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1 Introduction

The approximate conformal invariance of pQCD makes it very useful in practical calcu-

lations. Any leading-order pQCD result which does not have explicit S-function can be

obtained from conformally invariant amplitudes. Moreover, the results obtained in a close
conformal “neighbor” of QCD, the N' = 4 SYM theory, can be used as a starting point
of QCD calculation. Typically, the result in N' = 4 theory gives the most complicated

part of pQCD result, i.e. the one with maximal transcendentality. This is explicitly con-

firmed in many cases, for example in the calculation of anomalous dimensions of twist-two

operators [1, 2] and cusp anomalous dimension at the three-loop level [3, 4]. Actually,



it is worthwhile to start a pQCD calculation from the corresponding analysis in N = 4
SYM. The Lagrangian might seem more complicated but the result will be obtained in a
more streamlined and controlled way and it will give the most transcendental part of the
QCD result.

It is well known that the all correlation functions (correlators) in a conformal theory
are in principle determined if one knows the anomalous dimensions of all primary opera-
tors and the corresponding structure constants determined by three-point correlators. The
important class of local operators is represented by the so-called twist-two operators en-
countered in many phenomenological applications in QCD starting from the famous case
of deep inelastic scattering. As to anomalous dimensions of twist-two operators in A = 4
SYM, there was a considerable progress in recent years due to the development of QCS
method [5, 6] resulting in analytic expressions at large N, up to 7th order of perturbation
theory [7] and very accurate numerical calculations at any coupling constant up to a strong
coupling limit [8].

In contrast, the study of structure constants of twist-two operators is not at the same
level yet. For arbitrary spins, the structure constants of three twist-two operators are ex-
plicitly known only at the tree level [9, 10]. There are calculations of the structure constants
of two protected operators and a twist-two operator, the most recent performed using the
hexagon approach [11] up to the four-loop [12] and five-loop [13] level. However, for the
correlator of three non-protected operators the hexagon approach gives only general pre-
scription for calculations and to get explicit results further development of hexagon method
is necessary. There is also a related QCS calculation of three-cusp Wilson loop similar to
correlator of one protected and two non-trivial operators [14], but at this stage it is not
clear whether such result can be used to get the correlator of three twist-two operators.

In this circumstances, it is very useful to find examples of explicit calculation of twist-
two structure constants, especially in the approximations which go beyond the leading
orders of perturbation theory. One of the most interesting examples is the structure con-
stants of twist-two operators in the so-called BFKL limit when the Lorentz spin of the

2
twist-two operator tends to one: w = j — 1 — 0, coupling constant g? = fgjrg N, is small

but the ratio % is fixed. This limit is closely related to the high-energy behavior of ampli-
tudes, roughly speaking %2 ~ ¢?In E where F is the energy. The problem of high-energy
behavior of amplitudes has a long story starting with Heisenberg-Froissart bound In%E
for total cross section which has not been constructively explained in any (field or string)
theory in more than 50 years. The most popular idea is to reduce the gauge theory at high
energies to 241 effective theory which can be solved (exactly or by computer simulations).
Unfortunately, despite the multitude of attempts, the Lagrangian for 2+1 QCD or N’ =4
SYM at high energies is not written yet. In this context, the complementary approach
of conformal bootstrap may be helpful. One may start with twist-two operators in the
BFKL limit and use knowledge of anomalous dimensions and structure constants of these
operators to construct the high-energy amplitudes. Of course, the high-energy behavior of
amplitudes is not completely determined by twist-two operators, for example the BFKL
equation involves twist two as well as all higher twists. Still, the effective conformal theory
of twist-two operators at small w’s appears to be a good place to start.



Since the conformal twist-two operator in N'= 4 SYM looks like
OI(z) = TrFHDi_QF . + gluinos + scalars (1.1)

the point w = j — 1 — 0 is an unorthodox point corresponding to the non-local operator
TrFHDﬁ*lF +i. The explicit form of this non-local operator is a so-called light-ray operator
— a bilocal operator with the light-like gauge link. Such light-ray operators are extensively
studied in QCD since matrix elements of those operators define parton distribution densities
for forward case and so-called GPDs in the off-forward case (see the book [15] for a review).
For N' = 4 SYM, the supersymmetric generalization of QCD light-ray operators [16] is
presented in ref. [17] following the corresponding work on the supermultiplet of twist-two
local operators [18].

The anomalous dimensions of twist-two operators in the BFKL limit can be obtained
from Regge asymptotics of the four-point correlators resulting in the equation w = N(A)
where A is the dimension of the operator and RX(A) is the famous Pomeron intercept. In
QCD, it is known only up to the NLO order [19], but in /' = 4 SYM it is studied well beyond
that: there are explicit perturbative expressions at the NNLO level [20-22], numerical
estimates at few extra orders [20] and several terms for the large-coupling expansion around
graviton point j = 2 [8, 23-25].

Thus, the theory of anomalous dimensions of twist-two operators in the BFKL limit
seems to be well developed and it would be very interesting to bring the study of structure
constants up to the same level. The most direct way to find the structure constants in
the BFKL limit is to compute the correlation function of the corresponding three light-
ray operators. This was done in refs. [26, 27] using the non-linear evolution equation for
color dipoles [28-30] and the result is that the structure constant is determined by so-called
three-pomeron vertex [31] projected onto Lipatov’s eigenfunctions of the BFKL kernel [32].
However, by this method it is possible to obtain structure constants only at w; = we+w3 and
generalization to arbitrary w’s requires the analysis of perturbative diagrams in the triple
Regge limit. It should be noted that the triple Regge limit is a somewhat novel regime
of resummation in perturbation theory. Roughly speaking, it describes the interaction
of three particles going with the speed near speed of light along x, y, and z directions.
Such limit was not studied in QCD (or any other QFT) except for ref. [33] devoted to
possible anomaly coming from three pomerons interacting by quark exchange (in our LLA
calculations quark exchanges are neglected since they are subleading at high energies).

In this paper, following the logic of earlier papers [17, 26, 27], I calculate the correlator
of three light-ray operators (1.1) in the triple BFKL limit ¢,w; — 0 and %j ~ 1 in
the leading logarithmic approximation (LLA). The three light rays are collinear to three
linearly independent light-like vectors ni, ne, and ns. To simplify the complicated spin
structure of a general correlator of three light-ray operators, I place these operators on the
same line in the direction orthogonal to all n;, and integrate each light-ray operator along
the total translation in the corresponding n; direction. As demonstrated in ref. [27], the
resulting correlator has only one tensor structure and computing the coefficient in front
of that structure is the aim of this paper. Moreover, since it is well known that in the



LLA-Regge limit the contributions of gluino and scalar fields are sub-leading, the obtained
result for three-point correlator will be valid in QCD as well.

The paper is organized as follows. In section 2 I recall the generic structure of 3-
point correlator for local twist-2 operators and present the form of the correlator of three
“forward” local operators integrated over the total translation in corresponding light-like
directions. This formula is generalized to correlator of three twist-two light-ray operators
in section 3. In section 4 I define “Wilson frame” operators and in section 5 remind the
calculation of two-point correlator of these operators in the BFKL limit. In section 6 which
is central to this paper, I calculate the correlator of three Wilson frames in the BFKL limit
and present the result for the structure constant. In the Conclusions section I discuss the
obtained result and its relation to the result of ref. [26]. The appendix contains derivations
of technical results used in section 6.

2 3-point correlators and structure constants of “forward” operators

The general structure of 3-point correlators of local operators with spin was found in ref. [34]
to be!

A Ay Ag
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where (’)fl(a:) is a spin-/ operator with indices contracted with light-like vector n, the square
brackets represent some tensor structures and the sum over m;; goes over positive integers
satisfying certain inequalities. Following refs. [26] and [27] I consider the correlator of three
“forward” operators integrated over corresponding light-like lines

/d’UldUdeg <(9%11 (v1n1 + th)O%% (Ugng + zzt)Oig (’Ugng + 23t)> (2.1)

where the transverse separations z;, are orthogonal to all n;. It has been demonstrated in
ref. [27] that after such integration all tensor structures collapse to one and we get:

C(Aa .7)8]12 —2y
’Z%Qt A1 ’
/dvldvgdvg <O¥L11 (Ulnl + th)ogé ('U2n2 + th)ogg (Ugng + th)>
J1tjo—j3—1 J1t+iz—jo—1 Jotiz—g1—1

— C(A: i, S1 ° S13° So3 °
= ( ’LJ]Z) |212t|A1+A2—A3—1 |Zl3t|A1+A3_A2_1 ’223t’A2+A3—A1—1M

/ dvrdvs (O3 (v1my + 21,)00 (vany + 22,)) = 5(j — 7')

MR (2.2)

where p is the normalization point, s;; = —2n; - nj, 2;; = 2z — z; and A; are dimensions
(canonical d; plus anomalous +;) of operators O;.

As was mentioned in the Introduction, the most interesting operators for possible
phenomenological applications are the twist-two operators. The supermultiplet of twist-2

!To save space, throughout the paper we use notation (O1(z1) ... On(2n)) = (T{O1(x1) ... On(zs)}).



operators in N’ = 4 SYM was explicitly constructed in ref. [18]. In our case of “forward”
operators it reads

Sl =0+ %0;’ - %og;, 5 =0)~ 5 Ok + Gé_tll)og)
51— 01 - jﬁjfo;’ _ U DE£2) ;j;;g j)%g; (2.3)
where?
Olfan) = [ du 45730 (un + 1),
Ol (1) = / du NV Lo\ (un + )
Og(avt) = /du FLNIT2EY (yn + xy). (2.4)
The operators (2.3) are multiplicatively renormalized operators with anomalous
dimensions
Vit as) =4 = 1) + el +0(2), A= A =k (2.5)

As mentioned in the Introduction, the goal is to calculate the structure constant C' in
eq. (2.2) in the “triple BFKL limit” ¢> — 0,w; = j; — 1 — 0 but %Qi ~ 1. However, at
w — 0 these gluon operators are no longer local. Instead, they are represented by so-called
light-ray operators discussed in the next section.

3 Light-ray operators in the BFKL limit

3.1 Light-ray operators as an analytic continuation of local operators

Light-ray (LR) operators are defined as bilocal operators with light-like separation and
gauge links providing gauge invariance. For example, the gluon light-ray twist-two operator
is defined as

e @)z, YY), (x—y)*=0 (3.1)

where the gauge link [z, y] is defined as

[z,y] = Pexp {—igYM/Oldu (x —y) A (ux + (1 — u)y)} (3.2)

These operators represent the sum of local operators of twist two convoluted with light-like
vector x—y. They possess extra UV divergencies in addition to usual self-energy and vertex
UV divergencies so they are defined with a set of counterterms and the dependence of this
counterterms on the UV cutoff defines the evolution equations for light-ray operators.

*We use metric g"” = (—1,1,1,1) and the covariant derivative is V, = (9 — igyy [Ap,)-



The LR operator (3.1) can be interpreted as an analytic continuation of a local
operator to non-integer number of covariant derivatives. Indeed, if we can represent
Fa. V12 Fi(0) as

I(j—1)
211

:WFDLMM%%WMmmW¢@ (33)

F3VI2F(0) = /C du u' I Flee "V Fi4(0)

27
where C' is the contour of integration in Hankel’s formula for gamma-function.? At non-

integer j this formula can be simplified to

1 & ;
)/ du ulfJFﬁg(ux)[usc, O]GbFﬁf(O)
0

i ijFaé' —

= /0 du u' ™I Fe (uz)uz, 0] 24 (0) = (2 — j) i Vi F€(0)  (3.4)

At j = —% +14¢ this light-ray operator realizes the principal series irreducible representation
of sl(2]4) with conformal spin J = j+1 = $+ic. Since it is well-defined at J = £ +ig it can
be uniquely analytically continued to the whole complex plane of J and the continuation
to integer J = k + 1 gives local operator as a residue in the pole at j = k.

