Structure Connectivity and Substructure Connectivity of k-Ary n-Cube Networks

GUOZHEN ZHANG ${ }^{\text {® } 1 ~ A N D ~ D A J I N ~ W A N G ~}{ }^{2}$
${ }^{1}$ School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
${ }^{2}$ Department of Computer Science, Montclair State University, Montclair, NJ 07043, USA
Corresponding author: Dajin Wang (wangd@mail.montclair.edu)

This work was supported by the National Natural Science Foundation of China (11401352, 11401354, 11501341) and the Research and Development Project (01090118100096).

Abstract

We present new results on the fault tolerability of k-ary n-cube (denoted Q_{n}^{k}) networks. Q_{n}^{k} is a topological model for interconnection networks that has been extensively studied since proposed, and this paper is concerned with the structure/substructure connectivity of Q_{n}^{k} networks, for paths and cycles, two basic yet important network structures. Let G be a connected graph and T a connected subgraph of G. The T-structure connectivity $\kappa(G ; T)$ of G is the cardinality of a minimum set of subgraphs in G, such that each subgraph is isomorphic to T, and the set's removal disconnects G. The T-substructure connectivity $\kappa^{s}(G ; T)$ of G is the cardinality of a minimum set of subgraphs in G, such that each subgraph is isomorphic to a connected subgraph of T, and the set's removal disconnects G. In this paper, we study $\kappa\left(Q_{n}^{k} ; T\right)$ and $\kappa^{s}\left(Q_{n}^{k} ; T\right)$ for $T=P_{i}$, a path on i nodes (resp. $T=C_{i}$, a cycle on i nodes). Lv et al. determined $\kappa\left(Q_{n}^{k} ; T\right)$ and $\kappa^{s}\left(Q_{n}^{k} ; T\right)$ for $T \in\left\{P_{1}, P_{2}, P_{3}\right\}$. Our results generalize the preceding results by determining $\kappa\left(Q_{n}^{k} ; P_{i}\right)$ and $\kappa^{s}\left(Q_{n}^{k} ; P_{i}\right)$. In addition, we have also established $\kappa\left(Q_{n}^{k} ; C_{i}\right)$ and $\kappa^{s}\left(Q_{n}^{k} ; C_{i}\right)$.

INDEX TERMS Interconnection networks, structure connectivity, substructure connectivity, k-ary n-cubes, paths, cycles.

I. INTRODUCTION

Interconnection networks play an important role in largescale multiprocessor systems. Like most networks, an interconnection network can be represented by a graph $G=(V(G), E(G))$, where nodes in $V(G)$ correspond to processors, and edges in $E(G)$ correspond to communication links.

A. CONNECTIVITY OF INTERCONNECTION NETWORKS

The fault tolerance of interconnection networks has always been an important issue. One crucial parameter to evaluate the fault tolerability of a network is its connectivity. The connectivity of a graph G, denoted by $\kappa(G)$, is the minimum cardinality of a node set $F \subseteq V(G)$, such that F 's deletion disconnects G. As variants of the classic node-connectivity, several kinds of conditional connectivity were proposed and studied [2], [3], [5], [6], [8], [9], [12]-[16], [18], [23], [25], [26]. Notably among them, Fàbrega and Fiol [4] introduced the g-extra connectivity. The g-extra connectivity $\kappa_{g}(G)$ of a connected graph G is the minimum cardinality of a set of nodes in G, if such a set exists, whose deletion disconnects

[^0]G and leaves each remaining component with at least $g+1$ nodes. Obviously, $\kappa_{0}(G)=\kappa(G)$, making $\kappa_{g}(G)$ a generalization of $\kappa(G)$.

Lin et al. [17] considered the fault status of a certain structure, rather than individual nodes, and proposed structure connectivity and substructure connectivity. Let G be a connected graph, and T a connected subgraph of G. The T-structure connectivity $\kappa(G ; T)$ of G is the cardinality of a minimum set of subgraphs $F=\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$ in G, such that every $T_{i} \in F$ is isomorphic to T, and F 's deletion disconnects G. The T-substructure connectivity $\kappa^{s}(G ; T)$ of G is the cardinality of a minimum set of subgraphs $F=$ $\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$, such that every $H_{i} \in F$ is isomorphic to a connected subgraph of T, and F 's deletion disconnects G. By definition, $\kappa(G ; T) \geq \kappa^{s}(G ; T)$. The structure connectivity and substructure connectivity have been studied for some well-known networks [11], [17], [21], [22], [27].

B. APPLICATIONS OF STRUCTURE/SUBSTRUCTURE CONNECTIVITY AND OUR CONTRIBUTIONS

The traditional connectivity assumes that the status of a node is an event independent of the status of nodes around it. However in reality, nodes that are linked could affect each

FIGURE 1. A path P_{i} and a cycle C_{i}.
other, and the neighbours of a faulty node are more likely to fail than other nodes. Moreover, in the NoC technology (Network-on-Chip), part or whole of a network of interest are made on a chip, which means that the failure of any node on the chip can be considered the failure of the whole chip. All these motivated the research on fault tolerance of networks based on some certain structures rather than individual nodes. The study of structure fault tolerance is therefore of both scientific value and practical significance.

In this paper, we focus on two basic structures of all networks: paths and cycles. Let P_{i} be a path on i nodes, and C_{i} a cycle on i nodes, respectively (see FIGURE 1). Paths and cycles in a network are very important structures, both for basic network functionality and for implementing many algorithms executing on networks. When nodes in a path or cycle become faulty, the impacted path/cycle cannot function as a whole. So the whole path/cycle can be viewed as faulty. In many cases, it is easier to identify and locate a faulty structure than individual nodes in the structure. There are already many works in the literature studying path/cycle-structure fault tolerance for some well-known networks. For example, Lin et al. [17] investigated $\left\{P_{2}, P_{3}, C_{4}\right\}$-structure/substructure connectivity for hypercubes. Wang et al. [22] established $\left\{C_{3}, C_{4}\right\}$-structure/substructure connectivity for generalized hypercubes. The general $\left\{P_{i}, C_{i}\right\}$-structure/substructure connectivity have been studied for hypercubes, folded hypercubes and bubble-sort graphs [21], [27]. In this paper, we determine the path- and cycle-structure/substructure connectivity for k-ary n-cubes. The newfound results further our understanding of k-ary n-cubes, and furnish more parameters to consider when evaluating and selecting an interconnection network.

Lv et al. [11] studied $\kappa\left(Q_{n}^{k} ; T\right)$ and $\kappa^{s}\left(Q_{n}^{k} ; T\right)$ of the k-ary n-cube Q_{n}^{k} for $T \in\left\{P_{1}, P_{2}, P_{3}\right\}$. In this paper, we generalize the results by establishing $\kappa\left(Q_{n}^{k} ; P_{i}\right)$ and $\kappa^{s}\left(Q_{n}^{k} ; P_{i}\right)$. Also, we establish $\kappa\left(Q_{n}^{k} ; C_{i}\right)$ and $\kappa^{s}\left(Q_{n}^{k} ; C_{i}\right)$. The results in this paper are summarized as follows.

For Q_{n}^{3}, we have:

- $\kappa\left(Q_{n}^{3} ; P_{3 l+s}\right)=\kappa^{s}\left(Q_{n}^{3} ; P_{3 l+s}\right)=\left\lceil\frac{2 n}{2 l+s}\right\rceil$ for $2 l+s \leq 2 n$ and $s=0,1,2$;
- $\kappa\left(Q_{n}^{3} ; C_{3 l}\right)=\left\lceil\frac{2 n}{2 l}\right\rceil$ for $4 \leq 2 l \leq 2 n$;
- $\kappa\left(Q_{n}^{3} ; C_{3 l+2}\right)=\left\lceil\frac{2 n}{2 l+1}\right\rceil$ for $2 l+1<2 n$;
- $\kappa^{s}\left(Q_{n}^{3} ; C_{3 l+s}\right)=\left\lceil\frac{2 n}{2 l+s}\right\rceil$ for $2 l+s \leq 2 n$ and $s=0,1,2$.

For Q_{n}^{k} with $k \geq 4$, We have:

- $\kappa\left(Q_{n}^{k} ; P_{2 l+1}\right)=\kappa^{s}\left(Q_{n}^{k} ; P_{2 l+1}\right)=\left\lceil\frac{2 n}{l+1}\right\rceil$ for $1 \leq l+1 \leq$ $2 n$;

FIGURE 2. Q_{1}^{6} and Q_{2}^{4}.

- $\kappa\left(Q_{n}^{k} ; P_{2 l}\right)=\kappa^{s}\left(Q_{n}^{k} ; P_{2 l}\right)=\left\lceil\frac{2 n}{l}\right\rceil$ for $2 \leq l \leq 2 n$;
- $\kappa\left(Q_{n}^{k} ; C_{2 l}\right)=\kappa^{s}\left(Q_{n}^{k} ; C_{2 l}\right)=\left\lceil\frac{2 n}{l}\right\rceil$ for $4 \leq l \leq 2 n$;
- $\kappa\left(Q_{n}^{k} ; C_{2 l+1}\right) \leq 2 n-2$ for $\frac{k-1}{2} \leq l \leq k-2$; and $\kappa^{s}\left(Q_{n}^{k} ; C_{2 l+1}\right)=\left\lceil\frac{2 n}{l+1}\right\rceil$ for $\frac{k+1}{2} \leq l+1 \leq 2 n$.
Of particular note is that a definitive structure connectivity for odd-cycles in Q_{n}^{k} still remains elusive. Our result of $\kappa\left(Q_{n}^{k} ; C_{2 l+1}\right) \leq 2 n-2$ provides an upperbound on the structure connectivity for odd-cycles. This "half-solved" $\kappa\left(Q_{n}^{k} ; C_{2 l+1}\right)$ and the unknown $\kappa\left(Q_{n}^{3} ; C_{3 l+1}\right)$ are the two missing pieces for a complete solution to Q_{n}^{k},s structure/substructure connectivity for paths and cycles.

The rest of this paper is organized as follows. In Section 2, we introduce definitions and notations used throughout the paper. Section 3 establishes $\kappa\left(Q_{n}^{3} ; T\right)$ and $\kappa^{s}\left(Q_{n}^{3} ; T\right)$ for $T \in$ $\left\{P_{i}, C_{i}\right\}$. In Section 4, we determine $\kappa\left(Q_{n}^{k} ; T\right)$ and $\kappa^{s}\left(Q_{n}^{k} ; T\right)$ for $k \geq 4, T \in\left\{P_{i}, C_{i}\right\}$. Section 5 concludes the paper.

II. PRELIMINARIES

The k-ary n-cube Q_{n}^{k} is a popular interconnection network for parallel systems which has been proved to possess many attractive properties such as regularity, node transitivity and link transitivity. A number of parallel systems have been built with a k-ary n-cube forming the underlying topology, such as the J-machine [19], the iWarp [20] and the Cray T3D [10]. In particular, the 3-ary n-cube Q_{n}^{3} has been widely deployed in interconnections of parallel systems like the IBM Blue Gene/Q [1].

The k-ary n-cube $Q_{n}^{k}(k \geq 2$ and $n \geq 1)$ is a graph consisting of k^{n} nodes, each of which has the form $u=a_{1} a_{2} \ldots a_{n}$, where $0 \leq a_{i} \leq k-1$ for $1 \leq i \leq n$. Two nodes $u=a_{1} a_{2} \ldots a_{n}$ and $v=b_{1} b_{2} \ldots b_{n}$ are adjacent if and only if there exists an integer $j, 1 \leq j \leq n$, such that $a_{j}=b_{j} \pm 1(\bmod k)$ and $a_{i}=b_{i}$, for every $i \in$ $\{1,2, \ldots, n\} \backslash\{j\}$. Such a link $u v$ is called a j-dimensional link. For clarity of presentation, we omit writing " $(\bmod k)$ " in similar expressions for the remainder of the paper. Note that each node has degree $2 n$ when $k \geq 3$, and n when $k=2$. Obviously, Q_{1}^{k} is a cycle of length k, Q_{n}^{2} is an n-dimensional hypercube. Q_{1}^{6} and Q_{2}^{4} are depicted in FIGURE 2.

