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ABSTRACT We present new results on the fault tolerability of k-ary n-cube (denoted Qkn) networks. Q
k
n

is a topological model for interconnection networks that has been extensively studied since proposed, and

this paper is concerned with the structure/substructure connectivity of Qkn networks, for paths and cycles,

two basic yet important network structures. Let G be a connected graph and T a connected subgraph of G.

The T -structure connectivity κ(G;T ) of G is the cardinality of a minimum set of subgraphs in G, such that

each subgraph is isomorphic to T , and the set’s removal disconnects G. The T -substructure connectivity

κ
s(G;T ) of G is the cardinality of a minimum set of subgraphs in G, such that each subgraph is isomorphic

to a connected subgraph of T , and the set’s removal disconnects G. In this paper, we study κ(Qkn;T ) and

κ
s(Qkn;T ) for T = Pi, a path on i nodes (resp. T = Ci, a cycle on i nodes). Lv et al. determined κ(Qkn;T )

and κ
s(Qkn;T ) for T ∈ {P1,P2,P3}. Our results generalize the preceding results by determining κ(Qkn;Pi)

and κ
s(Qkn;Pi). In addition, we have also established κ(Qkn;Ci) and κ

s(Qkn;Ci).

INDEX TERMS Interconnection networks, structure connectivity, substructure connectivity, k-ary n-cubes,

paths, cycles.

I. INTRODUCTION

Interconnection networks play an important role in large-

scale multiprocessor systems. Like most networks, an inter-

connection network can be represented by a graph

G = (V (G),E(G)), where nodes in V (G) correspond to

processors, and edges in E(G) correspond to communication

links.

A. CONNECTIVITY OF INTERCONNECTION NETWORKS

The fault tolerance of interconnection networks has always

been an important issue. One crucial parameter to evaluate

the fault tolerability of a network is its connectivity. The

connectivity of a graph G, denoted by κ(G), is the minimum

cardinality of a node set F ⊆ V (G), such that F’s deletion

disconnects G. As variants of the classic node-connectivity,

several kinds of conditional connectivity were proposed and

studied [2], [3], [5], [6], [8], [9], [12]–[16], [18], [23], [25],

[26]. Notably among them, Fàbrega and Fiol [4] introduced

the g-extra connectivity. The g-extra connectivity κg(G) of a

connected graph G is the minimum cardinality of a set of

nodes in G, if such a set exists, whose deletion disconnects
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G and leaves each remaining component with at least g + 1

nodes. Obviously, κ0(G) = κ(G), making κg(G) a generaliza-

tion of κ(G).

Lin et al. [17] considered the fault status of a certain

structure, rather than individual nodes, and proposed struc-

ture connectivity and substructure connectivity. Let G be a

connected graph, and T a connected subgraph of G. The

T -structure connectivity κ(G;T ) of G is the cardinality of

a minimum set of subgraphs F = {T1,T2, . . . ,Tm} in G,

such that every Ti ∈ F is isomorphic to T , and F’s deletion

disconnects G. The T -substructure connectivity κ
s(G;T ) of

G is the cardinality of a minimum set of subgraphs F =

{H1,H2, . . . ,Hm}, such that every Hi ∈ F is isomorphic to

a connected subgraph of T , and F’s deletion disconnects G.

By definition, κ(G;T ) ≥ κ
s(G;T ). The structure connectiv-

ity and substructure connectivity have been studied for some

well-known networks [11], [17], [21], [22], [27].

B. APPLICATIONS OF STRUCTURE/SUBSTRUCTURE

CONNECTIVITY AND OUR CONTRIBUTIONS

The traditional connectivity assumes that the status of a node

is an event independent of the status of nodes around it.

However in reality, nodes that are linked could affect each
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FIGURE 1. A path Pi and a cycle Ci .

other, and the neighbours of a faulty node are more likely

to fail than other nodes. Moreover, in the NoC technology

(Network-on-Chip), part or whole of a network of interest are

made on a chip, which means that the failure of any node on

the chip can be considered the failure of the whole chip. All

these motivated the research on fault tolerance of networks

based on some certain structures rather than individual nodes.

The study of structure fault tolerance is therefore of both

scientific value and practical significance.

In this paper, we focus on two basic structures of all

networks: paths and cycles. Let Pi be a path on i nodes,

and Ci a cycle on i nodes, respectively (see FIGURE 1).

Paths and cycles in a network are very important structures,

both for basic network functionality and for implement-

ing many algorithms executing on networks. When nodes

in a path or cycle become faulty, the impacted path/cycle

cannot function as a whole. So the whole path/cycle can

be viewed as faulty. In many cases, it is easier to iden-

tify and locate a faulty structure than individual nodes

in the structure. There are already many works in the

literature studying path/cycle-structure fault tolerance for

some well-known networks. For example, Lin et al. [17]

investigated {P2,P3,C4}-structure/substructure connec-

tivity for hypercubes. Wang et al. [22] established

{C3,C4}-structure/substructure connectivity for generalized

hypercubes. The general {Pi,Ci}-structure/substructure con-

nectivity have been studied for hypercubes, folded hyper-

cubes and bubble-sort graphs [21], [27]. In this paper,

we determine the path- and cycle-structure/substructure con-

nectivity for k-ary n-cubes. The newfound results further our

understanding of k-ary n-cubes, and furnish more parameters

to consider when evaluating and selecting an interconnection

network.

Lv et al. [11] studied κ(Qkn;T ) and κ
s(Qkn;T ) of the k-ary

n-cube Qkn for T ∈ {P1,P2,P3}. In this paper, we generalize

the results by establishing κ(Qkn;Pi) and κ
s(Qkn;Pi). Also,

we establish κ(Qkn;Ci) and κ
s(Qkn;Ci). The results in this

paper are summarized as follows.

For Q3
n, we have:

• κ(Q3
n;P3l+s) = κ

s(Q3
n;P3l+s) = ⌈ 2n

2l+s
⌉ for 2l + s ≤ 2n

and s = 0, 1, 2;

• κ(Q3
n;C3l) = ⌈ 2n

2l
⌉ for 4 ≤ 2l ≤ 2n;

• κ(Q3
n;C3l+2) = ⌈ 2n

2l+1
⌉ for 2l + 1 < 2n;

• κ
s(Q3

n;C3l+s) = ⌈ 2n
2l+s

⌉ for 2l + s ≤ 2n and s = 0, 1, 2.

For Qkn with k ≥ 4, We have:

• κ(Qkn;P2l+1) = κ
s(Qkn;P2l+1) = ⌈ 2n

l+1
⌉ for 1 ≤ l + 1 ≤

2n;

FIGURE 2. Q6
1

and Q4
2
.

• κ(Qkn;P2l) = κ
s(Qkn;P2l) = ⌈ 2n

l
⌉ for 2 ≤ l ≤ 2n;

• κ(Qkn;C2l) = κ
s(Qkn;C2l) = ⌈ 2n

l
⌉ for 4 ≤ l ≤ 2n;

• κ(Qkn;C2l+1) ≤ 2n − 2 for k−1
2

≤ l ≤ k − 2; and

κ
s(Qkn;C2l+1) = ⌈ 2n

l+1
⌉ for k+1

2
≤ l + 1 ≤ 2n.

Of particular note is that a definitive structure con-

nectivity for odd-cycles in Qkn still remains elusive. Our

result of κ(Qkn;C2l+1) ≤ 2n − 2 provides an upper-

bound on the structure connectivity for odd-cycles. This

‘‘half-solved’’ κ(Qkn;C2l+1) and the unknown κ(Q3
n;C3l+1)

are the two missing pieces for a complete solution to Qkn’s

structure/substructure connectivity for paths and cycles.

The rest of this paper is organized as follows. In Section 2,

we introduce definitions and notations used throughout the

paper. Section 3 establishes κ(Q3
n;T ) and κ

s(Q3
n;T ) for T ∈

{Pi,Ci}. In Section 4, we determine κ(Qkn;T ) and κ
s(Qkn;T )

for k ≥ 4, T ∈ {Pi,Ci}. Section 5 concludes the paper.

II. PRELIMINARIES

The k-ary n-cube Qkn is a popular interconnection network

for parallel systems which has been proved to possess many

attractive properties such as regularity, node transitivity and

link transitivity. A number of parallel systems have been built

with a k-ary n-cube forming the underlying topology, such as

the J-machine [19], the iWarp [20] and the Cray T3D [10].

