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The drug development process is a major challenge in the pharmaceutical industry

since it takes a substantial amount of time and money to move through all the phases

of developing of a new drug. One extensively used method to minimize the cost and

time for the drug development process is computer-aided drug design (CADD). CADD

allows better focusing on experiments, which can reduce the time and cost involved

in researching new drugs. In this context, structure-based virtual screening (SBVS) is

robust and useful and is one of the most promising in silico techniques for drug design.

SBVS attempts to predict the best interaction mode between two molecules to form

a stable complex, and it uses scoring functions to estimate the force of non-covalent

interactions between a ligand and molecular target. Thus, scoring functions are the main

reason for the success or failure of SBVS software. Many software programs are used to

perform SBVS, and since they use different algorithms, it is possible to obtain different

results from different software using the same input. In the last decade, a new technique

of SBVS called consensus virtual screening (CVS) has been used in some studies to

increase the accuracy of SBVS and to reduce the false positives obtained in these

experiments. An indispensable condition to be able to utilize SBVS is the availability of

a 3D structure of the target protein. Some virtual databases, such as the Protein Data

Bank, have been created to store the 3D structures of molecules. However, sometimes

it is not possible to experimentally obtain the 3D structure. In this situation, the homology

modeling methodology allows the prediction of the 3D structure of a protein from its

amino acid sequence. This review presents an overview of the challenges involved

in the use of CADD to perform SBVS, the areas where CADD tools support SBVS,

a comparison between the most commonly used tools, and the techniques currently

used in an attempt to reduce the time and cost in the drug development process.

Finally, the final considerations demonstrate the importance of using SBVS in the drug

development process.
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INTRODUCTION

In the past, the discovery of new drugs wasmade through random
screening and empirical observations of the effects of natural
products for known diseases.

This random screening process, although inefficient, led
to the identification of several important compounds until
the 1980s. Currently, this process is improved by high-
throughput screening (HTS), which is suitable for automating
the screening process of many thousands of compounds against
a molecular target or cellular assay very quickly. The milestone
of HTS was used in the identification of cyclosporine A
as a immunosuppressant (von Wartburg and Traber, 1988).
Subsequently, several drugs such as nevirapine (Merluzzi et al.,
1990), gefitinib (Ward et al., 1994), and maraviroc (Wood and
Armour, 2005) have reached the market. Notably, gefitinib was
discovered by computational methods through a collection of
1500 compounds by ALLADIN (Martin, 1992) software. In
addition, computational methods have been used to search
successful compounds against malaria disease (Nunes et al.,
2019). The structures of these molecules are in Figure 1.

Alternatively, the increased cost and evolution of medicines
available in the last century have led to an improvement in
the quality of life of the world population. However, while
the average quality of life has been improved, a third of the
population is still without access to essential medicines, which
means that more than 2 billion people cannot afford to buy basic
medicines (Leisinger et al., 2012). This problem is even worse
in some places in Africa and Asia, where more than 50% of
the people face problems obtaining medicines (Leisinger et al.,
2012). Moreover, throughout the world, more than 18 million
deaths that occur every year could be avoided, as well as tens
of millions of deaths related to poverty and lack of access to
essential medicines (Sridhar, 2008). The price of many medicines
is inaccessible to limited-income populations andmiddle-income
countries (Stevens and Huys, 2017).

While there is a need to increase the population’s access to
medicines, the pharmaceutical industry is facing unprecedented
challenges in its business model (Paul et al., 2010). The current
process of developing new drugs began to mature only in
the second half of the twentieth century. The process evolved
from observations made in the correlation of certain physical-
chemical properties of organic molecules with biological potency.
Optimization of these compounds by the incorporation of
more favorable substituents resulted in more potent drugs. X-
ray crystallography and nuclear magnetic resonance (NMR)
techniques have provided information on the structures of
enzymes and drug receptors. Many drugs, such as angiotensin-
converting-enzyme (ACE) inhibitors, have been introduced to
the clinical practice from this structural information.

The drug development process aims to identify bioactive
compounds to assist in the treatment of diseases. In summary
(Figure 2), the process starts with the identification of molecular
targets for a given compound (natural or synthetic) and is
followed by their validation. Then, virtual screening (VS)
can be used to assist in hit identification (identification of
active drug candidates) and lead optimization (biologically

active compounds are transformed into appropriate drugs
by improving their physicochemical properties). Finally these
optimized leads will undergo preclinical and clinical trials to
ultimately be approved by regulatory bodies (Lima et al., 2016).

In general, this process is time-consuming, laborious and
expensive. The development of a new drug has an average
cost between 1 and 2 billion USD and could take 10–17 years
(Leelananda and Lindert, 2016), since it has to move through
all phases for new drug development, from target discovery to
drug registration. Even so, Arrowsmith (2012) showed that the
probability of a drug candidate reaching themarket after entering
Phase I clinical trials fell from 10% in the 2002–2004 period to
approximately 5% between 2006 and 2008, which represents a
50% decrease in just 4 years.

Thus, researchers are constantly investing in the development
of new methods to increase the efficiency of the drug discovery
process (Hillisch et al., 2004). The computer-aided drug
design (CADD) approach, which employs molecular modeling
techniques, has been used by researchers to increase the
efficacy in the development of new drugs since it uses in
silico simulations. Molecular modeling allows the analysis of
many molecules in a short period of time, demonstrating how
they interact with targets of pharmacological interest even
before their synthesis. The technique allows the simulation
and prediction of several essential factors, such as toxicity,
activity, bioavailability and efficacy, even before the compound
undergoes in vitro testing, thus allowing better planning and
direction of the research (Ferreira et al., 2011). Better planning
of the research means, in this case, fewer in vitro and in vivo
experiments. Therefore, it reduces the run time and overall
research costs.

In this context, virtual screening (VS) is a promising in silico
technique used in the drug discovery process. An indispensable
condition in performing virtual screening is the availability
of a 3D structure of the target protein (Cavasotto, 2011).
Therefore, some virtual databases were created to store 3D
structures of molecules. Virtual screening is now widely applied
in the development of new drugs and has already contributed
to compounds on the market. Examples of drugs that came
to the market with the assistance of VS include captopril
(antihypertensive drug), saquinavir, ritonavir, and indinavir
(three drugs for the treatment of human immunodeficiency
virus), tirofiban (fibrinogen antagonist), dorzolamide (used to
treat glaucoma), zanamivir (a selective antiviral for influenza
virus), aliskiren (antihypertensive drug), boceprevir (protease
inhibitor used for the treatment of hepatitis C), nolatrexed (in
phase III clinical trial for the treatment of liver cancer) (Talele
et al., 2010; Sliwoski et al., 2013; Devi et al., 2015; Nunes et al.,
2019). The structures of these molecules are in Figures 3, 4.

This review will present an overview of the challenges
involved in the development of new drugs. Section Computer-
aided drug design (CADD) will describe CADD while section
3 will demonstrate how VS has been used as an agent in the
process of developing of new drugs. Section Virtual screening
(VS), in turn, will explain the main scoring functions used
in recent scientific research. Section Consensus docking will
explain consensus docking, which is a relatively unexplored
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FIGURE 1 | Examples of structures identified by HTS. (A) cyclosporine A, (B) Neviparine, (C) Gefitinib, (D) Clioquinol, and (E) Maraviroc.

FIGURE 2 | Drug development timeline.

topic in the virtual screening process. Section Virtual Databases
will list the main virtual databases used in this task. Section
Virtual screening algorithms presents the main VS algorithms
used. Section Methods of evaluating the quality of a simulation
will present some evaluation methods used to verify if the
quality of the performed model/simulation is good. Section
VS software programs, in turn, will present the main VS

software currently used. Section Final considerations will present
final considerations.

COMPUTER-AIDED DRUG DESIGN (CADD)

One approach used to increase the effectiveness in the
development of new drugs is the use of computer-aided
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FIGURE 3 | Drugs that came to the market with the assistance of VS: (A) Captopril, (B) Saquinavir, (C) Tirofiban, (D) Indinavir, (E) Ritonavir.

drug design (CADD, well known as an in silico method)
techniques, which uses a computational chemistry approach
for the drug discovery process. CADD is a cyclic process for
developing new drugs, in which all stages of design and analysis
are performed by computer programs, operated by medicinal
chemists (Oglic et al., 2018).