The generalization of supermultiplet of twist-two operators (2.3) to the case of complex
spin j was constructed in [17]. We defined “forward” parity-even light-ray operators as

fg(xt)z/ dl 1M Fo (1, ), A{L(xt):/ dl U7 Ay (1, )
0 0

I (x;) = / dl 17V ®,(1, xy) (3.5)
0
where

Fnll, xt) :/dv ne(In +on + x4)[l + v, V] % (vn 4 x4)

An(l,z4) = ;/dv[ — X4 (In 4+ vn + ) [l + v, v]2Pe, N (vn + x;)
+ 2% (on + 2)[v, T+ 0] Ny (In 4+ vn + 24)]

D, (l,x) = /dv 3 (In + vn + ) [l + v, 0|24 (vn + ;) (3.6)

where [u,v], is a shorthand notation for [un + z;,vn + x;]. The corresponding renorm-

invariant light-ray operators are given by [17]
j+1

®; (3.7)

4 j-1, 1. - 1
St=7Fi =58 = 5il - 1%, Sy =Fj+ 30 -

. , GG +2
8= 7+ + 2, - LENTED

where the difference between the coefficients here and in eq. (2.3) is due to eq. (3.4).

3The path of integration starts at co + i0 at the real axis, goes to e + 40, circles the origin in the
counterclockwise direction with radius e to the point € — 40, and returns to the point co — 0.



It is demonstrated in ref. [35] that analytic continuation of anomalous dimensions of
local operators eq. (2.3) to non-integer j by integrals of DGLAP kernels gives the anomalous
dimensions of light-ray operators (3.7). Consequently, the anomalous dimensions of light-
ray operators (3.7) are related by the same eq. (2.5) as local operators (2.3).

Since supersymmetric light-ray operators S7 are analytic continuation of local opera-
tors, one should expect the same formulas as (2.2) for correlators of local operators:

. ]—1
(S (1) (220)) = 8 — J)C((]QA))AM (3.8)

and

(593 (21,532 (22,) 8%, (23,))

J1tjo—ijz—1 J1tiz—jo—1 Jjotiz—j1—1

- is Ji 812 813 823 —Y1—7Y2—73
= C(Au.]l) ‘Z12t‘A1+A2_A3_1 |213t|A1+A3_A2_1 |Z23t|A2+A3_A1_1:u (39)

Note that from eq. (3.4) we see that the canonical dimension of light-ray operators (3.5) is
Jj+2.

As mentioned above, the goal of this paper is to find structure constants of operators
S{ in the BFKL limit g% — 0,w; = j; —1 — 0, f)—j ~ 1. The important observation is that at
small w it is sufficient to study the correlator of three gluon operators [du F% V<~ F% (un+
z¢). Indeed, solving eqs. (3.7) we see that

- S+ w(“TWS{ + (6 + Buw + 3w?) 8] - —52%5;;)
j =

3.10
1+ 6w + 6w? + 3w3 (3.10)

so at small w = j — 1 the operator S{ is approximately equal to gluon operator F7.

3.2 Correlators of the light-ray operators in the BFKL limit: what to expect

As we noted above, the BFKL limit for light-ray operators (3.5) isw = j—1 — 0, g> — 0 but
% ~ 1. From eq. (3.10) we see that in this limit only gluon light-rays survive so hereafter
we will identify SY from eq. (2.3) with F*. It is well known that anomalous dimension of
light-ray operators F* in the BFKL limit is given by the solution of equation w = N(A)
where A is the dimension of the operator and RX(A) is the famous Pomeron intercept

w=Rr+w) = 7=7"(w,¢°) (3.11)

where v +w = A — 3 and &(7) is the pomeron intercept

R(7,9%) = 497 [20() = v (=3 ) —v (1+ )] + O(g") (3.12)

At present, two more terms in the perturbative expansion of the intercept are
known [20-22].



The coefficient C'(w, A) in the BFKL limit was calculated in ref. [17] (see also eq. (5.37)
below)

21-26" 1

e 2sin e T2(1 — )02 (3 + §)N(g¥)

C(j,A) = 16g>°N? (3.13)
where & =~v*+w=A —3.
As I mentioned in the Introduction, the goal of this paper is to obtain the structure
2
constant C'(A;, j;) in the triple BFKL limit g2 — 0, w1 ~ wa ~ w3 — 0, but =~ 1. It will
be demonstrated that the structure constant as a function of g and w; = j; — 1 has the form

C(ji, Ny g°) (3.14)

iNZwiwaws F [y (w1, 9%), v (w2, 9%), 7" (w3, g7)] 2 1
— C ) ) ) ) M 1 O O /L O =
(w1 + w2 — w3) (w1 + wg — wa) (w2 + w3 — wi) TOlg) + O + <N3>]

where function F'(v1,72,73) is given by a certain integral over two-dimensional coordinates
represented as a quartic Mellin-Barnes integral in appendix D. It should be noted that the

singularities (w; — w; — wg) !

are of general nature and come from the boost invariance of
the correlator (3.9) in the limit n; — ny [26], see the discussion in appendix C.

For the calculation of structure constants I use the method developed in refs. [26]
and [27] based on calculation of correlators of “Wilson frames” operators which are basi-
cally the light-ray operators with point-splitting UV regularization. It is explained in the

next section.

4 Wilson frames

As we demonstrated in ref. [17], one cannot study correlators of LR operators in the BEKL
approximation since the contribtions would be singular. Instead, one should consider the
“Wilson frame” — LR operator with the point splitting in the transverse direction, see e.g.
figure 1 for the gluon operator. We need the “forward” Wilson frame integrated over total
translation in the corresponding light-like direction

o0

fr{ (11, x20) = / du Ul*jfn(U;JUlt,th),
0

Fo(u; x1g, xot) = /dv 2Tr{Fn§(a:1t + un + vn)[un + vn + x1, vn + 1y
x [vn + z1p, 00 + 24| F, S (221 + vn)[Tor + v, wop + un + o} (4.1)

As x14 — x9; the Wilson-frame operator F,(I; z1s, z2¢) reduces to LR operator F(I,x1)
defined in eq. (3.6). Moreover, it is intuitively clear that the point splitting z12, serves as an
UV cutoff for the light-ray operator in this limit, at least in the leading log approximation.

One can define also gluino and scalar “Wilson frames” by similar formulas and write
down combinations but, as we mentioned above, we do not need their explicit form since at
small w’s everything is determined by gluon operators F7. Thus, we define Wilson-frame
operators (4.1) stretched in ny, ng or ng directions and calculate their correlator at small w;.
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Figure 1. Gluon “Wilson frame” operator.

Figure 2. Transformation of Wilson frame under inversion z,, — z, /2.

It should be emphasized that narrow Wilson-frame operators are approximately con-
formally invariant: if one makes the inversion around the point (0,0,0,a;) one gets the
long and narrow Wilson frame with somewhat distorted ends, see figure 2. However, since
we are calculating the correlators of Wilson frames in the leading BFKL approximation,
the logarithmic integrals are determined by the whole range of integration over u and small
corrections at the fringes can be neglected in the leading-log approximation. Thus, one
should expect the conformal formulas for the two- and three- point correlators of Wilson
frames in the limit of small width of frames of the same form as egs. (3.8) and (3.9).

; ! we,w,—0 C(v,A ;

/12A
2 ‘Zt_zt‘ ()
(4.2)
and
. w1 wn w2 w2 w3 w3
71 t t ]2 t t 13 t _ t
<.7:n1 <th+72 21, — ).7: (Z2t - 22, — >.7: <23t - , 23, - >> (4.3)
31+J2 Jj3—1 () 1+33 Jo—1 (ja) Jo+iz—ji1—1 (js)
2 2
wiy =0 |wy, [TV S13 |w, 712 S93 |ws, [V

.S
C(&ii) ,zl;jA(j1>+A(y2>—Au3>—1 213, | AU +AG) ~AG2) 1 | 2 [AG2)+AGS) Al 1
with point-splitting distances w; serving as UV cutoffs similar to cutoff i for the light-ray
operators in egs. (3.8) and (3.9).

Our goal is the three-point formula (4.3) but first I remind the derivation of the BFKL
asymptotics of two-point correlator (4.2) obtained in ref. [17] which will serve as a building
block for three-frame calculation.

5 Correlator of two Wilson frames in the BFKL limit

The CF of two Wilson-frame operators in Regge kinematics is calculated in the same way
as four-point correlator of local operators (T{O(z1)O(z2)O(y1)O(y2)}) in the Regge limit
TlngsYlng — OO, Tany, Yon, — —o0 and the rest of coordinates fixed. (Hereafter I use the
notation x,, = x-n). Let me remind the essential steps of such calculation (see e.g. ref. [36]).
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Figure 3. Rapidity factorization for 4-point correlator in the Regge limit.

5.1 Rapidity factorization for 4-point correlators in the Regge limit

Let us consider the correlator of four scalar operators?

A(m1, w2, w3, m4) = p (1 27523,) 0 (T{O(21) O(2) O(3) O(4) })
r1=un1 +x1,, T2=v1N1+T2,, T3=UN2+T1,, T4=V2N2+ T4, (5.1)

where -, is the anomalous dimension of O. In the Regge limit s1o = —2n7 - ny — oo and
z;, fixed. The amplitude (5.1) is a function of two conformal ratios which can be chosen
in the Regge limit as

2 .2 2
R _ .%'13$24 ~ U1UQ1)1’U2812

2 .2 — 2 2 )
L1234 L12,T34,
2 2 2 2 2 32
x%433%3 1 (uluz:U34l + V10977 — u1V2T5y — U1U2ZL'14L)
r=R|1- 575"+ 5| ~ 55 (5.2)
{75, R U UQVI V2T, Ty |
so that R increases with “energy” sio = —2n; - ng while r is energy-independent.® This

corresponds to the momentum-space definition of Regge limit s/mQL > 1 where mi is
a characteristic mass scale of the process, in our case the scale of inverse characteristic
transverse distances.

In general, the calculation of particle scattering in the Regge limit is based on the
rapidity factorization of the amplitude into the product of “projectile impact factor” with
rapidities close to those of the projectile particle, “target impact factor” with rapidities
close to the those of the target, and scattering of color dipoles encompassing the rapidities
in the region between projectile and the target, see figure 3. Technically, one expands the
T{O(z1)O(x2)} in the set of Wilson-line operators with the first being so-called “color
dipole” U(z1,,22,)

T{O($1)0<1‘2)} = /6122:1LdQZQL I(.lel,l‘g;ZlL,ZQL)TI"{U(ZlL)UT(ZQL)} + ...

Uz, ) =1 NiTr{U(zlL)UT(sz)} (5.3)

C

4For definiteness, one may think about Konishi operator @ = ¢%¢%.

5To avoid confusion, we reserve the notation a; for the component of the vector a orthogonal to three
light-like vectors m1,n2,n3 and use the notation a; when we discuss components orthogonal to the two
light-like vectors n; and no.