Two distinct adjacent nodes are neighbours. The set of neighbours of a node v in a graph G is denoted by $N(v)$, that is, $N(v)=\{u \in V(G): u v \in E(G)\}$. For $W \subseteq V(G)$, denote $N(W)=\left(\bigcup_{v \in W} N(v)\right) \backslash W$. Let G_{1} and G_{2} be two graphs. Denote $G_{1} \cong G_{2}$ when G_{1} and G_{2} are isomorphic. G_{1} and G_{2} are disjoint if they have no common node. Let $F_{i}=\left\{T_{1}, T_{2}, \ldots, T_{m}: T_{j} \cong P_{i}, 1 \leq j \leq m\right\}$ and $\left|F_{i}\right|=m$, let

FIGURE 3. The neighbour structure of u and v.
$F_{i}^{\prime}=\left\{T_{1}, T_{2}, \ldots, T_{m}: T_{j} \cong C_{i}, 1 \leq j \leq m\right\}$ and $\left|F_{i}^{\prime}\right|=m$, and let $Q_{n}^{k}-F_{i}$ (resp. $Q_{n}^{k}-F_{i}^{\prime}$) be the graph obtained from Q_{n}^{k} by deleting the nodes of F_{i} (resp. F_{i}^{\prime}) together with their incident links.

The following lemmas are useful in Sections 3 and 4.
Lemma 1: Let P_{i}, C_{i} be subgraphs of Q_{n}^{k}. Then $\kappa^{s}\left(Q_{n}^{k} ; P_{i}\right) \geq \kappa^{s}\left(Q_{n}^{k} ; C_{i}\right)$.

Proof: Let $F=\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$ be a set of subgraphs in Q_{n}^{k} with $m=\kappa^{s}\left(Q_{n}^{k} ; P_{i}\right)$ such that every $T_{j} \in F$ is isomorphic to a connected subgraph of P_{i}, and F 's deletion disconnects Q_{n}^{k}. Then every $T_{j} \in F$ is isomorphic to a connected subgraph of C_{i}. By definition of $\kappa^{s}\left(Q_{n}^{k} ; C_{i}\right)$, $\kappa^{s}\left(Q_{n}^{k} ; P_{i}\right) \geq \kappa^{s}\left(Q_{n}^{k} ; C_{i}\right)$.

Lemma 2 ([3], [7]): $\kappa_{1}\left(Q_{n}^{3}\right)=4 n-2$ for $n \geq 2$, and $\kappa_{2}\left(Q_{n}^{k}\right)=6 n-5$ for $n \geq 5$ and $k \geq 4$.

III. THE STRUCTURE CONNECTIVITY AND SUBSTRUCTURE CONNECTIVITY OF $\boldsymbol{Q}_{\boldsymbol{n}}^{\mathbf{3}}$

In this section, we determine $\kappa\left(Q_{n}^{3} ; T\right)$ and $\kappa^{s}\left(Q_{n}^{3} ; T\right)$ of Q_{n}^{3} for $T \in\left\{P_{i}, C_{i}\right\}$.
Let $u=a_{1} a_{2} \ldots a_{n}$ be a node of Q_{n}^{3}. For $1 \leq i, j \leq$ n, let $u_{i}^{-}=a_{1} \ldots\left(a_{i}-1\right) \ldots a_{n}$, let $u_{i}^{+}=a_{1} \ldots\left(a_{i}+\right.$ 1) $\ldots a_{n}$, and let $u_{i, j}^{+,-}=a_{1} \ldots\left(a_{i}+1\right) \ldots\left(a_{j}-1\right) \ldots a_{n}$. Similarly, $u_{i, j}^{+,+}, u_{i, j}^{-,-}, u_{i, j}^{-,+}$can be defined. Let $P(u)=$ $u_{1}^{-} u_{1}^{+} u_{1,2}^{+,-} u_{2}^{-} u_{2}^{+} u_{2,3}^{+,-} \ldots u_{n-1}^{-} u_{n-1}^{+} u_{n-1, n}^{+,-} u_{n}^{-} u_{n}^{+}$. Then $P(u)$ is a path and is called the neighbour structure of u (see FIGURE 3). Let $P=u_{i}^{-} u_{i}^{+} u_{i, i+1}^{+,-} u_{i+1}^{-} u_{i+1}^{+} u_{i+1, i+2}^{+,-} \ldots u_{j}^{-} u_{j}^{+}$ is a path lying on $P(u)$ for $1 \leq i, j \leq n$. For convenience, we denote such a path P by $\left[u_{i}^{-}, u_{j}^{+}\right]$. Similarly, $\left[u_{i}^{-}, u_{j}^{-}\right]$, $\left[u_{i}^{+}, u_{j}^{+}\right]$for $1 \leq i, j \leq n$ and $\left[u_{i}^{-}, u_{j, j+1}^{+,-}\right]$for $1 \leq i, j \leq n-1$ can be defined. Let $v \in V\left(Q_{n}^{3}\right)$ with $v_{1}^{-}=u_{n}^{+}$. Similarly, consider the neighbour structure of v. It is easy to see that the neighbour structure of u and v has exactly two common nodes $u_{n}^{+}=v_{1}^{-}$and $u_{1}^{+}=v_{n}^{-}($see FIGURE 3$)$.

A. $\kappa\left(Q_{n}^{3} ; P_{i}\right)$ AND $\kappa^{s}\left(Q_{n}^{3} ; P_{i}\right)$

Lv et al. [11] proved the following theorem about $\kappa\left(Q_{n}^{3} ; P_{i}\right)$ and $\kappa^{s}\left(Q_{n}^{3} ; P_{i}\right)$ for $i=1,2,3$. In this subsection, we generalize the theorem by establishing $\kappa\left(Q_{n}^{3} ; P_{i}\right)$ and $\kappa^{s}\left(Q_{n}^{3} ; P_{i}\right)$ for $i \geq 1$.

Theorem 1([11]): For $n \geq 2, \kappa\left(Q_{n}^{3} ; P_{1}\right)=\kappa^{s}\left(Q_{n}^{3} ; P_{1}\right)=$ $2 n$ and $\kappa\left(Q_{n}^{3} ; P_{2}\right)=\kappa^{s}\left(Q_{n}^{3} ; P_{2}\right)=\kappa\left(Q_{n}^{3} ; P_{3}\right)=$ $\kappa^{s}\left(Q_{n}^{3} ; P_{3}\right)=n$.

FIGURE 4. A path $P_{3 I}^{1}=\left[u_{1}^{-}, u_{I, I+1}^{+,-}\right]$using $P(u)$.

FIGURE 5. The structure \boldsymbol{A}.
Lemma 3: Let $n \geq 2$ and $l \geq 0$. Then $\kappa\left(Q_{n}^{3} ; P_{3 l+s}\right) \leq$ $\left\lceil\frac{2 n}{2 l+s}\right\rceil$ for $2 l+s \leq 2 n$ and $s=0,1,2$.

Proof: Let $u=111 \ldots 11$ and $v=211 \ldots 12$. Then $u_{n}^{+}=v_{1}^{-}$. We will successively find $\left\lceil\frac{2 n}{2 l+s}\right\rceil$ pairwise disjoint $P_{3 l+s}$'s denoted by $P_{3 l+s}^{1}, P_{3 l+s}^{2}, \ldots, P_{3 l+s}^{\left\lceil\frac{2 n}{2 l+s}\right\rceil}$ by using $P(u)$ and $P(v)$. We consider the following three cases.

Case 1: $s=0$.
If $2 l=2 n$, then $\left\lceil\frac{2 n}{2 l}\right\rceil=1$, and let $P_{3 l}^{1}=\left[u_{1}^{-}, u_{n}^{+}\right] v_{1}^{+}$. If $2 l<2 n$, then let $2 n=p 2 l+2 q$, and so $2 q \geq 2$. Let $P_{3 l}^{1}=\left[u_{1}^{-}, u_{l, l+1}^{+,-}\right]$(see FIGURE 4), $P_{3 l}^{2}=\left[u_{l+1}^{-}, u_{2 l, 2 l+1}^{+,-}\right]$, $P_{3 l}^{3}=\left[u_{2 l+1}^{-}, u_{3 l, 3 l+1}^{+,-}\right], \ldots, P_{3 l}^{p}=\left[u_{(p-1) l+1}^{-}, u_{p l, p l+1}^{+,-}\right]$. By $2 l<2 n$ and $u_{n}^{+}=v_{1}^{-}$, we can find $P_{3 l}^{\left[\frac{2 n}{2 l}\right\rceil}$ lying on $P(u)$ and $P(v)$. By definition of $P(v)$ and $2 q \geq 2, v_{n}^{-} \notin V\left(P_{3 l}^{\left\lceil\frac{2 n}{2 l}\right]}\right)$.

Case 2: $s=1$.
Let $2 n=p(2 l+1)+q$. By $2 l+1<2 n, q \geq 1$. Let $P_{3 l+1}^{1}=$ $\left[u_{1}^{-}, u_{l+1}^{-}\right], P_{3 l+1}^{2}=\left[u_{l+1}^{+}, u_{2 l+1}^{+}\right], P_{3 l+1}^{3}=\left[u_{2 l+2}^{-}, u_{3 l+2}^{-}\right]$, $\ldots, P_{3 l+1}^{p}=\left[u_{(p-1) l+\frac{p+1}{2}}^{-}, u_{p l+\frac{p+1}{2}}^{-}\right]$with p odd, and $P_{3 l+1}^{p}=$ $\left[u_{(p-1) l+\frac{p}{2}}^{+}, u_{p l+\frac{p}{2}}^{+}\right]$with p even. If $q=1$ and $l+1=n$, then let $P_{3 l+1}^{\left[\frac{2 n}{2 l+1}\right\rceil}=\left[v_{1}^{-}, v_{n-1}^{+}\right] v_{n-1, n}^{+,+} v_{n}^{+}$. Otherwise, by $2 l+1<2 n$ and $u_{n}^{+}=v_{1}^{-}$, we can find $P_{3 l+1}^{\left\lceil\frac{2 n}{2 L+1}\right\rceil}$ lying on $P(u)$ and $P(v)$ with $v_{n}^{-} \notin V\left(P_{3 l+1}^{\left\lceil\frac{2 n}{2 L+1}\right.}\right)$.

Case 3: $s=2$.
If $2 l+2=2 n$, then $\left\lceil\frac{2 n}{2 l+2}\right\rceil=1$, and let $P_{3 l+2}^{1}=\left[u_{1}^{-}, u_{n}^{+}\right]$. If $2 l+2<2 n$, then let $2 n=p(2 l+2)+2 q$, and so $2 q \geq$ 2. Let $P_{3 l+2}^{1}=\left[u_{1}^{-}, u_{l+1}^{+}\right], P_{3 l+2}^{2}=\left[u_{l+2}^{-}, u_{2 l+2}^{+}\right], P_{3 l+2}^{3}=$ $\left[u_{2 l+3}^{-}, u_{3 l+3}^{+}\right], \ldots, P_{3 l+2}^{p}=\left[u_{(p-1) l+p}^{-}, u_{p l+p}^{+}\right]$. By $2 l+2<$ $2 n$ and $u_{n}^{+}=v_{1}^{-}$, we can find $P_{3 l+2}^{\left\lceil\frac{2 n}{\sum 2+2}\right\rceil}$ lying on $P(u)$ and $P(v)$. By definition of $P(v)$ and $2 q \geq 2, v_{n}^{-} \notin V\left(P_{3 l+2}^{\left\lceil\frac{2 n}{2 l+2}\right\rceil}\right)$.

Let $F=\left\{P_{3 l+s}^{1}, P_{3 l+s}^{2}, \ldots, P_{3 l+s}^{\left\lceil\frac{2 n}{2 l+s}\right\rceil}\right\}$. Then $Q_{n}^{3}-F$ is disconnected because $\{u\}$ is a component of $Q_{n}^{3}-F$. By definition of $\kappa\left(Q_{n}^{3} ; P_{3 l+s}\right), \kappa\left(Q_{n}^{3} ; P_{3 l+s}\right) \leq\left\lceil\frac{2 n}{2 l+s}\right\rceil$.

Lemma 4 ([24]): Let C_{3} be a cycle in Q_{n}^{3}. Then there exists $j \in\{1,2, \ldots, n\}$ such that C_{3} contains only j-dimensional links.

Lemma 5: Q_{n}^{3} contains no structure A.
Proof: By contradiction. Suppose that Q_{n}^{3} contains structure A (see FIGURE 5). Then $x u v$ and $x w v$ are both cycles of length 3 in Q_{n}^{3}. By Lemma 4, $x u v$ contains only $i-$ dimensional links and $x w v$ contains only j-dimensional links for $i, j \in\{1,2, \ldots, n\}$. Thus $i=j$ and so $u=w$, a contradiction.

Lemma 6: Let $n \geq 2$ and $l \geq 1$. Then $\kappa^{s}\left(Q_{n}^{3} ; P_{3 l+s}\right) \geq$ $\kappa^{s}\left(Q_{n}^{3} ; C_{3 l+s}\right) \geq\left\lceil\frac{2 n}{2 l+s}\right\rceil$ for $2 l+s \leq 2 n$ and $s=0,1,2$.