Strategies for CADD may vary, depending on what
information about the target and ligand are available.
In the early stage of the drug development process, it
is normal for little or no information to exist about the
target, ligands, or their structures. CADD techniques are
able to obtain this information, such as which proteins
can be targeted in pathogenesis and what are the possible
active ligands that can inhibit these proteins. Kapetanovic
(2008) briefly notes that CADD comprises (i) making the
drug discovery and development process faster with the
contribution of in silico simulations; (ii) optimizing and
identifying new drugs using the computational approach to

discover chemical and biological information about possible
ligands and/or molecular targets; and (iii) using simulations
to eliminate compounds with undesirable properties and
selecting candidates with more chances for success. Recent
software uses empirical molecular mechanics, quantum
mechanics and, more recently, statistical mechanics. This
last advancement allows the explicit effects of solvents to be
incorporated (Das and Saha, 2017).

CADD gained prominence, as it allows obtaining information
about the specific properties of a molecule, which can
influence its interaction with the receptor. Thus, it has
been considered a useful tool in rational planning and
the discovery of new bioactive compounds. Alternatively,
CADD simulations require a high computational cost,
taking up to weeks if long jobs are used for molecular
dynamics simulations. Therefore, it is a continuous
challenge to find viable solutions that reduce the simulation
runtime and simultaneously increase the accuracy of the
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FIGURE 4 | Drugs that came to the market with the assistance of VS. (A) Dorzolamide, (B) Zanamivir, (C) Aliskiren, (D) Boceprevir, (E) Nolatrexid.

simulations (Ripphausen et al., 2011). In this context, VS is a
promising approach.

VIRTUAL SCREENING (VS)

Popular VS techniques originated in the 1980s, but the first
publication about VS appeared in 1997 (Horvath, 1997). In recent

times, the use of VS techniques has been shown to be an excellent
alternative to high throughput screening, especially in terms of
cost-effectiveness and probability of finding the most appropriate
result through a large virtual database (Surabhi and Singh, 2018).

VS is an in silico technique used in the drug
discovery process. During VS, large databases of known
3D structures are automatically evaluated using computational
methods (Maia et al., 2017). VS works like a funnel, by selecting
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FIGURE 5 | VS scheme.

more promising molecules for in vitro assays to be performed.
In the example shown in Figure 5, it is assumed that a virtual
screening will be performed on 500 possible active ligands for a
target. Then, VS with AutoDock Vina (Trott and Olson, 2009)
was carried out and the top 50 ligands were selected. Then, a
VS using DOCK 6 (Allen et al., 2015) with the Amber scoring
function was performed. DOCK 6 with Amber scoring function
takes longer, because it performs molecular dynamics, but it
promises better results. Finally, after VS with DOCK 6, the
top 5 active compounds are selected to be purchased and then
tested in vitro. With the use of VS, it is expected that those
identified molecules are more susceptible to binding to the
molecular target, which is typically a protein or enzyme receptor.
Therefore, VS assists in identifying the most promising hits
able to bind to the target protein or enzyme receptor, and only
the most promising molecules are synthesized. In addition, VS
identifies compounds that may be toxic or have unfavorable
pharmacodynamic (for example, potency, affinity, selectivity)
and pharmacokinetic (for example, absorption, metabolism,
bioavailability) properties. Thus, VS techniques play a prominent
role among strategies for the identification of new bioactive
substances (Berman et al., 2013).

VS for drug discovery is becoming an essential tool to assist
in fast and cost-effective lead discovery and drug optimization
(Maia et al., 2017). This technique can aid in the discovery of
bioactive molecules, since they allow the selection of compounds
in a structure database that are most likely to show biological
activity against a target of interest. After identification, these
bioactive molecules undergo biological assays. In addition, there
are VS techniques using machine learning methods that predict
compounds with specific pharmacodynamic, pharmacokinetic
or toxicological properties based on their structural and
physicochemical properties that are derived from the ligand
structure (Ma et al., 2009). Hence, VS tools play a prominent
role among the strategies used for the identification of new
bioactive substances, since they increase the speed of the drug
discovery process as long as they automatically evaluate large
compound libraries through computational simulations (Maithri
and Narendra, 2016).

Structure based virtual screening (SBVS) is a robust, useful
and promising in silico technique for drug design (Lionta et al.,
2014). Therefore, this review will address SBVS, although there
are other types of VS such as ligand-based virtual screening
(Banegas-Luna et al., 2018) and fragment-based virtual screening
(Wang et al., 2015).

4-Structure-Based Virtual Screening
(SBVS)
Structure-based virtual screening (SBVS), also known as target-
based virtual screening (TBVS), attempts to predict the best
interaction between ligands against a molecular target to form a
complex. As a result, the ligands are ranked according to their
affinity to the target, and the most promising compounds are
shown at the top of the list. SBVS methods require that the 3D
structure of the target protein be known so that the interactions
between the target and each chemical compound can be predicted
in silico (Liu et al., 2018). In this strategy, the compounds are
selected from a database and classified according to their affinity
for the receptor site.

Among the techniques of SBVS, molecular docking is
noteworthy due to its low computational cost and good results
achieved (Meng et al., 2011). This technique emerged in the
1980s, when Kuntz et al. (1982) designed and tested a set
of algorithms that could explore the geometrically feasible
alignments of a ligand and target. However, although the
approach was promising, it was only in the 1990s that it became
widely used after there was an improvement in the techniques
used in conjunction with an increase in the computational power
and a greater access to the structural data of target molecules.
During the execution of SBVS, the evaluated molecules are
sorted according to their affinity to the receptor site. Hence, it
is possible to identify ligands that are more likely to present
some pharmacological activity with the molecular target. Score
functions are used to verify the likelihood of a binding site
describing the affinity between the ligand and target. In this
process, a reliable scoring function is the critical component of
the docking process (Leelananda and Lindert, 2016).

The use of SBVS has advantages and disadvantages. Among
the advantages are the following:

I There is a decrease in the time and cost involved in the
screening of millions of small molecules.

II There is no need for the physical existence of the
molecule, so it can be tested computationally even before
being synthesized.

III There are several tools available to assist SBVS.

The disadvantages can be highlighted as the following:

I Some tools work best in specific cases, but not in more
general cases (Lionta et al., 2014).

II It is difficult to accurately predict the correct binding
position and classification of compounds due to the
difficulty of parameterizing the complexity of ligand-receptor
binding interactions.

III It can generate false positives and false negatives.
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Despite the disadvantages noted above, many studies using SBVS
have been developed in recent years (Carregal et al., 2017;
Mugumbate et al., 2017; Wójcikowski et al., 2017; Carpenter
et al., 2018; Dutkiewicz and Mikstacka, 2018; Surabhi and Singh,
2018; Nunes et al., 2019), which shows that although SBVS has
disadvantages, it is still wide used for developing drugs due
to the reduction of time and cost. However, docking protocols
are essential for achieving accurate SBVS. These protocols are
composed of twomain components: the search algorithm and the
score function.

Search Algorithms
Search algorithms are used to systematically search for
ligand orientations and conformations at the binding site. A
good docking protocol will achieve the most viable ligand
conformations, in addition the most realistic position of the
ligand at the binding site.

Thus, the search algorithm explores different positions
of ligands at the active binding site using translational
and rotational degrees of freedom in the case of rigid
docking, while flexible docking adds conformational degrees
of freedom to translations and rotations of the ligands.
To predict the correct conformation of ligands, search
algorithms adopt various techniques, such as checking the
chemistry and geometry of the atoms involved [DOCK 6
(Allen et al., 2015), FLEXX (Rarey et al., 1996)], genetic
algorithm [GOLD (Verdonk et al., 2003)] and incremental
construction (Friesner et al., 2004). Algorithms that consider
ligand flexibility can be divided into three types: systematic,
stochastic and deterministic (Ruiz-Tagle et al., 2018). Some
software uses more than one of these approaches to obtain
better results.

Systematic search algorithms exploit the degrees of freedom
of the molecules, usually through their incremental construction
at the binding site. Increasing the degree of freedom (rotatable
bonds) increases the number of evaluations needed to be
performed by the algorithm. Increasing the degree of freedom
(rotary links) increases the number of evaluations required
to be performed by the algorithm, causing an increase in
the time required for its execution. To reduce the time
it takes to execute, termination criteria are inserted that
prevent the algorithm from trying solutions that are in the
space known to lead to wrong solutions. DOCK 6 (Allen
et al., 2015), FLEXX (Rarey et al., 1996), and Glide (Friesner
et al., 2004) are examples of software that uses systematic
search algorithms.

