATH folds), which can be explained
by the fact that DeepFRI’s LM, pre-trained on the entire Pfam
database, is helping the model generalize well on the unseen
Pfams. Thus, the second case is a much more reliable setting for
testing the robustness of DeepFRI. In the second case, a much
lower performance of DeepFRI is observed, indicating the
difficulty of DeepFRI to generalize well on the unseen fold
classes. However, it can still generalize its performance on these
folds better than sequence-based DeepGO and BLAST baseline
indicated by the higher value of Fmax score (Supplementary
Fig. 22).

It is important to note that different methods encompass
different subsets of the GO-term vocabulary and that a key
advantage of using comparative models (for instance from SWISS-
MODEL) in training is the increase in the size of the vocabulary
encompassed by our method. Comparison to the standard feature
engineering-based, SVM-based method FFPred, is shown in
Supplementary Fig. 6. Given that FFPred is limited in the number
of GO terms for which it makes predictions (131 MF-GO, 379 BP-
GO, and 76 CC-GO on our test set), and also it cannot predict EC
numbers, we only show the result averaged over a subset of GO
terms common to all methods. Moreover, different methods have
different coverages, i.e., the number of proteins in our test set for
which they make predictions (see legend in Fig. 3a–d). For
example, FunFams is not able to predict MF-GO terms/EC
numbers for 28%/14% of proteins in our test set (the total
coverage for the entire test set is shown in legends in Fig. 3b, d).

We explored the performance of our method on individual GO
terms. We observe that for the majority of MF-GO terms,
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DeepFRI outperforms the sequence-only CNN method, indicat-
ing the importance of structural features in improving perfor-
mance (see also Supplementary Fig. 7). DeepFRI outperforms the
CNN on almost all GO terms with an average PDB chain length
≥400 (see Supplementary Fig. 7), illustrating the importance of
encoding distant amino acid contacts via the structure graph.
This demonstrates the superiority of graph convolutions over
sequence convolutions in constructing more accurate protein
features when key functional sites are composed of distal
sequence elements (as is the case for more complex folds with
higher contact order)59. Specifically, in the case of long protein
sequences (e.g., >400 residues), a CNN with reasonable filter
lengths, would most likely fail to convolve over residues at
different ends of the long sequence, even after applying multiple
consecutive CNN layers; whereas, graph convolutions applied on
contact maps would, in 3 layers or less, access feature information
from the complete structure.

Class activation maps increase the resolution from protein-
level to region-level predictions. Many proteins carry out their
functions through spatially clustered sets of important residues
(e.g., active sites on an enzyme, ligand-binding sites on a protein,
or protein–protein interaction sites). This is particularly relevant
in the Molecular Function branch of the GO hierarchy, or for EC
numbers, and less so for terms encoded in the Biological Process
branch. Designing ML methods for identifying such functional
residues have been the subject of many recent studies21,22,24,60.
They exploit features from sequence or structure to train classi-
fiers on existing functional sites in order to predict new ones.

Even though DeepFRI was not designed or trained explicitly to
predict residue-level annotations, we show how this is achieved
by post-processing methods.

To better interpret decisions made by neural networks, recent
work in ML has provided several new approaches for localizing
signal to regions of the input feature space that lead to a given
positive prediction61–64. In computer vision these methods
determine the regions of images that lead to positive object
classifications48; in NLP these methods identify sub-regions of
documents65. Recent work in computer vision uses gradient-
weighted Class Activation Maps (grad-CAMs) on trained CNN-
based architectures to localize the most important regions in
images relevant for making correct classification decisions48. We
use grad-CAMs, adapted for post-training analysis of GCNs. For
each protein, DeepFRI detects function-specific structural sites by
identifying residues relevant for making accurate GO term
prediction (for DeepFRI model trained on MF-GO terms), or
EC prediction (for DeepFRI model trained on EC numbers). See
an example of grad-CAM and its corresponding heatmap over the
sequence in Fig. 4a, right. It does so by first computing the
contribution of each graph convolutional feature map of the
model (trained on the MF-GO dataset) to the GO term
prediction, and then by summing the feature maps with positive
contributions to obtain a final residue-level activation map (see
“Methods”).

For site-specific MF-GO terms (i.e., GO terms describing
different types of ligand binding), we provide four examples
where we automatically and correctly identify functional sites for
several functions where binding sites are known (see Fig. 4).

Fig. 3 Performance over GO terms in different ontologies and EC numbers. Precision-recall curves showing the performance of different methods on (a)

MF-GO terms and (c) EC numbers on the test set comprised of PDB chains chosen to have ≤30% sequence identity to the chains in the training set.