Proof: By Lemma $1, \kappa^{s}\left(Q_{n}^{3} ; P_{3 l+s}\right) \geq \kappa^{s}\left(Q_{n}^{3} ; C_{3 l+s}\right)$. Let $F=\cup_{i=1}^{3 l+s} F_{i} \cup F_{3 l+s}^{\prime}$ with $|F|=\sum_{i=1}^{3 l+s}\left|F_{i}\right|+\left|F_{3 l+s}^{\prime}\right| \leq$ $\left\lceil\frac{2 n}{2 l+s}\right\rceil-1$. In order to prove that $\kappa^{s}\left(Q_{n}^{3} ; C_{3 l+s}\right) \geq\left\lceil\frac{2 n}{2 l+s}\right\rceil$, it is enough to show that $Q_{n}^{3}-F$ is connected. Suppose, to the contrary, that $Q_{n}^{3}-F$ is disconnected. Let T_{0} be a smallest component of $Q_{n}^{3}-F$.

Case $1:\left|V\left(T_{0}\right)\right|=1$.
Set $V\left(T_{0}\right)=\{x\}$. Thus $N(x) \subseteq V(F)$. To make the number of faulty subgraphs of $C_{3 l+s}$ minimum which contain the nodes in $N(x)$, we should construct as many $P_{3 l+s}$'s $/ C_{3 l+s}$'s as possible and each $P_{3 l+s} / C_{3 l+s}$ need to contain as many nodes in $N(x)$ as possible. By Lemma 5, Q_{n}^{3} contains no structure A, and so any three nodes in $N(x)$ are not three consecutive nodes on a path/cycle. Combining this with the definition of the neighbour structure of x, each $P_{3 l+s} / C_{3 l+s}$ contain at most $2 l+s$ nodes in $N(x)$. Note that $|N(x)|=2 n$. Then $|F| \geq\left\lceil\frac{2 n}{2 l+s}\right\rceil>\left\lceil\frac{2 n}{2 l+s}\right\rceil-1 \geq|F|$, a contradiction.

Case $2:\left|V\left(T_{0}\right)\right| \geq 2$.
By $n \geq 2,\left|V\left(T_{0}\right)\right| \geq 2$ and Lemma $2,|V(F)| \geq 4 n-2$. Note that $|F| \leq\left\lceil\frac{2 n}{2 l+s}\right\rceil-1$. Thus $|V(F)| \leq(3 l+s)\left(\left\lceil\frac{2 n}{2 l+s}\right\rceil-\right.$ 1) $\leq(3 l+s)\left(\frac{2 n+2 l+s-1}{2 l+s}-1\right)=\frac{(3 l+s)}{(2 l+s)}(2 n-1)<4 n-2 \leq$ $|V(F)|$, a contradiction.
Note that $\kappa\left(Q_{n}^{3}\right)=2 n$ for $n \geq 2$. Then for any F_{1} with $\left|F_{1}\right| \leq 2 n-1, Q_{n}^{3}-F_{1}$ is still connected, and for any $F_{1} \cup F_{2}$ with $\left|F_{1}\right|+\left|F_{2}\right| \leq n-1, Q_{n}^{3}-\left(F_{1} \cup F_{2}\right)$ is still connected. Thus $\kappa^{s}\left(Q_{n}^{3} ; P_{1}\right) \geq 2 n$ and $\kappa^{s}\left(Q_{n}^{3} ; P_{2}\right) \geq n$. Combining this with Lemma 6, we have $\kappa^{s}\left(Q_{n}^{3} ; P_{3 l+s}\right) \geq\left\lceil\frac{2 n}{2 l+s}\right\rceil$ for $n \geq 2$ and $l \geq 0$. Recall that $\kappa\left(Q_{n}^{3} ; P_{3 l+s}\right) \geq \kappa^{s}\left(Q_{n}^{3} ; P_{3 l+s}\right)$. Lemma 3 yields the following result.

Theorem 2: Let $n \geq 2$ and $l \geq 0$. Then $\kappa\left(Q_{n}^{3} ; P_{3 l+s}\right)=$ $\kappa^{s}\left(Q_{n}^{3} ; P_{3 l+s}\right)=\left\lceil\frac{2 n}{2 l+s}\right\rceil$ for $2 l+s \leq 2 n$ and $s=0,1,2$.

Set $3 l+s=1,2,3$ in the Theorem 2. Then Theorem 1 given by Lv et al. [11] is an immediate corollary of Theorem 2.

B. $\kappa\left(Q_{n}^{3} ; C_{i}\right)$ AND $\kappa^{s}\left(Q_{n}^{3} ; C_{i}\right)$

In this subsection, we investigate the cycle-structure/ substructure connectivity for Q_{n}^{3}. Let $u=a_{1} a_{2} \ldots a_{n}$ be a node of Q_{n}^{k}. For $1 \leq i, j, t \leq n$, let $u_{i, j, t}^{+,+,-}=a_{1} \ldots\left(a_{i}+\right.$ 1) $\ldots\left(a_{j}+1\right) \ldots\left(a_{t}-1\right) \ldots a_{n}$. Similarly, $u_{i, j, t}^{+,+++}$and $u_{i, j, t}^{-,-,-}$ can be defined.

Lemma 7: $\kappa\left(Q_{n}^{3} ; C_{3 l}\right) \leq\left\lceil\frac{2 n}{2 l}\right\rceil$ for $n \geq 2$ and $4 \leq 2 l \leq 2 n$, and $\kappa\left(Q_{n}^{3} ; C_{3 l+2}\right) \leq\left\lceil\frac{2 n}{2 l+1}\right\rceil$ for $n \geq 3$ and $2 l+1<2 n$.

FIGURE 6. A cycle $C_{3 I}^{1}=\left[u_{1}^{-}, u_{I}^{+}\right] u_{1, I}^{-,+} u_{1}^{-}$using $P(u)$.
Proof: Let $u=111 \ldots 11$ and $v=211 \ldots 12$. Then $u_{n}^{+}=v_{1}^{-}$. Consider the neighbour structure of u and v. Let $u_{i}^{-}, u_{i}^{+}, u_{j}^{-}, u_{j}^{+} \in P(u)$ with $1 \leq i, j \leq n$. Then $u_{i}^{-} u_{i, j}^{-,-} u_{j}^{-}, u_{i}^{-} u_{i, j}^{-,+} u_{j}^{+}, u_{i}^{+} u_{i, j}^{+,-} u_{j}^{-}, u_{i}^{+} u_{i, j}^{+,+} u_{j}^{+}$are P_{3} 's. Let $u_{j}^{-} \in P(u)$ and $v_{i}^{+} \in P(v)$ with $2 \leq i<j \leq n-1$. Then $v_{i}^{+}=u_{1, i, n}^{+,++}$, and so $v_{i}^{+} u_{1, i}^{+,+} u_{1, i, j}^{+,+-} u_{1, j}^{+,-} u_{j}^{-}$is a P_{5}. Similarly, $v_{i}^{-} u_{i, n}^{-,+} u_{i, j, n}^{-,-,+} u_{j, n}^{-,+} u_{j}^{-}$and $v_{i}^{+} u_{1, i}^{+,+} u_{1, i, j}^{+,+,+} u_{1, j}^{+,+} u_{j}^{+}$ are P_{5} 's. In the following, such P_{3} 's and P_{5} 's can be used to construct the desired cycles.

For $C_{3 l}$, we will successively find $\left\lceil\frac{2 n}{2 l}\right\rceil$ pairwise disjoint $C_{3 l}$'s denoted by $C_{3 l}^{1}, C_{3 l}^{2}, \ldots, C_{3 l}^{\left[\frac{2 n}{2 l}\right\rceil}$ by using $P(u)$ and $P(v)$ with $v_{n}^{-} \notin V\left(C_{3 l}^{\left[\frac{2 n}{2 l}\right)}\right.$. If $2 l=2 n$, then $\left\lceil\frac{2 n}{2 l}\right\rceil=1$, and let $C_{3 l}^{1}=\left\lceil u_{1}^{-}, u_{n}^{+}\right] u_{1, n}^{-,+} u_{1}^{-}$. Next consider $2 l<2 n$ and assume that $2 n=p 2 l+2 q$. Let $C_{3 l}^{1}=\left[u_{1}^{-}, u_{l}^{+}\right] u_{1, l}^{-,+} u_{1}^{-}$(see FIGURE 6), $C_{3 l}^{2}=$ $\left[u_{l+1}^{-}, u_{2 l}^{+}\right] u_{l+1,2 l}^{-,+} u_{l+1}^{-}, C_{3 l}^{3}=\left[u_{2 l+1}^{-}, u_{3 l}^{+}\right] u_{2 l+1,3 l}^{-,+} u_{2 l+1}^{-}, \ldots$, $C_{3 l}^{p}=\left[u_{(p-1) l+1}^{-}, u_{p l}^{+}\right] u_{(p-1) l+1, p l}^{-,+} u_{(p-1) l+1}^{-}$. If $q=1$, then let $C_{3 l}^{\left[\frac{2 n}{2}\right]}=u_{n}^{-} u_{n}^{+} v_{1}^{+} v_{1,2}^{+,-} u_{1,2, n}^{-,-,-} u_{1, n}^{-,-} u_{n}^{-}$with $l=2$, and let $C_{3 l}^{\left[\frac{2 n}{l l}\right]}=u_{n}^{-} u_{n}^{+} v\left[v_{1}^{+}, v_{l-1}^{+}\right] u_{1, l-1, n}^{++,-} u_{1, n}^{+,-} u_{n}^{-}$with $l \geq 3$. Note that $\left|V\left(C_{3 l}^{\left.\frac{2 n}{2 l}\right]}\right)\right|=3+3(l-2)+3=3 l$ and $v_{l-1}^{+}=u_{1, l-1, n}^{+,+,+}$ by $3 \leq l \leq n$. Then $C_{3 l}^{\left[\frac{2 n}{l}\right\rceil}$ is indeed a cycle on $3 l$ nodes. Next assume that $q \geq 2$. Then $n-q+1 \leq n-1$. If $l-q=1$, then let $C_{3 l}^{\left.\frac{2 n}{2 l}\right\rceil}=\left[u_{n-q+1}^{-}, u_{n}^{+}\right] v_{1}^{+} v v_{n-q+1}^{-} u_{1, n-q+1}^{+,-} u_{n-q+1}^{-}$. Note that $\left|V\left(C_{3 l}^{\left[\frac{2 n}{2 l}\right]}\right)\right|=3 q+3=3 l$ and $v_{n-q+1}^{-}=u_{1, n-q+1, n}^{+,-,+}$by $2 \leq$ $p l+1=n-q+1 \leq n-1$. Then $C_{3 l}^{\left[\frac{2 n]}{} \text { is indeed a cycle on } 3 l\right.}$ nodes. Now consider $l-q \geq 2$. By $2 l \leq 2 n, l-q<n-q+1$. Thus $2 \leq l-q<n-q+1 \leq n-1$, and so let $C_{3 l}^{\left\lceil\frac{2 n}{2 l}\right\rceil}=$ $\left[u_{n-q+1}^{-}, u_{n}^{+}\right]\left[v_{1}^{+}, v_{l-q}^{+}\right] u_{1, l-q}^{+,+} u_{1, l-q, n-q+1}^{+,+,-} u_{1, n-q+1}^{+,-} u_{n-q+1}^{-}$.
Note that $\left|V\left(C_{3 l}^{\left[\frac{2 n}{2 l}\right]}\right)\right|=3 q+3(l-1-q)+3=3 l$ and $v_{l-q}^{+}=u_{1, l-q, n}^{+,+,}$. Then $C_{3 l}^{\left[\frac{2 n}{2 l}\right.}$ is indeed a cycle on $3 l$ nodes.

For $C_{3 l+2}$, we will successively find $\left\lceil\frac{2 n}{2 l+1}\right\rceil$ pairwise disjoint $C_{3 l+2}$'s denoted by $C_{3 l+2}^{1}, C_{3 l+2}^{2}, \ldots$, $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}$ by using $P(u)$ and $P(v)$ with $v_{n}^{-} \notin V\left(C_{3 l+2}^{\left[\frac{2 n}{2 l+1}\right]}\right)$. Let $2 n=p(2 l+1)+q$. By $2 l+1<2 n, q \geq 1$. Let $C_{3 l+2}^{1}=\left[u_{1}^{-}, u_{l+1}^{-}\right] u_{1, l+1}^{-,-} u_{1}^{-}, C_{3 l}^{2}=\left[u_{l+1}^{+}, u_{2 l+1}^{+}\right]$ $u_{l+1,2 l+1}^{+,+} u_{l+1}^{+}, C_{3 l}^{3}=\left[u_{2 l+2}^{-}, u_{3 l+2}^{-}\right] u_{2 l+2,3 l+2}^{-,-} u_{2 l+2}^{-}, \ldots$, $C_{3 l}^{p}=\left[u_{(p-1) l+\frac{p+1}{2}}^{-}, u_{p l+\frac{p+1}{2}}^{-}\right] u_{(p-1) l+\frac{p+1}{-}, p l+\frac{p+1}{2}}^{(p-1) l+\frac{p+1}{2}}$
with p odd, and $C_{3 l}^{2}=\left[u_{(p-1) l+\frac{p}{2}}^{+}, u_{p l+\frac{p}{2}}^{+}\right] u_{(p-1) l+\frac{p}{2}, p l+\frac{p}{2}}^{+,+}$ $u_{(p-1) l+\frac{p}{2}}^{+}$with p even.