Stochastic search algorithms perform random changes in
the spatial conformation of the ligand, usually changing one
system degree of freedom at a time, which leads to the
exploration of several possible conformations (Ruiz-Tagle et al.,
2018). The main problem of stochastic algorithms is the
uncertainty of converging to a good solution. For this reason,
to minimize this problem, several independent executions
of stochastic algorithms are usually performed. Examples of
stochastic research algorithms are Monte Carlo (MC) methods
used by Glide (Friesner et al., 2004) and MOE (Vilar et al., 2008)

and genetic algorithms used by GOLD (Verdonk et al., 2003) and
AutoDock4 (Morris et al., 2009).

During the execution of a deterministic search algorithm, the
initial state is responsible for determining the movement that can
be made to generate the next state, which generally must be equal
to or less in the energy from the initial state. One problem with
deterministic algorithms is that they are often trapped in local
minima because they cannot cross barriers; there are approaches,
such as increasing the simulation temperature, that can be
implemented to circumvent this problem. Energy minimization
methods are an example of deterministic algorithms. Molecular
dynamics (MD) is also an example of a deterministic search
algorithm and is used by DOCK 6 (Allen et al., 2015). However,
MD computational demands are very high, and while MD
promises to have better results and ensures full-system flexibility,
the runtime becomes a limiting factor for simulations because
structure databases can have millions of ligands and targets.

Scoring Functions
Molecular docking software uses scoring functions to estimate
the force of non-covalent interactions between a ligand and
molecular target using mathematical methods. A scoring
function is one of the most important components in SBVS
(Huang et al., 2010) as it is primarily responsible for predicting
the binding affinity between a target and its ligand candidate.
Thus, the scoring functions are the main reason for the success or
failure of docking tools (ten Brink and Exner, 2009). Therefore,
despite the wide use, the estimation of the interaction force
between a ligand and molecular target remains a major challenge
in VS. Figure 6 illustrates docking using Autodock Vina between
cyclooxygenase-2 (PDB ID: 4PH9) and two ligands (a) an inactive
ligand and (b) celecoxib (an anti-inflammatory). Compared to
the inactive ligand, celecoxib is observed to have much more
interactions with the protein, which causes celecoxib to form a
more stable binding in the VS. This result causes the AutoDock
Vina scoring function to see a binding energy of −10.4 kcal/mol
for celecoxib and −5.4 kcal/mol for the inactive compound.
The ligand with the highest binding affinity to the target can
be selected for further testing. Therefore, in this case celecoxib
would be chosen.

In general, there are three important applications of scoring
functions in molecular docking. First, they can be used to
determine the ligand binding site and the conformation between
a target and ligand. This approach can be used to search for
allosteric sites. Second, they can be used to predict the binding
affinity between a protein and ligand. Third, they can also be used
in lead optimization (Li et al., 2013).

Most authors define the scoring functions as three types
(Huang et al., 2010; Ferreira et al., 2015; Haga et al., 2016): force
field (FF), empirical and knowledge-based. Liu and Wang (2015)
define two more types of scoring functions as: machine-learning-
based and hybrid methods.

The force field scoring functions are based on the
intermolecular interactions between the ligand and target
atoms, such as the van der Waals, electrostatic and bond
stretching/bending/torsional force interactions, obtained from
experimental data and in accordance with the principles of
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FIGURE 6 | Identification of a ligand candidate by using a typical scoring function. The hydrogens were omitted for better visualization. (A) Inactive ligand, (B)

celecoxib.

molecular mechanics (Ferreira et al., 2015). Some published
force-field scoring functions include the ones described in Li
et al. (2015), Goldscore (Verdonk et al., 2003), and Sybyl/D-Score
(Ash et al., 1997).

Empirical scoring functions estimate the binding free energy
based on weighted structural parameters by adjusting the scoring
functions to experimentally determine the binding constants of
a set of complexes (Ferreira et al., 2015). To create an empirical
scoring function, a set of data from protein-binding complexes
whose affinities are known is initially used for training. A linear
regression is then performed as a way of predicting the values
of some variables (Huang et al., 2010). The weight constants
generated by the empirical function are used as coefficients to
adjust the equation terms. Each term of the function describes a
type of physical event involved in the formation of the ligand-
receptor complex. Thus, hydrogen bonding, ionic bonding,
non-polar interactions, desolvation and entropic effects are
considered. Some popular empirical, scoring functions include
Glide-Score (Friesner et al., 2004), Sybyl-X/F-score (Certara,
2016) and DOCK 6 empirical force field (Allen et al., 2015).

In the knowledge-based scoring functions, the binding affinity
is calculated by summing the binding interactions of the atoms of
a protein and the molecular target (Ferreira et al., 2015). These
functions consider statistical observations performed on large

databases (Ferreira et al., 2015). The method uses pairwise energy
potentials extracted from known ligand-receptor complexes to
obtain a general scoring function. These methods assume that
intermolecular interactions occurring near certain types of atoms
or functional groups that occur more frequently are more likely
to contribute favorably to the binding affinity. The final score
is given as a sum of the score of all individual interactions.
One example of software that uses a knowledge-based scoring
function is ParaDockS (Meier et al., 2010).

In addition, machine-learning-basedmethods (Liu andWang,
2015) have been considered as a fourth type of scoring function.
Machine learning-based methods have gained attention for their
reliable prediction (Pereira et al., 2016; Chen et al., 2018).
Many researchers have used machine learning to improve
SBVS algorithms, but we do not know any drugs developed
after combining SBVS with machine learning. However, some
researchers applied machine learning techniques to discover
a new antibiotic capable of inhibiting the growth of E. coli
bacteria (Stokes et al., 2020). These techniques have been used
in quantitative structure-activity relationship (QSAR) analysis to
predict various physical-chemical (for example, hydrophobicity,
and stereochemistry of the molecule), biological (for example,
activity and selectivity), and pharmaceutical (for example,
absorption, and metabolism) properties of small molecule
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compounds. In these types of scoring functions, modern QSAR
analyses can be applied to derive statistical models that calculate
protein-ligand binding scores. Some scoring functions of this
type are NNScore 2.0 (Durrant and McCammon, 2011), RF-
Score-VS (Wójcikowski et al., 2017), SFCscoreRF (Zilian and
Sotriffer, 2013), SVR-KB (Li et al., 2011), SVR-EP (Li et al., 2011),
ID-Score (Li et al., 2013) and CScore (Ouyang et al., 2011).

There are some hybridized scoring functions that cannot
easily be classified into any of the categories listed above
because they combine two or more of the previously defined
scoring function types [force field (FF), empirical, knowledge
based and machine-learning-based] into one scoring function.
Therefore, they are called hybrid scoring functions. In general,
the hybrid scoring function is a linear combination of the two
or more scoring function components derived from a multiple
linear regression fitting procedure (Tanchuk et al., 2016). For
example, the GalaxyDock score function is a hybrid of physics-
based, empirical, and knowledge-based score terms that has the
advantages of each component. As a result, the performance was
improved in decoy pose discrimination tests (Baek et al., 2017). A
few recently published examples of this type of scoring function
include the hybrid scoring function developed by Tanchuk et
al. (Tanchuk et al., 2016), which combines force field machine
learning scoring functions; SMoG2016 (Geng et al., 2019), which
combines knowledge-based and an empirical scoring functions;
GalaxyDock BP2 (Baek et al., 2017), which combines force field,
empirical, and knowledge-based scoring functions and iScore
(Geng et al., 2019), which combines empirical and force-field
scoring functions.

Consensus Docking
In the last decade, a new technique of VS called consensus
docking (CD) has been used in some studies (Park et al., 2014;
Tuccinardi et al., 2014; Chermak et al., 2016; Poli et al., 2016;
Aliebrahimi et al., 2017) to increase the accuracy of VS studies
and to reduce the false positives obtained in VS experiments
(Aliebrahimi et al., 2017).

This technique is a combination of two different approaches,
in which the resultant combination is better than a single
approach alone. However, Poli et al. (2016) reported that there
are few studies that evaluate the possibility of combining the
results from different VS methods to achieve higher success rates
in VS studies.