~10 -



where integration goes over z; orthogonal to both n; and ng, the Wilson line U is defined as
U(zy) = [oom +ZJ_,—OOR1+ZJ_] (5.4)

and dots stand for higher orders of perturbation theory and more Wilson lines. The ra-
pidities® inside the color dipole should be cut from above by characteristic rapidities in
the integrals forming the impact factor. To ensure conformal invariance of the rapidity

[43

factorization, one should expand in “ composite conformal dipoles” introduced in ref. [37].

T{O(.’L‘l)(’)(afg)} = /d2Z1Ld222L I(a:l, L2521, Zgl)uci?lf(zl, ZQ) + ... (5.5)
where
1
U (z1,29) =1 — ﬁTI'{U(ZlL)UT<22L)} + a x (four Wilson lines correction)  (5.6)

421 n, T2
— 272 is the conformally invariant rapid-
12 124

ity cutoff. The explicit form of the 4-lines correction is presented in ref. [37], but we do
not need it for the leading BFKL logs.
Since we are interested in Regge asymptotics, it is sufficient to consider highest eigen-

is a conformal composite dipole and Y4 = % In

value of BFKL intercept with spin 0. Defining a projection of the conformal dipole (5.6)
on Lipatov’s eigenfunctions [32] with spin 0, we get

1 .
2 2 2 QW
uY ( ): i d Zld %2 212 2 UY ( )
conf\V;20) = — 1 2 9 conf\?1; 22
™ 212 £10%20

l—l—iu
2
Z/{ggnf(zl,zQ) / dv /d2z0 <z o > Ug(/mf(z/, z0) + higher spins (5.7)
10720

and therefore one can rewrite eq. (5.5) as follows

- ) 7 i+
T19L1nyL2n Ya
T{O(x1)O /d zo/dy Ia(v — Q(xg—gzo)i U2 (v, 20). (5.8)
man o $2n2
Repeating the same expansion for the “target” we get
- ) 7 i+iv
T54%3n, T4 Y,
T{O(2)O(21)} = / e / b 1a) | Sty ) (s9)
L  T3ng o Tanq p
where Yp = %ln % and the conformal dipole V Onf(z/, 20) is defined as
T34,

1 .
2 2 2 W
VY (vyz0) = o [ LT ()T Y o 2y
conf\¥> 20) = 2 4 22 52 conf \#35 %4
34 30740

1
Viang(za,2a,) = 1= 5= Tr{V (25, )V (2, ) Yo (5.10)

In

=

5The definition of rapidity for the particle with momentum k = ani + fne + k1 is Y = %
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where Wilson lines V' are ordered along ny direction
V(z1) = [oong + 21, —oong + 2 | (5.11)

Now the 4-point CF can be represented as an integral of the product of two impact
factors I4(v), Ip(V') and the amplitude of scattering of two color dipoles. In the leading

2
BFKL approximation this amplitude has the form (o = gY—M)

4
2 N2 -1
Ul 20V, ) = ~ S 2L nsgtyanavs (5.12)
167> ) oo 2 s ()T (5 4 iv)T(1 — iv)
X m [5(20 —20)0(v +v') + Tlz0 — 224 F(iu)F(% _ iu) '
where . ,
N(v, g%) = 4g° {21#(1) — <2 + iu) — (2 - u/)] + O(g") (5.13)

is the pomeron intercept (3.12).

As I mentioned in the Introduction, in QCD only the o2 correction is known [19] while
in /' =4 SYM the ¢° term is known analytically [20-22] and many more can be calculated
numerically [20] using Quantum Spectral Curve method [38].

Assembling the result for the 4-point CF(5.1) one gets the result in the form of general
formula [39] for correlators in the “Regge + large N.” limit

Alwi) "2 3 [ £ ) F (G2 )0, 0) BN (5.14)

iR :
where f,(R) = £ is a signature factor and

v sin2vp
Q = — hp=
(r,v) 272 sinhp ’ cosup

m
o (5.15)
is a solution of the Laplace equation in H3 hyperboloid (8%{3 + 124+ 1)Q(r,v) = 0. The dy-
namics is described by the pomeron intercept X(g?, v) and the “pomeron residue” F(g2,v).
The formula (5.14) was proved in [39] (see also [23]) by considering the leading Regge pole
in a conformal theory. Also, it was demonstrated up to the NLO level that the struc-
ture (5.14) is reproduced by the high-energy OPE in Wilson lines [28, 40, 41].

5.2 Correlator of two Wilson frames in the Regge limit

The Regge limit for CF of two Wilson-frame operators means that longitudinal length of
frame is much greater than the transverse separation between the frames and the width of
frames is even less. As we mentioned, at small frame widths the frames are approximately
conformally invariant so one may expect that the general formula (5.14) is applicable. At
z3,5, 22, — 0 one gets

(ur —v1)?(ug — v2)*afy,

2 2
U1U1u202x12L 1‘34J_

(5.16)
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and

Q(r,v) — (Tﬁéﬂ.l’ — Tﬁé*i”) (5.17)

2724

Moreover, if we consider “forward” correlation function

ALV 2y, ), 03, , 74, (5.18)

o0
= / dvidvy A(lng + ving + r1,,v1n1 + xgl,l/ng + vang + T3, , VoN2 + 1‘4L)
0

the eq. (5.14) reduces to

2 2
Tig T34, —0

Al U2, w9, 03, ,24,) ll'i/du d(v, ¢?) (5.19)

1,/ 2
x2 1‘2 §+ll/ l2l/2 N(V,g )/2
% 12, 341 f (N)
.1U4 I‘Q $2 +
13, 12, 341

As noted in section 4, at small widths Wilson frames are approximately conformally
invariant so we need to obtain the representation of eq. (5.19) type for the correlator

/ /
Wt Wt w w
o 50+ = ) 7o (it + = ) (5.20)
at [,I" — oo (which corresponds to j — 1 < w — 0 after integration over [,1’). In ref. [17]
we performed calculation of CF of two Wilson-frame operators

w w w, w,

o (50 + = ) 7o (it + = ) (5:21)
in Regge kinematics in the same way as four-point correlator of local operators. In this
section I'll reproduce that calculation in a slightly different way useful for considering
3-frame correlator in the next section.

We introduce some “rapidity divide” Y; between Y4 and Yp and integrate between Y4
and Yy and between Yj and Yp in the leading BFKL approximation. After that, we need
to convolute the results with the leading order dipole-dipole scattering amplitude.

The first step is the expansion of Wilson frame in color dipoles. The impact factor
for Wilson frame, i.e. the coefficient of expansion of “Wilson frame” in color dipoles was
calculated in ref. [17]

N? 9
Follbzyr,y1) = Fgl d°zy1 {1 — Uz, z1) —U(z1,y1) (5:22)
Y, 2
1 A 2 d(x —z,y — 2)
+ U(J:J_v ZJ_)Z/[(ZJ_, yJ_) + O <> } - v
NS |@-R-27 @-2i-21

where the rapidity cutoff is

(5.23)
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by analogy with four-point correlator.” As explained in ref. [17], in order to calculate the
correlator of two Wilson frames we need to take into account only the linear terms in
eq. (5.22) so we can neglect the last quadratic term. To get the evolution of dipoles in
eq. (5.22) from Y4 to Yy we project onto Lipatov’s eigenfunctions, i.e. rewrite in terms of
conformal dipoles and evolve these conformal dipoles in the leading BFKL order.

The projection of eq. (5.22) on Lipatov’s eigenfunctions with spin 0 reads

Fnll; mJ_73/J_ (5.24)
B Vo 2, 2 _4(3:—23/—2)2L
o )[4 L[@c— NR-21 @-2i- ﬂ

X l<<x_§z;a<z>§ 2 ()]

7r3l

) — 14w
Ne [, V254 W/d% [ 2(z — 20,y —20)7 1] [(z = )] 2 Ueont (v, 20) "
BV (r =201 =201 @ —20)2)2" [y 23]+

where we used eq. (4.11) from ref. [17] to get the last line.
Moreover, in the limit of narrow Wilson frame (x —y); — 0 the integral in the r.h.s. of
the above equation can be simplified. Using egs. (C.4) and (C.6) from ref. [17] one easily

obtains
1y, 14
PO T S B () o 2\

0 ($ — 20 — Zo _ 2 %-HV _ 2 %—&-iu 22 52

[(z — 20)7] ((y — 20)7] 10720

o }
1 2 2 92 %—il/
ey AT (53—)" 4 odi ( — )T |z — y|*21,
21/(1 2 ( —|—21/)F (x — 21)%(x — 22)?2
5 +iv) 1 2
. L
i —44v (% ) _“/) < ‘.%' - y‘QZ%Q ) o (525)
o ['(3—iv)T(iv) \ (= —21)*(z — 22)?
Recalling the definition (5.7) of Ueons and substituting eq. (5.25) in eq. (5.24) one gets
wt) N2 / 274 (3 + i) (1 — iv)

w
Fa i+ S (w}) ™ UYA(z1, )

2/ ¥ L2 —i)I(1+iv)
(5.26)
The BFKL evolution of a conformal dipole reads
Usohs (v, 20) = VAR (0, 20) (5.27)

so the result of integration over rapidities in the region Y4 > Y > Y} is

Wy Wy
Fo (l;zt + 5%~ ?)

’iN2 2- 4’LVF( + lV)F(l — ZV) 2
B 2 p 7+w (YA Yo)R(v,g9 )L{YO — 5.28
Rt / . () (w?) "2 cont (2t =) (5.28)

where Y4 :lnl—i—%ln‘;%

U(L;))Sm with additional intergation
€

over u. However, in ref. [17] it was demonstrated that in the leading log approximation this cutoff can be
replaced by (5.23).

"Strictly speaking, by analogy with four-point correlator we get 5 Ln
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Figure 4. Correlator of two Wilson frames in the Regge limit.

Repeating the same procedure for the bottom part of the diagram in figure 4 one
obtains the result of integration over rapidities Yy > Y in the form®

/ /
Fo (V52 + 22 20— ket (5.29)
2 2
. 4 (3, - .
N2 /du’ V/2 W& 4 \T(1— i) (w/2) 3+ o YBIRC g Yo (1 )

Il r(3 —i/)T(1+ir) t conf

where Yp = Inl’ + %ln 2)122.

/
t

Using now the result for scattering of color dipoles in the leading perturbative order?