If q is $_{2}^{2}$ even, then assume that $q=2 s$. If $s=1$, then let $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}=u_{n}^{-} u_{n}^{+} v v_{1}^{+} u_{1, n}^{-,-} u_{n}^{-}$with $l=1$, and let $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}=u_{n}^{-} u_{n}^{+}\left[v_{1}^{+}, v_{l}^{+}\right] u_{1, l, n}^{+,+--} u_{1, n}^{+,-} u_{n}^{-}$with $l \geq 2$. Note that $\left|V\left(C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}\right)\right|=3+3(l-1)+2=3 l+2$ and $v_{l}^{+}=u_{1, l, n}^{+,+,+}$ by $2 \leq l \leq n-1$. Then $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}$ is indeed a cycle on $3 l+2$ nodes. Next assume that $s \geq 2$. Then $n-s+1 \leq n-1$. If $s=l$, then, by $2 n=p(2 s+1)+2 s, n-s+1 \geq 4$. Let $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}=\left[u_{n-s+1}^{-}, u_{n}^{+}\right] v_{1}^{+} u_{1, n-s+1, n}^{-,-,+} u_{1, n-s+1}^{-,-} u_{n-s+1}^{-}$. Note that $\left|V\left(C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right.}\right)\right|=3 s+2=3 l+2$ and $v_{1}^{+}=u_{1, n}^{-,+}$. Then $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}$ is indeed a cycle on $3 l+2$ nodes. If $s \leq l-1$, then $l-s+1 \geq 2$. By $2 l+1<2 n, l-s+1<n-s+1$. Thus $2 \leq l-s+1<n-s+1 \leq n-1$, and so let $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right.}=$ $\left[u_{n-s+1}^{-}, u_{n}^{+}\right]\left[v_{1}^{+}, v_{l-s+1}^{-}\right] u_{l-s+1, n}^{-,+} u_{l-s+1, n-s+1, n}^{-,-,+} u_{n-s+1, n}^{-,+}$
u_{n-s+1}^{-}. Note that $\left|V\left(C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}\right)\right|=3 s+3(l-s-1)+5=3 l+2$ and $v_{l-s+1}^{-}=u_{1, l-s+1, n}^{+,-,+}$. Then $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}$ is indeed a cycle on $3 l+2$ nodes.

If q is odd, then assume that $q=2 s+1$. First suppose that $s=0$. By $2 l+1<2 n, l \leq n-1$. Let $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}=\left[v_{1}^{-}, v_{n-1}^{+}\right] v_{n-1, n}^{+,+} v_{n}^{+} v v_{1}^{-}$with $l+1=n$, and let $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}=\left[v_{1}^{-}, v_{l+1}^{-}\right] v_{1, l+1}^{-,-} v_{1}^{-}$with $l+1 \leq n-1$. Next suppose that $s \geq 1$. Then $n-s \leq n-1$. If $l-s=1$, then let $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}=\left[u_{n-s}^{+}, u_{n}^{+}\right] v_{1}^{+} v v_{n-s}^{+} u_{1, n-s}^{+,+} u_{n-s}^{+}$. Note that $\left|V\left(C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}\right)\right|=3 s+5=3 l+2$ and $v_{n-s}^{+}=u_{1, n-s, n}^{+,+,+}$by $2 \leq \frac{p(2 l+1)+1}{2}=n-s \leq n-1$. Then $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}$ is indeed a cycle on $3 l+2$ nodes. Now consider $l-s \geq 2$. By $2 l+1<2 n$, $l-s<n-s$. Thus $2 \leq l-s<n-s \leq n-1$, and so let $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}=\left[u_{n-s}^{+}, u_{n}^{+}\right]\left[v_{1}^{+}, v_{l-s}^{+}\right] u_{1, l-s}^{+,+} u_{1, l-s, n-s}^{+,+,+} u_{1, n-s}^{+,+} u_{n-s}^{+}$. Note that $\left|V\left(C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}\right)\right|=3 s+3(l-s-1)+5=3 l+2$ and $v_{l-s}^{+}=u_{1, l-s, n}^{+,+++}$. Then $C_{3 l+2}^{\left\lceil\frac{2 n}{2 l+1}\right\rceil}$ is indeed a cycle on $3 l+2$ nodes.

Let $F=\left\{C_{3 l}^{1}, C_{3 l}^{2}, \ldots, C_{3 l}^{\left\lceil\frac{2 n}{2 l}\right]}\right\}$. Then $Q_{n}^{3}-F$ is disconnected because $\{u\}$ is a component of $Q_{n}^{3}-F$. By definition of $\kappa\left(Q_{n}^{3} ; C_{3 l}\right), \kappa\left(Q_{n}^{3} ; C_{3 l}\right) \leq\left\lceil\frac{2 n}{2 l}\right\rceil$. Similarly, we can show that $\kappa\left(Q_{n}^{3} ; C_{3 l+2}\right) \leq\left\lceil\frac{2 n}{2 l+1}\right\rceil$.

Lemma 8: $\kappa\left(Q_{n}^{3} ; C_{3 l}\right) \geq\left\lceil\frac{2 n}{2 l}\right\rceil$ for $n \geq 2$ and $4 \leq 2 l \leq 2 n$, and $\kappa\left(Q_{n}^{3} ; C_{3 l+2}\right) \geq\left\lceil\frac{2 n}{2 l+1}\right\rceil$ for $n \geq 3$ and $2 l+1<2 n$.

Proof: By Lemma 6, $\kappa^{s}\left(Q_{n}^{3} ; C_{3 l}\right) \geq\left\lceil\frac{2 n}{2 l}\right\rceil$. Note that $\kappa\left(Q_{n}^{3} ; C_{3 l}\right) \geq \kappa^{s}\left(Q_{n}^{3} ; C_{3 l}\right)$. Then $\kappa\left(Q_{n}^{3} ; C_{3 l}\right) \geq\left\lceil\frac{2 n}{2 l}\right\rceil$.

In order to prove that $\kappa\left(Q_{n}^{3} ; C_{3 l+2}\right) \geq\left\lceil\frac{2 n}{2 l+1}\right\rceil$, it is enough to show that $Q_{n}^{3}-F_{3 l+2}^{\prime}$ is connected for any $F_{3 l+2}^{\prime}$ with $\left|F_{3 l+2}^{\prime}\right| \leq\left\lceil\frac{2 n}{2 l+1}\right\rceil-1$. Suppose, to the contrary, that $Q_{n}^{3}-F_{3 l+2}^{\prime}$ is disconnected. Let T_{0} be a smallest component of $Q_{n}^{3}-F_{3 l+2}^{\prime}$.

Case 1: $\left|V\left(T_{0}\right)\right|=1$.

$u_{1,2}^{-,-} u_{1,2}^{+,-} u_{1,2}^{+,+} u_{n-1, n}^{-,-} u_{n-1, n}^{+,-} u_{n-1, n}^{+,+} v_{1,2}^{-,-} v_{1,2}^{+,-} v_{1,2}^{+,+} \quad v_{n-1, n}^{-,-} v_{n-1, n}^{+,-} v_{n-1, n}^{+,+}$
FIGURE 7. The neighbour structure of u and v with n even.

$u_{1,2}^{-,-} u_{1,2}^{+,-} u_{1,2}^{+,+} \quad u_{n-2, n}^{+,-} u_{n-1, n}^{+,-} u_{n-1, n}^{+,+} v_{1,2}^{-,-} v_{1,2}^{+,-} v_{1,2}^{+,+} \quad v_{n-2, n}^{+,-} v_{n-1, n}^{+,-} v_{n-1, n}^{+,+}$
FIGURE 8. The neighbour structure of \boldsymbol{u} and \boldsymbol{v} with \boldsymbol{n} odd.

Set $V\left(T_{0}\right)=\{x\}$. Thus $N(x) \subseteq V\left(F_{3 l+2}^{\prime}\right)$. To make the number of faulty $C_{3 l+s}$'s minimum which contain the nodes in $N(x)$, each $C_{3 l+2}$ need to contain as many nodes in $N(x)$ as possible. By Lemma 5, Q_{n}^{3} contains no structure A, and so any three nodes in $N(x)$ are not three consecutive nodes on a cycle. Combining this with the definition of the neighbour structure of x, a cycle $C_{3 l+2}$ contain at most $2 l+1$ nodes in $N(x)$. Note that $|N(x)|=2 n$. Then $\left|F_{3 l+2}^{\prime}\right| \geq\left\lceil\frac{2 n}{2 l+1}\right\rceil>$ $\left\lceil\frac{2 n}{2 l+1}\right\rceil-1 \geq|F|$, a contradiction.

Case 2: $\left|V\left(T_{0}\right)\right| \geq 2$.
By $n \geq 3,\left|V\left(T_{0}\right)\right| \geq 2$ and Lemma 2, $\left|V\left(F_{3 l+2}^{\prime}\right)\right| \geq 4 n-2$. Note that $\left|F_{3 l+2}^{\prime}\right| \leq\left\lceil\frac{2 n}{2 l+1}\right\rceil-1$. Thus $\left|V\left(F_{3 l+2}^{\prime}\right)\right| \leq(3 l+$ 2) $\left(\left\lceil\frac{2 n}{2 l+1}\right\rceil-1\right) \leq(3 l+2)\left(\frac{2 n+2 l}{2 l+1}-1\right)=\frac{3 l+2}{2 l+1}(2 n-1)<$ $4 n-2 \leq\left|V\left(F_{3 l+2}^{\prime}\right)\right|$, a contradiction.

Lemmas 7 and 8 yield the following result.
Theorem 3: $\kappa\left(Q_{n}^{3} ; C_{3 l}\right)=\left\lceil\frac{2 n}{2 l}\right\rceil$ for $n \geq 2$ and $4 \leq 2 l \leq$ $2 n$, and $\kappa\left(Q_{n}^{3} ; C_{3 l+2}\right)=\left\lceil\frac{2 n}{2 l+1}\right\rceil$ for $n \geq 3$ and $2 l+1<2 n$.

By Lemma $6, \kappa^{s}\left(Q_{n}^{3} ; P_{3 l+s}\right) \geq \kappa^{s}\left(Q_{n}^{3} ; C_{3 l+s}\right) \geq\left\lceil\frac{2 n}{2 l+s}\right\rceil$. By Theorem 2, $\kappa^{s}\left(Q_{n}^{3} ; P_{3 l+s}\right)=\left\lceil\frac{2 n}{2 l+s}\right\rceil$. Thus we have the following theorem.

Theorem 4: Let $n \geq 2$. Then $\kappa^{s}\left(Q_{n}^{3} ; C_{3 l+s}\right)=\left\lceil\frac{2 n}{2 l+s}\right\rceil$ for $2 l+s \leq 2 n$ and $s=0,1,2$.

IV. THE STRUCTURE CONNECTIVITY AND SUBSTRUCTURE CONNECTIVITY OF $\boldsymbol{Q}_{\boldsymbol{n}}^{\boldsymbol{k}}$

In this section, we determine $\kappa\left(Q_{n}^{k} ; T\right)$ and $\kappa^{s}\left(Q_{n}^{k} ; T\right)$ of Q_{n}^{k} for $k \geq 4$ and $T \in\left\{P_{i}, C_{i}\right\}$.