Houston and Walkinshaw (2013) described the main reason
for using this combination: the individual program may
present incorrect results and these errors are mostly random.
Therefore, even when two programs present different results,
the combination of these results may, in principle, be much
closer to the correct answer than even the best program alone.
Houston andWalkinshaw also suggest that CD approaches using
two different docking programs improve the precision of the
predicted binding mode for any VS study. The same study also
verified that a greater level of consensus in a given pose indicates
a greater reliability in this result. Finally, the results presented by
the authors suggest that the CD approach works as well as the
best VS approaches available in the literature.

Park et al. (2014) use an approach in which they used a
combination of the programs AutoDock 4.2 (Morris et al., 2009)
and FlexX (Rarey et al., 1996) programs. These programs were
chosen because both use different types of score functions (force
field in AutoDock and empirical in FlexX). In this study, they
achieved superior performance with the application of consensus
docking than using each of the programs alone.

Alternatively, when using two different VS programs, there is
extra time to run the two different tools and combine the results.
However, Houston and Walkinshaw (2013) showed that the
increased runtime may be advantageous; using AutoDock Vina
(Trott and Olson, 2009) in a VS approach along with AutoDock4
(Morris et al., 2009) increased the final runtime by ∼10%. This
combination is interesting given the potential gains from its use.

Therefore, the use of consensus docking is a recent technique,
and although there are few papers in the literature on the subject,
it seems to be a promising approach for further VS studies.

VIRTUAL DATABASES

An indispensable condition in performing VS is the availability
of a 3D structure of the target protein (Cavasotto, 2011) and
ligands to be docked. Some databases were created to store
3D structures of molecules. Some of the free databases include
Protein Data Bank (PDB) (Berman et al., 2013), PubChem
(Kim et al., 2016), ChEMBL (Bento et al., 2014), ChemSpider
(Pence and Williams, 2010), Zinc (Sterling and Irwin, 2015),
Brazilian Malaria Molecular Targets (BraMMT) (Nunes et al.,
2019), Drugbank (Wishart et al., 2018), and Our Own Molecular
Targets (OOMT) (Carregal et al., 2013). In addition, there are
some commercially available databases such as the MDL Drug
Data Report1 Below we are going to present a brief explanation
of each of these databases:

• Protein Data Bank (PDB) (Berman et al., 2013): PDB is
the public database where three-dimensional structures of
proteins, nucleic acids, and complex molecules have been
deposited since 1971. The worldwide PDB organization
ensures that PDB files are publicly available to the global
community. It is widely used by the academic community and
has grown consistently in recent years. In the last 10 years, the
number of 3D structures of the PDB increased from 48,169 at
the end of 2008 to 147,604 in the end of 2018, an increase of
nearly 207%. This implies that in the last 10 years, almost 9,943
new structures have been added to the PDB every year, just
over 27 structures per day, on average. The pace of this growth
has increased. At the beginning of this decade approximately
25 new entries were added per day on average. In 2018, over 31
new structures were added per day, an average daily growth of
24% compared to 2010.

• PubChem (Kim et al., 2016): PubChem is a public database,
aggregating information from smaller, more specific databases.
It has more than 97 million compounds available.

1http://accelrys.com/products/collaborative-science/databases/bioactivity-
databases/mddr.html
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• ChEMBL (Bento et al., 2014): ChEMBL is a database of
bioactive molecules with medicinal properties maintained
by the European Institute of Bioinformatics (EBI) of the
European Molecular Biology Laboratory (EMBL). Currently,
it has almost 2.3 million compounds and 15.2 million known
biological activities.

• Zinc (Sterling and Irwin, 2015): Zinc is a free database of
commercially available compounds for VS. Zinc has more
than 230 million commercially available compounds in the 3D
format. Zinc is maintained by Irwin and Shoichet Laboratories
of the Department of Pharmaceutical Chemistry at the
University of California, San Francisco (UCSF).

• NatProDB (Paixão and Pita, 2016): The State University
of Feira de Santana has made NatProDB available. This
database stores 3D structures of the semiarid biome. The
pharmacological profile of compounds from the semiarid
flora have not yet been studied, which has motivated our
research group to deepen the research by their molecular
targets (Taranto et al., 2015).

• Our Own Molecular Target (OOMT) (Carregal et al., 2013):
OOMT is a special molecular target database because it has
the biological assay for all its molecular targets, and includes
specific targets for cancer, dengue, and malaria. OOMT was
created by a group of researchers from Federal University of
São João del-Rei (UFSJ).

• Brazilian Malaria Molecular Targets (BraMMT) (Nunes
et al., 2019): The BRAMMT database comprises thirty-five
molecular targets for Plasmodium falciparum retrieved from
the PDB database. This database allows in silico virtual high
throughput screening (vHTS) experiments against a pool of P.
falciparummolecular targets.

• Drugbank (Wishart et al., 2018): DrugBank is a database that
contains comprehensive molecular information about drugs,
their mechanisms, their interactions, and their targets. The
database contains more than 11,900 drug entries, including
nearly 2,538 FDA-approved small molecule drugs, 1,670
biotechnology (protein / peptide) drugs approved by the FDA,
129 nutraceuticals and nearly 6,000 investigational drugs.

Commercially available Databases:

• MDL Drug Data Report (MDDR) (Sci Tegic Accelrys Inc,
2019): MDDR is a commercial database built from patent
databases, publications and congresses. It has more than
260,000 biologically relevant compounds and approximately
10,000 compounds are added every year.

• ChemSpider (Pence and Williams, 2010): ChemSpider is a
database of chemical substances owned by the Royal Society
of Chemistry. It has more than 71 million chemical structures
from over 250 data sources. ChemSpider allows downloading
up to 1000 structures per day. Previous contact is needed for
the download of more structures, and ChemSpider is therefore
not a totally free database.

VIRTUAL SCREENING ALGORITHMS

In VS, we are targeting proteins in the human body to find
novel ligands that will bind to them. VS can be divided into

two classes: structure-based and ligand-based. In structure-
based virtual screening, a 3D structure of the target protein
is known, and the goal is to identify ligands from a database
of candidates that will have better affinity with the 3D
structure of the target. VS can be performed using molecular
docking, a computational process where ligands are moved
in 3D space to find a configuration of the target and ligand
that maximizes the scoring function. The ligands in the
database are ranked according to their maximum score, and
the best ones can be investigated further, e.g., by examining
the mode and type of interaction that occurs. Additionally,
VS techniques can be divided according to the algorithms
used as follows:

• Machine Learning-based Algorithms

• Artificial neural networks (ANNs) (Ashtawy and
Mahapatra, 2018);

• Support vector machines (Sengupta and Bandyopadhyay,
2014);

• Bayesian techniques (Abdo et al., 2010);
• Decision tree (Ho, 1998);
• k-nearest neighbors (kNN) (Peterson et al., 2009);
• Kohonen’s SOMs and counterpropagation ANNs

(Schneider et al., 2009);
• Ensemble methods using machine learning (Korkmaz et al.,

2015);

• Evolutionary Algorithms

• Genetic algorithms (Xia et al., 2017);
• Differential evolution (Friesner et al., 2004), Gold (Verdonk

et al., 2003), Surflex (Spitzer and Jain, 2012) and FlexX
(Hui-fang et al., 2010);

• Ant colony optimization (Korb et al., 2009);
• Tabu search (Baxter et al., 1998);
• Particle swarm optimization (Gowthaman et al., 2015) and

PSOVina (Ng et al., 2015);

• Local search such as Autodock Vina (Trott and Olson, 2009),
SwissDock/EADock (Grosdidier et al., 2011) and GlamDock
(Tietze and Apostolakis, 2007);

• Exhaustive search such as eHiTS (Zsoldos et al., 2007);
• Linear programming methods such as Simplex Method (Ruiz-

Carmona et al., 2014);
• Systematic methods such as incremental construction used by

FlexX (Rarey et al., 1996), Surflex (Spitzer and Jain, 2012), and
Sybyl-X (Certara, 2016);

• Statistical methods

• Monte Carlo (Harrison, 2010);
• Simulated annealing (SA) (Doucet and Pelletier, 2007),

Hatmal and Taha (Hatmal and Taha, 2017);
• Conformational space annealing (CSA) (Shin et al., 2011);

• Similarity-based algorithms

• Based on substructures (Tresadern et al., 2009);
• Pharmacochemical (Cruz-Monteagudo et al., 2014);
• Overlapping volumes (Leach et al., 2010);
• Molecular interaction fields (MIFs) (Willett, 2006);
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• Hybrid approach (Morris et al., 2009; Haga et al., 2016);

After performing a VS simulation, it is necessary to verify
whether the quality of the generated protein-ligand complexes
can represent a complex that could be reproduced in
experiments. There are several methods that can perform
this assessment, which will be explained in the next section.