US s (—v 20) VS (V' 20) (5.30)
_ 247T2( B N%?) 4w (y — ) T(5 — iv)[(1 + iv)

§(20 — 20)0(v + V') —iv

=—Q 50— ,
v2(1 + 4v2)2 |20 — 26|24 (1 — i) (5 + iv)

we get the result for correlator of two Wilson frames in the form of eq. (5.19) type

! !
(Fny (l;zt + %,zt — %) Fs <l’;z£ + %,z,ﬁ — wt>)

.gQNCQ / 93—4iv,, F(% 7y
= —i
377! 1 . 1 . \3 3 _
ol (3+iv)(3—iv)’ TG
Q2NC2 / 23—4@'111/(”/812)N(1/) F(% sy
= —1 14
377/ 1 . 1 . \3 3 _ .
il (5+iv)(3—iv)’ TG -
8The difference in signs of Y4 and Yz in eqgs. (5.28) and (5.29) is due to the fact that replacement
n1 <+ n2 should be accompanied by changing the sigh of the rapidity: In £ = —1In %
9As usual, we stop the evolution of color dipoles from upper and lower parts of the diagram in figure 4

at the points Yy + 6 and Yo — 6. The small § is such that the relative energy ss = m?2 % is greater than
the characteristic transverse scale m2 but ¢2In YZ—‘% = 2¢%5 < 1. In this case, one does not need to include
€

. 1,
1—v (wfw’f)*ﬁﬂl’e(YA-FYB)N(V,gQ)

(1-iv)
(i) (= 2P
(1—iv)
T+ )

2 /2)—%+iu—%N(V,g2)

Q)
g

(5.31)

~— | — — [ —

(G = PP

evolution between Yy + 6 and Yy — § but can still use the three-level formula

1 2 2 2
<U(Z1L7Z2L)V(ZSL>Z4L)>:—<1—N2) Qs 4 2 #13, %24,

2 2
8 214, %23

which translates to eq. (5.30) after projection on spin-0 eigenfunctions.
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Note that the “rapidity divide” Yy disappeared from the result. Moreover, the scattering
amplitude (5.31) depends only on product of [ and I’ which is a reflection of boost invariance
of the original amplitude (4.1): it is easy to see that if one makes boost n; — An; and
ng — %ng the correlator (4.1) does not change. Now we shall see that this property leads
to the d-function in the correlator (4.2).
Indeed, the integral over [ and I’ have the form
2772 o0
(Fi (zt + 2t - 7) 7 ( + —, - “Q’t>> - —z’ggc /0 didl’ 1791 (5.32)
< 0 <”, N W) /du V234 (11151, R0 T(3 4 i) T (1 — iv) (wlw'?) 2= aR00%)
512 ( + w) (l — w)g F(% - iV)F(l +iv) [(2t — 21)?] 12w

_1\2
where the factor 9(ll’ — %) comes from the restriction that the longitudinal size of
two Wilson frames should be greater than the relative transverse separation. !’

Performing the integration over [ and I’ one obtains where j = § + i and j/ = 3 + i<’
2 2 oo
, Wy w) w) N
]:J< zt _7)}"] 2o Y — (e — /d
(P Zt+2 ' 2 +2 1t 2 ) i0(s g) w2 _OOVM—N(V,QQ)
y2474i1/ 41.)2 1"(5 + ZZ/)F(l _ ,“/) (w?w/Z)_l+iu—lN(y792)

" (L +iv) (L —iv)’ T(§ — )DL+ i) [(z — 2)2 2 —R09?) (5.33)

Next, we analytically continue this formula to small w = j—1. To estimate this integral
at small w’s it is convenient to rewrite it in the variable & = 2iv — 1.

wt —1+io00 dé— 1

NG Py T P Y el S
(Fa, zt+2 Zt <t+2 T ) =0c=<)g N —1—ico 2T w—R(£,g?)
_ R 2

05— 25775 o (wgw/f)%

" s (1= 51 (1+5) [t rore e (5:34)

The notation here is
Re) =x (<55 ) =g [ - v (<5) v (14 5) |+ ot G39)

and we often omit the ¢? dependence to avoid cluttering of the formulas.

At small w?, w’ f we can close the contour of ¢ integration on the residues in the right
half-plane. The two leading poles are located at ¢* = R~!(w) and £ = 0. Let us consider
them in turn. Taking residue at £* = X71(w, g?) we get

. w/ w/
<]:TjL1(Zt+2 Zt_7>f] </_’_2t’21/5_2t>>
252 st (wpu'}) 7

=6(s —<")g*N?

¢ §*2 Sin7r§*1“2(1 — %*)IQ(% + %*)N’(f*) [(z: — 2))2]2+¢€ (5.36)

10T his the s > m? requirement for applicability of BFKL approximation recast in the coordinate-space
language, see the discussion in ref. [17].
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Comparing this equation to general form of two-point correlator of light-ray operators (3.8)
we see that £* — w can be identified with anomalous dimension 7 so we finally get [17]

, w w o w) w)
F (G g) (A - )
_og* 2\ 2
252 gt (i)

=6(c —<")g*N? i * *
( )g 5*2 sinTrf*l—‘Q(l — %)f@(% + %)N’(f*) [(Zt _ 22)2]2‘*“*’4"7

(5.37)

where 7* is a solution of the equation (3.11) and £* =~+* +w = A — 3.

Note that this formula is actually at the NLO level: in the leading log approximation
we just get w = N(7*) and [(z — 2/)?]7277* in the r.h.s. of eq. (5.37). The reason that we
got the NLO equation (3.11) is that we used Y4 = Inl+ 3 In s12m? — 1 Inm? w} where the
last term exceeds the LLA accuracy. As demonstrated in ref. [17], we can do this using the
exact formula for the 4-point correlator (5.14). Unfortunately, for the 6-point correlator
there is no such formula so we cannot promote our LO BFKL calculation to the NLO level.

At > < w < 1 we get &, ~ —8% (recall that N(§) ~ —8% at small &) and therefore
the result (5.37) takes the form

/ /
(oot o= ) AL (4 = )

2’ 2
N20s¥ ( /)2 s 1
ws 2 — 2 w
~_§ 7 c 12 t 5.38
b R N T 3%
which agrees with eq. (4.17) from ref. [17].
Let us consider now the pole at £ = 0. At small £
1 13 Ew )
—~ = 1 —-== 4 ... 5.39
w—R(E) 8¢ < 8¢ (539

so the residue at £ = 0 yields

S(w— ')

1+ —=1
27l — )7 [ W "

Thus, the result for diagrams in figure 4 is a sum of eq. (5.37) and eq. (5.40). However,
there are two low-order diagrams shown in figure 5 that are not included in this result since
the formula (5.22) is correct starting from the second order of perturbation theory. These
diagrams should cancel the contribution of the £ = 0 pole (5.40) so the final result (5.37)
has proper conformal behavior. The tree-level diagram in figure 5a is calculated in the
appendix A and the result (B.3) is minus the first term in the square brackets in eq. (5.40).
Similarly, the contribution of diagrams in figure 5b should cancel the second term so the
contribution of all diagrams (in figure 5 and figure 4) is given by eq. (5.37).
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Figure 5. First (a) and second (b) order diagrams for the correlator of two Wilson frames.

6 Correlator of three Wilson frames in the triple Regge limit

6.1 Triple BFKL evolution

To get the structure constant in eq. (3.9) at w; — 0 we will consider the correlator of three
gluon Wilson frames aligned along ni, ns, and n3 directions:

w1,
2

. wlt
(FiL (Z1t 02—

. w w ;. w w
5 )F%QQ <Z2t+%722t_%>"r@ <Z3t+i7'z3t_i>> (61)

2 2
A typical diagram is shown in figure 6.

As usual, we assume that longitudinal lengths of frames are much greater than the
transverse separations between the frames and those separations are much greater than
widths of the frames. The form of the three-point correlators of light-ray operators (3.9)
suggests that this correlator is determined by three BFKL evolutions. It will be demon-
strated in this section.

The method to obtain BFKL asymptotics of a scattering amplitude by evolution of
Wilson lines is the following. In a typical amplitude like shown in figure 7a we separate
the (gluon) fields according to their rapidity, using the fact that particles with different
rapidities perceive each other as Wilson lines, and study the evolution of these Wilson
lines with respect to rapidity cutoff. Since we have now three light-like directions, it is
convenient to introduce “triple Sudakov variables”

Ak = YOO8 g 1B dk, (6.2)

k = ani + Bno + yns + ke, 5

and consider factorization in all three of them.!!

Similarly to the analysis of amplitudes in the usual Regge regime we assume that all
k? ~m?2 where m? is of order of (inverse) transverse separations between Wilson frames.
Also, we assume that all s;; are of the same order of magnitude s >> mf_.

The key observation is that as long as there is a sufficient rapidity space for the
evolution of each of Wilson frames these evolutions are the same as for the two-point
correlator of Wilson lines. To demonstrate this, consider the evolution of ni-parallel Wilson
frame schematically depicted by the upper gluon ladder in figure 7b. It is convenient to

1 As defined in section 2, n; are light-like vectors with s;; = —2n; - n; and k; is orthogonal to all three
of them.
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Figure 7. Triple BFKL evolution.

relate “triple Sudakov” variables (6.2) to usual Sudakov variables
k=adani+ fBng + ko

where we chose the second light-like vector as

~ 513 512 ny
nG = —nN2 + —nN3 — —(
2823 2823 4

so that —2n; -1 =35 = % We can rewrite eq. (6.3) as follows

k = any + Bia + ké + ke

< 2y — ,/ o1 ) &=1
S 513523

12823
The relation between variables (6.2) and (

g
a+4,

where

= 823 523 = 1 593
/B /8 9 k =3

512 2\ s12513

a =

(5812 - 7813)
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As we will demonstrate below, characteristic k are of order of m | (see eq. (6.31)) so we

can define
2 =k 4+ k2 ~ m? (6.8)
In terms of these variables
k2 = k2 —aps (6.9)

and the evolution of the ni-parallel Wilson lines looks like the evolution considered in
section 5.2 for the two-point correlator of Wilson frames. Thus, we can recycle the re-
sult (5.28)

Fnl (ll;xlt + %Jxlt - %) (610)
iN2 / 274D (3 i )D(1—dvh), o 1.,
= dv v w?,) 2T =YD M (o ,—V
w3y t F(% — iyl)f‘(l + i) (wi,) Conf( 1t 1)
where in the LLA Y7 = $1n l—z ~1Inly + 3 In§m?3 and Y/ is the rapidity (51 %) at which
Wit

we stop the evolution.

To strengthen these coordinate-space arguments in favor of BFKL evolution in the
triple Regge limit, it is shown in the appendix A that the standard momentum-space
calculation of one-loop diagrams in the triple Regge limit reproduces the first rung of the
BFKL ladder for color dipoles.

It should be noted that the arguments in favor of BFKL evolution in the triple Regge
limit presented above are somewhat general, so in the appendix A I confirm them by a
standard momentum-space calculation of one-loop diagrams in the triple Regge limit which
reproduces the first rung of the BFKL ladder for color dipoles.

The explicit form of the conformal dipole (5.7) in the coordinates z; and Z reads'?