Let $u=a_{1} a_{2} \ldots a_{n}$ be a node of Q_{n}^{k}, let $u_{j}^{-}=a_{1} \ldots\left(a_{j}-\right.$ 1) $\ldots a_{n}, u_{j}^{+}=a_{1} \ldots\left(a_{j}+1\right) \ldots a_{n}, u_{j, j+1}^{-,-}=a_{1} \ldots\left(a_{j}-\right.$ 1) $\left(a_{j+1}-1\right) \ldots a_{n}$. Similarly, $u_{j, j+1}^{+,-}$and $u_{j, j+1}^{+,+}$can be defined. Let $P(u)=u_{1}^{-} u_{1,2}^{-,-} u_{2}^{-} u_{1,2}^{+,-} u_{1}^{+} u_{1,2}^{+,+} u_{2}^{+} u_{2,3}^{+,-} u_{3}^{-} \ldots u_{n-1}^{-} u_{n-1, n}^{-,-}$ $u_{n}^{-} u_{n-1, n}^{+,-} u_{n-1}^{+} u_{n-1, n}^{+,+} u_{n}^{+}$with n even (see FIGURE 7), and $P(u)=u_{1}^{-} u_{1,2}^{-,-} u_{2}^{-} u_{1,2}^{+,-} u_{1}^{+} u_{1,2}^{+,+} u_{2}^{+} u_{2,3}^{+,-} u_{3}^{-} \ldots u_{n-2}^{+} u_{n-2, n}^{+,-} u_{n}^{-}$

FIGURE 9. The neighbour structure of u and v.

FIGURE 10. A path $P_{2 I+1}^{1}=\left[u_{1}, u_{I+1}\right]$ using $P(u)$.
$u_{n-1, n}^{+,-} u_{n-1}^{+} u_{n-1, n}^{+,+} u_{n}^{+}$with n odd (see FIGURE 8). Then $P(u)$ is a path and is called the neighbour structure of u. Let $v \in V\left(Q_{n}^{k}\right)$ with $u_{n}^{+}=v_{1}^{-}$. Similarly, consider the neighbour structure of v. It is easy to see that the neighbour structure of u and v has exactly two common nodes $u_{n}^{+}=v_{1}^{-}$and $u_{1}^{+}=v_{n}^{-}$ (see FIGURE 7 and FIGURE 8). For convenience, no matter what the parity of n is, the above neighbour structure of u and v is denoted by $P(u)=u_{1} u_{1}^{\prime} u_{2} u_{2}^{\prime} u_{3} \ldots u_{2 n-1} u_{2 n-1}^{\prime} u_{2 n}$ and $P(v)=v_{1} v_{1}^{\prime} v_{2} v_{2}^{\prime} v_{3} \ldots v_{2 n-1} v_{2 n-1}^{\prime} v_{2 n}$ with $u_{2 n}=v_{1}$ (see FIGURE 9). Let $P=u_{i} u_{i}^{\prime} u_{i+1} u_{i+1}^{\prime} u_{i+2} \ldots u_{j-1} u_{j-1}^{\prime} u_{j}$ be a path lying on $P(u)$ for $1 \leq i, j \leq 2 n$. For convenience, we denote such a path P by $\left[u_{i}, u_{j}\right]$. Similarly, $\left[u_{i}, u_{j}^{\prime}\right]$ can be defined for $1 \leq i, j \leq 2 n-1$.

A. $\kappa\left(Q_{n}^{k} ; P_{i}\right)$ AND $\kappa^{s}\left(Q_{n}^{k} ; P_{i}\right)$

Lv et al. [11] proved the following theorem about $\kappa\left(Q_{n}^{k} ; P_{i}\right)$ and $\kappa^{s}\left(Q_{n}^{k} ; P_{i}\right)$ for $i=1,3$. In this subsection, we generalize the theorem by establishing $\kappa\left(Q_{n}^{k} ; P_{i}\right)$ and $\kappa^{s}\left(Q_{n}^{k} ; P_{i}\right)$.

Theorem 5 ([11]): For $n \geq 2$ and $k \geq 4, \kappa\left(Q_{n}^{k} ; P_{1}\right)=$ $\kappa^{s}\left(Q_{n}^{k} ; P_{1}\right)=2 n$ and $\kappa\left(Q_{n}^{k} ; P_{3}\right)=\kappa^{s}\left(Q_{n}^{k} ; P_{3}\right)=n$.

Lemma 9: Let $u=111 \ldots 11$ and $v=211 \ldots 12$. If $\left[v_{1}, w\right] \subseteq P(v)$ with $w \neq v_{n}^{+}$and $v_{n}^{-} \in V\left(\left[v_{1}, w\right]\right)$, then there exist a path P starting at v_{1} such that $v_{n}^{-} \notin V(P)$, $|V(P)|=\left|V\left(\left[v_{1}, w\right]\right)\right|$ and $\left(V(P) \backslash v_{1}\right) \cap V(P(u))=\emptyset$.

Proof: If $w=v_{n}^{-}$, then, by definition of $P(v)$, let $P=$ $\left[v_{1}, v_{n-1}^{-}\right] v_{n-1, n}^{-,+} v_{n}^{+}$with n even, and $P=\left[v_{1}, v_{n-2}^{+}\right] v_{n-2, n}^{+,+} v_{n}^{+}$ with n odd. Then P satisfies the conditions. If $w \neq v_{n}^{-}$, then $w \in\left\{v_{n-1, n}^{+,-}, v_{n-1}^{+}, v_{n-1, n}^{+,+}\right\}$. When n is even, let $P=\left[v_{1}, v_{n-1}^{-}\right] v_{n-1, n}^{-,+} v_{n}^{+} v_{n-1, n}^{+,+}$with $w=v_{n-1, n}^{+,-}$, let $P=$ $\left[v_{1}, v_{n-1}^{-}\right] v_{n-1, n}^{-,+} v_{n}^{+} v_{n-1, n}^{+,+} v_{n-1}^{+}$with $w=v_{n-1}^{+}$, and let $P=$ $\left[v_{1}, v_{n-1}^{-}\right] v_{n-1, n}^{-,+} v_{n}^{+} v_{n-1, n}^{+,+} v_{n-1}^{+} v_{n-1, n}^{+,-}$with $w=v_{n-1, n}^{+,+}$. When n is odd, let $P=\left[v_{1}, v_{n-2}^{+}\right] v_{n-2, n}^{++} v_{n}^{+} v_{n-1, n}^{+,+}$with $w=v_{n-1, n}^{+,-}$, let $P=\left[v_{1}, v_{n-2}^{+}\right] v_{n-2, n}^{+,+} v_{n}^{+} v_{n-1, n}^{+,+} v_{n-1}^{+}$with $w=v_{n-1}^{+}$, and let
$P=\left[v_{1}, v_{n-2}^{+}\right] v_{n-2, n}^{+,+} v_{n}^{+} v_{n-1, n}^{+,+} v_{n-1}^{+} v_{n-1, n}^{+,-}$with $w=v_{n-1, n}^{+,+}$. Then P satisfies the conditions.

Lemma 10: Let $n \geq 2$ and $k \geq$ 4. Then $\kappa\left(Q_{n}^{k} ; P_{2 l+1}\right) \leq$ $\left\lceil\frac{2 n}{l+1}\right\rceil$ for $1 \leq l+1 \leq 2 n$, and $\kappa\left(Q_{n}^{k} ; P_{2 l}\right) \leq\left\lceil\frac{2 n}{l}\right\rceil$ for $l \leq 2 n$.

Proof: Let $u=111 \ldots 11$ and $v=211 \ldots 12$. Then $u_{n}^{+}=v_{1}^{-}$, that is, $u_{2 n}=v_{1}$. Consider the neighbour structure $P(u)$ and $P(v)$ of u and v.

For $P_{2 l+1}$, We will successively find $\left\lceil\frac{2 n}{l+1}\right\rceil$ pairwise disjoint $P_{2 l+1}$'s denoted by $P_{2 l+1}^{1}, P_{2 l+1}^{2}, \ldots, P_{2 l+1}^{\left\lceil\frac{2 n}{l+1}\right\rceil}$ using $P(u)$ and $P(v)$. If $l+1=2 n$, then $\left\lceil\frac{2 n}{l+1}\right\rceil=1$, and let $P_{2 l+1}^{1}=$ [$u_{1}, u_{2 n}$]. If $l+1<2 n$, then let $2 n=p(l+1)+q$, and let $P_{2 l+1}^{1}=\left[u_{1}, u_{l+1}\right]\left(\right.$ see FIGURE 10),$P_{2 l+1}^{2}=\left[u_{l+2}, u_{2 l+2}\right]$, $P_{2 l+1}^{3}=\left[u_{2 l+3}, u_{3 l+3}\right], \ldots, P_{2 l+1}^{p}=\left[u_{(p-1) l+p}, u_{p l+p}\right]$. By $l+1<2 n$ and Lemma 9, we can find $P_{2 l+1}^{\left[\frac{2 n}{l+1}\right\rceil}$ with $v_{n}^{-} \notin V\left(P_{2 l+1}^{\left\lceil\frac{2 n}{l+1}\right\rceil}\right)$.

For $P_{2 l}$, We will successively find $\left\lceil\frac{2 n}{l}\right\rceil$ pairwise disjoint $P_{2 l}$'s denoted by $P_{2 l}^{1}, P_{2 l}^{2}, \ldots, P_{2 l}^{\left.\Gamma \frac{2 n}{l}\right\rceil}$ using $P(u)$ and $P(v)$. If $l=2 n$, then $\left\lceil\frac{2 n}{l}\right\rceil=1$, and let $P_{2 l}^{1}=\left[u_{1}, u_{2 n}\right] v_{1}^{\prime}$. If $l<2 n$, then let $2 n=p l+q$, and let $P_{2 l}^{1}=\left[u_{1}, u_{l}^{\prime}\right], P_{2 l}^{2}=\left[u_{l+1}, u_{2 l}^{\prime}\right]$, $P_{2 l}^{3}=\left[u_{2 l+1}, u_{3 l}^{\prime}\right], \ldots, P_{2 l}^{p}=\left[u_{(p-1) l+1}, u_{p l}^{\prime}\right]$. By $l<2 n$ and Lemma 9, we can find $P_{2 l}^{\left[\frac{2 n}{l}\right\rceil}$ with $v_{n}^{-} \notin V\left(P_{2 l}^{\left[\frac{2 n}{l}\right\rceil}\right)$.

Let $F=\left\{P_{2 l+1}^{1}, P_{2 l+1}^{2}, \ldots, P_{2 l+1}^{\left\lceil\frac{2 n}{l+1}\right\rceil}\right\}$. Then $Q_{n}^{k}-F$ is disconnected because $\{u\}$ is a component of $Q_{n}^{k}-F$. By definition of $\kappa\left(Q_{n}^{k} ; P_{2 l+1}\right), \kappa\left(Q_{n}^{k} ; P_{2 l+1}\right) \leq\left\lceil\frac{2 n}{l+1}\right\rceil$. Similarly, we can show that $\kappa\left(Q_{n}^{k} ; P_{2 l}\right) \leq\left\lceil\frac{2 n}{l}\right\rceil$.

Lemma 11: Let $n \geq 5$ and $k \geq 4$. Then $\kappa^{s}\left(Q_{n}^{k} ; P_{2 l+1}\right) \geq$ $\left\lceil\frac{2 n}{l+1}\right\rceil$ for $1 \leq l+1 \leq 2 n$ and $\kappa^{s}\left(Q_{n}^{k} ; C_{2 l+1}\right) \geq\left\lceil\frac{2 n}{l+1}\right\rceil$ for $3 \leq l+1 \leq 2 n$.

Proof: We only show that $\kappa^{s}\left(Q_{n}^{k} ; C_{2 l+1}\right) \geq\left\lceil\frac{2 n}{l+1}\right\rceil$. The proof of $\kappa^{s}\left(Q_{n}^{k} ; P_{2 l+1}\right) \geq\left\lceil\frac{2 n}{l+1}\right\rceil$ is similar. Let $F=\cup_{i=1}^{2 l+1} F_{i} \cup$ $F_{2 l+1}^{\prime}$ with $|F|=\sum_{i=1}^{2 l+1}\left|F_{i}\right|+\left|F_{2 l+1}^{\prime}\right| \leq\left\lceil\frac{2 n}{l+1}\right\rceil-1$. In order to prove that $\kappa^{s}\left(Q_{n}^{k} ; C_{2 l+1}\right) \geq\left\lceil\frac{2 n}{l+1}\right\rceil$, it is enough to show that $Q_{n}^{k}-F$ is connected. Suppose, to the contrary, that $Q_{n}^{k}-F$ is disconnected. Let T_{0} be a smallest component of $Q_{n}^{k}-F$.

Case 1: $\left|V\left(T_{0}\right)\right|=1$.
Set $V\left(T_{0}\right)=\{x\}$. Thus $N(x) \subseteq V(F)$. To make the number of faulty subgraphs of $C_{2 l+1}$ minimum which contain the nodes in $N(x)$, we should construct as many $P_{2 l+1}$'s/ $C_{2 l+1}$'s as possible and each $P_{2 l+1} / C_{2 l+1}$ need to contain as many nodes in $N(x)$ as possible. Since Q_{n}^{k} contains no triangles for $k \geq 4$, any two nodes in $N(x)$ are not two consecutive nodes on a path/cycle. Combining this with the definition of the neighbour structure of x, each $P_{2 l+1} / C_{2 l+1}$ contain at most $l+1$ nodes in $N(x)$. Note that $|N(x)|=2 n$. Then $|F| \geq\left\lceil\frac{2 n}{l+1}\right\rceil>\left\lceil\frac{2 n}{l+1}\right\rceil-1 \geq|F|$, a contradiction.