METHODS OF EVALUATING THE QUALITY
OF A SIMULATION

To verify the quality of a docking approach, some methods
are used to evaluate generated complexes and to verify if the
protein generated by the docking can reproduce the experimental
data results of the ligand-receptor complex. The most common
evaluation methods are root mean square deviation (RMSD)
(Hawkins et al., 2008), receiver operating characteristic (ROC),
area under the curve ROC (AUC-ROC) (Flach and Wu, 2005;
Trott and Olson, 2009) enrichment factors (EFs) (Truchon and
Bayly, 2007) and Boltzmann-enhanced discrimination of ROC
(BEDROC) (Truchon and Bayly, 2007).

Root-Mean-Square Deviation (RMSD)
One of the aspects evaluated in docking programs is the accuracy
of the generated geometry (Jain, 2008). Docking programs
attempt to reproduce the conformation of the ligand-receptor
complex in a crystallographic structure. The metric root-mean-
square deviation (RMSD) of atomic coordinates after the ideal
superposition of rigid bodies of two structures is popular. Its
popularity is because it allows the quantification of the differences
between two structures, and these can be structures with the
same and different amino acid sequences (Sargsyan et al., 2017).
RMSD is widely used to evaluate the quality of a docking process
performed by a program (Ding et al., 2016). The RMSD between
two structures can be calculated according to the following
equation (Sargsyan et al., 2017):

RMSD (A,B) =
1

N

n
∑

i=1

d2i

where d is the distance between atom i in the two structures and
N is the total number of equivalent atoms. Since the calculation of
RMSD requires the same number of atoms in both structures, it is
often used in the calculation of only the heavy atoms or backbone
of each amino acid residue.

Using the RMSD calculation, it is possible to evaluate
if a program was able to reliably reproduce a known
crystallographic conformation, as well as their respective
intramolecular interactions. To verify if a given program can
accomplish this task, ligand-targets complexes are subjected
to a redocking process. After redocking, the overlap of the
crystallographic ligand with the conformation of the ligand
obtained with the docking program is then performed. Then, the
RMSD calculation is used to check the average distance between
the corresponding atoms (usually backbone atoms).

Generally, the RMSD threshold value is 2.0 Å (Jain, 2008;
Meier et al., 2010; Gowthaman et al., 2015). However, for

ligands with several dihedral angles, an RMSD value of 2.5 Å is
considered acceptable (De Magalhães et al., 2004). In the case of
binding a large ligand, some authors generally relax this criterion
(Méndez et al., 2003; Verschueren et al., 2013). For a model
generated by homology modeling, evaluating the RMSD value is
important, although visual inspection of the generated model is
also essential.

However, RMSD has some important limitations:

• RMSD can only compare structures with the same number
of atoms;

• A small perturbation in just one part of the structure can create
large RMSD values, suggesting that the two structures are very
different, although they are not (Carugo, 2007);

• It has also been observed that RMSD values depend on the
resolution of structures that are compared (Carugo, 2003);

• RMSD does not distinguish between a structure with some
very rigid regions and some very flexible regions from a
molecule in which all regions are semiflexible (Sargsyan et al.,
2017);

Comparing the RMSD value of large structures may be
significantly distorted from the commonly used 2Å threshold
(Méndez et al., 2003). Despite these limitations, RMSD remains
one of the most commonly used metrics to quantify differences
between structures (Sargsyan et al., 2017).

Figure 7 shows the visualization of the FCP ligand superposed
with its conformation after redocking to a protein (PDB
ID: 1VZK, A Thiophene Based Diamidine Forms a “Super”
AT Binding Minor Groove Agent). The RMSD between the
crystallographic ligand and the same ligand after the redocking
using DOCK6 is 0.97 Å. In the figure below, red represents the
crystallographic ligand FCP and yellow represents FCP ligand
after redocking using DOCK 6.

ROC Curve and AUC
One of the great challenges of VS methods is the ability to
differentiate true positive compounds (TPCs) against the target
from false positive compounds (FPCs) (Awuni and Mu, 2015).
Thus, it is important that VS tools have ways to assist their users
in distinguishing TPCs from FPCs. The ROC curve and the area
under the ROC curve (AUC-ROC) (Lätti et al., 2016) are widely
used methodologies for this purpose.

TPC and decoys are used to create a ROC curve and AUC-
ROC. TPCs are those with known biological activity for the
molecular target of interest. Some databases, such as ChEMBL
(Gaulton et al., 2012; Bento et al., 2014), allows users to search
for these compounds. Alternatively, decoys are compounds that,
although possessing physical properties similar to a TPC (such
as molecular mass, number of rotatable bonds, and logP), have
different chemical structures that make them inactive. They are
generated from randommolecular modifications in the structure
of a TPC (Huang et al., 2006). Some databases, such as DUD-
E (Mysinger et al., 2012) and Zinc (Sterling and Irwin, 2015),
provide decoys for compounds of interest. DUD-E generates 50
different decoys for each TPC. The idea of using DUD-E decoys
in VS is that the result of VS is more reliable if the program can
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FIGURE 7 | RMSD between the ligand FCP with a protein (PDB ID: 1VZK)

after redocking using DOCK6.

FIGURE 8 | ROC curve example.

separate TPCs from FPCs generated by DUD-E because FPCs
have many TPC-like physical properties but are known to be
inactive. A small number (>2) of known TPCs have to be used
to calculate an AUC-ROC (Lätti et al., 2016).

After generating decoys, a VS process is performed using
known TPCs and decoys against a target of interest (Yuriev
and Ramsland, 2013). For each ligand-target complex, an affinity
energy is then calculated. TPCs are expected to have lower
affinity energy than inactive compounds. The ROC curve plots
the distribution of true and false results on a graph, while AUC-
ROC allows the evaluation of the probability of a result to be false.
Hence, AUC-ROC reflects the probability of recovering an active
compound preferentially to inactive compounds (Triballeau
et al., 2005; Zhao et al., 2009), allowing verification of the

sensitivity of a VS experiment in relation to its specificity. The
larger the area under the curve, the better the ability to have a
TPC and fewer FPC.

The AUC value can vary between 0 and 1. Hamza (Hamza
et al., 2012) showed a practical way of interpreting the
AUC values:

• AUC between 0.90 and 1.00: Excellent
• AUC between 0.80 and 0.90: Good
• AUC between 0.70 and 0.80: Fair
• AUC between 0.60 and 0.70: Poor
• AUC between 0.50 and 0.60: Failure

Therefore, the closer the AUC is to 1, the greater the ability of the
VS tool to separate between TPCs and FPCs. AUC-ROC values
close to 0.5 indicate a random process (Ogrizek et al., 2015).
Acceptable values should be >0.7.

Figure 8 shows an example of an ROC curve generated in a
VS performed with cyclooxygenase-1 complexed withmeloxicam
(PDB ID: 4O1Z) protein using five TPCs and 250 decoys. The
VS tool was able to distinguish well between TPCs and FPCs
with the generated ROC curve and its respective AUC, which
was 0.8628.

Boltzmann-Enhanced Discrimination of
ROC (BEDROC)
There is much criticism in the use of the ROC curve as
a method to measure virtual screening performance because
it does not highlight the best ranked active compounds that
would be used in in vitro experiments, which is called early
recognition. Thus, Tuchon and Bayly (Truchon and Bayly,
2007) proposed Boltzmann-Enhanced Discrimination of ROC
(BEDROC), which uses exponential weighting to give early
rankings of active compounds more weight than late rankings
of active compounds. However, Nicholls (Nicholls, 2008) say
that AUC-ROC and BEDROC correlate when considering virtual
screening simulations, and therefore, the ROC curve is a
sufficient metric for performance measurements.

Enrichment Factors (EFs)
The enrichment factor (EF) consists of the number of active
compounds found in a fraction of 0 < χ <1 in relation to
the number of active compounds that would be found after
a random search (Truchon and Bayly, 2007). EFs are often
calculated against a given percentage of the database. For
example, EF10% represents the value obtained when 10% of
the database is screened. EFs can be defined by the following
formula (1):

EF =

∑n
1 δi

χn
where δi =

{

1, ri ≤ χN
0, ri > χN

(1)

ri is the rank of the ith active compound in the list, N is the
total number of compounds and n is the number corresponding
to the selected compounds. The maximum value of EF is 1 /
χ if x ≥ n / N and N / n if χ < n / N. The minimum value
for EF is 0.