Coverage of the methods is shown in the legend. Distribution of the Fmax score under 100 bootstrap iterations for the top three best-performing methods

applied on (b) MF-GO terms and (c) EC numbers computed on the test PDB chains and grouped by maximum % sequence identity to the training set.

e Distribution of protein-centric Fmax score and function-centric AUPR score under 10 bootstrap iterations summarized over all test proteins and GO

terms/EC numbers, respectively. f Distribution of AUPR score on MF-GO terms of different levels of specificities under 10 bootstrap iterations. Every figure

illustrates the performance of DeepFRI (red) in comparison to sequence-based annotation transfer from protein families, FunFams (blue), the CNN-based

method DeepGO (orange), SVM-based method, FFPred (black), and BLAST baseline (gray). Error bars on the bar plots (e and f) represent standard

deviation of the mean. In panels b and d, data are represented as boxplots with the center line representing the median, upper and lower edges of the boxes

representing the interquartile range, and whiskers representing the data range (0.5 × interquartile range).
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Figure 4a shows the grad-CAM identified residues for a calcium
ion binding (GO:0005509) of α-parvalbumin protein (PDB id:
1S3P). The two highest peaks in the profile correspond to the
calcium-binding residues in the structure of the protein (Fig. 4a,
left). Indices of the calcium-binding residues in 1S3P were
retrieved from the BioLiP database66 and compared to the
residues identified by our method by using receiver operating
characteristic (ROC) curves. The ROC curve shows the relation
between sensitivity or true positive rate (ratio of functional
residues identified as salient) and 1-specificity or false positive
rate (ratio of non-functional residues identified as non-salient). A
high area under the ROC curve indicates high correspondence
between annotated binding sites and our predictions, meaning
high accuracies in residue-level predictions. Sample ROC curves
for other functions including DNA binding (GO:0003677), GTP
binding (GO:0005525), and glutathione transferase activity
(GO:0004364) computed between the binary profile representing
binding sites from BioLiP and the grad-CAM profile are depicted
in Fig. 4b, and structural visualizations in Fig. 4c. Our study of
grad-CAMs against BioLiP database reveals that the highest
performing group of GO terms are related to functions with
known site-specific mechanisms or site-specific underpinnings.

We depict examples (with high AUROC scores) for which
grad-CAMs correctly identify binding regions in Supplementary
Figs. 8–15. For various GO terms, the functional sites correspond
to known binding sites or conserved functional regions (see
Supplementary Figs. 8–15). Interestingly, our model is not
explicitly trained to predict functional sites, but instead such
predictions stem solely from the grad-CAM analysis of the graph
convolution parameters of the trained model; thus, the ability of
the method to correctly map functional sites supports our

argument that the method is general and capable of predicting
functions in a manner that transcends sequence alignment.

A similar approach can be used for predicting catalytic residues
and active sites of proteins. Specifically, we apply grad-CAM
approach on the DeepFRI model trained on EC numbers. To
evaluate our predictions, we use a dataset composed of enzymes
available in the Catalytic Site Atlas (CSA)67, a database that
provides enzyme annotations specifying catalytic residues that
have been experimentally validated and published in the primary
literature. We use a manually curated dataset of 100 evolutiona-
rily divergent enzymes from the CSA provided by Alterovitz
et al.60 used for training their method ResBoost. Figure 5 shows
results for a subset of PDB chains in this dataset, covering
different EC numbers. Using the CSA as ground truth, we
compute a ROC curve quantifying the accuracy of DeepFRI in
predicting catalytic residues (see Supplementary Fig. 16). This
result is not directly comparable to the performance results of
ResBoost because we computed it only on a subset of 38 enzymes
(out of 100 enzymes used for training ResBoost) for which EC
numbers were in our training set. Moreover, DeepFRI is not
designed to perform training on existing catalytic residues in
the cross-validation manner (i.e., by hiding some catalytic
residues in the training of the model, and then predicting on
them) as ResBoost and it cannot control the trade-off between
sensitivity and specificity in predicting catalytic residues. DeepFRI
is also not explicitly trained to predict catalytic residues using a
set of enzymes with known catalytic residues and information
about their positions in the structure. Surprisingly, a high
AUROC score of 0.81 (Supplementary Fig. 16) stems solely from
the grad-CAM analysis of our DeepFRI model trained on EC
numbers.

Fig. 4 Automatic mapping of function prediction to sites on protein structures. a An example of the gradient-weighted class activation map for ‘Ca Ion

Binding’ (right) mapped onto the 3D structure of rat α-parvalbumin (PDB Id: 1S3P), chain A (left), annotated with calcium ion binding. The two highest

peaks in the grad-CAM activation profile correspond to calcium-binding residues. b ROC curves showing the overlap between grad-CAM activation profiles

and binding sites, retrieved from the BioLiP database, computed for the PDB chains shown in panel (c). c Examples of other PDB chains annotated with

DNA binding, GTP binding, and glutathione transferase activity. All residues are colored using a gradient color scheme matching the grad-CAM activity

profile, with more salient residues highlighted in red and less salient residues highlighted in blue. No information about co-factors, active sites, or site-

specificity was used during training of the model.
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Performing functional site identification is also very efficient as
it does not require any further training or modification of the
model’s architecture. The site-specificity afforded by our function
predictions is especially valuable for poorly studied, unannotated
proteins. Site-specific predictions provide first insights into the
correctness of predictions and frame follow-up validation
experiments, for example, using genetics or mutagenesis to test
site-specific predictions.