Case 2: $\left|V\left(T_{0}\right)\right|=2$.
Set $V\left(T_{0}\right)=\left\{\{x, y\} \mid x y \in E\left(Q_{n}^{k}\right)\right\}$. Thus $N(\{x, y\}) \subseteq$ $V(F)$, and so $|V(F)| \geq|N(\{x, y\})|=4 n-2$. Note that $|F| \leq\left\lceil\frac{2 n}{l+1}\right\rceil-1$. Then $|V(F)| \leq(2 l+1)\left(\left\lceil\frac{2 n}{l+1}\right\rceil-1\right) \leq$ $(2 l+1)\left(\frac{2 n+l}{l+1}-1\right)=\frac{(2 l+1)}{(l+1)}(2 n-1)<4 n-2 \leq|V(F)|$, a contradiction.

Case 3: $\left|V\left(T_{0}\right)\right| \geq 3$.
By $n \geq 5,\left|V\left(T_{0}\right)\right| \geq 3$ and Lemma 2, $|V(F)| \geq 6 n-5$. Recall that $|V(F)|<4 n-2<6 n-5 \leq|V(F)|$, a contradiction.

Lemma 12: Let $n \geq 5$ and $k \geq 4$. Then $\kappa^{s}\left(Q_{n}^{k} ; P_{2 l}\right) \geq$ $\kappa^{s}\left(Q_{n}^{k} ; C_{2 l}\right) \geq\left\lceil\frac{2 n}{l}\right\rceil$ for $2 \leq l \leq 2 n$.

Proof: By Lemma 1, $\kappa^{s}\left(Q_{n}^{k} ; P_{2 l}\right) \geq \kappa^{s}\left(Q_{n}^{k} ; C_{2 l}\right)$. Let $F=\cup_{i=1}^{2 l} F_{i} \cup F_{2 l}^{\prime}$ with $|F|=\sum_{i=1}^{2 l}\left|F_{i}\right|+\left|F_{2 l}^{\prime}\right| \leq\left\lceil\frac{2 n}{l}\right\rceil-1$. In order to prove that $\kappa^{s}\left(Q_{n}^{k} ; C_{2 l+1}\right) \geq\left\lceil\frac{2 n}{l+1}\right\rceil$, it is enough to show that $Q_{n}^{k}-F$ is connected. Suppose, to the contrary, that $Q_{n}^{k}-F$ is disconnected. Let T_{0} be a smallest component of $Q_{n}^{k}-F$.

Case 1: $\left|V\left(T_{0}\right)\right|=1$.
Set $V\left(T_{0}\right)=\{x\}$. Thus $N(x) \subseteq V(F)$. To make the number of faulty subgraphs of $C_{2 l}$ minimum which contain the nodes in $N(x)$, we should construct as many $P_{2 l}$'s/ $C_{2 l}$'s as possible and each $P_{2 l} / C_{2 l}$ need to contain as many nodes in $N(x)$ as possible. Since Q_{n}^{k} contains no triangles for $k \geq 4$, any two nodes in $N(x)$ are not two consecutive nodes on a path/cycle. Combining this with the definition of the neighbour structure of x, each $P_{2 l} / C_{2 l}$ contain at most l nodes in $N(x)$. Note that $|N(x)|=2 n$. Then $|F| \geq\left\lceil\frac{2 n}{l}\right\rceil>\left\lceil\frac{2 n}{l}\right\rceil-1 \geq|F|$, a contradiction.

Case 2: $\left|V\left(T_{0}\right)\right|=2$.
Set $V\left(T_{0}\right)=\left\{\{x, y\} \mid x y \in E\left(Q_{n}^{k}\right)\right\}$. Thus $N(\{x, y\}) \subseteq V(F)$, and so $|V(F)| \geq|N(\{x, y\})|=4 n-2$. Note that $|F| \leq\left\lceil\frac{2 n}{l}\right\rceil-$ 1. Thus $|V(F)| \leq(2 l)\left(\left\lceil\frac{2 n}{l}\right\rceil-1\right) \leq(2 l)\left(\frac{2 n+l-1}{l}-1\right)=$ $4 n-2$. We have $|V(F)|=4 n-2$, and so $V(F)=N(\{x, y\})$. Note that Q_{n}^{k} contains no C_{3} for $k \geq 4$. Thus any two nodes in $N(x)$ or $N(y)$ are not adjacent. Without loss of generality, assume that $x=11 \ldots 1$ and $y=01 \ldots 1$. For the two nodes $u=21 \ldots 1$ and $v=(k-1) 1 \ldots 1$ in $N(\{x, y\})$, we see that u, v are not adjacent to the nodes in $N(\{x, y\}) \backslash\{u, v\}$. Thus u, v are not on a path P_{k} with $k \geq 4$ and $V\left(P_{k}\right) \subseteq N(\{x, y\})$. It follows that $|F| \geq\left\lceil\frac{4 n-4}{2 l}\right\rceil+1$. Recall that $|F| \leq\left\lceil\frac{2 n}{l}\right\rceil-1$. Then $|F| \leq \frac{2 n+l-1}{l}-1<\frac{4 n-4}{2 l}+1 \leq\left\lceil\frac{4 n-4}{2 l}\right\rceil+1 \leq|F|$ by $l \geq 2$, a contradiction.

Case 3: $\left|V\left(T_{0}\right)\right| \geq 3$.
By $n \geq 5,\left|V\left(T_{0}\right)\right| \geq 3$ and Lemma 2, $|V(F)| \geq 6 n-5$. Recall that $|V(F)| \leq 4 n-2<6 n-5 \leq|V(F)|$, a contradiction.

Note that $\kappa\left(Q_{n}^{k} ; P_{i}\right) \geq \kappa^{s}\left(Q_{n}^{k} ; P_{i}\right)$. Lemmas 10,11 and 12 yield following result.

Theorem 6: Let $n \geq 5$ and $k \geq 4$. Then $\kappa\left(Q_{n}^{k} ; P_{2 l+1}\right)=$ $\kappa^{s}\left(Q_{n}^{k} ; P_{2 l+1}\right)=\left\lceil\frac{2 n}{l+1}\right\rceil$ for $1 \leq l+1 \leq 2 n$ and $\kappa\left(Q_{n}^{k} ; P_{2 l}\right)=$ $\kappa^{s}\left(Q_{n}^{k} ; P_{2 l}\right)=\left\lceil\frac{2 n}{l}\right\rceil$ for $2 \leq l \leq 2 n$.

Set $2 l+1=1,3$ in the Theorem 6. Then Theorem 5 given by Lv et al. [11] is an immediate corollary of Theorem 6.

B. $\kappa\left(Q_{n}^{k} ; C_{i}\right)$ AND $\kappa^{s}\left(Q_{n}^{k} ; C_{i}\right)$

In this subsection, we investigate the cycle-structure/ substructure connectivity for Q_{n}^{k}.

Lemma 13: Let $n \geq 5$ and $k \geq 4$. Then $\kappa\left(Q_{n}^{k} ; C_{2 l}\right) \leq\left\lceil\frac{2 n}{l}\right\rceil$ for $4 \leq l \leq 2 n$.

FIGURE 11. A cycle $C_{2 I}^{1}=\left[u_{1}, u_{I}\right] u_{1, I} u_{1}$ using $P(u)$.

FIGURE 12. An example of $C_{k}, C_{k+2 s}^{1}$ and $C_{k+2 s}^{2}$ in Q_{2}^{k}.

Proof: Let $u=111 \ldots 11$ and $v=211 \ldots 12$. Then $u_{n}^{+}=v_{1}^{-}$, that is, $u_{2 n}=v_{1}$. Consider the neighbour structure $P(u)$ and $P(v)$ of u and v. Note that $P(u)=$ $u_{1} u_{1}^{\prime} u_{2} u_{2}^{\prime} u_{3} \ldots u_{2 n-1} u_{2 n-1}^{\prime} u_{2 n}$. In the following, we first give a claim which can be used to construct the desired cycles.

Claim 1. For any $u_{i}, u_{j} \in V(P(u))$ with $1 \leq i<j \leq 2 n$ and $j-i \geq 3$, there exists $u_{i, j} \in V\left(Q_{n}^{k}\right)$ with $u_{i, j} \notin V(P(u))$ such that $u_{i} u_{i, j} u_{j}$ is a P_{3}.

By the definition of u_{i}, we have $u_{i}, u_{j} \in\left\{u_{1}^{-}, u_{2}^{-}, u_{1}^{+}, u_{2}^{+}\right.$, $\left.u_{3}^{-}, \ldots, u_{n}^{-}, u_{n-1}^{+}, u_{n}^{+}\right\}$. Without loss of generality, assume that $u_{i}=u_{s}^{-}$and $u_{j}=u_{t}^{+}$. By the definition of $P(u)$ and $j-i \geq 3$, we have $s<t$. Let $u_{i, j}=u_{s, t}^{-,+}$. Then $u_{i, j} \notin V(P(u))$ and $u_{i} u_{i, j} u_{j}$ is a P_{3}. The claim holds.

We will successively find $\left\lceil\frac{2 n}{l}\right\rceil$ pairwise disjoint $C_{2 l}$'s denoted by $C_{2 l}^{1}, C_{2 l}^{2}, \ldots, C_{2 l}^{\left.\Gamma \frac{2 n}{l}\right\rceil}$ by using $P(u)$ and $P(v)$ with $v_{n}^{-} \notin V\left(C_{2 l}^{\left.\Gamma \frac{2 n}{l}\right\rceil}\right)$. If $l=2 n$, then $\left\lceil\frac{2 n}{l}\right\rceil=1$. By Claim 1 , let $C_{2 l}^{1}=\left[u_{1}, u_{2 n}\right] u_{1,2 n} u_{1}$. Next consider $l<2 n$ and assume that $2 n=p l+q$. Then $p+1=\left\lceil\frac{2 n}{l}\right\rceil$. By Claim 1, let $C_{2 l}^{1}=\left[u_{1}, u_{l}\right] u_{1, l} u_{1}$ (see FIGURE 11), $C_{2 l}^{2}=$ $\left[u_{l+1}, u_{2 l}\right] u_{l+1,2 l} u_{l+1}, C_{2 l}^{3}=\left[u_{2 l+1}, u_{3 l}\right] u_{2 l+1,3 l} u_{2 l+1}, \ldots$, $C_{2 l}^{p}=\left[u_{(p-1) l+1}, u_{p l}\right] u_{(p-1) l+1, p l} u_{(p-1) l+1}$. If $q=1$, then, by Lemma 9 and Claim 1, let $C_{2 l}^{\left\lceil\frac{2 n}{l}\right\rceil}=\left[v_{1}, v_{l}\right] v_{1, l} v_{1}$ with $v_{n}^{-} \notin V\left(C_{2 l}^{\left\lceil\frac{2 n}{l}\right\rceil}\right)$. Next assume that $q \geq 2$. Then $2 n-q+1 \leq$ $2 n-1$. If $l-q=1$, then $u_{2 n-q+1} \neq u_{n}^{-}$. If not, then $2 n-q+1=2 n-2$, and so $q=3$ and $l=4$. Note that $2 n=p l+q$, that is, $2 n=4 p+3$, a contradiction. Let $C_{2 l}^{\left\lceil\frac{2 n}{l}\right\rceil}=\left[u_{2 n-q+1}, u_{2 n}\right] v v_{2 n-q+1}\left(v_{2 n-q+1}\right)_{n}^{-} u_{2 n-q+1}$.