In particular, the 3-ary n-cube Q3
n has been widely deployed

in interconnections of parallel systems like the IBM Blue

Gene/Q [1].

The k-ary n-cube Qkn (k ≥ 2 and n ≥ 1) is a

graph consisting of kn nodes, each of which has the form

u = a1a2 . . . an, where 0 ≤ ai ≤ k − 1 for 1 ≤ i ≤ n.

Two nodes u = a1a2 . . . an and v = b1b2 . . . bn are adjacent

if and only if there exists an integer j, 1 ≤ j ≤ n, such

that aj = bj ± 1 (mod k) and ai = bi, for every i ∈

{1, 2, . . . , n} \ {j}. Such a link uv is called a j-dimensional

link. For clarity of presentation, we omit writing ‘‘(mod k)’’

in similar expressions for the remainder of the paper. Note

that each node has degree 2n when k ≥ 3, and n when k = 2.

Obviously, Qk1 is a cycle of length k , Q
2
n is an n-dimensional

hypercube. Q6
1 and Q

4
2 are depicted in FIGURE 2.

Two distinct adjacent nodes are neighbours. The set of

neighbours of a node v in a graph G is denoted by N (v), that

is, N (v) = {u ∈ V (G) : uv ∈ E(G)}. For W ⊆ V (G),

denote N (W ) = (
⋃

v∈W N (v)) \ W . Let G1 and G2 be two

graphs. Denote G1
∼= G2 when G1 and G2 are isomorphic.

G1 and G2 are disjoint if they have no common node. Let

Fi = {T1,T2, . . . ,Tm : Tj ∼= Pi, 1 ≤ j ≤ m} and |Fi| = m, let
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FIGURE 3. The neighbour structure of u and v .

F ′
i = {T1,T2, . . . ,Tm : Tj ∼= Ci, 1 ≤ j ≤ m} and |F ′

i | = m,

and let Qkn − Fi (resp. Q
k
n − F ′

i ) be the graph obtained from

Qkn by deleting the nodes of Fi (resp. F
′
i ) together with their

incident links.

The following lemmas are useful in Sections 3 and 4.

Lemma 1: Let Pi,Ci be subgraphs of Qkn. Then

κ
s(Qkn;Pi) ≥ κ

s(Qkn;Ci).

Proof: Let F = {T1,T2, . . . ,Tm} be a set of subgraphs

in Qkn with m = κ
s(Qkn;Pi) such that every Tj ∈ F is

isomorphic to a connected subgraph of Pi, and F’s dele-

tion disconnects Qkn. Then every Tj ∈ F is isomorphic to

a connected subgraph of Ci. By definition of κ
s(Qkn;Ci),

κ
s(Qkn;Pi) ≥ κ

s(Qkn;Ci). �

Lemma 2 ( [3], [7]): κ1(Q
3
n) = 4n − 2 for n ≥ 2, and

κ2(Q
k
n) = 6n− 5 for n ≥ 5 and k ≥ 4.

III. THE STRUCTURE CONNECTIVITY AND

SUBSTRUCTURE CONNECTIVITY OF Q3
n

In this section, we determine κ(Q3
n;T ) and κ

s(Q3
n;T ) of Q

3
n

for T ∈ {Pi,Ci}.

Let u = a1a2 . . . an be a node of Q3
n. For 1 ≤ i, j ≤

n, let u−
i = a1 . . . (ai − 1) . . . an, let u

+
i = a1 . . . (ai +

1) . . . an, and let u
+,−
i,j = a1 . . . (ai + 1) . . . (aj − 1) . . . an.

Similarly, u
+,+
i,j , u

−,−
i,j , u

−,+
i,j can be defined. Let P(u) =

u−
1 u

+
1 u

+,−
1,2 u

−
2 u

+
2 u

+,−
2,3 . . . u−

n−1u
+
n−1u

+,−
n−1,nu

−
n u

+
n . Then P(u) is

a path and is called the neighbour structure of u (see

FIGURE 3). Let P = u−
i u

+
i u

+,−
i,i+1u

−
i+1u

+
i+1u

+,−
i+1,i+2 . . . u−

j u
+
j

is a path lying on P(u) for 1 ≤ i, j ≤ n. For convenience,

we denote such a path P by [u−
i , u+

j ]. Similarly, [u−
i , u−

j ],

[u+
i , u+

j ] for 1 ≤ i, j ≤ n and [u−
i , u

+,−
j,j+1] for 1 ≤ i, j ≤ n− 1

can be defined. Let v ∈ V (Q3
n) with v

−
1 = u+

n . Similarly,

consider the neighbour structure of v. It is easy to see that

the neighbour structure of u and v has exactly two common

nodes u+
n = v−1 and u+

1 = v−n (see FIGURE 3).

A. κ(Q3
n; Pi ) AND κ

s(Q3
n; Pi )

Lv et al. [11] proved the following theorem about κ(Q3
n;Pi)

and κ
s(Q3

n;Pi) for i = 1, 2, 3. In this subsection, we gen-

eralize the theorem by establishing κ(Q3
n;Pi) and κ

s(Q3
n;Pi)

for i ≥ 1.

Theorem 1 ( [11]): For n ≥ 2, κ(Q3
n;P1) = κ

s(Q3
n;P1) =

2n and κ(Q3
n;P2) = κ

s(Q3
n;P2) = κ(Q3

n;P3) =

κ
s(Q3

n;P3) = n.

FIGURE 4. A path P1
3l

= [u−

1
, u+,−

l,l+1
] using P(u).

FIGURE 5. The structure A.

Lemma 3: Let n ≥ 2 and l ≥ 0. Then κ(Q3
n;P3l+s) ≤

⌈ 2n
2l+s

⌉ for 2l + s ≤ 2n and s = 0, 1, 2.

Proof: Let u = 111 . . . 11 and v = 211 . . . 12. Then

u+
n = v−1 . We will successively find ⌈ 2n

2l+s
⌉ pairwise disjoint

P3l+s’s denoted by P13l+s,P
2
3l+s, . . . ,P

⌈ 2n
2l+s ⌉

3l+s by using P(u)

and P(v). We consider the following three cases.

Case 1: s = 0.

If 2l = 2n, then ⌈ 2n
2l

⌉ = 1, and let P13l = [u−
1 , u+

n ]v
+
1 .

If 2l < 2n, then let 2n = p2l + 2q, and so 2q ≥ 2. Let

P13l = [u−
1 , u

+,−
l,l+1] (see FIGURE 4), P23l = [u−

l+1, u
+,−
2l,2l+1],

P33l = [u−
2l+1, u

+,−
3l,3l+1], . . ., P

p
3l = [u−

(p−1)l+1, u
+,−
pl,pl+1].

By 2l < 2n and u+
n = v−1 , we can find P

⌈ 2n
2l ⌉

3l lying on P(u)

and P(v). By definition of P(v) and 2q ≥ 2, v−n 6∈ V (P
⌈ 2n
2l ⌉

3l ).

Case 2: s = 1.

Let 2n = p(2l+1)+q. By 2l+1 < 2n, q ≥ 1. Let P13l+1 =

[u−
1 , u−

l+1], P
2
3l+1 = [u+

l+1, u
+
2l+1], P

3
3l+1 = [u−

2l+2, u
−
3l+2],

. . ., P
p
3l+1 = [u−

(p−1)l+
p+1
2

, u−

pl+
p+1
2

] with p odd, and P
p
3l+1 =

[u+

(p−1)l+
p
2

, u+

pl+
p
2

] with p even. If q = 1 and l + 1 = n, then

let P
⌈ 2n
2l+1 ⌉

3l+1 = [v−1 , v+n−1]v
+,+
n−1,nv

+
n . Otherwise, by 2l + 1 < 2n

and u+
n = v−1 , we can find P

⌈ 2n
2l+1 ⌉

3l+1 lying on P(u) and P(v) with

v−n 6∈ V (P
⌈ 2n
2l+1 ⌉

3l+1 ).

Case 3: s = 2.

If 2l+2 = 2n, then ⌈ 2n
2l+2

⌉ = 1, and let P13l+2 = [u−
1 , u+

n ].

If 2l + 2 < 2n, then let 2n = p(2l + 2) + 2q, and so 2q ≥

2. Let P13l+2 = [u−
1 , u+

l+1], P
2
3l+2 = [u−

l+2, u
+
2l+2], P

3
3l+2 =

[u−
2l+3, u

+
3l+3], . . ., P

p
3l+2 = [u−

(p−1)l+p, u
+
pl+p]. By 2l + 2 <

2n and u+
n = v−1 , we can find P

⌈ 2n
2l+2 ⌉

3l+2 lying on P(u) and P(v).

