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Structure-based sampling and self-correcting machine learning
for accurate calculations of potential energy surfaces
and vibrational levels
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We present an efficient approach for generating highly accurate molecular potential energy surfaces
(PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We intro-
duce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid
to the training and prediction sets, respectively. Accurate high-level ab initio energies are required
only for the points in the training set, while the energies for the remaining points are provided by the
ML model with negligible computational cost. The proposed sampling procedure is shown to be supe-
rior to random sampling and also eliminates the need for training several ML models. Self-correcting
machine learning has been implemented such that each additional layer corrects errors from the previ-
ous layer. The performance of our approach is demonstrated in a case study on a published high-level
ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different
sizes and then used to predict the energies for tens of thousands of nuclear configurations within sec-
onds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of
CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be
kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational
spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure
calculations through structure-based sampling and self-correcting KRR-based machine learning by
up to 90%. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4989536]

I. INTRODUCTION

Molecular potential energy surfaces (PESs) are often com-
puted using high-level ab initio theory, notably in theoreti-
cal rovibrational spectroscopy where sub-wavenumber accu-
racy is targeted for calculated transition frequencies. Such
sophisticated quantum mechanical (QM) calculations can be
extremely costly, and they have to be repeated for tens of thou-
sands of nuclear geometries. Particularly challenging are larger
systems with many degrees of freedom that suffer from the
so-called “curse of dimensionality.” Machine learning (ML)
techniques offer a means to significantly reduce the necessary
computational time.1

It has been shown that neural networks (NNs) can be
used to interpolate between points along the coordinate of
simple reactions,2,3 to improve the accuracy of semiempirical
quantum mechanics/molecular mechanics calculations,4 and
to calculate accurate energies of conformations and clusters
of organic and inorganic species.5–9 Kernel ridge regression
(KRR) can reduce errors of low-level QM methods such that
atomization enthalpies of organic isomers can be reproduced
with an accuracy close to higher-level QM methods.10,11 Gaus-
sian process models are able to sample low-energy regions
of the PES,12 correct density functional theory energies of

a)Electronic mail: dral@kofo.mpg.de

water,13 predict energies and forces in Sin clusters,14 and
construct global PESs for N4.15 ML can also be employed
for accurate yet computationally fast PES representation; for
example, NNs have been used to compute molecular vibra-
tional energy levels,16–20 reaction probabilities,20 and reac-
tion rates,21 whilst potentials based on KRR,22 NNs,23–34 or
Gaussian process models35 have been utilized in molecular
dynamics (MD) simulations.

ML performs best in the interpolation regime and can fail
spectacularly when used for extrapolation. For relatively large
training sets and high error tolerance, as in many chemical
applications, training on a random sample of data points can
give useful results.10,11,15,36,37 Random sampling is straight-
forward and has minimal computational cost involved but it
does not ensure per se that ML avoids extrapolation. Thus,
it is preferable to ensure that ML is applied only for inter-
polation by using better sampling techniques. Even a simple
manual choice of the critical points on the PES can improve
the accuracy of ML significantly.2

Automated sampling is necessary for more complex PESs
and several approaches have been reported in the literature.
When training ML potentials, structures have been screened
on their input vector elements to see if they are within the
minimum and maximum values of the training set, which
can then be expanded to include “outside-the-range” struc-
tures.31,38 NN PESs of simple reactions have been re-fitted
with additional points when the initial NN potential has
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encountered problems.3 Similarly, the error of the ML poten-
tial can be monitored during dynamics and ML can be re-
trained on-the-fly by including additional points when errors
become too large.39 In the case of very simple systems like
H3, the training set can be generated on a coarse grid.3

Because of their inherent flexibility, different NNs can
give very different energies for the same structure, and hence,
training different NNs on the same data can also highlight
problem structures that should be incorporated into the train-
ing set.7,33 Another approach exploits the fact that the most
important regions of the PES are likely to be covered by
standard MD simulations. Snapshots from the MD trajecto-
ries can thus be used in the training set to produce a more
robust ML PES.8,22,25,28,40,41 For better sampling of vibrational
phase space, previous studies have employed stretched bond
distances in MD simulations28 or a random displacement to
sample along the vibrational normal modes.9 In other work,
structures have been chosen from MD trajectories based on
various clustering approaches, which reduce the redundan-
cies in the NN training set.42 For calculations of rotation-
vibration spectra where low-energy regions of the PES are
more important, probability distribution functions that favor
structures near equilibrium have been used for pseudorandom
sampling.16–18

Here, we report a new and efficient method for generat-
ing highly accurate molecular PESs which uses KRR-based
machine learning. In our approach, we initially define a set
of grid points (nuclear configurations) that cover the relevant
low-energy part of the PES, which can be done using relatively
inexpensive energy estimates (see Sec. II C). Thereafter, our
sampling relies on interpolation between structures rather than
energies, i.e., the sampling procedure itself does not require
energy calculations or the training of several ML models. We
investigate the effect of structure-based sampling on the accu-
racy of the ML model in comparison with random sampling.
We also explore what error reduction can be achieved through
ML self-correction.

To illustrate our KRR-based ML model, we utilize a high-
level ab initio PES for methyl chloride (CH3

35Cl).43 This PES,
denoted CBS-35 HL, is based on extensive explicitly correlated
coupled cluster calculations with extrapolation to the complete
basis set (CBS) limit and incorporates a range of higher-level
additive energy corrections. These include core-valence elec-
tron correlation, higher-order coupled cluster terms, scalar
relativistic effects, and diagonal Born-Oppenheimer correc-
tions. A considerable amount of computational time was spent
generating this PES. For example, a single point of the CBS-
35 HL PES at the equilibrium geometry required 9 separate
calculations and a combined total of 26.7 h on a single core
of an Intel Xeon E5-2690 v2 3.0 GHz processor. Building a
reliable PES requires tens of thousands of nuclear geometries
for polyatomic species, and the computational time increases
for distorted configurations due to slower energy conver-
gence. Efficient ML techniques that can reduce the necessary
computational effort are therefore highly desirable.