Temporal holdout evaluation emphasizes DeepFRI’s perfor-
mance in a realistic scenario. We also evaluate the performance
of our method in a more realistic scenario using a temporal
holdout strategy similar to the one in CAFA27–29. That is, we
composed a test set of PDB chains by looking at the difference in
GO annotations of the PDB chains in the SIFTS56 database
between two releases separated by ~6 months—releases 18 June
2019 and 04 January 2020. We identified ~3000 PDB chains that
did not have annotations in the 2019 SIFTS release and gained
new annotations in the 2020 SIFTS release (see “Methods”). We
evaluated the performance of DeepFRI on the newly annotated
PDB chains from the 2020 SIFTS release. DeepFRI significantly
outperforms both BLAST and DeepGO (see Supplementary
Fig. 17). Furthermore, we highlight examples of PDB chains with
correctly predicted GO terms for which both BLAST and
DeepGO are failing to produce any meaningful predictions,
indicating again the importance of structural information (see
Supplementary Fig. 17).

DeepFRI makes reliable predictions on unannotated PDB and
SWISS-MODEL chains. A large number of high-quality protein
structures in both the PDB and SWISS-MODEL lack or have
incomplete functional annotations in the databases we used for
training and testing our models. For example, analysis of the
SIFTS June 2019 release56 reveals that around 20,000 non-
redundant, high-quality PDB chains currently lack GO term
annotations. Similarly, around 13,000 SWISS-MODEL chains
lack Swiss-Prot GO term annotations. Interestingly, even though
the PDB chains lack GO term annotations, many have additional
site-specific functional information present in their PDB files, for
instance through ligands, co-factors, metals, DNA, and RNA. We
use these cases to verify their function and discuss them in depth.
A set of predictions, including many for truly unknown PDB
chains, is provided in Supplementary File 1. For example, there
are a number of PDB chains binding metal ions that have known
binding residues in BioLip66, but missing GO term annotations
(GO:0046872). In other cases, the function, albeit missing in
SIFTS, is directly implied in the name of the protein (e.g., a zinc
finger protein without zinc ion binding (GO:0008270) annota-
tion). Here, we apply our method to these unannotated PDB
chains, as a part of a blind experiment, to evaluate our predictions
at the chain-level and the residue-level through the grad-CAM
approach. We also make predictions on SWISS-MODEL chains.

Supplementary Data Files 1 and 2 contain all DeepFRI high-
confidence predictions for the PDB and SWISS-MODEL chains.
In Fig. 6a, b, we show their statistics, with the total number of
PDB and SWISS-MODEL chains predicted with all and more

Fig. 5 Identifying catalytic residues in enzymes using grad-CAM applied on the DeepFRI model trained on EC numbers. All residues are colored using a

gradient color scheme matching the grad-CAM activity score, with more salient residues highlighted in red and less salient residues highlighted in blue. The

PDB chains (shown in panels a–i) are annotated with all of its known catalytic residues (available in Catalytic Site Atlas), with a residue number and a

pointer to the location on the structure. Residues correctly identified by our method are highlighted in red.
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specific (Information Content, IC >5) GO terms. Some interesting
unannotated PDB chains with known ligand-binding information
include 4-iron, 4-sulfur cluster binding (GO:0051539) of a Fe–S-
cluster-containing hydrogenase (PDB id: 6F0K), shown in Fig. 6c.
Iron–sulfur clusters are important in oxidation-reduction reac-
tions for electron transport and DeepFRI accurately predicts their
binding sites as shown by the corresponding ROC curve,
computed between the predicted grad-CAM profile and the
known 4Fe–4S cluster binary binding profile retrieved from
BioLiP. Another example includes DNA binding (GO:0003677)
and metal ion binding (GO:0046872) of the zinc finger protein
(PDB Id: 1MEY) with predicted grad-CAM activity mapped onto
the same structure and validated experimentally for both DNA
and metal (Fig. 6d).

Discussion
Here we describe a deep learning method for predicting protein
function from both sequences and contact map representations of
3D structures. Our method DeepFRI is trained on protein struc-
tures from the PDB and SWISS-MODEL and rapidly predicts
both GO terms and EC numbers of proteins and improves over
state-of-the-art sequence-based methods on the majority of
function terms. Features learned from protein sequences by the
LSTM-LM and from contact maps by the GCN lead to substantial
improvements in protein function prediction, therefore enabling
novel protein function discoveries. Although high-quality

sequence alignment is often sufficient to transfer folds or struc-
tural information68, sequence alignments are challenging to use to
transfer function (as evidenced by the poor performance of the
CAFA-like BLAST benchmark) due to the need for different
thresholds for different functions, partial alignments, and domain
structures, protein moonlighting, and neofunctionalization27,29,69.
Thus, one important advantage of DeepFRI is its ability to make
function predictions beyond homology-based transfer by extract-
ing local sequence and global structural features27.