By definition of P(v) and 2q ≥ 2, v−n 6∈ V (P
⌈ 2n
2l+2 ⌉

3l+2 ).

Let F = {P13l+s,P
2
3l+s, . . . ,P

⌈ 2n
2l+s ⌉

3l+s }. Then Q3
n − F

is disconnected because {u} is a component of Q3
n − F .

By definition of κ(Q3
n;P3l+s), κ(Q

3
n;P3l+s) ≤ ⌈ 2n

2l+s
⌉. �
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Lemma 4 ( [24]): Let C3 be a cycle in Q3
n. Then there

exists j ∈ {1, 2, . . . , n} such that C3 contains only

j-dimensional links.

Lemma 5: Q3
n contains no structure A.

Proof: By contradiction. Suppose that Q3
n contains

structure A (see FIGURE 5). Then xuv and xwv are both

cycles of length 3 in Q3
n. By Lemma 4, xuv contains only i-

dimensional links and xwv contains only j-dimensional links

for i, j ∈ {1, 2, . . . , n}. Thus i = j and so u = w,

a contradiction. �

Lemma 6: Let n ≥ 2 and l ≥ 1. Then κ
s(Q3

n;P3l+s) ≥

κ
s(Q3

n;C3l+s) ≥ ⌈ 2n
2l+s

⌉ for 2l + s ≤ 2n and s = 0, 1, 2.

Proof: By Lemma 1, κ
s(Q3

n;P3l+s) ≥ κ
s(Q3

n;C3l+s).

Let F = ∪3l+s
i=1 Fi ∪ F ′

3l+s with |F | =
∑3l+s

i=1 |Fi| + |F ′
3l+s| ≤

⌈ 2n
2l+s

⌉−1. In order to prove that κs(Q3
n;C3l+s) ≥ ⌈ 2n

2l+s
⌉, it is

enough to show that Q3
n − F is connected. Suppose, to the

contrary, that Q3
n − F is disconnected. Let T0 be a smallest

component of Q3
n − F .

Case 1: |V (T0)| = 1.

Set V (T0) = {x}. Thus N (x) ⊆ V (F). To make the number

of faulty subgraphs of C3l+s minimum which contain the

nodes in N (x), we should construct as many P3l+s’s/C3l+s’s

as possible and each P3l+s/C3l+s need to contain as many

nodes in N (x) as possible. By Lemma 5, Q3
n contains no

structure A, and so any three nodes in N (x) are not three

consecutive nodes on a path/cycle. Combining this with the

definition of the neighbour structure of x, each P3l+s/C3l+s

contain at most 2l + s nodes in N (x). Note that |N (x)| = 2n.

Then |F | ≥ ⌈ 2n
2l+s

⌉ > ⌈ 2n
2l+s

⌉ − 1 ≥ |F |, a contradiction.

Case 2: |V (T0)| ≥ 2.

By n ≥ 2, |V (T0)| ≥ 2 and Lemma 2, |V (F)| ≥ 4n − 2.

Note that |F | ≤ ⌈ 2n
2l+s

⌉−1. Thus |V (F)| ≤ (3l+ s)(⌈ 2n
2l+s

⌉−

1) ≤ (3l + s)( 2n+2l+s−1
2l+s

− 1) =
(3l+s)
(2l+s)

(2n − 1) < 4n − 2 ≤

|V (F)|, a contradiction. �

Note that κ(Q3
n) = 2n for n ≥ 2. Then for any F1 with

|F1| ≤ 2n−1,Q3
n−F1 is still connected, and for any F1 ∪F2

with |F1|+|F2| ≤ n−1,Q3
n−(F1∪F2) is still connected. Thus

κ
s(Q3

n;P1) ≥ 2n and κ
s(Q3

n;P2) ≥ n. Combining this with

Lemma 6, we have κ
s(Q3

n;P3l+s) ≥ ⌈ 2n
2l+s

⌉ for n ≥ 2 and

l ≥ 0. Recall that κ(Q3
n;P3l+s) ≥ κ

s(Q3
n;P3l+s). Lemma 3

yields the following result.

Theorem 2: Let n ≥ 2 and l ≥ 0. Then κ(Q3
n;P3l+s) =

κ
s(Q3

n;P3l+s) = ⌈ 2n
2l+s

⌉ for 2l + s ≤ 2n and s = 0, 1, 2.

Set 3l + s = 1, 2, 3 in the Theorem 2. Then

Theorem 1 given by Lv et al. [11] is an immediate corollary of

Theorem 2.

B. κ(Q3
n; Ci ) AND κ

s(Q3
n; Ci )

In this subsection, we investigate the cycle-structure/

substructure connectivity for Q3
n. Let u = a1a2 . . . an be a

node of Qkn. For 1 ≤ i, j, t ≤ n, let u
+,+,−
i,j,t = a1 . . . (ai +

1) . . . (aj+1) . . . (at −1) . . . an. Similarly, u
+,+,+
i,j,t and u

−,−,−
i,j,t

can be defined.

Lemma 7: κ(Q3
n;C3l) ≤ ⌈ 2n

2l
⌉ for n ≥ 2 and 4 ≤ 2l ≤ 2n,

and κ(Q3
n;C3l+2) ≤ ⌈ 2n

2l+1
⌉ for n ≥ 3 and 2l + 1 < 2n.

FIGURE 6. A cycle C1
3l

= [u−

1
, u+

l
]u−,+

1,l
u−

1
using P(u).

Proof: Let u = 111 . . . 11 and v = 211 . . . 12. Then

u+
n = v−1 . Consider the neighbour structure of u and v.

Let u−
i , u+

i , u−
j , u+

j ∈ P(u) with 1 ≤ i, j ≤ n. Then

u−
i u

−,−
i,j u−

j , u−
i u

−,+
i,j u+

j , u+
i u

+,−
i,j u−

j , u+
i u

+,+
i,j u+

j are P3’s. Let

u−
j ∈ P(u) and v+i ∈ P(v) with 2 ≤ i < j ≤ n − 1.

Then v+i = u
+,+,+
1,i,n , and so v+i u

+,+
1,i u

+,+,−
1,i,j u

+,−
1,j u

−
j is a P5.

Similarly, v−i u
−,+
i,n u

−,−,+
i,j,n u

−,+
j,n u−

j and v+i u
+,+
1,i u

+,+,+
1,i,j u

+,+
1,j u

+
j

are P5’s. In the following, such P3’s and P5’s can be used to

construct the desired cycles.

For C3l , we will successively find ⌈ 2n
2l

⌉ pairwise dis-

joint C3l’s denoted by C1
3l,C

2
3l, . . . ,C

⌈ 2n
2l ⌉

3l by using P(u)

and P(v) with v−n 6∈ V (C
⌈ 2n
2l ⌉

3l ). If 2l = 2n, then

⌈ 2n
2l

⌉ = 1, and let C1
3l = [u−

1 , u+
n ]u

−,+
1,n u

−
1 . Next con-

sider 2l < 2n and assume that 2n = p2l + 2q.

Let C1
3l = [u−

1 , u+
l ]u

−,+
1,l u

−
1 (see FIGURE 6), C2

3l =

[u−
l+1, u

+
2l]u

−,+
l+1,2lu

−
l+1, C

3
3l = [u−

2l+1, u
+
3l]u

−,+
2l+1,3lu

−
2l+1, . . .,

C
p
3l = [u−

(p−1)l+1, u
+
pl]u

−,+
(p−1)l+1,plu

−
(p−1)l+1. If q = 1, then

let C
⌈ 2n
2l ⌉

3l = u−
n u

+
n v

+
1 v

+,−
1,2 u

−,−,−
1,2,n u

−,−
1,n u

−
n with l = 2, and let

C
⌈ 2n
2l ⌉

3l = u−
n u

+
n v[v

+
1 , v+l−1]u

+,+,−
1,l−1,nu

+,−
1,n u

−
n with l ≥ 3. Note

that |V (C
⌈ 2n
2l ⌉

3l )| = 3 + 3(l − 2) + 3 = 3l and v+l−1 = u
+,+,+
1,l−1,n

by 3 ≤ l ≤ n. Then C
⌈ 2n
2l ⌉

3l is indeed a cycle on 3l nodes. Next

assume that q ≥ 2. Then n−q+1 ≤ n−1. If l−q = 1, then let

C
⌈ 2n
2l ⌉

3l = [u−
n−q+1, u

+
n ]v

+
1 vv

−
n−q+1u

+,−
1,n−q+1u

−
n−q+1. Note that

|V (C
⌈ 2n
2l ⌉

3l )| = 3q + 3 = 3l and v−n−q+1 = u
+,−,+
1,n−q+1,n by 2 ≤

pl+1 = n−q+1 ≤ n−1. ThenC
⌈ 2n
2l ⌉

3l is indeed a cycle on 3l

nodes. Now consider l−q ≥ 2. By 2l ≤ 2n, l−q < n−q+1.