1 letdgleQtd22
us (v, x E/N 6.11
conf( 1 1t) 2 (Z%2t+z%2)2 ( )
1 .
2 52 3~
219t + 212 ) 2 a . .
X U (z11e4 + Z1€, 29164 + Z9€
(e a (Fieee + 216, 2mee o+ 2€)

Repeating the same procedure for the frame parallel to ny we get
w9 w9
Fny <l2; T + Tt,:m - 7'5) (6.12)

iN? 2” 4“’21“( + o) D(1 — ivo) vy
— d —*+le2 (Y2 -Y! )N(VQ)V ’_
7T3l / Vo 2 3 “/2)F(1 T iVQ) (w2t) conf(a’?t 2)

Here Y5 ~ Inls + %111 émﬁ_, Y, is the rapidity at which we stop the evolution and
ngtd53d24td§4
(234 + 234)*
1
X ( 24y + 34 > o
(22 — 23)F + Z][(z2 — 24)7 + Z]]

12 As mentioned above, in the LLA Ucons (21, 22) can be replaced by U(z1, 22).

1
Vgonf(y27$2t) = 7{_2/ (613)

V*(z3er + 23, 2arer + Z4)
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Figure 8. Three Wilson frames in the leading order (“a”) and at the one-loop level

(“b”+“c” +permutations).

where V is the conformal dipole with Wilson lines parallel to no and

y 512 523 o _ 512523
é=|ns - , 8= (6.14)
513523 512813 513

Note that the transverse plane ey, é for the evolution of second frame is different from the

transverse plane ey, € for the first frame.
Similarly one can get the result for the evolution of the third frame in the form

W3t w3t) (6 15)

Fos (53;$3t + 7355375 Y

iNZ / 274 (3 4 jug)D(1 —dvs), 5 1, . o
dvs v Sivs o (Va—Y)Rws)¥s (o .
2 F(% - iV3)F(1 + ng) (wgt) conf( 3t 3)

3l

Here Y3 ~ Inl3 + %ln émi, Yy is the rapidity at which we stop the evolution and

(6.16)

1 dz=rd3=dzerd?
Weont (v3, x3¢) = /MM

2 (Z§6t + 5%6)2

1
X < Zg(ﬁt + 2%6 ) T8
(23 — 25)7 + 23] [(x4 — 26)7 + %3]

where W is the conformal dipole with Wilson lines parallel to n3 and

&= <n 523 n 513 > 5= 512523 (6.17)
= 1 — 12 ) = .
512513 512523 513

After three evolutions (6.10), (6.12), and (6.15) we get the correlator of three dipoles

s

a ~ M~
W (zseer + 25, zerer + Z6)

~

(U (21061 + 216, 201€4 + Z0€)V (23164 + 23€, 2arer + 2a€)W (25061 + Z5€, z6ter + Z6€)) (6.18)

with Wilson lines parallel to ni,n2,n3 and rapidity cutoffs Y{,Y;,Yy. Moreover, one
can think about color dipoles uYi , VY , and WYs as long Wilson frames with lengths
= el /mi§ etc., see figure 7b. We start the evolution with very long frames and evolve
with lengths of these frames. We should stop the evolution if an extra loop in diagrams
in figure 8b and figure 8c does not bring an additional BFKL logarithm in comparison

to the tree diagram in figure 8a. This happens when the relative energy of each pair of
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Figure 9. Three BFKL loops.

dipoles becomes compatible with m , or, in the coordinate space language, when the char-
acteristic longitudinal distances are of the same order as the transverse ones so the BFKL
approximations break down. For typical diagrams like in figure 8b or ¢ the characteristic

longitudinal separations are ~ [ils;; so the condition is ~ [}’ > m218__. Thus, the three
1°
BFKL evolutions in diagrams in figure 7b terminate at the rapidities
1
115 > — & Inli+Inly,>-Inmispy < Y/ +Y)>0
mJ_Slg
1
1l > — & Inlj+Inly>—-Inmisz & Y] +Y{>0
m7 s13
1
lyly > — & Inly+Inly > —Inmisyy < Yy +Y{>0 (6.19)
m- s23

where Y{ = Inlj + Indm?, Y5 = Inl) + $Indm?, and Y = Inl} + JInsm?. We see
that the rapidity at which we stop the evolution of the n; dipole depends on the where we
have terminated the evolutions of the second and third dipole which means that we need
to integrate over all possible choices of “rapidity stops” Y;:

(U ((w1e, =11 V22 (o, —va) Wos (war, —vs)) & (6.20)

1 Y1 Y Y3
= I [ o [ avg [ avg (e e )

—00 — 00 —0o0

X e(Yl_Yll)N(%)e(YQ_YZ,)N(%)e(Y3_Y3,)N(V3) <uconf (xlty _Vl)vconf(-%?t: _VZ)Wconf(xl’»ta _V3>>tree

The weight of the integrations can be figured out from the evolution equations for conformal
dipoles up to an overall constant which will be determined later to be %. The factors
N(v1)R(v2)R(v3) can be understood by considering the lowest-order diagram with three
BFKL evolutions shown in figure 9. The three integrations over «, 3, and « in figure 9 for
conformal dipoles bring R(1;) [dY; for each of them so we get

Unghe (@16, =) ViR (@20, —v2) Wik o (was, —13)) (6.21)
Y1 Y2 Y3
~ N(yl)N(u2)N(y3)/ dY{/ dYQ’/ dYs 6(Y] + Y3)0(Y{ + Y3)0(Y; + Y3)

X <uconf($1t7 _Vl)vconf(x%a _V2)Wconf(w3ta _V3)>tree
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Combining the equations (6.10), (6.12), (6.15) and eq. (6.20) we get

; Wiy way w w
(FL <$1t+ 5 =T1t—7>.7:j2 <$2t+ 5 $2t—7)]‘—]3 ($3t+%,$3t—%)>

o0 3 4Zl/k _
/ Qln l_w"/Hdl/k I/k2 F( +ZVk)FF1 le) (’LU]%Q_%—HV’“
D(3—iv) T (1+ivg)

1 Y1 Ys Y3
><4N(y1)N(y2)N(u3)/ le’/ dYZ’/ dYy 0(Y{+Y3)0(Y{+Y3)0(Ys+Y3)

X e(Yl _Y{)N(Vl)e(Y2_Y2,)N(V3)e(Yg_YS’)N(W)) <uconf (l'lt, _Vl)vconf(l?t’ _V2)Wconf(x3t7 _V3)>tree

(6.22)

This result is the integral over vq, 9, and 3 of the product of longitudinal and transverse

integrals which we will consider in turn.

6.2 Longitudinal integrals

Let us integrate the correlator (6.22) over /; according to the definition (4.1) of the “frame

oo ) oo v wy

—wy— _ ~  2\Y
[t [ v ey
0 —00

(and similarly for Y5 and Y3) we get

with spin j”. Since

/ dY1dYadYs e 1V 1—w2Ya—wsYs (5,25 (502 )F (5m2 )3 (6.23)

- Y1 Y2 Y3

x/ le’/ de’/ dYs 6(Y] +Y3)0(Y{ + Y3)0(Y; + Y5)
c(N=YIR(1) (V2= Y§)N(v3) (Y= Y{)R(v3)

witwg—w3 wjtwz—wy wotwz—w]
2 2

—w1—wy—w3

_ As19 * s13 523 my
(w1 + wa — ws) (w1 + ws — wa) (w2 + w3 — wi)[wr — R(w1)][wz = R(2)l[ws — R(vs)]
w]twg—wg w1 twg—wo wotwgz—wy
)™ ) g

7 (wr + wn — ws) (wn + ws — w2 (wa + ws — wi) w1 — R(v1)][wa — N(v)][ws — R(vs)]

We have replaced the transverse scale m 2 by z? ¢+ in accordance with general formula (3.9)

and the result (B.10) of explicit first-order calculation performed in appendix B.!3

I are of general nature

Also, as discussed in ref. [27], the singularities (w; — w; — wg) ™~
since they arise from the fact that the correlator of three Wilson frames (4.3) acquires

boost invariance as n; — ny. This property is discussed in appendix C.

13This replacement is within the LLA accuracy and, moreover, I think that at the NLO level one will get
the third line in eq. (6.23) similarly to the case of the two-frame correlator considered in ref. [17] where the
calculation at the NLO BFKL level reproduces the correct arguments required by general formula (3.8).
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Figure 10. The structure of correlator (6.25). Straight lines denote “propagators” (z2)* or

(i — %)) ?

6.3 Transverse integral

Using eq. (6.23) of previous section, one can rewrite the result (6.22) as

(Fit (xlt + My, - @) Fi2 (HCQt + 2 gy - 7) F ( T3+ oy — @) )
2 2 2 2
V2~ 4%1“( + i) T(1 — ivy) 1
72— dvidvady w?,) 2Tk
/ ! 2 3 H 5 — ZVk)F(l -+ ZI/k) ( kt)
witwy—ws witwg—wy L watwg—w
N oot ) ) P )
(w1 —+ wo — wg)(wl + w3 — (UQ)(LUQ + w3 — wl)[wl — N(I/l)][O.)Q — N(l/g)][wg — N(Vg)]
Y/ Y. Y. r
X Ueane (@16, V1) Vogp (20, —v2) Wi (e, —v5)) ™ (6.24)

where the correlator of three conformal dipoles in the last line should be taken in the tree
approximation.

To calculate this correlator, we rewrite conformal dipoles in terms of usual ones

Y.! /letdgleQtdgz (6 25)

Y! Y.
0 <ucolnf(x1t’ _Vl)vctfnf(x%’ _VQ)WCOBHf (‘T?’t’ _V3)>tree = 2 22 \2
(219 + 212)

1 .
/dZ3td53dZ4td54 dzsedzsdzed ( 23, + 32 )2* i
(284 + 2307 (286 + 226)? \[(z1 — 20)7 + 2{][(x1 — 22)7 + 23]

x ( 2y + 2y ) 7+ < 286, + 236 ) s
(2 — 23)7 + Z3][(w2 — 24)7 + %3] (23 — 25)7 + 23][(x3 — 26)7 + %]

X (U(z1ser + 218, zares + 208)V(23ies + 236, 2arer + 548)W(zsies + 256, z6ter + Z6€))

This integral is illustrated on figure 10.

Using the leading-order correlator

(l’ — y)m (CU — y)m
ny-n2
(6.26)

([oony +x, —oony +z][oony +y, —oona +y]) = iast* @t In | (z — y)* — 2
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one easily obtains

<U(21t6’t + Zlé)V(Z;),te’t + Zgé» = o, @t ln[z%?,t + (51 + 53)2],
(U(z11er + Z16)W (z51es + 25€)) = iagt® @ t* ln[z%t +(Z + 25)2],
(V (z3tes + 238)W (z50€s + 25€)) = iast® @ t21n[225, + (%3 + 25)°] (6.27)

and therefore the tree-level correlator of three color dipoles reads

(U (z11e1+21€, 2o+ 22€) V(230614 238, Zarey +545)Wa(25t6t+25é, zetet+26€))

s NZ-1 I (235, + (214 23)%][234, + (Zo+24)?]
NS [+ (B 2)?) 23+ (B2 23)?

—iQ

]

2 S \211.2 = 2 9 2 \21(.2 ERY

<1 (225, + (214 25)?] (236, + (Z2+ Z6)? ]1 [235: +(Z3+ 25) 246, + (Z4+26)°] (6.28)
M 212 (a2l T2 v 2212 (5 a2 :
[276: + (21 +26)?[255: + (22 +25)2]  [23;+(Z3+26)2] (2454 + (22 +25)?]
One obtains
<uc0nf(x1t7 _Vl)vconf(mQty _V2)Wconf($3ta _V3)>tree
N2 -
. 3%
= - I(:Ultath;xfit; v, V2, V3) (629)
¥ N3nb

where
dzltd,%l dZQtd22 ngtd53d24td54 dZ5td25d26tdZ’6

(230:+282)% (2345 +23,)% (236 +236)?

I(ﬂflt,$2t,$3t;V1,V2,V3)Z/

X < 2941212 ) atin < 23441234 > 2t
(21 —21)7 +27][(21—22)7 + 23] [(w2—23)7 + 23] [(w2—22)7 + 2]]

X ( Za6+ 256 )2*“’3 (2734 (214 23)%] 254+ (B2 + 24)°]

[(w3—25)7 + 28] [(23—26)7 + 73] (24 (21 +22)2] [233,+ (22+ 23)?]

[25:+ (214 25)* ][226t+(22+z6>2] [235t+(23+25) 2361+ (2a+26)*

(261 (21+26)? ][225t+(22+25)2] [236t+(z3+26) 235+ (2a+25)?