The paper is structured as follows: In Sec. II, we present
the KRR-based self-correcting ML model, the molecular
descriptor, and the sampling procedure. Details on the vari-
ational calculation of vibrational energy levels are also given.

In Sec. III, the ML model is evaluated for different sizes of
the training set, and vibrational energies are computed using
several ML model PESs. Concluding remarks are offered in
Sec. IV and an outlook is provided in Sec. V.

II. METHODS

A. Machine learning

The chosen ML technique is based on KRR44 and is
similar to the approach used for ML across chemical com-
pound space11,36,37,45,46 and for calculating relative stabilities
of organic isomers.10,11 Below, we give details of the KRR
approach relevant to this work. All ML calculations were
performed using our own program package MLatom.47

Some property value YML (Mi) of a nuclear configuration
i represented by the molecular descriptor Mi (discussed in
Sec. II B) is calculated using the expression,44

YML (Mi) =
Ntrain
∑

j=1

αjK
(

Mi, Mj

)

, (1)

where the sum runs over N train configurations represented by
the molecular descriptors {Mj} of the training set. The regres-
sion coefficient αj refers to the configuration Mj and K is the
kernel. Here we use the Gaussian kernel which is equivalent
to the form often employed in the literature,36,37

K
(

Mi, Mj

)

= exp
*..
,
−

D
(

Mi, Mj

)2

2σ2

+//
-

, (2)

where σ is the kernel width, and D
(

Mi, Mj

)

is the Euclidean
distance (the L2 norm) between descriptors Mi and Mj (vectors
of size NM ) defined as

D
(

Mi, Mj

)

=

√
√

√

NM
∑

a

(

Mi,a −Mj,a

)2
. (3)

This definition of distances between molecular struc-
tures36,37,45 and a similar definition based on the L1 norm
(instead of the L2 norm used here)10,11,37,46,48–51 were used pre-
viously to compare molecular geometries48 and learn various
molecular properties.10,11,36,37,45,46,49–51 We have also tested
the Laplacian kernel employing the L1 norm, but the PESs
obtained with this kernel showed much larger errors than those
obtained with the Gaussian kernel.

Training the ML model involves finding the regression
coefficients α, i.e., solving the minimization problem,

min
α

Ntrain
∑

j

[
YML

(

Mj

)

− Y ref
(

Mj

)]
+ λαT

Kα, (4)

which has a known analytical solution44

α = (K + λI)−1
Y

ref , (5)

where I is the identity matrix, K is the kernel matrix with the
elements calculated using Eq. (2) for all pairs of the training
set points, Y

ref is a vector with reference property values, and
λ is the so-called regularization parameter that ensures the
transferability of the model to new nuclear configurations.36,45
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Two additional improvements were made to the approach
outlined above which were not considered in earlier
work:10,11,36,37,45 (i) we sample data to ensure that ML inter-
polates between the training points and does not extrapolate
beyond them (see Sec. II C), and (ii) we use a nested, self-
correcting ML approach. For the latter, ML is first trained
on the reference ab initio energies E

ref [Yref in Eq. (5)] and
then used to make a first-layer estimate of the deformation
energy Elayer 1 [YML in Eq. (1)]. The next layer corrects
errors of the energies estimated in the previous layer, and
so on. For example, the second layer ML model is trained
on ∆Eref, layer 1

=E
ref − E

layer 1 and is then used to calcu-
late ∆E

ML, layer 1 corrections for the prediction set which are
summed up with layer 1 predicted energies to obtain layer 2
energies, i.e., E

layer 2
=∆E

ML, layer 1 + E
layer 1. The dependence

of the performance of the ML model on the number of layers
is discussed in Sec. III A.

In order to determine the optimal values of the hyper-
parameters σ and λ for each layer, we sample 80% of the
training set points into a sub-training set using the same sam-
pling procedure that was employed for the training set (see
Sec. II C). The points with deformation energies less than
10 000 cm☞1 are taken from the remaining 20% into the val-
idation set. Using the ML model trained on the sub-training
set, we search for values of the hyperparameters which give
the lowest root-mean-square error (RMSE) for the valida-
tion set. This is performed using a simple logarithmic grid
search.37,52 By optimizing the hyperparameters such as to
obtain a better description below 10 000 cm☞1, we ensure an
adequate treatment of the spectroscopically most relevant part
of the PES.53

The above self-correcting scheme is similar in spirit to
a two-stage NN model that has been introduced to remedy
peculiarities of NNs,17,18 such as the presence of ill-defined
regions (“holes”) in NN PESs as a result of overfitting. In this
previous work, the NN potential was first fit with as few nodes
as possible to eliminate holes, which resulted in a large RMSE;
to obtain a PES of reasonable quality, the NN potential was then
re-fit by incorporating more nodes to eliminate residual errors.