Thus 2 ≤ l − q < n − q + 1 ≤ n − 1, and so let C
⌈ 2n
2l ⌉

3l =

[u−
n−q+1, u

+
n ][v

+
1 , v+l−q]u

+,+
1,l−qu

+,+,−
1,l−q,n−q+1u

+,−
1,n−q+1u

−
n−q+1.

Note that |V (C
⌈ 2n
2l ⌉

3l )| = 3q + 3(l − 1 − q) + 3 = 3l and

v+l−q = u
+,+,+
1,l−q,n. Then C

⌈ 2n
2l ⌉

3l is indeed a cycle on 3l nodes.

For C3l+2, we will successively find ⌈ 2n
2l+1

⌉ pair-

wise disjoint C3l+2’s denoted by C1
3l+2, C2

3l+2, . . .,

C
⌈ 2n
2l+1 ⌉

3l+2 by using P(u) and P(v) with v−n 6∈ V (C
⌈ 2n
2l+1 ⌉

3l+2 ).

Let 2n = p(2l + 1) + q. By 2l + 1 < 2n, q ≥ 1.

Let C1
3l+2 = [u−

1 , u−
l+1]u

−,−
1,l+1u

−
1 , C

2
3l = [u+

l+1, u
+
2l+1]

u
+,+
l+1,2l+1u

+
l+1, C

3
3l = [u−

2l+2, u
−
3l+2]u

−,−
2l+2,3l+2u

−
2l+2, . . .,

C
p
3l = [u−

(p−1)l+
p+1
2

, u−

pl+
p+1
2

]u
−,−

(p−1)l+
p+1
2 ,pl+

p+1
2

u−

(p−1)l+
p+1
2
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with p odd, and C2
3l = [u+

(p−1)l+
p
2

, u+

pl+
p
2

]u
+,+

(p−1)l+
p
2 ,pl+

p
2

u+

(p−1)l+
p
2

with p even.

If q is even, then assume that q = 2s. If s = 1,

then let C
⌈ 2n
2l+1 ⌉

3l+2 = u−
n u

+
n vv

+
1 u

−,−
1,n u

−
n with l = 1, and let

C
⌈ 2n
2l+1 ⌉

3l+2 = u−
n u

+
n [v

+
1 , v+l ]u

+,+,−
1,l,n u

+,−
1,n u

−
n with l ≥ 2. Note that

|V (C
⌈ 2n
2l+1 ⌉

3l+2 )| = 3 + 3(l − 1) + 2 = 3l + 2 and v+l = u
+,+,+
1,l,n

by 2 ≤ l ≤ n − 1. Then C
⌈ 2n
2l+1 ⌉

3l+2 is indeed a cycle on 3l + 2

nodes. Next assume that s ≥ 2. Then n − s + 1 ≤ n − 1. If

s = l, then, by 2n = p(2s + 1) + 2s, n − s + 1 ≥ 4. Let

C
⌈ 2n
2l+1 ⌉

3l+2 = [u−
n−s+1, u

+
n ]v

+
1 u

−,−,+
1,n−s+1,nu

−,−
1,n−s+1u

−
n−s+1. Note

that |V (C
⌈ 2n
2l+1 ⌉

3l+2 )| = 3s + 2 = 3l + 2 and v+1 = u
−,+
1,n . Then

C
⌈ 2n
2l+1 ⌉

3l+2 is indeed a cycle on 3l + 2 nodes. If s ≤ l − 1, then

l − s+ 1 ≥ 2. By 2l + 1 < 2n, l − s+ 1 < n− s+ 1. Thus

2 ≤ l − s + 1 < n − s + 1 ≤ n − 1, and so let C
⌈ 2n
2l+1 ⌉

3l+2 =

[u−
n−s+1, u

+
n ][v

+
1 , v−l−s+1]u

−,+
l−s+1,nu

−,−,+
l−s+1,n−s+1,nu

−,+
n−s+1,n

u−
n−s+1. Note that |V (C

⌈ 2n
2l+1 ⌉

3l+2 )| = 3s+3(l−s−1)+5 = 3l+2

and v−l−s+1 = u
+,−,+
1,l−s+1,n. Then C

⌈ 2n
2l+1 ⌉

3l+2 is indeed a cycle on

3l + 2 nodes.

If q is odd, then assume that q = 2s + 1. First sup-

pose that s = 0. By 2l + 1 < 2n, l ≤ n − 1. Let

C
⌈ 2n
2l+1 ⌉

3l+2 = [v−1 , v+n−1]v
+,+
n−1,nv

+
n vv

−
1 with l + 1 = n, and let

C
⌈ 2n
2l+1 ⌉

3l+2 = [v−1 , v−l+1]v
−,−
1,l+1v

−
1 with l + 1 ≤ n − 1. Next

suppose that s ≥ 1. Then n − s ≤ n − 1. If l − s = 1,

then let C
⌈ 2n
2l+1 ⌉

3l+2 = [u+
n−s, u

+
n ]v

+
1 vv

+
n−su

+,+
1,n−su

+
n−s. Note that

|V (C
⌈ 2n
2l+1 ⌉

3l+2 )| = 3s + 5 = 3l + 2 and v+n−s = u
+,+,+
1,n−s,n by

2 ≤
p(2l+1)+1

2
= n−s ≤ n−1. ThenC

⌈ 2n
2l+1 ⌉

3l+2 is indeed a cycle

on 3l + 2 nodes. Now consider l − s ≥ 2. By 2l + 1 < 2n,

l − s < n − s. Thus 2 ≤ l − s < n − s ≤ n − 1, and so

letC
⌈ 2n
2l+1 ⌉

3l+2 = [u+
n−s, u

+
n ][v

+
1 , v+l−s]u

+,+
1,l−su

+,+,+
1,l−s,n−su

+,+
1,n−su

+
n−s.

Note that |V (C
⌈ 2n
2l+1 ⌉

3l+2 )| = 3s+ 3(l − s− 1)+ 5 = 3l + 2 and

v+l−s = u
+,+,+
1,l−s,n. Then C

⌈ 2n
2l+1 ⌉

3l+2 is indeed a cycle on 3l + 2

nodes.

Let F = {C1
3l,C

2
3l, . . . ,C

⌈ 2n
2l ⌉

3l }. Then Q3
n − F is discon-

nected because {u} is a component of Q3
n − F . By definition

of κ(Q3
n;C3l), κ(Q3

n;C3l) ≤ ⌈ 2n
2l

⌉. Similarly, we can show

that κ(Q3
n;C3l+2) ≤ ⌈ 2n

2l+1
⌉. �

Lemma 8: κ(Q3
n;C3l) ≥ ⌈ 2n

2l
⌉ for n ≥ 2 and 4 ≤ 2l ≤ 2n,

and κ(Q3
n;C3l+2) ≥ ⌈ 2n

2l+1
⌉ for n ≥ 3 and 2l + 1 < 2n.

Proof: By Lemma 6, κ
s(Q3

n;C3l) ≥ ⌈ 2n
2l

⌉. Note that

κ(Q3
n;C3l) ≥ κ

s(Q3
n;C3l). Then κ(Q3

n;C3l) ≥ ⌈ 2n
2l

⌉.

In order to prove that κ(Q3
n;C3l+2) ≥ ⌈ 2n

2l+1
⌉, it is

enough to show that Q3
n − F ′

3l+2 is connected for any F ′
3l+2

with |F ′
3l+2| ≤ ⌈ 2n

2l+1
⌉ − 1. Suppose, to the contrary, that

Q3
n − F ′

3l+2 is disconnected. Let T0 be a smallest component

of Q3
n − F ′

3l+2.

Case 1: |V (T0)| = 1.

FIGURE 7. The neighbour structure of u and v with n even.

FIGURE 8. The neighbour structure of u and v with n odd.