By comparing function prediction performance on DMPFold
and Rosetta models and their corresponding experimentally
determined structures, we demonstrate that DeepFRI has a high
denoising power. Our method’s robustness to structure prediction
errors indicates that it can reliably predict functions of proteins
with computationally inferred structures. The ability to use pro-
tein models opens the door for characterizing many proteins
lacking experimentally determined structures. Further, databases
with available protein models (e.g., homology models from
SWISS-MODEL13 and ModBase20) can expand the training set
and improve the predictive power of the model. The more
extensive use of homology models will be the subject of a
future study.

While this paper mainly focuses on introducing efficient and
accurate function prediction models, it also provides a means of
interpreting prediction results. We demonstrate on multiple dif-
ferent GO terms that the DeepFRI grad-CAM identifies

Fig. 6 Predicting and mapping function to unannotated PDB & SWISS-MODEL chains. Percentage/number of PDB chains (a) and SWISS-MODEL chains

(b) with MF-, BP-, and CC-GO terms predicted by our method; the number of specific GO term predictions (with IC >5) are shown in blue and red for PDB

and SWISS-MODEL chains, respectively. c An example of a Fe–S-cluster-containing hydrogenase (PDB Id: 6F0K), found in Rhodothermus marinus, with

missing GO term annotations in SIFTS (unannotated). The PDB chain lacks annotations in databases used for training our model and DeepFRI predicts to

bind a 4Fe–4S iron–sulfur cluster with high confidence score. The predicted grad-CAM profile significantly overlaps with ligand-binding sites of 4Fe–4S

obtained from BioLiP, as shown by the ROC curve. d grad-CAM profiles for predicted DNA binding and metal ion binding functions mapped onto the

structure of an unannotated zinc finger protein (PDB Id: 1MEY) found in Escherichia coli; the corresponding ROC curves show significant overlap between

the grad-CAM profile and the binding sites obtained from BioLiP.
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structurally meaningful site-specific prediction, for instance from
ligand-binding sites. For some PDB chains, the accuracy of the
DeepFRI grad-CAM in identifying binding residues is quite
remarkable, especially since the model is not designed to predict
functional residues and the ligand-binding information was not
given to the model a priori. However, the main disadvantage of
considering this to be a site-specific function prediction method
lies in the multiple meanings of grad-CAMs. Specifically, for
some GO terms related to binding, grad-CAMs do not necessarily
identify binding residues/regions; instead, they identify regions
that are conserved among the sequences annotated with the same
function. This can be explained with the fact that any neural
network, including ours, would always tend to learn the most
trivial features that lead to the highest accuracy70,71.

In conclusion, here we describe a method that connects two
key problems in computational biology, protein structure pre-
diction and protein function prediction. Our method linking deep
learning with an increasing amount of available sequence and
structural data has the potential to meet the annotation challenges
posed by ever-increasing volumes of genomic sequence data,
offering new insights for interpreting protein biodiversity across
our expanding molecular view of the tree of life.

Methods
Construction of contact maps. We collect 3D atomic coordinates of proteins from
the Protein Data Bank (PDB)19. As the PDB contains extensive redundancy in
terms of both sequence and structure, we remove identical and similar sequences
from our set of annotated PDB chains. We create a non-redundant set by clustering
all PDB chains (for which we were able to retrieve contact maps) by blastclust at
95% sequence identity (i.e., number of identical residues out of the total number of
residues in the sequence alignment). Then, from each cluster we select a repre-
sentative PDB chain that is annotated (i.e., has at least one GO term in at least one
of the three ontologies) and which is of high quality (i.e., has a high-resolution
structure). In addition to PDB structures, we also obtained homology models from
the SWISS-MODEL repository13. We include only annotated SWISS-MODEL
chains (i.e., having at least one GO term in at least one of the three GO ontologies)
in our training procedure. We remove similar SWISS-MODEL sequences again at
95% sequence identity. Including SWISS-MODEL models leads to a 5-fold increase
in the number of training samples (see Supplementary Table 1) and also in a larger
coverage of more specific GO terms (see Supplementary Fig. 5).

To construct contact maps, we consider two resides to be in contact if the
distance between their corresponding Cα atoms is <10Å. We refer to this type of
contact maps as CA-CA. We have also considered two other criteria for contact
map construction. Two residues are in contact if (1) the distance between any of
their atoms is <6.5Å (we refer to this type of contact maps as ANY-ANY) and (2)
if the distance between their Rosetta neighbor atoms is less than sum of the
neighbor radii of the amino acid pair (we refer to this type of contact maps as NBR-
NBR). Rosetta neighbor atoms are defined as Cβ atoms for all amino acids except
glycine where Cα is used. An amino acid neighbor-radius describes a potential
interaction sphere that would be covered by the amino acid side chain as it samples
all possible conformations. Neighbor–neighbor contact maps are therefore more
indicative of side-chain–side-chain interactions than Cα–Cα maps. To conserve the
memory avoid training the model on protein chains with long sequences, we only
construct contact maps for chains between 60 and 1000 residues. We have also
experimented with different distance thresholds for CA-CA and ANY-ANY
contact maps. We found that our method produced similar results when trained on
these contact maps with a Cα–Cα distance of 10Å, producing slightly better results
(see Supplementary Fig. 3).