In our study, overfitting is primarily prevented by using
the regularization parameter λ, and the problem of holes on
the PES is addressed by our sampling procedure (discussed in
Sec. II C). The KRR approach makes fitting straightforward
as there is no need to manually adjust any of the parameters.
As a result, the RMSE of our one-layer ML model is already
quite low, while multi-layer ML models possess still slightly
smaller RMSEs (see Sec. III A). This is in contrast to two-
stage NN models where the RMSE of the first fit is one order
of magnitude larger than that of the second fit.17

B. Molecular descriptor

The success of ML is largely determined by the choice
of an appropriate molecular descriptor. Many of the molecular
descriptors proposed in the literature are functions of the inter-
nuclear distances, for example, the Coulomb matrix,36,37 the
Bag of Bonds,54 the atom-centered symmetry functions,1,26

the bispectrum of the neighbor density,35 the smooth overlap
of atomic positions,14 and others.19 We designed and tested
many descriptors for CH3Cl, but overall the most accurate

was a vector with ten elements corresponding to the ten inter-
atomic pairs. Each element is defined as the corresponding
internuclear distance in the near-equilibrium reference geom-
etry of CH3Cl (req) divided by the current distance (r), e.g.,
r

eq
C–Cl/rC–Cl for the C–Cl atomic pair. This form of descriptor

ensures that the ML model is rotationally and translationally
invariant.

Since the molecular descriptor also has to be atom index
invariant, we sort the hydrogen nuclei by the sum of their
internuclear repulsions with the four other nuclei for structure-
based sampling (see Sec. II C). Simple sorting of hydrogen
nuclei in the molecular descriptor may however lead to insta-
bilities in regions where the order of hydrogen nuclei changes.
To avoid this problem, we employ a normalized permutational
invariant kernel in our ML calculations (Sec. II A) as suggested
in the literature,13,55

K
(

Mi, Mj

)

=

∑Nperm

P̂
K

(

Mi, P̂Mj

)

√

∑Nperm

P̂
K

(

Mi, P̂Mi

)

√

∑Nperm

P̂
K

(

Mj, P̂Mj

)

,

(6)
where P̂ permutes the order of hydrogen nuclei. There are
Nperm = 3! = 6 permutations of three hydrogen nuclei. We
found that results obtained using the normalized permutational
invariant kernel are superior to those obtained using a sorted
molecular descriptor (see Sec. III A).

C. Grid points and sampling

The target PES needs to be evaluated on a large num-
ber of pre-defined grid points (nuclear configurations). These
grid points can be determined through rather inexpensive ini-
tial energy computations. In our previous work on CH3Cl,
this was done by creating a sparse grid along each one-
dimensional cut of the PES, calculating single-point ener-
gies using a reliable but relatively cheap ab initio method
[e.g., CCSD(T)-F12b/VTZ-F12], fitting a polynomial func-
tion to get rough energy estimates, and randomly selecting all
the remaining points using an energy-weighted Monte Carlo
type sampling algorithm to cover the desired low-energy PES
region.43 This procedure, which was inexpensive computa-
tionally, produced a grid of 44 819 geometries with energies
up to hc · 50 000 cm☞1 (h is the Planck constant and c is the
speed of light). In our present proof-of-principle study, we use
this grid, which was employed for the final CBS-35 HL PES
of CH3Cl,43 and partition it into training and test sets using
the structure-based sampling procedure described below; the
energies for the training set are taken from the available ab

initio results,43 while those for the remaining grid points are
predicted essentially for free using ML.

In our sampling procedure, we select nuclear configura-
tions for the training set based on the relative distance of the
molecular descriptors. This is done such that all the remain-
ing points used for prediction are within the boundaries of the
training set or very close to it. The first point of the training
set is taken closest to equilibrium. The second point of the
training set is the one among all grid points that has the largest
distance from the first point. For each remaining point on the
grid, we calculate its distance to all points in the training set
using Eq. (3) and determine the shortest distance to any point
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FIG. 1. Illustration of sampling 3 points into the training set out of 6 points
in two-dimensional space. Point 1 is closest to equilibrium, while point 2 is
farthest apart from point 1, so they are both included into the training set.
Point 3 has the shortest distance to point 1 of the current training set, which
is longer than any shortest distance of points 4, 5, and 6 to the points in the
current training set (1 and 2). Thus, point 3 is included into the training set
(red), while the remaining points 4–6 are left for the prediction set (blue).

in the training set. We then include the grid point that has the
“longest” shortest distance into the training set, as illustrated
in Fig. 1. This procedure is repeated until the required number
of points is selected for the training set. The other remaining
points are used for prediction, and by construction they lie
within the training set or very close to it; at least one of their
distances to the points in the training set should be shorter than
the shortest distance between the points in the training set.

This sampling procedure is closely related to the farthest-
point traversal iterative procedure used to select points such
that they are as distant as possible from the previously selected
points. In this respect, structure-based sampling can also be
viewed as a way to obtain a training set as diverse as possible.

The sampling procedure outlined above selects a train-
ing set of predetermined size from a larger set of predefined
structures. The same sampling principles can be applied to
test whether additional structures (beyond the initially chosen
set) should be included into the training set. If this is the case,
the ML model needs to be re-trained (similar to an approach
described in Ref. 31).

D. Variational calculations

In this work, we use the nuclear motion program
TROVE56,57 for computing vibrational energy levels. Since
rovibrational calculations have previously been reported for
CH3Cl,43,58 we summarize only the key aspects relevant for
the present study.