Note that $\left|V\left(C_{2 l}^{\left[\frac{2 n}{}\right\rceil}\right)\right|=2 q-1+3=2 q+2=2 l$ and $v_{2 n-q+1} \neq v_{n}^{-}$. Then $C_{2 l}^{\left\lceil\frac{2 n}{\eta}\right\rceil}$ is indeed a cycle on $2 l$ nodes. Now consider $l-q \geq 2$. By $l<2 n, 2 n-q+$ $1-(l-q)=2 n-l+1 \geq 2$. If $u_{2 n-q+1}=u_{n}^{-}$and $v_{l-q} \in\left\{v_{2}^{-}, v_{2}^{+}\right\}$, then $q=3$ and $l-q \in\{2,4\}$. Thus $l=5$ or $l=7$. For $l=5$, let $x=31 \ldots 11, y=$ $31 \ldots 10, z=21 \ldots 10$ and $C_{2 l}^{\left\lceil\frac{2 n}{\frac{l}{7}}\right.}=\left[u_{n}^{-}, u_{n}^{+}\right] v v_{1}^{+} x y z u_{n}^{-}$. Then $\left|V\left(C_{2 l}^{[2 \eta}\right)\right|=10$. For $l=7$, let $C_{2 l}^{\left[\frac{2 n}{l}\right\rceil}=$ $\left[u_{n}^{-}, u_{n}^{+}\right] v_{1,2}^{-,-} v_{2}^{-} v v_{n}^{+} v_{n-1, n}^{+,+} v_{n-1}^{+} u_{1, n-1}^{+,+} u_{1, n-1, n}^{+,+,-} u_{1, n}^{+,-} u_{n}^{-} \quad$ by $v_{n-1}^{+}=u_{1, n-1, n}^{+,+,+}$. Then $\left|V\left(C_{2 l}^{\left\lceil\frac{2 n}{l}\right\rceil}\right)\right|=14$.

Claim 2. There exist $x, y, z \in V\left(Q_{n}^{k}\right)$ with $x, y, z \notin$ $V\left(\cup_{i=1}^{\left[\frac{2 n}{2} 1-1\right.} C_{2 l}^{i}\right)$, such that $v_{l-q} x y z u_{2 n-q+1}$ is a P_{5}, as long as $u_{2 n-q+1} \neq u_{n}^{-}$or $v_{l-q} \notin\left\{v_{2}^{-}, v_{2}^{+}\right\}$.

Assume that $u u_{2 n-q+1}$ and $v v_{l-q}$ are j-dimensional and i-dimensional links, respectively. By $2 n-q+1-(l-q) \geq 2$, $i \leq j$. If $i=j$, then $2 n-q+1-(l-q)=2, u_{2 n-q+1}=u_{j}^{+}$ and $v_{l-q}=v_{j}^{-}$. By $l \geq 4,2 n-q+1=p l+1 \geq 5$, and so $j \geq 3$. Recall that $q \geq 2$. Then $j \leq n-1$. Let $x=v, y=v_{j}^{+}$and $z=u_{1, j}^{+,+}$. Then $x, y, z \notin V\left(\cup_{i=1}^{\left[\frac{2 n}{l}\right\rceil-1} C_{2 l}^{i}\right)$ and $v_{l-q} x y z u_{2 n-q+1}$ is a P_{5}. Next assume that $i<j$. Then $2 n-q+1-(l-q) \geq 3$. If $1<i<j<n$, then, without loss of generality, assume that $u_{2 n-q+1}=u_{j}^{-}$and $v_{l-q}=v_{i}^{+}$. Let $x=u_{i, n}^{+,+}, y=u_{i, j, n}^{+,-,+}$and $z=u_{j, n}^{-,+}$. By definition of $P(u)$ and $P(v), x, y, z \notin V\left(\cup_{i=1}^{\left[\frac{2 n}{T} 1-1\right.} C_{2 l}^{i}\right)$. Note that $v_{i}^{+}=u_{1, i, n}^{+,+,+}$. Then $v_{l-q} x y z u_{2 n-q+1}$ is a P_{5}. Now consider $i=1$ or $j=n$, which is equivalent to $v_{l-q}=v_{1}^{+}$or $u_{2 n-q+1}=u_{n}^{-}$by $l-q \geq$ 2 and $q \geq 2$. If $v_{l-q}=v_{1}^{+}$and $u_{2 n-q+1}=u_{n}^{-}$, then let $x=$ $31 \ldots 11, y=31 \ldots 10$ and $z=21 \ldots 10$. By definition of $P(u)$ and $P(v), x, y, z \notin V\left(\cup_{i=1}^{\left\lceil\frac{2 n}{I}\right\rceil-1} C_{2 l}^{i}\right)$ and $v_{l-q} x y z u_{2 n-q+1}$ is a P_{5}. If $v_{l-q} \neq v_{1}^{+}$and $u_{2 n-q+1}=u_{n}^{-}$, then, without loss of generality, assume that $v_{l-q}=v_{i}^{-}$. Note that the hypothesis that $u_{2 n-q+1} \neq u_{n}^{-}$or $v_{l-q} \notin\left\{v_{2}^{-}, v_{2}^{+}\right\}$. Thus $i \geq 3$ by $l-q \geq$ 2. Let $x=u_{1, i}^{+,-}, y=u_{1, i, n}^{+,-,-}$and $z=u_{1, n}^{+,-}$. By definition of $P(u)$ and $P(v), x, y, z \notin V\left(\cup_{i=1}^{\left[\frac{2 n}{I}\right\rceil-1} C_{2 l}^{i}\right)$. Note that $v_{i}^{-}=$ $u_{1, i, n}^{+,-,+}$. Then $v_{l-q} x y z u_{2 n-q+1}$ is a P_{5}. If $v_{l-q}=v_{1}^{+}$and $u_{2 n-q+1} \neq u_{n}^{-}$, then, without loss of generality, assume that $u_{2 n-q+1}=u_{j}^{-}$with $j \leq n-1$. Then $u_{j}^{-}=11 \ldots 101 \ldots 11$ and $v_{1}^{+}=31 \ldots 111 \ldots 12$. Let $x=31 \ldots 111 \ldots 11, y=$ $31 \ldots 101 \ldots 11$ and $z=21 \ldots 101 \ldots 11$. By definition of $P(u)$ and $P(v), x, y, z \notin V\left(\cup_{i=1}^{\left[\frac{2 n}{l} 1-1\right.} C_{2 l}^{i}\right)$. Then $v_{l-q} x y z u_{2 n-q+1}$ is a P_{5}. The claim holds.

By Claim 2, let $C_{2 l}^{\left[\frac{2 n}{1}\right\rceil}=\left[u_{2 n-q+1}, u_{2 n}\right]\left[v_{2}, v_{l-q}\right] x y z$
$u_{2 n-q+1}$. Note that $\left|V\left(C_{2 l}^{\left[\frac{2 n}{l}\right]}\right)\right|=2 q+2(l-1-q)+2=2 l$. Then $C_{2 l}^{\left\lceil\frac{2 n}{} \frac{1}{7}\right.}$ is indeed a cycle on $2 l$ nodes.

Let $F=\left\{C_{2 l}^{1}, C_{2 l}^{2}, \ldots, C_{2 l}^{\left[\frac{2 n}{}\right\rceil}\right\}$. Then $Q_{n}^{k}-F$ is disconnected because $\{u\}$ is a component of $Q_{n}^{k}-F$. By definition of $\kappa\left(Q_{n}^{k} ; C_{2 l}\right), \kappa\left(Q_{n}^{k} ; C_{2 l}\right) \leq\left\lceil\frac{2 n}{l}\right\rceil$.

Note that $\kappa\left(Q_{n}^{k} ; C_{2 l}\right) \geq \kappa^{s}\left(Q_{n}^{k} ; C_{2 l}\right)$. Lemmas 12 and 13 yield the following result.

Theorem 7: Let $n \geq 5$ and $k \geq 4$. Then $\kappa\left(Q_{n}^{k} ; C_{2 l}\right)=$ $\kappa^{s}\left(Q_{n}^{k} ; C_{2 l}\right)=\left\lceil\frac{2 n}{l}\right\rceil$ for $4 \leq l \leq 2 n$.

Next, we consider the case that Q_{n}^{k} contains odd cycles. Note that Q_{n}^{k} is bipartite if and only if k is even. Thus Q_{n}^{k} contains odd cycles only if k is odd. The minimum odd cycle in Q_{n}^{k} is C_{k}, which implies that the general odd cycle in Q_{n}^{k} can be denoted by $C_{k+2 s}$ for $s \geq 0$.

Lemma 14: Let $n \geq 2$ and odd $k \geq 5$. Then $\kappa\left(Q_{n}^{k} ; C_{k+2 s}\right) \leq 2 n-2$ for $0 \leq s \leq \frac{k-3}{2}$.

Proof: Let $C_{k}=\left(0 \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k^{2}-1}{2}\right)\left(1 \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)$ $\ldots\left((k-1) \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)$ be a cycle of Q_{n}^{k}. We will find $2 n-2$ pairwise disjoint $C_{k+2 s}$'s denoted by $C_{k+2 s}^{1}, C_{k+2 s}^{2}, \ldots, C_{k+2 s}^{2 n-2}$ by using $N\left(V\left(C_{k}\right)\right)$ (see FIGURE 12 for an example of $C_{k}, C_{k+2 s}^{1}$ and $C_{k+2 s}^{2}$ in Q_{2}^{k}). Let
$C_{k+2 s}^{1}=\left(0 \frac{k-3}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k-5}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right) \ldots\left(0 \frac{k-1-2 s}{2}\right.$ $\left.\frac{k-1}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k-3-2 s}{} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)\left((k-1) \frac{k-3-2 s}{} \frac{k-1}{2} \ldots\right.$
$\left.\frac{k-1}{2}\right)\left((k-1) \frac{k-1-\frac{2}{2} s}{} \frac{k-1}{2} \ldots \frac{k-1}{2}\right) \ldots\left((k-1) \frac{k-5}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)$ $\left.\frac{k^{2}-1}{2}\right)\left((k-1) \frac{k-1-2}{2} s \frac{k-1^{2}}{2} \ldots \frac{k-1}{2}\right) \ldots\left((k-1) \frac{k-5}{2} \frac{k-1^{2}}{2} \ldots \frac{k-1}{2}\right)$ $\left((k-1) \frac{k-3}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)\left((k-2) \frac{k-3}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)^{2} \ldots\left(1 \frac{k-3}{2}\right.$ $\left.\frac{k-1}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k-3}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)$,
$C_{k+2 s}^{2}=\left(0 \frac{k+1}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k+3}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right) \ldots\left(0 \frac{k-1+2 s}{2}\right.$ $\left.\frac{k-1}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k+1+2 s}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)\left((k-1) \frac{k^{2}+1+2 s}{2} \frac{k-1}{2} \ldots\right.$
$\left.\frac{k-1}{2}\right)\left((k-1) \frac{k-1+2 s}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right) \ldots\left((k-1) \frac{k+3}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)$ $\left((k-1) \frac{k+1}{2} \frac{k-1}{2} \ldots \frac{k^{2}-1}{2}\right)\left((k-2) \frac{k+1}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)^{2} \ldots\left(1 \frac{k+1}{2}\right.$ $\left.\frac{k-1}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k+1}{2} \frac{k-1}{2} \ldots \frac{k-1}{2}\right)$,
$C_{k+2 s}^{3}=\left(0 \frac{k-1}{2} \frac{k-3}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k-1}{2} \frac{k-5}{2} \ldots \frac{k-1}{2}\right) \ldots\left(0 \frac{k-1}{2}\right.$
$\left.\frac{k-1-2 s}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k-1}{2} \frac{k-3-2 s}{2} \ldots \frac{k-1}{2}\right)\left((k-1) \frac{k-1}{2} \frac{k-3}{3}-2 s\right.$
$\left.\ldots \frac{k-1}{2}\right)\left((k-1) \frac{k-1}{2} \frac{k-1-2 s}{2} \ldots \frac{k-1}{2}\right) \ldots\left((k-1) \frac{k-1}{2} \frac{k-5}{2} \ldots\right.$
$\left.\frac{k-1}{2}\right)\left((k-1) \frac{k-1}{2} \frac{k-3}{2} \ldots \frac{k-1}{2}\right)\left((k-2) \frac{k-1}{2} \frac{k-3}{2} \ldots \frac{k-1}{2}\right) \ldots$
$\left(1 \frac{k-1}{2} \frac{k-3}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k-1}{2} \frac{k-3}{2} \ldots \frac{k-1}{2}\right)$,
$C_{k+2 s}^{4}=\left(0 \frac{k-1}{2} \frac{k+1}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k-1}{2} \frac{k+3}{2} \ldots \frac{k-1}{2}\right) \ldots\left(0 \frac{k-1}{2}\right.$ $\left.\frac{k-1+2 s}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{k-1}{2} \frac{k+1+2 s}{2} \ldots \frac{k-1}{2}\right)\left((k-1) \frac{k-1}{2} \frac{k+1+2 s}{2}\right.$ $\left.\frac{k-1}{2}\right)\left((k-1) \frac{k-1}{2} \frac{k-1}{2}+2 s \ldots \frac{k-1}{2}\right) \ldots\left((k-1) \frac{k-1}{2} \frac{k+3}{2} \ldots \frac{k-1}{2}\right)$ $\left((k-1) \frac{k-1}{2} \frac{k+1}{2} \ldots \frac{k^{k-1}}{2}\right)\left((k-2) \frac{k-1}{2} \frac{k+1}{2} \ldots \frac{k^{2}-1}{2}\right)^{2} \ldots\left(1 \frac{k-1}{2}\right.$ $\left.\frac{k+1}{2} \ldots \frac{k-1}{2}\right)\left(0 \frac{2-1}{2} \frac{k+1}{2} \ldots \frac{k-1}{2}\right)$,
$C_{k+2 s}^{2 n-3}=\left(0 \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k-3}{2}\right)\left(0 \frac{k-1}{2} \ldots \frac{k-1}{2} \frac{k-5}{2}\right) \ldots\left(0 \frac{k-1}{2}\right.$ $\left.\frac{k-1}{k^{2}-3-2 s} \frac{k-1-2 s}{2}\right)\left(0^{\frac{k-1}{2}} \frac{k-1}{2} \ldots \frac{k-3-2 s}{2}\right)\left((k-1) \frac{k-1}{2} \frac{k-1}{2} \ldots\right.$ $\left.\frac{k-3-2 s}{2}\right)\left((k-1) \frac{k-1^{2}}{2} \frac{k-1^{2}}{2} \ldots \frac{k-1-2 s}{2}\right) \ldots\left((k-1)^{\frac{k-1}{2}} \frac{k-1}{2} \ldots\right.$ $\left.\frac{k-5}{2}\right)\left((k-1) \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k-3}{2}\right)\left((k-2) \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k-3}{2}\right) .$. $\left(1 \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k-3}{2}\right)\left(0 \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k-3}{2}\right)$,
$C_{k+2 s}^{2 n-2}=\left(0 \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k+1}{2}\right)\left(0 \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k+3}{2}\right) \ldots\left(0 \frac{k-1}{2}\right.$
$\left.\frac{k-1}{2} \ldots \frac{k-1}{2} \frac{k-1+2 s}{2}\right)\left(0 \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k+1+2 s}{2}\right)\left((k-1) \frac{k-1}{2} \frac{k-1}{2}\right.$ $\left.\ldots \frac{k+1+2 s}{2}\right)\left((k-1)^{\frac{k-1}{2}} \frac{k-1}{2} \ldots \frac{k-1+2{ }^{2} s}{2}\right) \ldots\left((k-1) \frac{k-1}{2} \frac{k-1}{2}\right.$ $\left.\ldots \frac{k+2}{2}\right)\left((k-1) \frac{k-1}{2} \frac{k^{2}-1}{2} \ldots \frac{k+1}{2}\right)\left((k-2) \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k^{2}+1}{2}\right)^{2} \ldots$ $\left(1 \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k+1}{2}\right)\left(0 \frac{k-1}{2} \frac{k-1}{2} \ldots \frac{k+1}{2}\right)$.