Functional annotations of PDB & SWISS-MODEL chains. For training our
models we use two sets of function labels: (1) Gene Ontology (GO)7 terms and (2)
enzyme commission (EC) numbers72. GO terms are hierarchically organized into
three different ontologies—molecular function (MF), biological process (BP), and
cellular component (CC). We train our models to predict GO terms separately for
each ontology. The summary of GO identifiers as well as EC numbers for each PDB
and SWISS-MODEL chain were retrieved from SIFTS56 (structure integration with
function, taxonomy, and sequence) and UniProt Knowledgebase databases,
respectively.

SIFTS transfers annotations to PDB chains via residue-level mapping between
UniProtKB and PDB entries. All the annotation files were retrieved from the SIFTS
database (2019/06/18) with PDB release 24.19 and UniPortKB release 2019.06. We
consider annotations that are (1) not electronically inferred (in figure captions/
legends, we refer to those as EXP), specifically, we consider GO terms with the
following evidence codes: EXP (inferred from experiment), IDA (inferred from
direct assay), IPI (inferred from physical interaction), IMP (inferred from mutant

phenotype), IGI (inferred from genetic interaction), IEP (inferred from expression
pattern), TAS (traceable author statement), and IC (inferred by curator), and (2)
electronically inferred (in figure captions/legends, we refer to those as IEA—
inferred from electronic annotation). Furthermore, we focus only on specific MF-,
BP-, and CC-GO terms that have enough training examples from the non-
redundant training set (see the section above). That is, we select only GO terms
that annotate >50 non-redundant PDB/SWISS-MODEL chains. We retrieved
enzyme classes for sequences and PDB structures from the levels 3 and 4 (most
specific levels) of the EC tree. The number of GO terms and EC classes in each
ontology is represented in Supplementary Table 1.

In our analyses, we differentiate GO terms based on their specificity, expressed
as Shannon information content (IC)73:

ICðGOiÞ ¼ �log2ProbðGOiÞ; ð1Þ

where, Prob(GOi) is the probability of observing GO term i in the UniProt-GOA
database (ni/n, where ni—number of proteins annotated with GO term i and n—
total number of proteins in UniProt-GOA). Infrequent GO terms (i.e., more
specific) have higher IC values.

Training and test set construction. We partition the non-redundant set com-
posed of PDB and SWISS-MODEL sequences into training, validation, and test
sets, with approximate ratios 80/10/10%. The test set, comprising of only experi-
mentally determined PDB structures and experimentally determined annotations is
chosen to have PDB chains with varying degrees of sequence identity (i.e., 30%,
40%, 50%, 70%, and 95% sequence identity) to the training set. Furthermore, each
PDB chain in the test set is chosen to have at least one experimentally confirmed
GO term in each branch of GO. See Supplementary Table 2.

We use the CD-HIT clustering tool74 to select SWISS-MODEL sequences that
are dissimilar to the test set and to split them into training and validation sets. We
examine the performance of our method when trained only on PDB, only on
SWISS-MODEL and both PDB & SWISS-MODEL contact maps; we also
investigate training on only EXP and both EXP & IEA function labels (see
Supplementary Fig. 18A). In all our experiments we trained the model using both
EXP and IEA GO annotations), but the test set, composed of only experimentally
annotated PDB chains (EXP), is always kept fixed. See Supplementary Table 1. The
final results are averaged over 100 bootstraps of the test set, in all our experiments.

Preparation of a benchmark set of protein models. The initial set of benchmark
structures used here was Jane and Dave Richardson’s Top 500 dataset75. It is a set
of hand curated, high-resolution, and high quality (the top 500 best), protein
structures that were chosen for their fit to their completeness, how well they fit the
experimental data, and lack of high energy structural outliers (bond angle and bond
length deviations76). This set has been used in the past for fitting Rosetta energy/
score terms and numerous other structural-bioinformatics validation tasks.
Unfortunately, the structures in this set lacked sufficient annotations (many of
these structures were the results of structural genomics efforts and had no, or only
high level, annotations in GO and EC). Accordingly, we choose an additional
200 sequences from the PDB. These additional high-quality benchmark structures
were chosen by taking 119K chains with functional annotations and filtering them
with the PISCES Protein Sequence Culling Server77 with the following criteria:
sequence percentage identity: ≤25, resolution: 0.0–2.0, R-factor: 0.2, sequence
length: 40–500, non-X-ray entries: Excluded, CA-only entries: Excluded, Cull PDB
by chain.