‘ln (630
The structure of the integrations in this equation is the following: each conformal dipole
evolves in its own “transverse plane” and the obtained dipoles interact by logarithmical
correlators (6.27). Fortunately, the integral (6.30) coincides with an usual two-dimensional
integral in the (formal) (z,y) plane

d?z1dP 2o d?z3d?zy d?z5dP 26

I($1,$2,$3;V17V2,V3)=/ 1 7 T
%12 %34 56

2%2 %4‘11/1 22 %Jrilxz Z%ﬁ 5 +iva
X
<(I121 2(1?122)2> <(952 23)?(12—24)? > ((55325) r3—26)>
2

) X
<1 [Z%3x+(21y+z3y)2][Z%4x+(z2y+z4y) ]ln [Z15:c (Zly"‘zf)y)z”'z%(ix (z2y+26y) ]
(23 40+ (219 +249) 2] 233, + (22y +23)?]  [2560 + (219 + 26y )] [235, + (229 +25y)?]
1 [Z§5m+(z3y+z5y)2][236x+(z4y+26y)2] (6.31)
XA 2012 2 :
(2365 + (23y + 26y ) *] 2455+ (2ay +25y)?]

with z1, = 29y = 23y = 0, see figure 11a.
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Figure 11. Transverse integral. Solid lines denote usual “propagators” of the type (z; — zj)”‘ and

dotted lines expressions of the type [(z; — z;)2 + (2 + 2;)3]*.

Next, we use formula

1

1, ., . .
a2 4 B wllm—z) T (@)
24 (1—21)%(w1—22)2 0223 = 1 . \2 2 a

) 1—21)% (71— 22 (3—in) 13

2

and rewrite it by changing sign of 23, as

1, .
d?z 22 atw
Jo( b ) e+ Gt )

212 (z1 — 21)%(w1 — 22)*

ml(zg — 21)? "2~ x1 — 23)2 2=
- L [(zfgx(l 2 )> —1] (6.32)

(§ — iz/l) + (214 + 23y)?

Using this integral and similar integrals for integration over z4 and zg one gets after some

algebra (see figure 11b)

I(,’L’l,{L'Q,.’L‘g;l/l,UQ,U3) (633)
. 8w 3 / d221 d223 d225
(L—in)?(3 —zu2)2 (L—iw)? ) (@1—21)* (22— 25)" (23— 25)"

l .
—5tws

_,+ .
GETRA Zly+z3y " [ P50t (23y +25y)° } . [ se T (21y +25y)°
(1‘1—21 1‘1—23 ZL‘Q—Z3)2(ZL‘2—Z5)2 (1:3—21)2(173—Z5)2

To calculate this integral, we can take z; = 0 and perform the inversion x; — % to obtain

inv .
I (z1, 20, 23;11,V2,13)

_ 873 (23) 1 +2iva (42) 142 /d2z1 Pz &2
(%_ZVl)z(%—ng)Q(%—iyg)z (1‘2—23>4 (1‘3—2’5)4
1. a1
X (25 + (21 + 25 >2J—5+i”[ngmgww] 2+W2[Z%5“(Zly+%y>2 vy
13z Y Y (172_23)2(x2—25)2 (1‘3—21)2(1‘3—25)2
&6 (2)1+2iv2 (2)142ivs (4.2 — i —rva—w3)
__°o7 (z3) (23) (z33)"2 Ar v, vs) (6.34)

(3-i)" (3—i2)" (3~ ivs)”
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where

d? d?
A(V17V2,V3)E(x§3) —i(v1—v2— V3)7r /d2 ( <3 %5

1‘23*23)4 Zé
2 21-144 23 RN B
X (213, + (214 F23y)7] 2T { } []
[ 13z ( Y y) ] (x23—23)2($23—2’5)2 2%252’
1 d?zg  d?
-3 @2y 1 i5
™ (1—23)* 25

2 21—L 44 Z%s R Z%5 R

where “1” in the denominators stands for the vector (1,0). This integral resembles the
integral for function 2 defining three-pomeron vertex [31], only with “modified propagator”
(235, + (219 + 23y)2]_%+“’1 instead of usual [2%5, + zf3y]_%+i”1 in ref. [31]. The function
A(v1,1v9,v3) can be represented as four-fold Mellin-Barnes integral, see eq. (6.40) below
and eq. (D.13) in appendix D.

Performing inversion of eq. (6.34) we get

A(v1,v2,13)

(5 — i) (5 —ire)" (3 —iva)”

X ()3T (@) T I (g ) ma i)

. _ 6
I(xltax2t7x3t7 Vi, V2, I/3) - _87T

(6.36)

so that
<uc0nf(x1t7 _V1>Vconf($2ta _VQ)Wconf(xiita _V3)>tree (637)
S 1t 1 _
= 81a3N2 A(vy,v9,13) (79) 2 it V3)(33%3t) 2 it 2)(x%3t) 2~ Hvats =)

N3 (3= i) (5 — )5 — iv)’

6.4 The result

Substituting the transverse integral (6.37) into eq. (6.24) we get

; Wi w2 w
(Fi ($1t+ xlt_i) F2 <$2t+ & 117215—7) T ( 3t+ «TSt_ﬁ)>

2 2 2 2
64g N2 / D dind Hyz 4wkI’( —Hl/k)F(l—in)( 2)_%”%
1%4K01%X00% w
e T (3 —ivg)D(1+ivy) i
w1+w2*w3 witwz—wo watwz—wq
SN () () "5 ()

x (w1 +wr—ws) (w1 +ws—wa) (wa+ws —wq ) [wi —N(v1)][we —R(v2)][ws —R(v3)]

2 \—i—i(vitve—13) (2 \—s—i(vitvz—ra) (2 \—=—i(vatuz—r1)
X(m12t) ’ 1 (.x13t2) 12 - 21 .(xQ?ét) ’ A(V17V27V3) (638)
(=) (3 —ire)" (3—ivs)
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To estimate this integral at small w’s it is convenient to rewrite it in variables v; = 2¢v; — 1.
Defining R(7;) = R(1;) and A(v;) = A(v;) we get

. w1 w2 w3t w3
(F ($1t+ ! xlt—f)f” (902t+ 2t 1'27&_7)]:]3( T3+ —-, 3t—7t>>

2 2 2
w1 twg—w3g ) wqtwz— ) wotwz —wy
Csfeeeny BB T
023 0,235,255, (wl+w2—W3)(w1+w3—w2)(w2+W3—w1)
e (e e (-3
x [ dmdyadys H N (EE e
—1—ico 2 2T 792 )7k

&(71)N(72)N(73)A(71,72,73) w?, 2, ki w32y, 3 Wiz, 3
[wl_&('Yl)][W2—&(’72)][w3—&(73)]< ) ( ) <x%3t$%3t> (6.39)

where contours over real v; transform to the contours parallel to imaginary axis since
i = 2iv; — 1. The function A(v;) (defined by eq. (6.35)) is represented in appendix D as

2 2 2 .2
L1o4X13¢ L12¢X23¢

sin® ey sin® e

m3sinm(ex + €3)2(eg

Aler,e2,€3) = — )1(61,62,63) (6.40)

where A(e;) = A(v;), ¢ = —% and

I(e1, €2, €3) (6.41)
_ / dondsadssdsa p g g)D(s)T(s2)T(er — 53— 54)T(s53)D(sa)
o (2m)
y F(Eg —1- Sl)r(sl + ) F(l + €3 — 53)I‘(—1 + 53)
I'(e2) I'(e3)
o I(ea — 1 —s4)T(1 — €1 — €2 + S3+ S4)
[(—e1 + s3)
o P +e =)l — e —es + 514 53) ea — 51)L'(es — s3) [z — 52)['(e — 54)
I'2—¢€+s1) (2 + €3 —s1 —s3) ['(e2 + €3 — 59 — 54)

is a four-fold Mellin-Barnes integral with the contour C specified in the appendix.

In the limit wiQt — 0 the contours of integration over ~; can be moved to the right so
the integrals are determined by the residues lying on the real axis to the right of point
v; = —1. As demonstrated in appendix D, the function A is regular at small ;

A(yi) =14 0(7) (6.42)

so the analytic structure of the integral (6.39) is determined by the poles in I'-functions
and in [w — R(7)]~! denominators. The leftmost of such poles are located at +; = 0 and at
v (wi, g%) = roots of equation (3.11) which simplifies to

= R(vi, 9%) = 4¢ [2¢(1) — ¢ (—%) VY (1 + 722)] (6.43)

in the leading log approximation, see the discussion in section 3.2.
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First, we consider poles at v, (w;, g%). Taking residues in these poles we obtain

. W1 W1t w3t w3t
<]'7111 <5E1t+ 5 1‘11‘,—7).7]2( 2t+ 5 3321‘,—7)]:]3 <$3t+7ax3t_7)>
witwy—w3 witw3z— wotwgz—wy
S S13 EPR
gy () ) e
3230, 134,034, (w1 Hws—ws) (w1 +ws —wa) (wa+ws—w1) e

3 £\ —27" o 17 e
><H (14‘%)2 Vkr(2+7k)r(§_7k) (w%ﬂ%?,t) 2 <w%tx%3t>

k=1 F@‘%)F(%?Llf)ﬁ%/(ﬁ)

ol o

U}2 $2
< K 122t> (6.44)

L13¢X23¢

N %
oo %

2 .2 2 .2
L12¢X73¢ L1904 X23¢

Let us present this result in the & <<1 limit. In this limit R(y) ~ 852 (seeeq. (3.11)) so

. w1t w1t waot wWot wst wst
<Jt,]111 («Tlt + — 9 y L1t — 7) er («T2t + — 9 y L2t — 7) Jrjs («T3t + 77«7731& - 7) >
w] two—w3 w]twz—wy wotw3z—wj
$12 2 513 2 523 2
- 2 wWiwowg | 5= —5= —5=
Z(Nc - 1) 12 S(ﬁm) (x%Bt) ("L’%&s)

Bl 7734”%2#%3#%:% (w1 + w2 — w3) (w1 + w3 — wa) (w2 + w3 — wy)

*

71 3
2.2 5 2.2
W1 X3¢ W13t
% 1’2 1'2 562 1‘2
12tL13¢ 12tL23¢

73
2
(10239312% ) [1 10 <g )} (6.45)
L13tL23¢ w
8 2

—ﬂiwl. This result should agree with the first perturbative diagrams calculated

2
o *

where 7 =
in appendix B. Indeed, there are poles in the integral (6.39) at v; = 0 which give

s w] tway—w3 s witw3z—wo s wotw3z—wj
S12 2 S13 2 523 2
—3 (Nc2 — 1) wlw?wg}(m%zt) ($%3t) (x%Bt) (6.46)

ng%th%i%tx%?,t (w1 + w2 — w3) (w1 + wg — wa) (w2 + w3 — w1)

(recall that A(0,0,0) = 1). Similarly to the case of correlator of two light-rays, this term
should cancel with the lowest-order diagrams shown in figure 8a. At the tree level the limit
wi — 0 is trivial so one gets the diagrams in figure 16 which yield eq. (B.16). We see that
the result (6.46) cancels with that of eq. (B.16) which justifies our choice of constant i in
eq. (6.20).

There are also “mixed” poles at v, = 0,75,7; and 7 = 0,7; = 0,v;. They should
cancel with the contribution of diagrams of the type shown in figure 12 b and c¢ (recall that
our three-dipole approximations are correct starting from the g% diagrams of the figure 9a.)

Thus, the result for all diagrams (figure 7 4 figure 12) is given by eq. (6.44) which
translates to the structure constant C(w;, %) given by eq. (3.14)

S ()2 T2+ B)T(A - %
F(717’Y27’73) —649 A ’Y1 72)73 H 7 3( ) (~ 2
i T =)0+ %)y ()

where v* is the solution of eq. (6.43) and A(v;) = A(—2¢;) is given by eq. (D.13). It is easy
to see that at small v} (& ¢ < w; < 1)

(6.47)

2
F(yiring) = 14+ 0() =140 (g) (6.48)

Wi
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Figure 12. Typical diagrams for correlator of three Wilson frames in the leading order (a), at the
one-loop level (b) and at the two-loop level (c).