Set V (T0) = {x}. Thus N (x) ⊆ V (F ′
3l+2). To make the

number of faulty C3l+s’s minimum which contain the nodes

in N (x), each C3l+2 need to contain as many nodes in N (x)

as possible. By Lemma 5, Q3
n contains no structure A, and so

any three nodes in N (x) are not three consecutive nodes on

a cycle. Combining this with the definition of the neighbour

structure of x, a cycle C3l+2 contain at most 2l + 1 nodes

in N (x). Note that |N (x)| = 2n. Then |F ′
3l+2| ≥ ⌈ 2n

2l+1
⌉ >

⌈ 2n
2l+1

⌉ − 1 ≥ |F |, a contradiction.

Case 2: |V (T0)| ≥ 2.

By n ≥ 3, |V (T0)| ≥ 2 and Lemma 2, |V (F ′
3l+2)| ≥ 4n−2.

Note that |F ′
3l+2| ≤ ⌈ 2n

2l+1
⌉ − 1. Thus |V (F ′

3l+2)| ≤ (3l +

2)(⌈ 2n
2l+1

⌉ − 1) ≤ (3l + 2)( 2n+2l
2l+1

− 1) = 3l+2
2l+1

(2n − 1) <

4n− 2 ≤ |V (F ′
3l+2)|, a contradiction. �

Lemmas 7 and 8 yield the following result.

Theorem 3: κ(Q3
n;C3l) = ⌈ 2n

2l
⌉ for n ≥ 2 and 4 ≤ 2l ≤

2n, and κ(Q3
n;C3l+2) = ⌈ 2n

2l+1
⌉ for n ≥ 3 and 2l + 1 < 2n.

By Lemma 6, κ
s(Q3

n;P3l+s) ≥ κ
s(Q3

n;C3l+s) ≥ ⌈ 2n
2l+s

⌉.

By Theorem 2, κ
s(Q3

n;P3l+s) = ⌈ 2n
2l+s

⌉. Thus we have the

following theorem.

Theorem 4: Let n ≥ 2. Then κ
s(Q3

n;C3l+s) = ⌈ 2n
2l+s

⌉ for

2l + s ≤ 2n and s = 0, 1, 2.

IV. THE STRUCTURE CONNECTIVITY AND

SUBSTRUCTURE CONNECTIVITY OF Qk
n

In this section, we determine κ(Qkn;T ) and κ
s(Qkn;T ) of Q

k
n

for k ≥ 4 and T ∈ {Pi,Ci}.

Let u = a1a2 . . . an be a node of Q
k
n, let u

−
j = a1 . . . (aj −

1) . . . an, u
+
j = a1 . . . (aj + 1) . . . an, u

−,−
j,j+1 = a1 . . . (aj −

1)(aj+1−1) . . . an. Similarly, u
+,−
j,j+1 and u

+,+
j,j+1 can be defined.

LetP(u) = u−
1 u

−,−
1,2 u

−
2 u

+,−
1,2 u

+
1 u

+,+
1,2 u

+
2 u

+,−
2,3 u

−
3 . . . u−

n−1u
−,−
n−1,n

u−
n u

+,−
n−1,nu

+
n−1u

+,+
n−1,nu

+
n with n even (see FIGURE 7), and

P(u) = u−
1 u

−,−
1,2 u

−
2 u

+,−
1,2 u

+
1 u

+,+
1,2 u

+
2 u

+,−
2,3 u

−
3 . . . u+

n−2u
+,−
n−2,nu

−
n
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FIGURE 9. The neighbour structure of u and v .

FIGURE 10. A path P1
2l+1

= [u1, ul+1] using P(u).

u
+,−
n−1,nu

+
n−1u

+,+
n−1,nu

+
n with n odd (see FIGURE 8). Then P(u)

is a path and is called the neighbour structure of u. Let

v ∈ V (Qkn) with u
+
n = v−1 . Similarly, consider the neighbour

structure of v. It is easy to see that the neighbour structure of

u and v has exactly two common nodes u+
n = v−1 and u+

1 = v−n
(see FIGURE 7 and FIGURE 8). For convenience, no matter

what the parity of n is, the above neighbour structure of u

and v is denoted by P(u) = u1u
′
1u2u

′
2u3 . . . u2n−1u

′
2n−1u2n

and P(v) = v1v
′
1v2v

′
2v3 . . . v2n−1v

′
2n−1v2n with u2n = v1 (see

FIGURE 9). Let P = uiu
′
iui+1u

′
i+1ui+2 . . . uj−1u

′
j−1uj be a

path lying on P(u) for 1 ≤ i, j ≤ 2n. For convenience,

we denote such a path P by [ui, uj]. Similarly, [ui, u
′
j] can be

defined for 1 ≤ i, j ≤ 2n− 1.

A. κ(Qk
n; Pi ) AND κ

s(Qk
n; Pi )

Lv et al. [11] proved the following theorem about κ(Qkn;Pi)

and κ
s(Qkn;Pi) for i = 1, 3. In this subsection, we generalize

the theorem by establishing κ(Qkn;Pi) and κ
s(Qkn;Pi).

Theorem 5 ( [11]): For n ≥ 2 and k ≥ 4, κ(Qkn;P1) =

κ
s(Qkn;P1) = 2n and κ(Qkn;P3) = κ

s(Qkn;P3) = n.

Lemma 9: Let u = 111 . . . 11 and v = 211 . . . 12.

If [v1,w] ⊆ P(v) with w 6= v+n and v−n ∈ V ([v1,w]), then

there exist a path P starting at v1 such that v
−
n 6∈ V (P),

|V (P)| = |V ([v1,w])| and (V (P) \ v1) ∩ V (P(u)) = ∅.

Proof: If w = v−n , then, by definition of P(v), let P =

[v1, v
−
n−1]v

−,+
n−1,nv

+
n with n even, and P = [v1, v

+
n−2]v

+,+
n−2,nv

+
n

with n odd. Then P satisfies the conditions. If w 6= v−n ,

then w ∈ {v
+,−
n−1,n, v

+
n−1, v

+,+
n−1,n}. When n is even, let

P = [v1, v
−
n−1]v

−,+
n−1,nv

+
n v

+,+
n−1,n with w = v

+,−
n−1,n, let P =

[v1, v
−
n−1]v

−,+
n−1,nv

+
n v

+,+
n−1,nv

+
n−1 with w = v+n−1, and let P =

[v1, v
−
n−1]v

−,+
n−1,nv

+
n v

+,+
n−1,nv

+
n−1v

+,−
n−1,n with w = v

+,+
n−1,n. When

n is odd, let P = [v1, v
+
n−2]v

+,+
n−2,nv

+
n v

+,+
n−1,n with w = v

+,−
n−1,n,

let P = [v1, v
+
n−2]v

+,+
n−2,nv

+
n v

+,+
n−1,nv

+
n−1 with w = v+n−1, and let

P = [v1, v
+
n−2]v

+,+
n−2,nv

+
n v

+,+
n−1,nv

+
n−1v

+,−
n−1,n with w = v

+,+
n−1,n.

Then P satisfies the conditions. �

Lemma 10: Let n ≥ 2 and k ≥ 4. Then κ(Qkn;P2l+1) ≤

⌈ 2n
l+1

⌉ for 1 ≤ l+ 1 ≤ 2n, and κ(Qkn;P2l) ≤ ⌈ 2n
l
⌉ for l ≤ 2n.

Proof: Let u = 111 . . . 11 and v = 211 . . . 12. Then

u+
n = v−1 , that is, u2n = v1. Consider the neighbour structure

P(u) and P(v) of u and v.

For P2l+1, We will successively find ⌈ 2n
l+1

⌉ pairwise dis-

joint P2l+1’s denoted by P12l+1, P
2
2l+1, . . ., P

⌈ 2n
l+1 ⌉

2l+1 using P(u)

and P(v). If l + 1 = 2n, then ⌈ 2n
l+1

⌉ = 1, and let P12l+1 =

[u1, u2n]. If l + 1 < 2n, then let 2n = p(l + 1) + q, and let

P12l+1 = [u1, ul+1] (see FIGURE 10), P22l+1 = [ul+2, u2l+2],

P32l+1 = [u2l+3, u3l+3], . . ., P
p
2l+1 = [u(p−1)l+p, upl+p].

By l + 1 < 2n and Lemma 9, we can find P
⌈ 2n
l+1 ⌉

2l+1 with

v−n 6∈ V (P
⌈ 2n
l+1 ⌉

2l+1 ).