In variational calculations, the PES must be represented
analytically. To do this, we introduce the coordinates,

ξ1 = 1 − exp
(

−a(r0 − r
eq
0 )

)

, (7)

ξj = 1 − exp
(

−b(ri − r
eq
1 )

)

, j = 2, 3, 4, i = j − 1, (8)

where a= 1.65 Å
−1

for the C–Cl bond length r0, and

b= 1.75 Å
−1

for the three C–H bond lengths r1, r2, and r3.
For the angular terms,

ξk = (βi − βeq) , k = 5, 6, 7, i = k − 4, (9)

ξ8 =
1
√

6
(2τ23 − τ13 − τ12), (10)

ξ9 =
1
√

2
(τ13 − τ12), (11)

where β1, β2, and β3 are the ∠(HiCCl) interbond angles, and
τ12, τ13, and τ23 are the dihedral angles between adjacent planes
containing HiCCl and HjCCl. Here r

eq
0 , r

eq
1 , and βeq are the

reference equilibrium structural parameters of CH3Cl.
The potential function (maximum expansion order i + j

+ k + l + m + n + p + q + r = 6) is given by the expression,

V (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9) =
∑

ijk...

f ijk...Vijk... (12)

and contains the terms,

Vijk... = {ξ i
1ξ

j

2ξ
k
3 ξ

l
4ξ

m
5 ξ

n
6 ξ

p

7 ξ
q

8 ξ
r
9 }

C3v(M), (13)

which are symmetrized combinations of different permuta-
tions of the vibrational coordinates ξi and transform according
to the A1 representation of the C3v(M) molecular symmetry
group.59

The f ijk... expansion coefficients are determined through a
least-squares fitting to the ab initio or ML data. Weight factors
of the form60

w (Ei) =

(

tanh [−0.000 6 × (Ei − 15 000)] + 1.002 002 002
2.002 002 002

)

× 1

NE
(w)
i

(14)

are used in the fittings. Here E
(w)
i
= max(Ei, 10 000) and the

normalization constant N = 0.0001 (all values in cm☞1). Larger
weights (w) are assigned to lower deformation energies (Ei),
which correspond to more spectroscopically important regions
of the PES. As shown in Fig. 2, this form ensures that struc-
tures with energies up to 10 000 cm☞1 above equilibrium have
weights near unity, whilst other configurations are significantly
downweighted with increasing energy.

To ensure a reliable comparison, the CBS-35 HL PES
expansion parameter set was used to fit the ab initio and
ML-generated datasets. This contained 414 parameters and
included linear expansion terms. For this reason, we fixed the
values of r

eq
0 = 1.7775 Å, r

eq
1 = 1.0837 Å, and βeq

= 108.445◦

to be the same as those used for the CBS-35 HL PES. Each fit
employed Watson’s robust fitting scheme,61 which reduces the

FIG. 2. Decay of unitless weight factors calculated using Eq. (14) with
increasing deformation energy in cm☞1.
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weights of outliers and lessens their influence in determining
the final set of parameters.

III. RESULTS AND DISCUSSION

In this section, we investigate the accuracy of the ML
models trained on 50%, 25%, and 10% of the available
44 819 deformed structures and their ab initio energies used to
construct the CBS-35 HL PES.43

To evaluate the accuracy of predicted energies (Eest), we
employ standard error measures as well as the weighted root-
mean-square error (wRMSE),

wRMSE =

√
√

√

1
N

N
∑

i

(

Eest
i
− Eref

i

)2
w

(

Eref
i

)

. (15)

Weights w
(

Eref
i

)

are calculated using Eq. (14).

A. Optimal machine learning model

We first examine how the accuracy of ML calculated
deformation energies for the prediction set depends on the
number of ML layers and the sampling procedure. The results
in Table I indicate that the errors are significantly lowered
by adding the second layer for all models except for the one
trained on 10% of points selected with structure-based sam-
pling. Including a third layer significantly reduces the errors in
a few cases, while a fourth layer does not yield any noticeable
improvements. We therefore expect that adding further layers
will make no difference.

For practical purposes, the three-layer model appears to
be sufficient. However, in the following, we have applied the
four-layer model because the computational cost of including

additional layers is rather low and we have not observed any
significant accumulation of numerical noise. It takes around 4 h
to optimize the ML hyperparameters using a fairly inefficient
optimization algorithm, around a minute to train and only a
couple of seconds to make predictions with the 50%-ML model
on 20 cores of an Intel(R) Xeon(R) CPU E5-2687W v3 @
3.10 GHz processor.

As shown in Table I, random sampling is clearly infe-
rior to structure-based sampling; all four-layer ML models
trained on randomly drawn points have wRMSEs significantly
higher than those of the four-layer, structure-based sampling
ML models. Interestingly, self-correction works well even
for random sampling: it reduces the wRMSEs by 32%–44%
and the standard deviations by 70%–90%. Despite this the
remaining error of 4.13± 0.87 cm☞1 for the randomly sam-
pled, four-layer ML models trained on 50% of grid points
are still much higher than the wRMSE of 0.37 cm☞1 for the
four-layer, structure-based sampling ML model trained on the
same number of grid points. Standard deviations for random
sampling are also relatively high and increase from 0.87 to
1.67 cm☞1 when going from 50% to 10% training sets. There
is no such problem with structure-based sampling which pro-
vides a unique training set—an important practical advantage
for high-accuracy applications. As for the computational cost
of sampling, it takes ca. 9 h to sample 50% from 44 819
data points on 12 Intel(R) Xeon(R) CPU X5680 @ 3.33 GHz
processors.

As the training set becomes relatively small, structure-
based sampling may under-represent training points in low-
energy regions, e.g., 10% training points drawn from the
entire grid contain only 195 structures with deformation ener-
gies below 10 000 cm☞1 (compare the number of configura-
tions with deformation energies below 1000 and 10 000 cm☞1,

TABLE I. wRMSEs in deformation energies predicted by ML models trained on 50%, 25%, and 10% of the
reference data for the remaining 50%, 75%, and 90% of the grid points. wRMSEs are calculated using Eq. (15)
and are given in cm☞1. The number of training set structures with an ab initio deformation energy below 1000
cm☞1 (N<1000) and below 10 000 cm☞1 (N<10000) is also given for comparison.