This left us with 1606 SIFTS annotated chains from which we randomly selected
200 chains. These PDB chains together with the Top500 PDB chains (we refer to
this combined set as PDB700) were then excluded from all phases of model
training. The performance of our method on this set of PDB chains is shown in
Fig. 2a. In Supplementary Fig. 4, we demonstrate the denoising capabilities of our
method on this set of structures.

Comparison with existing methods
CNNs. CNNs have shown tremendous success in extracting information from
sequence data and making highly accurate predictive models. Their success can be
attributed to convolutional layers with a highly reduced number of learnable
parameters, which allow multi-level and hierarchical feature extraction. In the last
few years, a large body of work has been published covering various applications of
CNNs, such as the prediction of protein functions38 and subcellular localization78,
prediction of effects of noncoding-variants79 and protein fold recognition80. Here
we use the CNN-based DeepGO tool38 in our comparison study. We describe this
architecture in more detail in the Supplementary Material.

We represent a protein sequence with L amino acid residues as a feature matrix
X= [x1,…, xL]∈ {0, 1}L×c, where c= 26 dimensions (20 standard, 5 non-standard
amino acids, and the gap symbol) are used as a one-hot indicator, xi∈ {0, 1}c, of the
amino acid residue at position i in the sequence. This representation is fed into a
convolution layer, which applies a one-dimensional convolution operation with a
specified number of kernels (weight matrices or filters), fn, of certain length, fl. The
output is then transformed by the rectified linear activation function (ReLU),
which sets values below 0 to 0, i.e., ReLU(x)=max(x, 0). This is followed by a

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23303-9

10 NATURE COMMUNICATIONS |         (2021) 12:3168 | https://doi.org/10.1038/s41467-021-23303-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


global max-pooling layer and a fully connected layer with sigmoid activation
function for predicting probabilities of GO terms or EC enzyme classes.

In the first convolution layer, we use 16 CNN layers with fn= 512 filters of
different lengths (see Supplementary Material). After concatenating the outputs of
the CNN layers, we obtain an L × 8192 dimensional feature map for each sequence.
Using filters of variable lengths ensures the extraction of complementary
information from protein sequences. The second layer has ∣GO∣ number of units
for GO terms (or ∣EC∣ for EC) classification.

BLAST. BLAST baseline is used in the same way as described in CAFA127: a
sequence in our test set receives GO/EC annotations from all annotated sequences
in our training set (comprised of SWISS-PROT sequences) with the prediction
scores equal to the sequence identity scores (divided by 100) between the test and
the training sequences. Prior to this, we remove all sequences from our training set
that are similar to our test sequences using an E-value threshold of 1e−3, to
prevent annotation transfer from homologous sequences, as previously described
by Cozzetto et al.31.

FFPred. FFPred is a support vector machine (SVM)-based classifier on manually
designed features derived from sequences such as transmembrane regions, sec-
ondary structures, and sequence motifs31.

FunFam. FunFam is a domain-based method that uses functional classification of
CATH superfamilies for annotation transfer. The method takes each sequence and
scans it against CATH FunFams using HMMER381. Then it transfers all GO terms/
EC numbers from the FunFams with the highest HMM score to the test sequence.
We followed the procedure described here https://github.com/UCLOrengoGroup/
cath-tools-genomescan to obtain GO terms and EC numbers for our test
sequences. The GO term assignment score is computed as frequency of the GO
terms among the seed sequences of the matched FunFam and propagated up the
GO hierarchy as described in Das et al.24.

LSTM language model for learning residue-level features. We use an approach
similar to Bepler and Berger35 for training our language model. We train a LSTM
language model on ~10M sequences sampled from the entire set of sequences from
Pfam51. The sequences are represented using 1-hot encoding (see above). The
language model architecture is comprised of two stacked forward LSTM layers with
512 units each (see Fig. 1). The LSTM-LM model is trained for 5 epochs using an
ADAM optimizer82 with a learning rate 0.001 and a batch size of 128. All hyper-
parameters are determined through a grid search based on the model’s perfor-
mance on the validation set.

The residue-level features, extracted from the final LSTM layer’s hidden states,
HLM, are combined with 1-hot representation of sequences, X, through learnable
non-linear mapping:

Hinput ¼ ReLUðHLMWLM þ XWX þ bÞ ð2Þ

where, Hinput is the final residue-level feature representation passed to the fist GCN
layer, H(0)=Hinput (see the equation below). We refer to this stage of our method
as a feature extraction stage. The parameters, WLM, WX, and b are trained with the
parameters of the GCN. All the parameters of the LSTM-LM are frozen during the
training. We choose this strategy because it more efficient (i.e., instead of fine
tuning the huge number of the LSTM-LM parameters together with GCN
parameters, we only tune, WLM, WX, and b parameters while keeping the
parameters of the LSTM-LM fixed).