Let $F=\left\{C_{k+2 s}^{1}, C_{k+2 s}^{2}, \ldots, C_{k+2 s}^{2 n-2}\right\}$. Then $Q_{n}^{k}-F$ is disconnected because C_{k} is a component of $Q_{n}^{k}-F$. By definition of $\kappa\left(Q_{n}^{k} ; C_{k+2 s}\right), \kappa\left(Q_{n}^{k} ; C_{k+2 s}\right) \leq 2 n-2$.

Set $2 l+1=k+2 s$ in the Lemma 14. Then $s=\frac{2 l+1-k}{2}$, and so $0 \leq s \leq \frac{k-3}{2}$ is equivalent $\frac{k-1}{2} \leq l \leq k-2$. We have:

Theorem 8: Let $n \geq 2$ and odd $k \geq 5$. Then $\kappa\left(Q_{n}^{k} ; C_{2 l+1}\right) \leq 2 n-2$ for $\frac{k-1}{2} \leq l \leq k-2$.

Let $n \geq 5$ and $k \geq 4$ with $l+1 \leq 2 n$. By Lemmas 1 and $11, \kappa^{s}\left(Q_{n}^{k} ; P_{2 l+1}\right) \geq \kappa^{s}\left(Q_{n}^{k} ; C_{2 l+1}\right) \geq\left\lceil\frac{2 n}{l+1}\right\rceil$. By Theorem 6, $\kappa^{s}\left(Q_{n}^{k} ; P_{2 l+1}\right)=\left\lceil\frac{2 n}{l+1}\right\rceil$. Thus we obtain the following result.

Theorem 9: Let $n \geq 5$ and odd $k \geq 5$. Then $\kappa^{s}\left(Q_{n}^{k} ; C_{2 l+1}\right)=\left\lceil\frac{2 n}{l+1}\right\rceil$ for $\frac{k+1}{2} \leq l+1 \leq 2 n$.

V. CONCLUSION

In a given network, how many of a particular structure can go faulty, and the network still remains connected? That is the question this paper tried to address. It established structure connectivity $\kappa\left(Q_{n}^{k} ; T\right)$ and substructure connectivity $\kappa^{s}\left(Q_{n}^{k} ; T\right)$, where $k \geq 3$, and T is a path or cycle, both being basic yet important structures in all computer networks. Our work not only generalized the known result on path structures [11], but also extended it to cycle structures. These results reveal new characteristics of Q_{n}^{k}, affording more insights into this important network.
The paper leaves a few unresolved open questions. (1) For Q_{n}^{3} and $C_{3 l+1}$, cycles on $3 l+1$ nodes, $\kappa\left(Q_{n}^{3} ; C_{3 l+1}\right)$ is yet to be determined; and (2) The paper's result on structure connectivity for odd-node cycles, $\kappa\left(Q_{n}^{k} ; C_{2 l+1}\right)$ with odd $k \geq 5$, is an upper-bound, instead of a definitive connectivity. These two sub-problems proved to be challenging, and solving them will completely solve the Q_{n}^{k} 's structure/substructure connectivity for paths and cycles. New and more innovative approaches, different than ours used in this paper, might be in order.

REFERENCES

[1] D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara, S. Kumar, V. Salapura, D. Satterfield, B. Steinmacher-Burow, and J. Parker, "The IBM blue gene/Q interconnection fabric," IEEE Micro, vol. 32, no. 1, pp. 32-43, Jan./Feb. 2012.
[2] N.-W. Chang and S.-Y. Hsieh, "\{2,3\}-Extraconnectivities of hypercubelike networks," J. Comput. System Sci., vol. 79, no. 5, pp. 669-688, Aug. 2013.
[3] K. Day, "The conditional node connectivity of the k-ary n-cube," J. InterConnection Netw., vol. 5, no. 1, pp. 13-26, 2004.
[4] J. Fàbrega and M. A. Fiol, "On the extraconnectivity of graphs," Discrete Math., vol. 155, nos. 1-3, pp. 49-57, 1996.
[5] M.-M. Gu and R.-X. Hao, "3-extra connectivity of 3-ary n-cube networks," Inf. Process. Lett., vol. 114, no. 9, pp. 486-491, Sep. 2014.
[6] M.-M. Gu, R.-X. Hao, J.-M. Xu, and Y.-Q. Feng, "Equal relation between the extra connectivity and pessimistic diagnosability for some regular graphs," Theor. Comput. Sci., vol. 690, pp. 59-72, Aug. 2017.
[7] S.-Y. Hsieh and Y.-H. Chang, "Extraconnectivity of k-ary n-cube networks," Theor. Comput. Sci., vol. 443, no. 8, pp. 63-69, Jul. 2012.
[8] S.-Y. Hsieh, H.-W. Huang, and C.-W. Lee, "\{2,3\}-Restricted connectivity of locally twisted cubes," Theor. Comput. Sci., vol. 615, pp. 78-90, Feb. 2016.
[9] H.-C. Kim, H.-S. Lim, and J.-H. Park, "An approach to conditional diagnosability analysis under the PMC model and its application to torus networks," Elsevier Theor. Comput. Sci., vol. 548, pp. 98-116, Sep. 2014.
[10] R. E. Kessler and J. L. Schwarzmeier, "Cray T3D: A new dimension for Cray research," in Dig. Papers. Compcon Spring, San Francisco, CA, USA, Feb. 1993, pp. 176-182.
[11] Y. Lv, J. Fan, D. F. Hsu, and C.-K. Lin, "Structure connectivity and substructure connectivity of k-ary n-cube networks," Inf. Sci., vols. 433-434, pp. 115-124, Apr. 2018.
[12] L. Lin, S.-Y. Hsieh, R. Chen, L. Xu, and C.-W. Lee, "The relationship between g-restricted connectivity and g-good-neighbor fault diagnosability of general regular networks," IEEE Trans. Rel., vol. 67, no. 1, pp. 285-296, Mar. 2018.
[13] S. Latifi, M. Hegde, and M. Naraghi-Pour, "Conditional connectivity measures for large multiprocessor systems," IEEE Trans. Comput., vol. 43, no. 2, pp. 218-222, Feb. 1994.
[14] Y. Lv and Y. Xiang, "The conditional connectivity of ($n, k)$-star graph," Adv. Mater. Res., vols. 433-440, pp. 4853-4856, Jan. 2012.
[15] L. Lin, L. Xu, and S. Zhou, "Relating the extra connectivity and the conditional diagnosability of regular graphs under the comparison model," Theor. Comput. Sci., vol. 618, pp. 21-29, Mar. 2016.
[16] L. Lin, L. Xu, S. Zhou, and S.-Y. Hsieh, "The extra, restricted connectivity and conditional diagnosability of split-star networks," IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 533-545, Feb. 2016.
[17] C.-K. Lin, L. Zhang, J. Fan, and D. Wang, "Structure connectivity and substructure connectivity of hypercubes," Theor. Comput. Sci., vol. 634, pp. 97-107, Jun. 2016.
[18] L. Lin, S. Zhou, L. Xu, and D. Wang, "The extra connectivity and conditional diagnosability of alternating group networks," IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 8, pp. 2352-2362, Aug. 2015.
[19] M. D. Noakes, D. A. Wallach, and W. J. Dally, "The J-machine multicomputer: An architectural evaluation," Comput. Archit. News, vol. 21, no. 2, pp. 224-235, May 1993.
[20] C. Peterson, J. Sutton, and P. Wiley, "IWarp: A 100-MOPS, LIW microprocessor for multicomputers," IEEE Micro, vol. 11, no. 3, pp. 26-29, Jun. 1991.
[21] E. Sabir and J. Meng, "Structure fault tolerance of hypercubes and folded hypercubes," Theor. Comput. Sci., vol. 711, pp. 44-55, Feb. 2018.
[22] G. Wang, C.-K. Lin, B. Cheng, J. Fan, and W. Fan, "Structure faulttolerance of the generalized hypercube," Comput. J., to be published. doi: 10.1093/comjnl/bxz023.
[23] S. Wang and X. Ma, "The g-extra connectivity and diagnosability of crossed cubes," Appl. Math. Comput., vol. 336, pp. 60-66, Nov. 2018.
[24] S. Wang, G. Zhang, and K. Feng, "Fault tolerance in k-ary n-cube networks," Theor. Comput. Sci., vol. 460, pp. 34-41, Nov. 2012.
[25] W. Yang, H. Li, and J. Meng, "Conditional connectivity of Cayley graphs generated by transposition trees," Inf. Process. Lett., vol. 110, pp. 1027-1030, Nov. 2010.
[26] W. Yang and J. Meng, "Extraconnectivity of hypercubes," Appl. Math. Lett., vol. 22, no. 6, pp. 887-891, 2009.
[27] G. Zhang and S. Lin, "Path and cycle fault tolerance of bubble-sort graph networks," Theor. Comput. Sci., vol. 779, pp. 8-16, Aug. 2019.

GUOZHEN ZHANG received the M.S. and Ph.D. degrees from the School of Mathematical Sciences, Shanxi University, in 2005 and 2014, respectively. She was a Visiting Scholar with Montclair State University, from January to July, 2019. She is currently an Associate Professor with the School of Mathematical Sciences, Shanxi University. Her research interests include interconnection networks, graph theory, network reliability, fault diagnosis, fault-tolerant computing, parallel and distributed algorithms, and combinatorial networks.

DAJIN WANG received the B.Eng. degree in computer engineering from the Shanghai University of Science and Technology, in 1982, and the Ph.D. degree in computer science from the Stevens Institute of Technology, in 1990. Since 1990, he has been with the Department of Computer Science, Montclair State University, Montclair, NJ, USA, where he is currently a Professor. He has held visiting positions in other universities, and has consulted in industry. His current research interests include interconnection networks, fault-tolerant computing, algorithmic robotics, parallel processing, and wireless ad hoc and sensor networks. He has published more than 60 articles in these areas. He received several university awards for his scholarly accomplishments. He was an Associate Editor of the IEEE Transactions on Parallel and Distributed Systems, from 2010 to 2014.

[^0]: The associate editor coordinating the review of this manuscript and approving it for publication was Sun-Yuan Hsieh.