Frontiers in Chemistry | www.frontiersin.org 12 April 2020 | Volume 8 | Article 343

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Maia et al. Methods in Computer-Aided Drug Design

TABLE 1 | Virtual screening software.

Software License Platform Protein

flexibility

Docking algorithm Scoring function

AutoDock4 (Morris et al.,

2009)

Free for academic

use

Windows, Linux

and Mac

Yes Genetic algorithm

Simulated annealing

Hybrid (Force-field and

empirical)

Autodock Vina (Trott and

Olson, 2009)

Open- source Windows, Linux

and Mac

Yes Genetic algorithm

Simulated annealing

Local search

Particle swarm optimization

Hybrid (Empirical and

knowledge-based)

DOCK 6 (Allen et al., 2015) Free for academic

use

Windows, Linux

and Mac

Yes Shape fitting (sphere sets)

Lowest energy binding

Force-Field

Empirical

SwissDock/EADock DSS

(Grosdidier et al., 2011)

Free for academic

use

Web No Stochastic (Tabu search based)

Local search

Combination of broad and local

search of the conformational space

Force-field

eHiTS (Zsoldos et al., 2007) Freeware for

academic use

Unix No Exhaustive search Hybrid (Empirical and

knowledge-based)

FITTED (Corbeil et al., 2007,

2008)

Commercial Linux, Windows

and Mac

Yes Genetic algorithm Force-field

FlexX (Rarey et al., 1996) Commercial Windows and

Linux

No Incremental construction Empirical

FLIPDock (Zhao and

Sanner, 2007)

Freeware for

academic Use

Linux e Windows Yes Genetic algorithm Force-field

Fred (McGann, 2011) Free for academic

use

Windows, Linux

and Mac

No Exhaustive search algorithm Hybrid

GalaxyDock2 (Shin et al.,

2013)

Freeware Linux Yes Conformational analysis

Genetic algorithm

Force-field

GeauxDock (Fang et al.,

2016)

Open-source Linux Yes Monte Carlo Hybrid (Empirical and

knowledge-based)

GlamDock (Tietze and

Apostolakis, 2007)

Freeware Windows, Linux

and Mac

No Monte Carlo

Simulated annealing

Local search

Conformational analysis

Empirical

Glide (Friesner et al., 2004) Commercial Windows, Linux Yes Conformational analysis

Monte Carlo sampling

Empirical

GOLD (Verdonk et al., 2003) Commercial Linux and

Windows

Yes Genetic algorithm Force-field

ICM (Abagyan et al., 1994) Commercial Windows, Linux

and Mac

Yes Monte Carlo minimization Force-field

iGEMDOCK/GEMDOCK

(Hsu et al., 2011)

Freeware Windows and

Linux

Yes Genetic algorithm Empirical

LigandFit (Montes et al.,

2007)

Commercial Linux Yes Monte Carlo Force-field

LigDockCSA (Shin et al.,

2011)

– – Yes Conformational space annealing

Global optimization

Hybrid (Empirical and

Force-field)

MOE (Vilar et al., 2008) Commercial Windows, Linux

and Mac

Yes Conformational

analysis

Empirical, Force-field

ParaDockS (Meier et al.,

2010)

Freeware Linux No Genetic algorithm Hybrid

(Knowledge-based and

empirical)

rDOCK (Ruiz-Carmona

et al., 2014)

Open-source Linux Yes Genetic algorithm,

Monte CarloSimplex minimization

Hybrid (Empirical and

force-field)

SLIDE (Schnecke and Kuhn,

2000)

Free for academic

use

Linux Yes Conformational

analysis

Empirical

Surflex (Spitzer and Jain,

2012)

Commercial Windows, Linux

and Mac

Yes Incremental xonstruction Empirical

Sybyl-X (Certara, 2016) Commercial Windows Yes Incremental construction Force field

vLifeDock (Chopade, 2015) Commercial Windows, Linux

and Mac

Yes Genetic algorithm Empirical

Frontiers in Chemistry | www.frontiersin.org 13 April 2020 | Volume 8 | Article 343

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Maia et al. Methods in Computer-Aided Drug Design

EF is quite simple, but it has some disadvantages. The EF,
in addition to depending on the value set for χ, depends
on the number of true positives and true negatives, which
makes it another measure of experiment performance rather
than measuring method performance (Nicholls, 2011). Another
disadvantage of EF is that it weighs active compounds equally
within the cutoff, so it is not possible to distinguish the best
ranking algorithm in which all active compounds are ranked at
the beginning of the ordered list of a worse algorithm and they
are sorted immediately before the cutoff value [saturation effect
(Lopes et al., 2017)].

The relative enrichment factor (REF) proposed by von
Korff et al. (2009) eliminates the problem associated with the
saturation effect by normalizing the EF by the maximum possible
enrichment. Consequently, REF has well-defined boundaries and
is less subject to the saturation effect.

VS SOFTWARE PROGRAMS

There are several VS software programs using different docking
algorithms that make a VS process easier for the researchers
to execute by avoiding the need to have advanced knowledge
of computer science and on how to implement the algorithms
used in this task. In this regard, VS software can act as a
possible cost reducer, since they function as filters that select
from a database with thousands of molecules that are more
likely to present biological activity against a target of interest.
VS programs measure the affinity energy of a small molecule
(ligand) to a molecular target of interest to determine the
interaction energy of the resulting complex (Carregal et al.,
2017).

Table 1 summarizes the main characteristics of the most
used software in VS. The first column contains the software
used and its reference. The second column contains the type of
software license: free for academic use, freeware, open-source,
or commercial. The free for academic use license indicates
that the software in question can be used for teaching and
research in the academic world without a fee. However, it
implies that the software has restrictions for commercial use.
A freeware license indicates that the software is free. Thus,
users can use it without a fee, and all the functions of the
program are available to be used without any restrictions. An
open-source license indicates that the software source code
is accessible so users can study, change, and distribute the
software to anyone and for any purpose. Software developed
under a commercial license indicates that it is designed and
developed for a commercial purpose. Thus, in general, it is
necessary to pay some licensing fee for its use. The third column
indicates on which platforms the software can be used (Windows,
Linux, or Mac). The next column indicates whether or not
the software may consider protein flexibility during anchoring.
The docking algorithm column lists the algorithms used by the
software to perform the docking. The sixth column, called the
scoring function, indicates which scoring functions are used by
the software.

FINAL CONSIDERATIONS

CADD has been used to improve the drug development
process. In the past, the discovery of new drugs was often
conducted through the empirical observation of the effect of
natural products in known diseases. Thus, several possible
drug candidates were tested without efficacy, and thereby
wasted resources. The use of CADD allows for improving
the development of new biologically active compounds and
decreasing the time and cost for the development of a new drug.
Thus, the emergence of SBVS has improved the drug discovery
process and was established as one of the most promising in silico
techniques for drug design.

This review verified that CADD approaches can contribute to
many stages of the drug discovery process, notably to perform a
search for active compounds by VS.

The use of techniques, such as SBVS, has limitations, such as
the possibility of generating false positives and correct ranking
of ligands docked. Moreover, there are several CADD methods
and it is possible to obtain different results for the same input
in different software. However, reducing the time and cost of
the new drug development process as well as the constant
improvement of existing docking tools indicates that CADD
techniques will be one of the most promising techniques in the
drug discovery process over the next years.

In the last decade, many studies have applied artificial
intelligence in CADD to obtain more accurate models. Thus,
most studies and future innovations will benefit from the
application of AI in CADD.