7 Conclusions

Let us summarize the results of this paper. The correlator of three “forward” light-ray
operators (3.7) has the form

(T8 (21,)S2, (22,) 52, (23,)) (7.1)

J1tiz—Jjo—1 Jo+iz—ji1—1

Ji1tio—jz—1
o C(A . 2) (—277,1 . nQ) 1 3 (_2n1 . n3> 2 (—2n2 . nS) s
= i»Ji» g ’212t’A1+A2—A3—1 ‘Z13t‘A1+A3—A2—1 ‘Z23t‘A2+A3_A1_1 2
with the structure constant
N2 F(wi, ¢°
C(wi, g%) = iNewiwws Flwi, g7) (7.2)

7T3(W1 + wo — w3)(wy + w3 — wa) (w2 + w3 —w1)

At small w; the operator S{ can be identified with gluon light-ray operator F7 given by
eq. (3.5). In the tree approximation, the correlator of three gluon operators is given by
eq. (7.1) with F = 1+ O(w;) as follows from eq. (B.17). In the BFKL regime (g%, w; < 1,
%j ~ 1) the function F' has the form (6.47)

3 -2 Vi 1 7%

(14752720024 2)r(d - 2%
F(7§,73,73) = 64¢°A(7,73,73) [ [ 3( — )*2(? *2)
o T(1—% )F(§ +3)7 N O7)

where v* is the solution of eq. (6.43).

Let us now discuss main features of the result (7.3). First, note that since v* is real,
in our LLA approximation the constant F' is real since all the functions in the r.h.s. of
eq. (6.47) are real. Indeed, for T-functions it is trivial and for A(yf,~3,73) it follows
from the explicit expression (D.14). This is in accordance with the fact that physical s-
channel imaginary part of the amplitude (6.1) vanishes in our approximation. Indeed, it
would correspond to “cut” diagram of figure 13a type and cut propagator connecting two
infinite Wilson lines in ny and ng directions vanishes (see the last line in the eq. (A.10) in
appendix A). The imaginary part comes from the next terms of the expansion in powers
of g? and w. The imaginary part ~ w is given by the second term in the square brackets
in the r.h.s. of tree-level expression (B.16). As to imaginary part ~ g2, it comes from the
diagrams of the type shown in figure 13b. These diagrams were calculated in the ny — ng
limit in refs. [26, 27] and the result is given by eq. (C.12) or eq. (C.14) for small g%/w.
Note that the result (C.11) has the same structure as eq. (7.3).
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Figure 13. Typical “cut diagrams” for the correlator of three Wilson frames.

We saw that the structure constant has poles at w; = w;+wy, reflecting boost invariance

at nj — ny. An interesting question is what are singularities in the function F'(w;, g%)

1
w1—w2

apart from obvious singular point w; = 0, for example like It is worthwhile to note

that such terms appeared in the intermediate steps in the calculation of A at small %j,

1 g2LU1oJ2
€1—€2 w1—w2 "’

singularities which all canceled in the final result (D.34) so it suggests that the function F'
is finite at w; # 0.
In conclusion, let us discuss the applicability of our results to QCD correlators of

for example the term Jg contains see eq. (D.32). There were also other

gluon light-ray operators. In the leading log approximation considered here the formulas
for correlators will be the same as in A/ = 4 case since running of the coupling constant is
beyond the LLA approximation, and since the contribution of scalar and gluino operators
is negligible at small w. At the NLO level, in N' = 4 case we expect only corrections to
structure constant of the type of eq. (7.3), but in QCD the functional form of two- and
three-point correlators may change. An example of such change is the modification of
the formula (5.14) for the v*4* amplitude in QCD calculated at the NLO BFKL level in
refs. [42, 43]. It would be interesting to write down such modifications for the correlators
of gluon-light-ray operators at the NLO BFKL level in QCD.

The author is grateful to V. Kazakov, G. Korchemsky, and E. Sobko for valuable discus-
sions. This work is supported by contract DE-AC05-060R23177 under which the Jefferson
Science Associates, LLC operate the Thomas Jefferson National Accelerator Facility, and
by the grant DE-FG02-97ER41028.

A BFKL kernel in the triple Regge limit

In this section I will demonstrate how the BFKL kernel comes out of the conventional
momentum-space calculation in the triple Regge limit. Let us again consider the first
diagram in figure 9. Our LLA approximation (6.19) in the momentum space reads

afsiy>mi,  aysiz>mi,  Bysyy > mi (A.1)
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Figure 14. Leading diagrams with logarithmic integrals over «.

If all s;; are of the same order, this translates to o> m 81522513 etc.'* Suppose now that
we already performed integrals over 8 and v which results in logs multiplied by (conformal)
dipoles and we would like to consider the last integral over a coming from the diagrams of
figure 14 type.

To avoid cluttering of formulas, we will disregard the bottom gluon connecting Wilson

lines parallel to ne and ng. Indeed, the corresponding factor
<V(23t€t + égé)W(Zg)tet + 25é)> = jat? @ t? 111[232,5,5 + (53 + 25)2]

(plus permutations) simply multiplies contributions of diagrams in figure 15 and has noth-
ing to do with logarithm coming out of « integration.

To simplify our formulas, let us calculate the “cut diagram” shown in figure 15. It can
be represented by a functional integral over double set of variables: fields to the left and
to the right of the cut which coincide at ¢ = c0.'> We get

(Te{U (1)U (21) U (22)U (22) } VT (23) W (24)) (A.2)
= g5 Nt ® ta/d‘*kld%;d%ﬁ%g kg + ky — kb — k) 8 ((ka 4 k1)?)0(ko + k1)o

LA (ky, k1) Lx (K, k1)
k2k3K'TK'S

% (eik‘ltl‘lt'f‘ik‘lf?l o eikuxzz-ﬁ-iklig)e—ik‘étzu—ik‘éiz; (e—ikllt$1t—ik/1571 _ e—iklltccgt—ikilli‘z)

ikatx3t+ikads

X 5_(]{?2 . nz)é_(k‘l . nl)é‘(k:é . ng)é_(k‘/l . ’I’Ll)

where we denoted Wilson lines to the left of the cut by tilde. Here we use space-saving

notations d"k = % and 6™ (k) = (2r)"6™ (k). The Lipatov vertex of gluon emission

can be taken e.g. from ref. [47]

2 2
lL(k}Q,kﬁl) = (k‘l _k2) — |:2k‘1712+ kl :|nl + |:2k72n1+ k‘2 :|n2

512 n12 2y niz  King
2 / /2
2 KooK K,k

L(ky RY) = (K —ky) — |22 4 o [+ |2 o g (A3)

513 ni3 - kg, n13 1ns
Yndeed, if afsiz = Asm?, aysis = dam?, Bysis = Aim? we get a = )‘i—i?’mL 315223313 and therefore

a>m 513'22;3 if all X’s are large and of the same order.

151f ny = n3 and the corresponding dipoles are the same, the double functional integral for the cut

diagram gives the imaginary part of the non-cut diagram, see e.g. the discussion in refs. [44-46].

~32 -



Q0000000000
e
=

Figure 15. First rung of the BFKL evolution in the triple Regge limit.

Rewriting these formulas in terms of triple Sudakov variables (6.2) and taking into account
0-functions in the r.h.s. of eq. (A.2) we obtain

2
EL(kil, k‘g) = (kil — kg)t—l— (A4)
k% na93 2 13
+n1 |—oq — o — —2v1——| +ng |B1+ B2+ +272* + (71— 72)ns3
kon, N2 klnz n12
2
—L(ky, ky) = (k1 — K5):
513
k’2 n k'2 n
+ny |—a) —ah— 26' B4 (8 = Bh)na +n3 | v+ 2 26852
kon, King n13

. . S23 / / 513 !
In our LLA approximation ag > m PTEve and By ~ B] ~ By ~m Sy G2~ g~

S 1~ 2~ my [ 522 Moreover, from d-function §((k2 + k1)%)0(kg + k1)o we see
that & = (2 — apflt = 512 (v — o z;g) < % Using these approximations, one obtains
after some algebra

2 5128

L(ky, k1) L(ky, ky) = —(k1 = K})7 — == (81 — B})° (A.5)
512513
512523 2 512523 2 512523 2 512523 2
(k:1 +k2)i + 8151223 (51 + f2)? (/ﬂ +k2)i + 51515323 (ﬂl + B2)? ars
which is a “real part” of the BFKL kernel.
The amplitude can be rewtitten as
(Te{U(21)U (21)U" (22)U (22)} VT (23) W (24)) (A.6)

6 Nc d
_ ngT 1 @ 12 / a1 / d kyd Ky dkoyd Ky, & (ky + ko — k) — k)¢
0

X / dkid k| d kod Ky & (k1 — ko — k) + K))

% (eikuquril%l:zl _ eikltzztﬂ‘lélozz) (efi(k’l,xl)t _ efi(k’l,zg)t)eik2t$3t+ifcg§:3e*ikétzufﬁcéa@;

2 a2y (RARD (KR ) F (k3 A RD) (K2, R
(kl kl)t (kl kl) + (lirk/l)ng(;;lJr,;/l)z

= ~3 v )
(K3, + kD) (K3, + k1) (K3, + k3) (K13, + K'5)
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Note that at no = ng this formula reduces to the first rung of the BFKL ladder for dipole-
dipole cross section [47]

In this form it coincides with the first iteration of the evolution equation for color
dipoles. Let us demonstrate this for the simple term in the BFKL kernel 2k1:k], + 2k1k].
Performing momentum integrals one obtains

gYM ZyM~Cha g ya / do / dhyd k), dkad Ky &k + ke — K, — k), (A7)

! 7. 7.1
2k1tkyy + 2k}
2 7.2\ (1.2 2N (1.2 L2\ (112 772
(kip + kD) (K7 + K1) (kg + k) (K5 + K'5)
% ( ik1p@1s ik E . eiklzxthrifclaBz) (e*i(kll’zl)t B e—i(k’l,xz)z)eik2t$3t+ilu€2f3e*ikétwu*ik’gh

a3 N, >d
= 3 ta ® ta/ ﬂ
2 0 (05}

xr1 —x 2
x / d?z, = (_ 2)2 (x?i BE In[(z3 — 2)? + (F3 + 2)2] In[(z4e — 2)? + (24 + 2)?]

X /d‘fcld‘l%’ld‘fcﬁl%g § (k1 — ko — K} + )

where z| = z, Z.
On the other hand, the (linearized) evolution equation for color dipoles (in the double
functional integral formalism) reads [41, 48]

O @)U (a0)U' (2)0 (22))
=0 Ly, I i 0 U (2)0(2)
27 (z1— 2)% (w2 — 2)%
+ Te{UT (2)U (2)U N (22)U(22)} — Te{UT (1)U (1)U (a2) U (2)}] (A.8)

where Y = Ina. The term (A.7) comes from the correlator

aSN Cda [ 5 21 —2z,22—2)1
oy G rer e
X (Te{UT(2)U (2) + U (2)U (2)} VT (3) W (4)) (A.9)

Using the tree-level correlators of Wilson lines

3)%],
24)%],
0 (A.10)

(U(zer + 28)V (w3res + £38)) = ist® @ t*In[(z — x3)? 4+ (3 + &
(U(zies + 28)W (zares + 24€)) = —iast® @t In[(z — 24)7 + (£ +
(U(zier + 26)W (zase + 24€)) = (U(zier + 26)V (w30es + E3€))

it is easy to see that eq. (A.9) coincides with the r.h.s. of eq. (A.7). Similarly, one can check
that other terms in the BFKL kernel correspond to linear part of the evolution equation
for color dipoles (A.8), see e.g. the book [49].
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Figure 16. Tree-level correlator of three twist-two gluon LR operators.