For P2l , We will successively find ⌈ 2n
l
⌉ pairwise disjoint

P2l’s denoted by P12l , P
2
2l , . . ., P

⌈ 2n
l ⌉

2l using P(u) and P(v). If

l = 2n, then ⌈ 2n
l
⌉ = 1, and let P12l = [u1, u2n]v

′
1. If l < 2n,

then let 2n = pl+q, and let P12l = [u1, u
′
l], P

2
2l = [ul+1, u

′
2l],

P32l = [u2l+1, u
′
3l], . . ., P

p
2l = [u(p−1)l+1, u

′
pl]. By l < 2n and

Lemma 9, we can find P
⌈ 2n
l ⌉

2l with v−n 6∈ V (P
⌈ 2n
l ⌉

2l ).

Let F = {P12l+1,P
2
2l+1, . . . ,P

⌈ 2n
l+1 ⌉

2l+1 }. Then Qkn − F is

disconnected because {u} is a component of Qkn − F . By def-

inition of κ(Qkn;P2l+1), κ(Qkn;P2l+1) ≤ ⌈ 2n
l+1

⌉. Similarly,

we can show that κ(Qkn;P2l) ≤ ⌈ 2n
l
⌉. �

Lemma 11: Let n ≥ 5 and k ≥ 4. Then κ
s(Qkn;P2l+1) ≥

⌈ 2n
l+1

⌉ for 1 ≤ l + 1 ≤ 2n and κ
s(Qkn;C2l+1) ≥ ⌈ 2n

l+1
⌉ for

3 ≤ l + 1 ≤ 2n.

Proof: We only show that κs(Qkn;C2l+1) ≥ ⌈ 2n
l+1

⌉. The

proof of κs(Qkn;P2l+1) ≥ ⌈ 2n
l+1

⌉ is similar. LetF = ∪2l+1
i=1 Fi∪

F ′
2l+1 with |F | =

∑2l+1
i=1 |Fi|+ |F ′

2l+1| ≤ ⌈ 2n
l+1

⌉−1. In order

to prove that κs(Qkn;C2l+1) ≥ ⌈ 2n
l+1

⌉, it is enough to show that

Qkn − F is connected. Suppose, to the contrary, that Qkn − F

is disconnected. Let T0 be a smallest component of Qkn − F .

Case 1: |V (T0)| = 1.

Set V (T0) = {x}. Thus N (x) ⊆ V (F). To make

the number of faulty subgraphs of C2l+1 minimum which

contain the nodes in N (x), we should construct as many

P2l+1’s/C2l+1’s as possible and each P2l+1/C2l+1 need to

contain as many nodes in N (x) as possible. Since Qkn con-

tains no triangles for k ≥ 4, any two nodes in N (x) are

not two consecutive nodes on a path/cycle. Combining this

with the definition of the neighbour structure of x, each

P2l+1/C2l+1 contain at most l + 1 nodes in N (x). Note that

|N (x)| = 2n. Then |F | ≥ ⌈ 2n
l+1

⌉ > ⌈ 2n
l+1

⌉ − 1 ≥ |F |, a

contradiction.

Case 2: |V (T0)| = 2.

Set V (T0) = {{x, y}|xy ∈ E(Qkn)}. Thus N ({x, y}) ⊆

V (F), and so |V (F)| ≥ |N ({x, y})| = 4n − 2. Note that

|F | ≤ ⌈ 2n
l+1

⌉ − 1. Then |V (F)| ≤ (2l + 1)(⌈ 2n
l+1

⌉ − 1) ≤

(2l + 1)( 2n+l
l+1

− 1) =
(2l+1)
(l+1)

(2n − 1) < 4n − 2 ≤ |V (F)|,

a contradiction.
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Case 3: |V (T0)| ≥ 3.

By n ≥ 5, |V (T0)| ≥ 3 and Lemma 2, |V (F)| ≥ 6n − 5.

Recall that |V (F)| < 4n − 2 < 6n − 5 ≤ |V (F)|,

a contradiction. �

Lemma 12: Let n ≥ 5 and k ≥ 4. Then κ
s(Qkn;P2l) ≥

κ
s(Qkn;C2l) ≥ ⌈ 2n

l
⌉ for 2 ≤ l ≤ 2n.

Proof: By Lemma 1, κ
s(Qkn;P2l) ≥ κ

s(Qkn;C2l). Let

F = ∪2l
i=1Fi ∪ F ′

2l with |F | =
∑2l

i=1 |Fi| + |F ′
2l | ≤ ⌈ 2n

l
⌉ − 1.

In order to prove that κs(Qkn;C2l+1) ≥ ⌈ 2n
l+1

⌉, it is enough to

show that Qkn −F is connected. Suppose, to the contrary, that

Qkn − F is disconnected. Let T0 be a smallest component of

Qkn − F .

Case 1: |V (T0)| = 1.

Set V (T0) = {x}. Thus N (x) ⊆ V (F). To make the number

of faulty subgraphs of C2l minimum which contain the nodes

in N (x), we should construct as many P2l’s/C2l’s as possible

and each P2l /C2l need to contain as many nodes in N (x) as

possible. Since Qkn contains no triangles for k ≥ 4, any two

nodes in N (x) are not two consecutive nodes on a path/cycle.

Combining this with the definition of the neighbour structure

of x, each P2l /C2l contain at most l nodes in N (x). Note

that |N (x)| = 2n. Then |F | ≥ ⌈ 2n
l
⌉ > ⌈ 2n

l
⌉ − 1 ≥ |F |,

a contradiction.

Case 2: |V (T0)| = 2.

Set V (T0) = {{x, y}|xy ∈ E(Qkn)}. Thus N ({x, y}) ⊆ V (F),

and so |V (F)| ≥ |N ({x, y})| = 4n−2. Note that |F | ≤ ⌈ 2n
l
⌉−

1. Thus |V (F)| ≤ (2l)(⌈ 2n
l
⌉ − 1) ≤ (2l)( 2n+l−1

l
− 1) =

4n− 2. We have |V (F)| = 4n− 2, and so V (F) = N ({x, y}).

Note that Qkn contains no C3 for k ≥ 4. Thus any two nodes

in N (x) or N (y) are not adjacent. Without loss of generality,

assume that x = 11 . . . 1 and y = 01 . . . 1. For the two nodes

u = 21 . . . 1 and v = (k − 1)1 . . . 1 in N ({x, y}), we see that

u, v are not adjacent to the nodes in N ({x, y}) \ {u, v}. Thus

u, v are not on a path Pk with k ≥ 4 and V (Pk ) ⊆ N ({x, y}).

It follows that |F | ≥ ⌈ 4n−4
2l

⌉ + 1. Recall that |F | ≤ ⌈ 2n
l
⌉ − 1.

Then |F | ≤ 2n+l−1
l

− 1 <
4n−4
2l

+ 1 ≤ ⌈ 4n−4
2l

⌉ + 1 ≤ |F | by

l ≥ 2, a contradiction.

Case 3: |V (T0)| ≥ 3.

By n ≥ 5, |V (T0)| ≥ 3 and Lemma 2, |V (F)| ≥ 6n − 5.

Recall that |V (F)| ≤ 4n− 2 < 6n− 5 ≤ |V (F)|, a contradic-

tion. �

Note that κ(Qkn;Pi) ≥ κ
s(Qkn;Pi). Lemmas 10, 11 and 12

yield following result.

Theorem 6: Let n ≥ 5 and k ≥ 4. Then κ(Qkn;P2l+1) =

κ
s(Qkn;P2l+1) = ⌈ 2n

l+1
⌉ for 1 ≤ l + 1 ≤ 2n and κ(Qkn;P2l) =

κ
s(Qkn;P2l) = ⌈ 2n

l
⌉ for 2 ≤ l ≤ 2n.

Set 2l + 1 = 1, 3 in the Theorem 6. Then Theo-

rem 5 given by Lv et al. [11] is an immediate corollary of

Theorem 6.

B. κ(Qk
n; Ci ) AND κ

s(Qk
n; Ci )

In this subsection, we investigate the cycle-structure/

substructure connectivity for Qkn.

Lemma 13: Let n ≥ 5 and k ≥ 4. Then κ(Qkn;C2l) ≤ ⌈ 2n
l
⌉

for 4 ≤ l ≤ 2n.

FIGURE 11. A cycle C1
2l

= [u1, ul ]u1,l u1 using P(u).