Finally, the use of CADD tools requires a variety of expertise
of researchers to perform all of the steps of the process, such as
selecting and preparing targets and ligands, analyzing the results
and having broad knowledge of computation, chemistry and
biology. Thus, the researcher’s background is important for the
selection of new hits and to enrich high throughput experiments.
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Molecular dynamics to enhance structure-based virtual screening on cathepsin
B. J. Comput. Aided. Mol. Des. 29, 707–712. doi: 10.1007/s10822-015-9
847-2

Ouyang, X., Handoko, S. D., and Kwoh, C. K. (2011). Cscore : a simple yet
effective scoring function for protein – ligand binding affinity prediction using
modified cmac learning architecture. J. Bioinform. Comput. Biol. 9(Suppl. 1),
1–14. doi: 10.1142/S021972001100577X

Paixão, V. G., and Pita, S. S. R. (2016). Virtual Screening applied to search
of inhibitors of trypanosoma cruzi trypanothione reductase employing the
Natural Products Database from Bahia state (NatProDB). Rev. Virtual Química

8, 1289–1310. doi: 10.21577/1984-6835.20160093
Park, H., Eom, J. W., and Kim, Y. H. (2014). Consensus scoring approach

to identify the inhibitors of AMP-activated protein kinase α2 with virtual
screening. J. Chem. Inf. Model. 54, 2139–2146. doi: 10.1021/ci500214e

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B.
H., Lindborg, S. R., et al. (2010). How to improve R&D productivity: the
pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214.
doi: 10.1038/nrd3078

Pence, H. E., and Williams, A. (2010). ChemSpider: an online chemical
information resource. J. Chem. Educ. 87, 1123–1124. doi: 10.1021/ed100697w

Pereira, J. C., Caffarena, E. R., and Dos Santos, C. N. (2016). Boosting docking-
based virtual screening with deep learning. J. Chem. Inf. Model. 56, 2495–2506.
doi: 10.1021/acs.jcim.6b00355

Peterson, Y. K., Wang, X. S., Casey, P. J., and Tropsha, A. (2009). The discovery
of geranylgeranyltransferase-i inhibitors with novel scaffolds by the means
of quantitative structure-activity relationship modeling, virtual screening, and
experimental validation. J. Med. Chem. 52, 83–88. doi: 10.1021/jm8013772

Poli, G., Martinelli, A., and Tuccinardi, T. (2016). Reliability analysis and
optimization of the consensus docking approach for the development
of virtual screening studies. J. Enzyme Inhib. Med. Chem. 31, 167–173.
doi: 10.1080/14756366.2016.1193736

Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. (1996). A fast flexible
docking method using an incremental construction algorithm. J. Mol. Biol. 261,
470–489. doi: 10.1006/jmbi.1996.0477

Ripphausen, P., Nisius, B., and Bajorath, J. J. (2011). State-of-the-art
in ligand-based virtual screening. Drug Discov. Today 16, 372–376.
doi: 10.1016/j.drudis.2011.02.011

Ruiz-Carmona, S., Alvarez-Garcia, D., Foloppe, N., Garmendia-Doval, A. B.,
Juhos, S., Schmidtke, P., et al. (2014). rDock: a fast, versatile and open source
program for docking ligands to proteins and nucleic acids. PLoS Comput. Biol.

10:e1003571. doi: 10.1371/journal.pcbi.1003571
Ruiz-Tagle, B., Villalobos-Cid, M., Dorn, M., and Inostroza-Ponta, M.

(2018). “Evaluating the use of local search strategies for a memetic
algorithm for the protein-ligand docking problem,” 2017 36th International

Conference of the Chilean Computer Science Society (SCCC) (Arica), 1–12.
doi: 10.1109/SCCC.2017.8405141

Sargsyan, K., Grauffel, C., and Lim, C. (2017). How molecular size impacts RMSD
applications in molecular dynamics simulations. J. Chem. Theory Comput. 13,
1518–1524. doi: 10.1021/acs.jctc.7b00028

Schnecke, V., and Kuhn, L. A. (2000). Virtual screening with solvation and
ligand-induced complementarity. Perspect. Drug Discov. Des. 20, 171–190.
doi: 10.1023/A:1008737207775

Schneider, P., Tanrikulu, Y., and Schneider, G. (2009). Self-organizingmaps in drug
discovery: compound library design, scaffold-hopping, repurposing.Curr.Med.

Chem. 16, 258–266. doi: 10.2174/092986709787002655
Sci Tegic Accelrys Inc (2019). The MDL Drug Data Report (MDDR)

database. Available online at: http://accelrys.com/products/collaborative-
science/databases/bioactivity-databases/mddr.html (accessed March 22, 2019).

Sengupta, S., and Bandyopadhyay, S. (2014). Application of support
vector machines in virtual screening. Int. J. Comput. Biol. 1, 56–62.
doi: 10.34040/IJCB.1.1.2012.20

Shin, W. H., Heo, L., Lee, J., Ko, J., Seok, C., and Lee, J. (2011). LigDockCSA:
protein-ligand docking using conformational space annealing. J. Comput.

Chem. 32, 3226–3232. doi: 10.1002/jcc.21905
Shin, W. H., Kim, J. K., Kim, D. S., and Seok, C. (2013). GalaxyDock2: protein-

ligand docking using beta-complex and global optimization. J. Comput. Chem.

34, 2647–2656. doi: 10.1002/jcc.23438
Sliwoski, G., Kothiwale, S., Meiler, J., and Edward, W., Lowe, J. (2013).

Computational methods in drug discovery. Pharmacol. Rev. 66, 334–395.
doi: 10.1124/pr.112.007336

Spitzer, R., and Jain, A. N. (2012). Surflex-Dock: docking benchmarks
and real-world application. J. Comput. Aided. Mol. Des. 26, 687–699.
doi: 10.1007/s10822-011-9533-y

Sridhar, D. (2008). Improving access to essential medicines: how health concerns
can be prioritised in the global governance system. Public Health Ethics 1,
83–88. doi: 10.1093/phe/phn012

Sterling, T., and Irwin, J. J. (2015). ZINC15–ligand discovery for everyone. J. Chem.

Inf. Model. 55, 2324–2337. doi: 10.1021/acs.jcim.5b00559
Stevens, H., and Huys, I. (2017). Innovative approaches to increase

access to medicines in developing countries. Front. Med. 4:218.
doi: 10.3389/fmed.2017.00218

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N.
M., et al. (2020). A deep learning approach to antibiotic discovery. Cell 180,
688-702.e13. doi: 10.1016/j.cell.2020.01.021

Surabhi, S., and Singh, B. (2018). Computer aided drug design: an overview. J. Drug
Deliv. Ther. 8, 504–509. doi: 10.22270/jddt.v8i5.1894

Talele, T. T., Khedkar, S. A., and Rigby, A. C. (2010). Successful applications of
computer aided drug discovery: moving drugs from concept to the clinic. Curr.
Top. Med. Chem. 10, 127–41. doi: 10.2174/156802610790232251

Tanchuk, V. Y., Tanin, V. O., Vovk, A. I., and Poda, G. (2016). A new,
improved hybrid scoring function for molecular docking and scoring based
on AutoDock and AutoDock vina. Chem. Biol. Drug Des. 87, 618–625.
doi: 10.1111/cbdd.12697

Taranto, A. G., dos R., Santos, B., Costa, M. S., Campos, V. A., Lima, I. G.,
et al. (2015). “Octopus: a virtual high thoughput screening plataform for
multi-compouds and targets,” in: XVIIISimpósio Brasileiro de Química Teórica

(Pirenópolis - GO -Brasil: Editora da UnB), 266.
ten Brink, T., and Exner, T. E. (2009). Influence of protonation, tautomeric, and

stereoisomeric states on protein–ligand docking results. J. Chem. Inf. Model.

49, 1535–1546. doi: 10.1021/ci800420z
Tietze, S., and Apostolakis, J. (2007). GlamDock: development and validation of a

new docking tool on several thousand protein-ligand complexes. J. Chem. Inf.