Number of layers

N train N<1000
a N<10000

b 1 2 3 4

Structure-based sampling from unsliced data

22 409 (50%) 22 3985 6.57 0.37 0.37 0.37
11 204 (25%) 1 1033 3.21 1.87 1.60 1.60
4 481 (10%) 1 195 5.00 4.99 4.83 4.83

Structure-based sampling from data sliced into three regions

22 408 (50%) 131 7215 2.31 0.62 0.62 0.62
11 203 (25%) 19 3348 2.90 2.59 2.58 2.58
4 480 (10%) 1 1191 4.42 3.63 3.63 3.63

Random samplingc

22 409 (50%) 573 ± 12 7971 ± 53 6.07 ± 2.96 4.13 ± 0.87 4.13 ± 0.87 4.13 ± 0.87
11 204 (25%) 288 ± 13 4002 ± 36 8.41 ± 8.23 4.76 ± 0.90 4.75 ± 0.88 4.75 ± 0.88
4 481 (10%) 115 ± 12 1599 ± 35 14.73 ± 12.63 8.76 ± 1.67 8.73 ± 1.67 8.73 ± 1.67

aN<1000 = 1145 for the entire grid of 44 819 points.
bN<10000 = 15 935 for the entire grid of 44 819 points.
cStandard deviations were calculated for 16, 20, and 30 various randomly drawn training sets for ML trained on 50%, 25%, and
10% of grid points, respectively.
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columns N<1000 and N<10000 in Table I). Sorting the geometries
by their distance to the equilibrium structure (which correlates
strongly with the deformation energies, Fig. 3), followed by
slicing the data into several regions and sampling points from
each of these regions, can produce a more energy-balanced
training set. Looking at Fig. 3, one can argue that splitting
the set into three regions with an equal number of struc-
tures should be close to optimal. The first region includes the
most important structures with deformation energies below
10 000 cm☞1 and a significant portion of structures with ener-
gies between 10 000 and 20 000 cm☞1. The second region
mainly includes configurations with energies between 10 000
and 20 000 cm☞1 but also a considerable number of geometries
above and below this region. The third slice includes all the
remaining high-energy structures.

Structure-based sampling from each of the above regions
gives a value of N<10000 close to what is expected from random
sampling, e.g., 10% of the training points drawn from the sliced
grid contain 1191 structures with deformation energies below
10 000 cm☞1 (Table I). As a result, the wRMSE of the ML
model trained on the latter training set (3.63 cm☞1) is lower
than the wRMSE of the ML model trained on 10% of the points
drawn from unsliced data (4.83 cm☞1). However, such slicing
does not generate training sets that are as diverse as possible,
and therefore, the errors of the ML models become higher
for the sliced grids as the training set increases in size (the
training sets with 25% and 50% grid points, Table I). Thus,
we recommend slicing only for very small training sets where
low-energy structures are under-represented.

In the following, we will discuss four-layer ML models
trained on 50%, 25%, and 10% of the points drawn using
structure-based sampling from the available unsliced 44 819
grid points. We refer to these ML models as 50%-ML, 25%-
ML, and 10%-ML, respectively. We also compare with one
of the randomly sampled, four-layer ML models referred to
as r50%-ML, which has been chosen at random from the ML
models trained on 50% of grid points. In addition, we com-
pare with the four-layer ML model trained on 10% of the points

FIG. 3. Correlation between ab initio deformation energies in cm☞1 and unit-
less distances to the near-equilibrium structure calculated using Eq. (3). A
linear trend line is shown in red with its R2 value (0.83). Orange vertical lines
slice the data into three regions with equal numbers of data points in the train-
ing set. Each data point is represented by a blue dot with a black edge; hence,
the most densely populated areas are black.

drawn using structure-based sampling from the dataset sliced
into three regions. This model is referred to as s10%-ML in
the following.

A more detailed analysis of the ML model errors, listed
in Table II, reveals that r50%-ML has the largest outliers with
a wRMSE of 4.14 cm☞1, which is more than twice as large
as that of 25%-ML (wRMSE of 1.60 cm☞1) for their respec-
tive prediction sets. The non-weighted RMSE of r50%-ML
(167.19 cm☞1) is more than four times higher than the non-
weighted RMSE of 10%-ML (39.63 cm☞1). Moreover, the
RMSE of r50%-ML for energies below 1000 cm☞1 is prac-
tically the same as the respective RMSE of 50%-ML, but for
energies below 10 000 cm☞1, the RMSE is higher than that
of 50%-ML, despite the fact that many more points from this
region are included into the training set (compare N<1000 and
N<10000 for these two models in Table I). These observations
provide strong evidence for the superiority of structure-based
sampling. s10%-ML has RMSEs for energies below 1000 and

TABLE II. Number of grid points in the training (N train) and prediction
(Npredict) sets, largest positive outlier (LPO) and largest negative outlier
(LNO), mean signed errors (MSEs), mean absolute errors (MAEs), RMSEs
for entire sets (all), for structures with reference deformation energies below
1000 and 10 000 cm☞1, and wRMSEs in cm☞1 for the training and prediction
sets of the 50%-ML, r50%-ML, 25%-ML, 10%-ML, and s10%-ML models
and the entire grid of 44 819 points.