FIGURE 12. An example of Ck , C1
k+2s

and C2
k+2s

in Qk
2

.

Proof: Let u = 111 . . . 11 and v = 211 . . . 12. Then

u+
n = v−1 , that is, u2n = v1. Consider the neighbour

structure P(u) and P(v) of u and v. Note that P(u) =

u1u
′
1u2u

′
2u3 . . . u2n−1u

′
2n−1u2n. In the following, we first give

a claim which can be used to construct the desired cycles.

Claim 1. For any ui, uj ∈ V (P(u)) with 1 ≤ i < j ≤ 2n

and j − i ≥ 3, there exists ui,j ∈ V (Qkn) with ui,j 6∈ V (P(u))

such that uiui,juj is a P3.

By the definition of ui, we have ui, uj ∈ {u−
1 , u−

2 , u+
1 , u+

2 ,

u−
3 , . . . , u−

n , u+
n−1, u

+
n }. Without loss of generality, assume

that ui = u−
s and uj = u+

t . By the definition of P(u) and

j− i ≥ 3, we have s < t . Let ui,j = u
−,+
s,t . Then ui,j 6∈ V (P(u))

and uiui,juj is a P3. The claim holds.

We will successively find ⌈ 2n
l
⌉ pairwise disjoint C2l’s

denoted by C1
2l,C

2
2l, . . . ,C

⌈ 2n
l ⌉

2l by using P(u) and P(v) with

v−n 6∈ V (C
⌈ 2n
l ⌉

2l ). If l = 2n, then ⌈ 2n
l
⌉ = 1. By Claim

1, let C1
2l = [u1, u2n]u1,2nu1. Next consider l < 2n and

assume that 2n = pl + q. Then p + 1 = ⌈ 2n
l
⌉. By Claim

1, let C1
2l = [u1, ul]u1,lu1 (see FIGURE 11), C2

2l =

[ul+1, u2l]ul+1,2lul+1, C
3
2l = [u2l+1, u3l]u2l+1,3lu2l+1, . . .,

C
p
2l = [u(p−1)l+1, upl]u(p−1)l+1,plu(p−1)l+1. If q = 1, then,

by Lemma 9 and Claim 1, let C
⌈ 2n
l ⌉

2l = [v1, vl]v1,lv1 with

v−n 6∈ V (C
⌈ 2n
l ⌉

2l ). Next assume that q ≥ 2. Then 2n− q+ 1 ≤

2n − 1. If l − q = 1, then u2n−q+1 6= u−
n . If not, then

2n − q + 1 = 2n − 2, and so q = 3 and l = 4. Note

that 2n = pl + q, that is, 2n = 4p + 3, a contradiction.

Let C
⌈ 2n
l ⌉

2l = [u2n−q+1, u2n]vv2n−q+1(v2n−q+1)
−
n u2n−q+1.
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Note that |V (C
⌈ 2n
l ⌉

2l )| = 2q − 1 + 3 = 2q + 2 = 2l

and v2n−q+1 6= v−n . Then C
⌈ 2n
l ⌉

2l is indeed a cycle on 2l

nodes. Now consider l − q ≥ 2. By l < 2n, 2n − q +

1 − (l − q) = 2n − l + 1 ≥ 2. If u2n−q+1 = u−
n and

vl−q ∈ {v−2 , v
+
2 }, then q = 3 and l − q ∈ {2, 4}. Thus

l = 5 or l = 7. For l = 5, let x = 31 . . . 11, y =

31 . . . 10, z = 21 . . . 10 and C
⌈ 2n
l ⌉

2l = [u−
n , u+

n ]vv
+
1 xyzu

−
n .

Then |V (C
⌈ 2n
l ⌉

2l )| = 10. For l = 7, let C
⌈ 2n
l ⌉

2l =

[u−
n , u+

n ]v
−,−
1,2 v

−
2 vv

+
n v

+,+
n−1,nv

+
n−1u

+,+
1,n−1u

+,+,−
1,n−1,nu

+,−
1,n u

−
n by

v+n−1 = u
+,+,+
1,n−1,n. Then |V (C

⌈ 2n
l ⌉

2l )| = 14.

Claim 2. There exist x, y, z ∈ V (Qkn) with x, y, z 6∈

V (∪
⌈ 2n
l ⌉−1

i=1 C i
2l), such that vl−qxyzu2n−q+1 is a P5, as long as

u2n−q+1 6= u−
n or vl−q 6∈ {v−2 , v+2 }.

Assume that uu2n−q+1 and vvl−q are j-dimensional and

i-dimensional links, respectively. By 2n−q+1− (l−q) ≥ 2,

i ≤ j. If i = j, then 2n− q+ 1 − (l − q) = 2, u2n−q+1 = u+
j

and vl−q = v−j . By l ≥ 4, 2n − q + 1 = pl + 1 ≥ 5,

and so j ≥ 3. Recall that q ≥ 2. Then j ≤ n − 1. Let

x = v, y = v+j and z = u
+,+
1,j . Then x, y, z 6∈ V (∪

⌈ 2n
l ⌉−1

i=1 C i
2l)

and vl−qxyzu2n−q+1 is a P5. Next assume that i < j. Then

2n− q+ 1− (l− q) ≥ 3. If 1 < i < j < n, then, without loss

of generality, assume that u2n−q+1 = u−
j and vl−q = v+i . Let

x = u
+,+
i,n , y = u

+,−,+
i,j,n and z = u

−,+
j,n . By definition of P(u)

and P(v), x, y, z 6∈ V (∪
⌈ 2n
l ⌉−1

i=1 C i
2l). Note that v+i = u

+,+,+
1,i,n .

Then vl−qxyzu2n−q+1 is a P5. Now consider i = 1 or j = n,

which is equivalent to vl−q = v+1 or u2n−q+1 = u−
n by l−q ≥

2 and q ≥ 2. If vl−q = v+1 and u2n−q+1 = u−
n , then let x =

31 . . . 11, y = 31 . . . 10 and z = 21 . . . 10. By definition of

P(u) and P(v), x, y, z 6∈ V (∪
⌈ 2n
l ⌉−1

i=1 C i
2l) and vl−qxyzu2n−q+1

is a P5. If vl−q 6= v+1 and u2n−q+1 = u−
n , then, without loss of

generality, assume that vl−q = v−i . Note that the hypothesis

that u2n−q+1 6= u−
n or vl−q 6∈ {v−2 , v+2 }. Thus i ≥ 3 by l−q ≥

2. Let x = u
+,−
1,i , y = u

+,−,−
1,i,n and z = u

+,−
1,n . By definition

of P(u) and P(v), x, y, z 6∈ V (∪
⌈ 2n
l ⌉−1

i=1 C i
2l). Note that v−i =

u
+,−,+
1,i,n . Then vl−qxyzu2n−q+1 is a P5. If vl−q = v+1 and

u2n−q+1 6= u−
n , then, without loss of generality, assume that

u2n−q+1 = u−
j with j ≤ n − 1. Then u−

j = 11 . . . 101 . . . 11

and v+1 = 31 . . . 111 . . . 12. Let x = 31 . . . 111 . . . 11, y =

31 . . . 101 . . . 11 and z = 21 . . . 101 . . . 11. By definition of

P(u) and P(v), x, y, z 6∈ V (∪
⌈ 2n
l ⌉−1

i=1 C i
2l). Then vl−qxyzu2n−q+1

is a P5. The claim holds.

By Claim 2, let C
⌈ 2n
l ⌉

2l = [u2n−q+1, u2n][v2, vl−q]xyz

u2n−q+1. Note that |V (C
⌈ 2n
l ⌉

2l )| = 2q+ 2(l − 1− q)+ 2 = 2l.

Then C
⌈ 2n
l ⌉

2l is indeed a cycle on 2l nodes.

Let F = {C1
2l,C

2
2l, . . . ,C

⌈ 2n
l ⌉

2l }. Then Qkn − F is discon-

nected because {u} is a component of Qkn − F . By definition

of κ(Qkn;C2l), κ(Q
k
n;C2l) ≤ ⌈ 2n

l
⌉. �

Note that κ(Qkn;C2l) ≥ κ
s(Qkn;C2l). Lemmas 12 and 13

yield the following result.

Theorem 7: Let n ≥ 5 and k ≥ 4. Then κ(Qkn;C2l) =

κ
s(Qkn;C2l) = ⌈ 2n

l
⌉ for 4 ≤ l ≤ 2n.

Next, we consider the case that Qkn contains odd cycles.