Graph convolutional network. GCNs have proven to be powerful for extracting
features from data that are naturally represented as one or more graphs42. Here we
experiment with the notion that GCNs are a suitable method for extracting features
from proteins by taking into account their graph-based structure of inter-
connected residues, represented by contact maps. We propose our model based on
the work of Kipf and Welling44. A protein graph can be represented by a contact

map, A 2 RL ´ L , encoding connections between its L residues, and a residue-level

feature matrix, X 2 RL ´ c .
We explore different residue-level feature representations including one-hot

encoding of residues as in the CNN (c= 26), LSTM language model (c= 512, i.e.,
the output of the LSTM layers), and no sequence features (to be able to run the
GCN, in this case, the feature matrix is substituted with a diagonal identity matrix,
i.e., X= IL).

The graph convolution takes both the adjacency matrix A and the residue-level

embeddings from the previous layer, HðlÞ 2 RL ´ cl and outputs the residue-level

embeddings in the next layer, Hðlþ1Þ 2 RL ´ clþ1 :

Hlþ1 ¼ GCðA;HlÞ ð3Þ

where, H(0)=Hinput, and cl and cl+1 are residue embedding dimensions for layers l
and l+ 1, respectively. Concretely, we use the formulation of Kipf and Welling44:

Hlþ1 ¼ ReLUðeD�0:5eAeD�0:5
HðlÞWðlÞÞ ð4Þ

where eA ¼ Aþ IL is the adjacency matrix with added self-connections represented

by the identity matrix IL 2 RL ´ L, eD is the diagonal degree matrix with entries

Dii ¼ ∑
L
j¼1

eAij, and WðlÞ 2 Rcl ´ clþ1 is a trainable weight matrix for layer l+ 1.

To normalize residue features after each convolutional layer the adjacency

matrix is first symmetrically normalized, hence the term eD�0:5eAeD�0:5
. Equation (4)

updates features of each residue by a weighted sum of features of the directly
connected residues in the graph (adding self-connections ensures that the residue’s
own features are also included in the sum).

We also explore other types of graph convolutional layers previously proposed
in the machine learning literature. Specifically, we tested the performance of
DeepFRI on all of the branches of GO as well as EC classes with SAmple and
aggreGatE convolutions (SAGEConv)53, Chebyshev spectral graph convolutions
(ChebConv)52, Graph Attention (GAT)54, and a combination of different graph
convolutions with different propagation rules (MultiGraphConv)55 in comparison
to the plain Kipf & Welling graph Convolution (GraphConv)44. These
convolutions differ in the way the features of the neighboring residues are
aggregated. The performance of DeepFRI in predicting MF-GO and EC labels with
these graph convolution layers is shown in Supplementary Fig. 1.

Given that we are classifying individual protein graphs with different number of
residues, we use several layers, Nl= 3, of graph convolutions. The final protein
representation is obtained by first concatenating features from all layers into a

single feature matrix, i.e., H ¼ ½Hð1Þ
; ¼ ;HðN l Þ� 2 RL ´ ∑

L
l¼1 cl and then by

performing a global pooling layer after which we obtain a fixed vector

representation of a protein structure, hpool 2 R∑
L
l¼1 cl . The global pooling is

obtained by a sum operator over L residues:

hpool ¼ ∑
L

i¼1
Hi: ð5Þ

We then use a fully connected layer with a ReLU activation function for
computing the hidden representation from the pooled representation. This is then
followed by a fully connected layer which is used for mapping the hidden
representation from the previous layer to a ∣GO∣x2 output; that is, two activations
for each GO term. These activations are transformed by a softmax activation
function, outputting the positive and negative probability for each GO term/EC
number (i.e., the final layer outputs probability vector ŷ of dimension ∣GO∣ × 2
(∣EC∣ × 2 for EC numbers) for predicting positive and negative probabilities of GO
terms (EC numbers).

Model training and hyper-parameter tuning. To account for imbalanced labels,
both the CNN and GCN are trained to minimize the weighted binary cross-entropy
cost function that gives higher weights to the GO term with fewer training
examples:

LðΘÞ ¼ �
1

N
∑
N

i¼1
∑
jGOj

j¼1
∑
2

k¼1
wjyijklog ðŷijkÞ ð6Þ

where Θ is the set of all parameters in all layers to be learned; wj ¼
N
Nþ

j

is the class

weight for function j, with Nþ
j being the number of positive examples associated

with function j; N is the total number of samples and ∣GO∣ is the total number of
functions (i.e., GO terms); yijk is the true binary indicator for sample i and function
j (i.e., yij1= 1, if sample i is annotated with function j, and yij2= 0, otherwise) and
ŷij1 is the predicted probability that sample i is annotated with function j. In the

inference phase, we say we predict GO terms/EC numbers if the positive prob-
ability is >0.5.