50%-ML r50%-ML 25%-ML 10%-ML s10%-ML

Training set

N train 22 409 22 409 11 204 4 481 4 480
LPO 0.00 4.18 0.00 0.00 0.00
LNO 0.00 ☞4.14 0.00 0.00 0.00
MSE 0.00 0.00 0.00 0.00 0.00
MAE 0.00 0.03 0.00 0.00 0.00
RMSE (all) 0.00 0.11 0.00 0.00 0.00
RMSE (<10 000) 0.00 0.03 0.00 0.00 0.00
RMSE (<1 000) 0.00 0.07 0.00 0.00 0.00
wRMSE 0.00 0.03 0.00 0.00 0.00

Prediction set

Npredict 22 410 22 410 33 615 40 338 40 339
LPO 319.75 2 015.44 1 035.63 1 617.61 1 481.69
LNO ☞476.20 ☞6 919.28 ☞1 060.38 ☞2 859.37 ☞2 190.33
MSE 0.02 ☞11.62 0.18 0.19 1.85
MAE 0.82 25.12 3.47 11.27 19.54
RMSE (all) 6.23 167.19 16.12 39.63 61.96
RMSE (<10 000) 0.20 1.38 1.12 4.26 1.19
RMSE (<1 000) 0.08 0.07 0.16 1.40 0.25
wRMSE 0.37 4.14 1.60 4.83 3.63

Entire grid

N 44 819
LPO 319.75 2 015.44 1 035.63 1 617.61 1 481.69
LNO ☞476.20 ☞6 919.28 ☞1 060.38 ☞2 859.37 ☞2 190.33
MSE 0.01 ☞5.81 0.14 0.17 1.66
MAE 0.41 12.57 2.60 10.14 17.58
RMSE (all) 4.41 118.22 13.96 37.60 58.79
RMSE (<10 000) 0.17 0.98 1.09 4.24 1.14
RMSE (<1 000) 0.08 0.07 0.16 1.40 0.25
wRMSE 0.26 2.93 1.39 4.59 3.44
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10 000 cm☞1 close to those of 25%-ML, while the respec-
tive RMSEs of 10%-ML are much higher. On the other hand,
10%-ML has a much lower non-weighted RMSE, mean abso-
lute error (MAE), and MSE than s10%-ML. Thus, slicing
clearly improves the description of the low-energy region at
the cost of other regions. Apparently, for sparse training data,
the benefits of a better description of the low-energy region
achieved by slicing outweigh the disadvantage of an over-
all worse description of the PES, which is exemplified by
the lower wRMSE of s10%-ML compared to the wRMSE
of 10%-ML.

From Fig. 4, we see that deformation energies predicted by
the 50%-ML, r50%-ML, 25%-ML, and s10%-ML models cor-
relate nicely with the reference ab initio energies; the R2 value
is always larger than 0.999. Deformation energies predicted
by the 10%-ML model (not shown in Fig. 4) correlate better
(R2 = 0.999 977) with the reference energies than the energies
predicted by the s10%-ML model (consistent with the above
conclusions). Clearly, 50%-ML is superior to all other models
and has the best correlation with far fewer outliers and smaller
residual errors. This is particularly relevant for high-accuracy
work as we will see in Sec. III B.

As for the effect of the training set size, illustrated in
Fig. 5, wRMSEs in the prediction set drop from 144 cm☞1

for the 1%-ML model to 0.05–0.06 cm☞1 for the 85–99%-ML
models. Interestingly, the 1%-ML model trained on only 448
grid points may still be regarded as a chemically meaningful
representation of the PES since its non-weighted RMSE is
only 0.77 kcal/mol (271 cm☞1). The error drops very quickly
to 12.29 cm☞1 for the 5%-ML model and is below 1.00 cm☞1

for 35% and above, finally becoming smaller than 0.5 cm☞1

for training sets with 50% or more of all configurations.
Regarding the four-layer, structure-based sampling ML

models that were tested extensively, wRMSEs grow signifi-
cantly from 50%-ML (0.37 cm☞1) to 25%-ML (1.60 cm☞1),

FIG. 5. Dependence of wRMSE in the prediction set (in cm☞1) of the four-
layer, structure-based sampling ML models as a function of the training set
size (in %). In all cases, sampling was done from unsliced data. The plot starts
with a 1% training set size and ends at 99%. The plot in the inset starts with
a 10% training set size.

to s10%-ML (3.63 cm☞1), and to 10%-ML (4.83 cm☞1). We
further investigate the effect of the training set size for high-
resolution spectroscopy applications in Sec. III B, where we
report vibrational energies using PESs based on the 50%-
ML, r50%-ML, 25%-ML, 10%-ML, and s10%-ML models.
We also note that the wRMSEs for all four models remain
rather small. One important factor that contributes to such high
accuracy is the use of a permutational invariant kernel—the
alternative approach of using the sorted molecular descriptor
(Sec. II B) causes an increase in the corresponding wRMSEs
by a factor of 2–3.

FIG. 4. Correlation between reference ab initio defor-
mation energies and deformation energies predicted by
50%-ML, r50%-ML, 25%-ML, and s10%-ML for their
respective prediction sets. Linear trend lines are shown
in red with their R2 value. Each data point is represented
by a blue dot with a black edge; hence, the most densely
populated areas are black.
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The analytic representation employed for the CBS-35 HL

(discussed in Secs. II D and III B) was fitted with a wRMSE
of 3.00 cm☞1 for the entire grid (see Sec. III B). For 50%-
ML, the training set, prediction set, and entire grid of 44 819
points were reproduced with wRMSEs of 0.00, 0.37, and
0.26 cm☞1, respectively (Table II). Our ML approach, which
has a defined analytic form, could therefore provide a more
accurate description of the PES based on fewer training points
and could possibly be employed directly in variational calcu-
lations. However, this is beyond the scope of this work, and
the application of our ML technique in variational calculations
will be the focus of future research.

Further fine-tuning of the ML models is possible by using
the anisotropic Gaussian kernel with multiple kernel widths
instead of a single σ parameter (as, for instance, in Ref. 13).
In test calculations, we have found that such ML models may
reduce errors somewhat (e.g., by 10% for 10%-ML), but there
is a substantial increase in the complexity of the ML model and
the computational cost for large training sets (due to parameter
optimization), and hence, we decided to use one single kernel
width parameter in this study.