Note that Qkn is bipartite if and only if k is even. Thus Qkn
contains odd cycles only if k is odd. The minimum odd cycle

in Qkn is Ck , which implies that the general odd cycle in Qkn
can be denoted by Ck+2s for s ≥ 0.

Lemma 14: Let n ≥ 2 and odd k ≥ 5. Then

κ(Qkn;Ck+2s) ≤ 2n− 2 for 0 ≤ s ≤ k−3
2
.

Proof: Let Ck = (0 k−1
2

k−1
2

. . .
k−1
2
)(1 k−1

2
k−1
2

. . .
k−1
2
)

. . . ((k − 1) k−1
2

k−1
2

. . .
k−1
2
)(0 k−1

2
k−1
2

. . .
k−1
2
) be a cycle

of Qkn. We will find 2n − 2 pairwise disjoint Ck+2s’s

denoted byC1
k+2s,C

2
k+2s, . . . ,C

2n−2
k+2s by usingN (V (Ck )) (see

FIGURE 12 for an example of Ck , C
1
k+2s and C

2
k+2s in Q

k
2).

Let

C1
k+2s = (0 k−3

2
k−1
2

. . .
k−1
2
)(0 k−5

2
k−1
2

. . .
k−1
2
) . . . (0 k−1−2s

2
k−1
2

. . .
k−1
2
)(0 k−3−2s

2
k−1
2

. . .
k−1
2
)((k − 1) k−3−2s

2
k−1
2

. . .

k−1
2
)((k−1) k−1−2s

2
k−1
2

. . .
k−1
2
) . . . ((k−1) k−5

2
k−1
2

. . .
k−1
2
)

((k − 1) k−3
2

k−1
2

. . .
k−1
2
)((k − 2) k−3

2
k−1
2

. . .
k−1
2
) . . . (1 k−3

2
k−1
2

. . .
k−1
2
)(0 k−3

2
k−1
2

. . .
k−1
2
),

C2
k+2s = (0 k+1

2
k−1
2

. . .
k−1
2
)(0 k+3

2
k−1
2

. . .
k−1
2
) . . . (0 k−1+2s

2
k−1
2

. . .
k−1
2
)(0 k+1+2s

2
k−1
2

. . .
k−1
2
)((k − 1) k+1+2s

2
k−1
2

. . .

k−1
2
)((k−1) k−1+2s

2
k−1
2

. . .
k−1
2
) . . . ((k−1) k+3

2
k−1
2

. . .
k−1
2
)

((k − 1) k+1
2

k−1
2

. . .
k−1
2
)((k − 2) k+1

2
k−1
2

. . .
k−1
2
) . . . (1 k+1

2
k−1
2

. . .
k−1
2
)(0 k+1

2
k−1
2

. . .
k−1
2
),

C3
k+2s = (0 k−1

2
k−3
2

. . .
k−1
2
)(0 k−1

2
k−5
2

. . .
k−1
2
) . . . (0 k−1

2
k−1−2s

2
. . .

k−1
2
)(0 k−1

2
k−3−2s

2
. . .

k−1
2
)((k − 1) k−1

2
k−3−2s

2

. . .
k−1
2
)((k − 1) k−1

2
k−1−2s

2
. . .

k−1
2
) . . . ((k − 1) k−1

2
k−5
2

. . .

k−1
2
)((k − 1) k−1

2
k−3
2

. . .
k−1
2
)((k − 2) k−1

2
k−3
2

. . .
k−1
2
) . . .

(1 k−1
2

k−3
2

. . .
k−1
2
)(0 k−1

2
k−3
2

. . .
k−1
2
),

C4
k+2s = (0 k−1

2
k+1
2

. . .
k−1
2
)(0 k−1

2
k+3
2

. . .
k−1
2
) . . . (0 k−1

2
k−1+2s

2
. . .

k−1
2
)(0 k−1

2
k+1+2s

2
. . .

k−1
2
)((k − 1) k−1

2
k+1+2s

2
. . .

k−1
2
)((k−1) k−1

2
k−1+2s

2
. . .

k−1
2
) . . . ((k−1) k−1

2
k+3
2

. . .
k−1
2
)

((k − 1) k−1
2

k+1
2

. . .
k−1
2
)((k − 2) k−1

2
k+1
2

. . .
k−1
2
) . . . (1 k−1

2
k+1
2

. . .
k−1
2
)(0 k−1

2
k+1
2

. . .
k−1
2
),

. . .

C2n−3
k+2s = (0 k−1

2
k−1
2

. . .
k−3
2
)(0 k−1

2
. . .

k−1
2

k−5
2
) . . . (0 k−1

2
k−1
2

. . .
k−1−2s

2
)(0 k−1

2
k−1
2

. . .
k−3−2s

2
)((k − 1) k−1

2
k−1
2

. . .

k−3−2s
2

)((k − 1) k−1
2

k−1
2

. . .
k−1−2s

2
) . . . ((k − 1) k−1

2
k−1
2

. . .

k−5
2
)((k − 1) k−1

2
k−1
2

. . .
k−3
2
)((k − 2) k−1

2
k−1
2

. . .
k−3
2
) . . .

(1 k−1
2

k−1
2

. . .
k−3
2
)(0 k−1

2
k−1
2

. . .
k−3
2
),

C2n−2
k+2s = (0 k−1

2
k−1
2

. . .
k+1
2
)(0 k−1

2
k−1
2

. . .
k+3
2
) . . . (0 k−1

2
k−1
2

. . .
k−1
2

k−1+2s
2

)(0 k−1
2

k−1
2

. . .
k+1+2s

2
)((k − 1) k−1

2
k−1
2

. . .
k+1+2s

2
)((k − 1) k−1

2
k−1
2

. . .
k−1+2s

2
) . . . ((k − 1) k−1

2
k−1
2

. . .
k+3
2
)((k−1) k−1

2
k−1
2

. . .
k+1
2
)((k−2) k−1

2
k−1
2

. . .
k+1
2
) . . .

(1 k−1
2

k−1
2

. . .
k+1
2
)(0 k−1

2
k−1
2

. . .
k+1
2
).

Let F = {C1
k+2s,C

2
k+2s, . . . ,C

2n−2
k+2s }. Then Q

k
n − F is dis-

connected becauseCk is a component ofQkn−F . By definition

of κ(Qkn;Ck+2s), κ(Q
k
n;Ck+2s) ≤ 2n− 2. �
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Set 2l + 1 = k + 2s in the Lemma 14. Then s = 2l+1−k
2

,

and so 0 ≤ s ≤ k−3
2

is equivalent k−1
2

≤ l ≤ k − 2. We have:

Theorem 8: Let n ≥ 2 and odd k ≥ 5. Then

κ(Qkn;C2l+1) ≤ 2n− 2 for k−1
2

≤ l ≤ k − 2.

Let n ≥ 5 and k ≥ 4 with l + 1 ≤ 2n. By Lemmas 1 and

11, κs(Qkn;P2l+1) ≥ κ
s(Qkn;C2l+1) ≥ ⌈ 2n

l+1
⌉. By Theorem 6,

κ
s(Qkn;P2l+1) = ⌈ 2n

l+1
⌉. Thus we obtain the following result.

Theorem 9: Let n ≥ 5 and odd k ≥ 5. Then

κ
s(Qkn;C2l+1) = ⌈ 2n

l+1
⌉ for k+1

2
≤ l + 1 ≤ 2n.

V. CONCLUSION

In a given network, how many of a particular structure can

go faulty, and the network still remains connected? That

is the question this paper tried to address. It established

structure connectivity κ(Qkn;T ) and substructure connectivity

κ
s(Qkn;T ), where k ≥ 3, and T is a path or cycle, both

being basic yet important structures in all computer net-

works. Our work not only generalized the known result on

path structures [11], but also extended it to cycle structures.

These results reveal new characteristics ofQkn, affordingmore

insights into this important network.

The paper leaves a few unresolved open questions. (1) For

Q3
n andC3l+1, cycles on 3l+1 nodes, κ(Q3

n;C3l+1) is yet to be

determined; and (2) The paper’s result on structure connec-

tivity for odd-node cycles, κ(Qkn;C2l+1) with odd k ≥ 5, is an

upper-bound, instead of a definitive connectivity. These two

sub-problems proved to be challenging, and solving themwill

completely solve theQkn’s structure/substructure connectivity

for paths and cycles. New and more innovative approaches,

different than ours used in this paper, might be in order.
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