All hyper-parameters are determined through a grid search based on the
model’s performance on the validation set. The validation set is comprised of ~10%
randomly chosen samples from the training set. To avoid overfitting, we use an
early stopping criterion with patience= 5 (i.e., we stop training if the validation loss
does not improve in 5 epochs). We use the ADAM optimizer82 with a learning rate
lr= 0.0001, β1= 0.95, and β2= 0.95 and a batch size of 64. The default number of
epochs is 200. Both GCN and CNN are implemented to deal with variable length
sequences, by performing sequence/contact map padding. The entire method is
implemented using the Tensorflow/Keras deep learning library (see Supplementary
Note).

Temporal holdout validation. We also evaluate the performance of our method by
using temporal holdout validation similar to CAFA27. The temporal holdout
approach ensures a more “realistic” scenario where function predictions are eval-
uated based on recent experimental annotations34. We used GO annotations
retrieved from SIFTS56 from two time points, version 2019/06/18 (we refer to this
as SIFTS-2019) and version 2020/01/04 (we refer to this as SIFTS-2020), to con-
struct our temporal holdout test set. We form the test set from the PDB chains that
did not have any annotations in SIFTS-2019 but gained annotations in SIFTS-2020.
To increase the GO term coverage, we focus on the PDB chains with both EXP and
IEA evidence codes. We obtain 4072 PDB chains (out of which 3115 have
sequences <1200 residues). We use our model (trained on SIFTS-2019 GO
annotations) to predict functions of these newly annotated PDB chains. We
evaluate our predictions against the annotations from SIFTS-2020. The results for
MF-, BP-, and CC-GO terms are shown in Supplementary Fig. 17. We also show a
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few examples of the PDB chains with correctly predicted MF-GO terms by our
method, for which both BLAST and DeepGO are not able to make any significant
predictions.

Residue-level annotations. We use a method based on Gradient-weighted Class
Activation Map (grad-CAM)48 to localize function predictions on a protein
structure (i.e., to find residues with highest contribution to a specific function).
Grad-CAM is a class-discriminative localization technique that provides visual
explanations for predictions made by CNN-based models. Motivated by its success
in image analysis, we use grad-CAM to identify residues in a protein structure that
are important for the prediction of a particular function.

In grad-CAM, we first compute the contribution of each filter, k, in the last
convolutional layer to the prediction of function label l by taking the derivative of

the output of the model for function l, yl, with respect to feature map Fk 2 R
L over

the whole sequence of length L:

wl
k ¼ ∑

L

i¼1

∂yl

∂Fk;i

ð7Þ

where wl
k represents the importance of feature map k for predicting function l,

obtained by summing the contribution from each individual residue. Finally, we
obtain the function-specific heatmap in a residue space by making the weighted
sum over all feature maps in the last convolutional layer:

CAMl ½i� ¼ ReLU ∑
k
wl
kFk;l

� �
ð8Þ

where the ReLU function ensures that only features with positive influence on the
functional label are preserved; CAMl[i] indicates the relative importance of residue
i to function l. The advantage of grad-CAM is that it does not require re-training or
changes in the architecture of the model which makes is computationally efficient
and directly applicable to our models. See Supplementary Figs. 8–15 representing
grad-CAM mapped onto 3D structure of PDB chains with known ligand-binding
information and Fig. 4 for grad-CAM mapped to 3D structure of PDB chains with
known active sites.

Residue-level evaluation: for each individual protein and its predicted MF-GO
term/EC number, we measure the ability of our method in predicting binding or
active sites. This measure can only be computed for the minority of proteins with
detailed site-specific annotations; here we rely on the site-specific annotation
available in the BioLiP database66 for ligand-binding proteins and the Catalytic Site
Atlas (CSA)67 for enzymes.

For example, for a given protein of L residues, we construct a ligand-binding
binary profile (retrieved from BioLiP), s∈ {0, 1}L, indicating residues known to
bind a specific ligand (e.g., ATP); i.e., si= 1 if residue i is a ligand-binding residue,
si= 0 otherwise. For the same protein and its corresponding predicted function
(e.g., ATP binding (GO:0005524)), we compute a real-valued grad-CAM profile

from our pre-trained DeepFRI method, ŝ 2 ½0; 1�L, indicating the functional
importance of each residue. To show how well the grad-CAM profile recovers
known binding sites, we compute the area under the ROC curve, representing the
values of sensitivity for a given 1-specificity (false positive rate), using the sliding
threshold approach; we then compute the area under the ROC curve (AUROC)
using the trapezoid rule83. See Supplementary Figs. 8–15 for examples of ROC
curves for different MF-GO terms and Supplementary Fig. 16 for ROC curve
showing aggregate performance over different EC numbers.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Our training, validation, and test data splits are available from our github page at https://

github.com/flatironinstitute/DeepFRI. All other relevant data are available from the

authors upon reasonable request. Source data are provided with this paper.

Code availability
The source code for training the DeepFRI model, together with neural network weights

are available for research and non-commercial use at https://github.com/flatironinstitute/

DeepFRI and it can be cited by using https://doi.org/10.5281/zenodo.4650027. A web

service of our method is available at https://beta.deepfri.flatironinstitute.org/.
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