B. Vibrational energy levels

For the 50%-ML, r50%-ML, 25%-ML, 10%-ML, and
s10%-ML PESs, the f ijk... expansion coefficients of the
potential function given in Eq. (12) were determined in a

least-squares fitting to the 44 819 grid points. The results of
the fittings are listed in Table III. In addition, PESs were deter-
mined for the five associated training sets and the results are
also included in Table II. We see that the fits of the CBS-35 HL

PES, the ML model PESs, and the training set PESs are of a
similar accuracy, with the exception of the 10%-ML fit which
exhibits significantly larger errors. For the other fits, the
RMSEs below 10 000 cm☞1 range between 1.17 and 2.08 cm☞1,
with wRMSE values between 3.01 and 3.59 cm☞1 for the ML-
based PESs and up to 3.60 cm☞1 for the training set PESs.
The mean errors are particularly low for the 50%-ML PES,
its training set PES, and the 25%-ML PES (0.16, 0.24, and
0.02 cm☞1, respectively).

In TROVE calculations, the Hamiltonian was represented
as a power series expansion around the equilibrium geometry
in terms of nine vibrational coordinates and was constructed
numerically using an automatic differentiation method.57 The
coordinates used were identical to those given in Eqs. (7)–(11),
except for the kinetic energy operator where linear expansion
terms, e.g., (r ☞ req), replace the Morse oscillator functions
for the stretching modes. The kinetic and potential energy
operators were truncated at the 6th and 8th orders, respec-
tively, and atomic mass values were employed throughout.
Calculations were carried out using a medium-sized vibra-
tional basis set with a polyad truncation number of Pmax = 10
(see Refs. 43 and 58 for further details). The basis set was

TABLE III. Number of expansion parameters f ijk . . . and fitting wRMSEsa (in cm☞1) for the fits of the CBS-35HL

PES, ML model PESs, and training set PESs. Largest positive outlier (LPO) and largest negative outlier (LNO),
mean signed errors (MSEs), mean absolute errors (MAEs), RMSEs for entire sets (all), for structures with reference
deformation energies below 1000 and 10 000 cm☞1, and wRMSEs in cm☞1 of the fitted functions with respect to
the entire grid of the CBS-35HL energies.

CBS-35HL 50%-ML r50%-ML 25%-ML 10%-ML s10%-ML

ML model PESs

No. of parameters 414 414 414 412 402 409
Fitting wRMSE 0.82 0.83 0.89 0.99 1.39 1.13
LPO 2717.33 2718.84 2546.10 2700.54 2506.24 2868.59
LNO ☞6039.88 ☞6039.02 ☞6033.13 ☞6023.04 ☞5826.77 ☞5716.54
MSE 0.20 0.16 0.56 0.02 0.81 7.38
MAE 20.82 20.83 21.01 21.83 31.73 24.63
RMSE (all) 102.24 102.28 102.13 102.69 113.78 101.39
RMSE (<10 000) 1.18 1.18 1.22 1.22 3.66 1.37
RMSE (<1 000) 0.33 0.33 0.33 0.34 1.08 0.40
wRMSE 3.00 3.01 3.09 3.19 5.40 3.59

Training set PESs

No. of parameters 414 414 414 410 411
Fitting wRMSE 0.98 0.82 0.94 0.50 0.99
LPO 2548.77 2813.94 2368.88 1963.23 2431.71
LNO ☞6128.55 ☞6033.18 ☞6185.91 ☞6267.97 ☞6214.42
MSE 0.24 0.75 1.50 ☞4.04 1.35
MAE 21.03 21.00 21.95 24.11 23.94
RMSE (all) 103.82 102.55 105.37 105.88 109.00
RMSE (<10 000) 1.17 1.18 1.30 2.08 1.18
RMSE (<1 000) 0.35 0.33 0.33 0.62 0.32
wRMSE 3.01 3.02 3.15 3.60 3.58

aFitting wRMSEs are relative to the PES being fitted and not to the CBS-35 HL data. Note also that the weights differ slightly from
Eq. (14) because Watson’s robust fitting scheme61 was employed (see Sec. II D).
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FIG. 6. Residual errors (∆E

=ECBS−35HL −EML) of computed
vibrational energy levels using the
50%-ML, r50%-ML, 25%-ML, and
s10%-ML PESs, with respect to the
CBS-35 HL PES values. Note the
different scales for s10%-ML.

constructed using a multi-step contraction scheme and con-
tained 16 829 vibrational basis functions.

In Fig. 6, we plot residual errors, ∆E =ECBS−35HL −EML,
of computed vibrational energy levels using the 50%-ML,
r50%-ML, 25%-ML, and s10%-ML model PESs with respect
to the CBS-35 HL PES values. The RMSE and mean absolute
deviation (MAD) for energies up to 5000 and 10 000 cm☞1

are also listed for each model in Table IV. Comparing 50%-
ML with r50%-ML, it is clear that structure-based sam-
pling produces results that are far more reliable than random
sampling. The residual errors are consistently smaller and
more uniform for the energy range considered. The 25%-
ML and s10%-ML models still perform reasonably well but
errors steadily increase with energy. The 10%-ML model
(not shown in Fig. 6) has deteriorated and no longer gives
accurate predictions (errors are much higher than 1 cm☞1,
Table IV).

TABLE IV. Root-mean-square error (RMSE) and mean absolute deviation
(MAD) of computed vibrational energy levels for the ML model PESs
and training set PESs up to 5000 and 10 000 cm☞1 (166 and 3606 levels,
respectively), with respect to the original CBS-35 HL PES values.