Model. 47, 1657–1672. doi: 10.1021/ci7001236
Tresadern, G., Bemporad, D., and Howe, T. (2009). A comparison of ligand based

virtual screening methods and application to corticotropin releasing factor 1
receptor. J. Mol. Graph. Model. 27, 860–870. doi: 10.1016/j.jmgm.2009.01.003

Triballeau, N., Acher, F., Brabet, I., Pin, J., and Bertrand, H. (2005).
Virtual screening workflow development guided by the “receiver operating
characteristic” curve approach. application to high-throughput docking on
metabotropic glutamate receptor subtype 4. J. Med. Chem. 48, 2534–2547.
doi: 10.1021/jm049092j

Frontiers in Chemistry | www.frontiersin.org 17 April 2020 | Volume 8 | Article 343

https://doi.org/10.3389/fphar.2017.00681
https://doi.org/10.1021/jm300687e
https://doi.org/10.1142/S0219720015410073
https://doi.org/10.1007/s10822-008-9170-2
https://doi.org/10.1007/978-1-60761-839-3_22
https://doi.org/10.1590/0074-02760180465
https://doi.org/10.1002/minf.201700130
https://doi.org/10.1007/s10822-015-9847-2
https://doi.org/10.1142/S021972001100577X
https://doi.org/10.21577/1984-6835.20160093
https://doi.org/10.1021/ci500214e
https://doi.org/10.1038/nrd3078
https://doi.org/10.1021/ed100697w
https://doi.org/10.1021/acs.jcim.6b00355
https://doi.org/10.1021/jm8013772
https://doi.org/10.1080/14756366.2016.1193736
https://doi.org/10.1006/jmbi.1996.0477
https://doi.org/10.1016/j.drudis.2011.02.011
https://doi.org/10.1371/journal.pcbi.1003571
https://doi.org/10.1109/SCCC.2017.8405141
https://doi.org/10.1021/acs.jctc.7b00028
https://doi.org/10.1023/A:1008737207775
https://doi.org/10.2174/092986709787002655
http://accelrys.com/products/collaborative-science/databases/bioactivity-databases/mddr.html
http://accelrys.com/products/collaborative-science/databases/bioactivity-databases/mddr.html
https://doi.org/10.34040/IJCB.1.1.2012.20
https://doi.org/10.1002/jcc.21905
https://doi.org/10.1002/jcc.23438
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1007/s10822-011-9533-y
https://doi.org/10.1093/phe/phn012
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.3389/fmed.2017.00218
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.22270/jddt.v8i5.1894
https://doi.org/10.2174/156802610790232251
https://doi.org/10.1111/cbdd.12697
https://doi.org/10.1021/ci800420z
https://doi.org/10.1021/ci7001236
https://doi.org/10.1016/j.jmgm.2009.01.003
https://doi.org/10.1021/jm049092j
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Maia et al. Methods in Computer-Aided Drug Design

Trott, O., and Olson, A. J. (2009). AutoDock vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimization, and
multithreading. J. Comput. Chem. 31, 455–461. doi: 10.1002/jcc.21334

Truchon, J. F., and Bayly, C. I. (2007). Evaluating virtual screening methods: good
and bad metrics for the “early recognition” problem. J. Chem. Inf. Model. 47,
488–508. doi: 10.1021/ci600426e

Tuccinardi, T., Poli, G., Romboli, V., Giordano, A., and Martinelli, A. (2014).
Extensive consensus docking evaluation for ligand pose prediction and virtual
screening studies. J. Chem. Inf. Model. 54, 2980–2986. doi: 10.1021/ci500424n

Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., and Taylor, R. D.
(2003). Improved protein-ligand docking using GOLD. Proteins Struct. Funct.
Genet. 52, 609–623. doi: 10.1002/prot.10465

Verschueren, E., Vanhee, P., Rousseau, F., Schymkowitz, J., and Serrano, L. (2013).
Protein-peptide complex prediction through fragment interaction patterns.
Structure 21, 789–797. doi: 10.1016/j.str.2013.02.023

Vilar, S., Cozza, G., and Moro, S. (2008). Medicinal chemistry and the
molecular operating environment (MOE): application of QSAR and
molecular docking to drug discovery. Curr. Top. Med. Chem. 8, 1555–1572.
doi: 10.2174/156802608786786624

von Korff, M., Freyss, J., and Sander, T. (2009). Comparison of ligand- and
structure-based virtual screening on the DUD data set. J. Chem. Inf. Model. 49,
209–231. doi: 10.1021/ci800303k

von Wartburg, A., and Traber, R. (1988). 1 cyclosporins, fungal metabolites
with immunosuppressive activities. Prog. Med. Chem. 25, 1–33.
doi: 10.1016/S0079-6468(08)70276-5

Wang, T., Wu, M., Chen, Z., Chen, H., Lin, J., and Yang, L. (2015). Fragment-based
drug discovery and molecular docking in drug design. Curr. Pharm. Biotechnol.

16, 11–25. doi: 10.2174/1389201015666141122204532
Ward, W. H. J., Cook, P. N., Slater, A. M., Davies, D. H., Holdgate, G.

A., and Green, L. R. (1994). Epidermal growth factor receptor tyrosine
kinase. Investigation of catalytic mechanism, structure-based searching
and discovery of a potent inhibitor. Biochem. Pharmacol. 48, 659–666.
doi: 10.1016/0006-2952(94)90042-6

Willett, P. (2006). Similarity-based virtual screening using 2D fingerprints. Drug
Discov. Today 11, 1046–1053. doi: 10.1016/j.drudis.2006.10.005

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, R., et al.
(2018). DrugBank 5.0: a major update to the DrugBank database for 2018.
Nucleic Acids Res. 46, 1074–1082. doi: 10.1093/nar/gkx1037

Wójcikowski, M., Ballester, P. J., and Siedlecki, P. (2017). Performance of machine-
learning scoring functions in structure-based virtual screening. Sci. Rep.

7:46710. doi: 10.1038/srep46710
Wood, A., and Armour, D. (2005). The discovery of the CCR5 receptor antagonist,

UK-427,857, a new agent for the treatment of HIV infection and AIDS. Progress
Med Chem. 43, 239–271. doi: 10.1016/S0079-6468(05)43007-6

Xia, J., Feng, B., Shao, Q., Yuan, Y., Wang, X. S., Chen, N., et al.
(2017). Virtual screening against phosphoglycerate kinase 1 in quest of
novel apoptosis inhibitors. Molecules 22:1029. doi: 10.3390/molecules22
061029

Yuriev, E., and Ramsland, P. A. (2013). Latest developments in molecular docking:
2010-2011 in review. J. Mol. Recognit. 26, 215–239. doi: 10.1002/jmr.2266

Zhao, W., Hevener, K. E., White, S. W., Lee, R. E., and Boyett, J. M. (2009). A
statistical framework to evaluate virtual screening. BMC Bioinform. 10:225.
doi: 10.1186/1471-2105-10-225

Zhao, Y., and Sanner, M. F. (2007). FLIPDock: docking flexible ligands
into flexible receptors. Proteins Struct. Funct. Bioinforma 68, 726–737.
doi: 10.1002/prot.21423

Zilian, D., and Sotriffer, C. A. (2013). SFCscoreRF: a random forest-based scoring
function for improved affinity prediction of protein-ligand complexes. J. Chem.

Inf. Model. 53, 1923–1933. doi: 10.1021/ci400120b
Zsoldos, Z., Reid, D., Simon, A., Sadjad, S. B., and Johnson, A. P. (2007). eHiTS:

a new fast, exhaustive flexible ligand docking system. J. Mol. Graph. Model. 26,
198–212. doi: 10.1016/j.jmgm.2006.06.002

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The handling editor declared a past co-authorship with the author LA.

Copyright © 2020 Maia, Assis, de Oliveira, da Silva and Taranto. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Chemistry | www.frontiersin.org 18 April 2020 | Volume 8 | Article 343

https://doi.org/10.1002/jcc.21334
https://doi.org/10.1021/ci600426e
https://doi.org/10.1021/ci500424n
https://doi.org/10.1002/prot.10465
https://doi.org/10.1016/j.str.2013.02.023
https://doi.org/10.2174/156802608786786624
https://doi.org/10.1021/ci800303k
https://doi.org/10.1016/S0079-6468(08)70276-5
https://doi.org/10.2174/1389201015666141122204532
https://doi.org/10.1016/0006-2952(94)90042-6
https://doi.org/10.1016/j.drudis.2006.10.005
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1038/srep46710
https://doi.org/10.1016/S0079-6468(05)43007-6
https://doi.org/10.3390/molecules22061029
https://doi.org/10.1002/jmr.2266
https://doi.org/10.1186/1471-2105-10-225
https://doi.org/10.1002/prot.21423
https://doi.org/10.1021/ci400120b
https://doi.org/10.1016/j.jmgm.2006.06.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	Structure-Based Virtual Screening: From Classical to Artificial Intelligence
	Introduction
	Computer-Aided Drug Design (CADD)
	Virtual Screening (Vs)
	4-Structure-Based Virtual Screening (SBVS)
	Search Algorithms
	Scoring Functions
	Consensus Docking

	Virtual Databases
	Virtual Screening Algorithms
	Methods OF Evaluating The Quality of a Simulation
	Root-Mean-Square Deviation (RMSD)
	ROC Curve and AUC
	Boltzmann-Enhanced Discrimination of ROC (BEDROC)
	Enrichment Factors (EFs)

	Vs Software Programs
	Final Considerations
	Author Contributions
	Funding
	Acknowledgments
	References