50%-ML r50%-ML 25%-ML 10%-ML s10%-ML

ML model PESs

RMSE (<5 000 cm☞1) 0.02 0.10 0.09 1.61 0.14
MAD (<5 000 cm☞1) 0.01 0.08 0.07 1.29 0.10
RMSE (<10 000 cm☞1) 0.04 0.18 0.16 1.75 0.28
MAD (<10 000 cm☞1) 0.03 0.15 0.12 1.44 0.21

Training set PESs

RMSE (<5 000 cm☞1) 0.06 0.08 0.12 0.30 0.12
MAD (<5 000 cm☞1) 0.05 0.06 0.10 0.25 0.10
RMSE (<10 000 cm☞1) 0.12 0.14 0.19 0.74 0.32
MAD (<10 000 cm☞1) 0.11 0.09 0.14 0.61 0.24

TROVE assigns quantum numbers to the eigenvalues by
analyzing the contribution from the basis functions. This is
how we match energy levels computed with different ML
model PESs. However, given the approximate nature of the
labeling scheme, these assignments can occasionally differ
between the surfaces. This tends to happen mostly at higher
energies (above 10 000 cm☞1) but does not necessarily mean
that the energy levels are mismatched—they have simply been
labeled differently. This occurs for 2% of the computed values
in the case of 50%-ML, 9% for r50%-ML, 12% for 25%-ML,
and 18% for s10%-ML. For 10%-ML, this percentage rises
dramatically to 46% providing further evidence that this ML
model is no longer reliable for high-accuracy applications.

We also computed vibrational energies using the training
set PESs (also listed in Table IV). The errors are reasonably
small and structure-based sampling again performs better than
random sampling. For 50%-ML, 25%-ML, and s10%-ML,
the predicted spectra are more reliable than the results of the
respective training set PESs (constructed from 50%, 25%, and
10% of the entire CBS-35 HL PES dataset, respectively), but
this does not hold for the r50%-ML model, and there is even
a marked deterioration in the case of 10%-ML.

IV. CONCLUSIONS

We propose a procedure for building highly accurate PESs
using KRR-based machine learning. Our approach employs
structure-based sampling to ensure that machine learning is
applied in the interpolation regime where it performs best. Data
slicing in terms of the energy distribution is recommended for
a balanced representation of the PES for very small training
sets. Self-correction capabilities are introduced into the ML
model by including additional ML layers.

In a pilot study, we explored the merits of our ML model
using a recently published high-level ab initio PES of CH3Cl
as an example. Several ML models were built and trained using
training sets of different sizes and a different number of data
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slices, and their performance was assessed by comparisons
with the original ab initio energies at the grid points in the
training set and the prediction set. An excellent agreement
was found for the 50%-ML model, which reproduces the PES
with sub-wavenumber accuracy.

For five selected ML-based PESs, the vibrational energy
levels of CH3Cl were computed using variational TROVE
calculations, in complete analogy to the published ab initio

work.43 The results clearly show that structure-based sam-
pling produces more accurate ML models than random sam-
pling. The structure-based sampling 50%-ML model gives an
excellent agreement with the ab initio reference data for the
vibrational energy levels (a RMSE of 0.04 cm☞1 in the range
up to 10 000 cm☞1). The accuracy deteriorates slightly for the
25%-ML model (a RMSE of 0.16 cm☞1) and for the s10%-
ML model (a RMSE of 0.28 cm☞1, training set sampled from
the dataset sliced into three regions) and quite strongly for the
10%-ML model (a RMSE of 1.75 cm☞1, training set sampled
from the unsliced dataset).

The evidence from the present pilot study suggests that the
number (and computational cost) of electronic structure cal-
culations in high-level ab initio studies of rovibrational spec-
troscopy may be reduced by up to 90% (depending on the user
needs and the initial grid size) by using structure-based sam-
pling and self-correcting ML models, with a minimal loss of
accuracy. We expect that this will also hold for small molecules
other than CH3Cl (in the absence of obvious reasons to suspect
anything else). Of course, this should be examined in future
work, which should also aim at establishing standard protocols
for such ML studies. Finally, given the fact that our ML model
is available in analytic form, it seems worthwhile to explore
whether it can be used directly in TROVE-type variational cal-
culations (without an intermediate fit to a standard polynomial
form).

V. OUTLOOK

The objective of this study was not to improve upon the
existing ab initio PES of CH3Cl but to demonstrate how the
computational cost of building such a PES can be substantially
reduced by performing fewer ab initio calculations and by
interpolating efficiently with KRR-based ML. We have shown
that this can be done by the following procedure:

1. Generate a large and dense grid of deformed structures
using established techniques (as outlined in Sec. II C and
Ref. 43).

2. Select points from this grid into the training set by using
structure-based sampling.

3. Calculate the energy for each point in the training set as
accurately as possible using a high-level ab initio method.

4. Train the self-correcting ML model on the training set
geometries and the high-level ab initio energies.

5. Predict the energies for the remaining grid points using
self-correcting machine learning.

6. Calculate rovibrational levels variationally using TROVE.
7. Repeat steps 2 to 6 by including more points from the

grid into the training set using structure-based sampling
until the calculated rovibrational levels converge.

We plan to apply this procedure to generate accurate PESs for
other small molecules. During these studies, we will also inves-
tigate additional ways to reduce even further the computational
cost of generating accurate PESs by combining our procedure
with the so-called ∆-ML approach.11 In this approach, ML is
trained on differences between high-level and less demanding
but still reliable low-level ab initio results; the ∆-ML model
is then applied to correct low-level energies for the remaining
grid points (similar to previous work on the water PES13). We
anticipate that this approach will allow us to investigate larger
systems such as organic molecules with several carbon atoms.
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