B Correlator of three twist-2 LR operators in the tree approximation
First, we calculate the correlator of two light-ray gluon operators. Using bare propagator

T (Ef (wny + @1, ) F,y (ugng + x2,)) (B.1)

pv sab 2 b W

2(urugsia + iy, +i€)®  (urugsia +aty +ie)?

b
5120 ©oov Hov Hov M v Mo v
— - UL oMy — UINT L9 — T1oL —I—uluz(n Ng — No N )}
2 [ 1272 1412 12412 172 2™
(urugsi2 + Ty + i€)3

after simple integration we get the tree-level correlator in the form'6

1 ; . ist 1—e™ wl4w) TR+wl(4+w)
J ] =—_95 oy
N2 — 1P (@10 P (92,)) = =5 20w =) -2 (22, )res«  T(4+2w)
4
(B.2)
which agrees with eq. (5.40) in the limit w — 0
1 ; . w s¥
Fi Fi ~ 5 — )2 B.3
AT AT PP .

as discussed in the end of section 5.2.
Next, consider diagrams in figure 16 representing the 3-point correlator of gluon light-
ray operators in the leading perturbative order.
After some algebra one obtains the result for the first diagram in figure 16a in the form
(F(urny+21) Fp,Y (vang +220)) (B, (vina +210) F (ugng + 231))
X <F32y(u2n2+22t)F;i3>\(03n3+23t)>
NZ-1 19,713,733,

= 2 ; 2 ; 2 ;
Am0s12823513 (U1v2s12+ 279, +i€)3(V1uzs13+ 275, +i€)3 (Unv3523+ 255, +i€)?

(B.4)

16 As we discussed above, §(j — j') actually means “analytic continuation” of §(v — v') for j = % + v,

-/ 1 -]
) =5 tw.
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where s19 = —2n1 - no etc. Adding the diagrams with permutations we obtain
o
/ duldvldUdegdU3d’l)3 9(u1 — Ul)Q(UQ — UQ)Q(Ug — 03)
— 0o
X (u1 — 1) M (ug — v2) ¥ (ug — v3) " (Ft (uing + zlt)FfL‘w(vlnl + 21¢)
X F,I{Z"(vgng + zgt)Ffzw(uan + zgt)F,‘;’g‘(uimg + 23t) Py, 3 (v3n3 + 23t))
N2 -1 o0 w
= e duld’uldUQd'Ugdu;gd?}?, [9('&1 — vl)(ul — 1)1) Y4+ up < ?)1]
47m°5125893513 J _ oo

X [H(UQ — UQ)(UQ — ’Uz)_w2 + ug & Ug] [Q(U;; — U3)(U3 — Ug)_w3 + usz < ’Ug]

2 .2 .2
212,713,723, (B.5)
X (u1v2812 + 255, + 1i€)3(viugs1z + 275, + i€)3 (ugv3sas + 233, + i€)3

The integration over light-ray variables u;,v; is done with the help of two formulas:

[ee] o0 1
dt1dtodt dridrod B.6
| /0 s Y rota) ¥ 2y id (B:6)

—w1,,—W2 _,—Ww3 —Ww1,,—w2, ,—wW3
" { Yty s N Yty s }
[t1(r3+t3)+atstie](tatz+ads+ic) = (tits+adstie)[ta(rs+ts)+ads+ie]

- —4sin%sinz(w1 —I—wQ—wg)Cosg(wl—wg)F(l—wl)F(l—wg)F(l—wg)

2
T2 <w1 +u;2—w3> 2 <u&+o;3—w1> 2 (m +w23—w2> g gy s g~y
and
00 00
/ dtldtgdtg/ d’r‘ld’l“gd’f’g
—00 0
|: rl—wl TQ—LUQ r3—w3
[(7“1 +t1)t2+a12 +i6] [tl(r3 —|—t3)+a13 +i6][(T2+t2)t3+a23+i6]

—W1,,—w2
T T

ra
+ - - -
[tl (7"2 +ta)+ais +Z€] [(7‘1 +t1)t3+a13 +l€] [tz (7“3 +t3) +as3 +Z€] ]

=T (1—w;)[(1—w2)T(1—ws)T? <w1+c;3—w2> Ir? <w2+w23—w1> r? <w1+w22—w3)

Ww3—W1 —wWg Wy —w]—Ww3 W] —Ww2—Wws3
xXap) 13 93

% [eiﬂ(wl +wa—ws3) +eiﬁ(w2+w3—w1) +eiﬁ(wl +ws—w2) _eiﬂ'(wl Fwatws) —2] (B?)

2

2—Zi—jtitiseas to get
i Y y to ge

Using these formulas with a7; =

[e. 9]

/OO duldvl [(ul—vl)_“’lﬁ(ul—vl)—{—ul (—)Ul]/ dUQd’UQ [(UQ—UQ)_w29(U2—U2) (B8)

—00 —00

+usg (—>’U2]/ dugduvs [(U3—03)_w39(U3—’U3)—|—U3 <—>U3]

1
(u1v9s12+ 225 +i€) (V1ugsig+ 255 +i€) (uguzsas+ 255+ i€)

w1 +w2—ws3
2

w1+w27<u3 w1+w37w2 w2+w37w1

o [ w2tw3z—wi o [ w1tw3z—wsa 512 2 513 2 523 2
(e =)(3) C (3) 0 (3
12 13 23
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= 7@(W1,W2,W3)F(1—wl)r(l—WQ)F(l—W3)F2 <
512513523




where

P (w1, w2, w3)
w w
= —4sin%sing(w2 + w3 — w1) cos g((JJQ —ws3) — 4sin%sing(w1 + ws — wy)
w
X COS g(wl — w3) — 4sin % sin g(wl + wy — w3) cos g(wl — wy)

+ eiﬁ(w1+w2*w3) + eiﬂ'(w2+0~73*u}1) + eiﬂ(wl+w37“’2) — @iﬂ(w1+w2+w3) -2 (Bg)
Now, differentiating eq. (B.8) two times with respect to each ngjt one obtains

<~Fm (wlazlt)]:u&,m (th)fW3,n3 (Z3t)>

NCQ—l w1 +wo2—ws wo+wsz—wq w1+ws—w2
= 55 5L T r
3276 27, 275254 2 2 2
<T <w1+u;2—w3 +2) r <w2+u;3—w1 +2> r (w1+0023—w2 +2> B (w1, wo, w3)

witwy—w3 witwz—wo wotwz—wy

xr(1—w1)r(1—wQ)r(1—W3)(‘?) ’ (?) ’ (Sf’) ’ (B.10)

V) 213 233

A quick check of this formula can be obtained by eq. (3.4) which states that as w; — 1
the coefficient in front of I'(1 — w1)I'(1 — wa)I'(1 — w3) is represented by the three-point
correlator of local two-gluon operators

nan— n2 n

/dudvdw( o cF(uny + a10) FL,, U (ong + w0 F,  FiS (wng + @3y) (B.11)

Using tree-level correlator

(FSRFS (uimy + 21¢) F2V Y (uons + o) FS S, 5 (ugng + w30)) e

nipu no * naov
_ 2(N& — 1)512513503075, 715,033,
= 5 . 5 8 3 - (B.12)
70 (uvsia 4 11y, + i€)3(uws13 + 13, + i€)3(vwsaz + 135, + i€)?
and the integral
1 23
dudvdw - - — = — B.13
/ [uv + a + i€][vw + b + i€][uw + ¢ + ie] Vabe ( )

one obtains

/dudvdw F“g(unl + xlt)Fb F 77(21112 + wo) F,fg(wng + x3¢)

n2mn- n2

27( N2 -1
)\/512513523 (B.14)

2 .2 \3
12873 (279,773, 753,) 2

which agrees with eq. (B.10) at w; — 1 since ®(1,1,1) = —16.
For the BFKL limit we need the behavior of the tree-level correlator (B.10) as w; — 0.
It is easy to see that at small w;

(w1, w,ws) = dimdwiwsws — mhwiwows(wy + wo 4 w3) + O(w®) (B.15)
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Figure 17. Triple BFKL evolution at ne = ns with BK vertex at the rapidity Y.

and therefore

<]:n1 (W1, th)fo.;g,ng (ZZt)]:w&ns (th»tree
i(N2—1)  wiwaws |1+ Z (w1 +ws + ws) + O(w?)]

- 2 .2 .2
T2ty 213%5 (Wi + w2 — ws) (w2 + w3 — wi) (w1 + w3 — w2)
w1 two—w3g w1 twz—wy wotwg—wq

-2 - 2 - 2
() (%) (%) (B.16)
212 213 223

which corresponds to

=1+ ﬂ(wl + wa + ws) + O(w?) (B.17)

F(w;, ¢
(wlﬂg ) 92:0 4

in the notations of eq. (3.14) parametrization.

As demonstrated in the next section, the singularities at w; = w; + wy, originate from
boost invariance of the correlator of three light-ray operators at n; = n;. Note, however,
that such singularity is absent in the correlator of three local operators Fi(z;) (see eq. (2.4)
for definition) since ®(j;, jk, ji + jx) = O for integer j’s.

C Boost invariance and singularities of structure constants

As we mentioned above, the singularities at w; = w; + wy, are related to boost invariance.
To demonstrate this, let us follow ref. [26] and consider the correlator of Wilson frame in
ny direction and two Wilson frames in no directions, see figure 17

. w1 w1 ) w9 w9 ; w3 w3
<.7'—7J111 ($1t+7t,l'1t—7t> .7:%22 <$2t+7t7$2t_7t) .7'—,]12 (x3t+7tyx3t_7t) > (C.1)

As we discussed in section 5.2, this correlator in the Regge limit can be represented by the
correlator of three conformal dipoles, one in n; direction and two in ny directions. We get
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from eq. (5.26)

<]~'ﬂfl (xlt—i-u;t 901,5——) .7'72 (332t+w2t $2t_7) -7'—]3 (1’3t+%7~1‘3t_%)> (C.2)
NS [ dhdladly o 2L 2 1ia
:"Zﬁgjﬁ nn i/ﬁuuh@du3@u1> T () T2 (w]) T2 T

2—4ZV1F(% +/”/’L)F(1 —’LVZ)
(3 —iv;)D(14iv;)

><<U£nf($1t,—vl)vg/§nf(x2t,—VQ)szé"nf(wgt,—llg» H 1Z3
1=1,2,3

where Y; ~ Inl; + %lnsmzL (s = s12).

As discussed in refs. [26] and [27], the BK equation for color dipoles leads to the
following structure of the correlator of a conformal dipole in nq direction and two dipoles
in ng direction:

)
/dYb 0(Yo + Y2)0(Yo + Y3) (evolution U™ — UY) ® (BK vertex at Yp) ® < >

(Z%

(C.3)
where the integral over Yy comes from the fact that the splitting of one dipole into two
(described by the BK vertex) can occur at any rapidity between the n; dipole and the
most energetic of ny dipoles. Specifically, 6(Yy + Y;) reflects the fact that there should be
sufficient energy between dipoles UY° and V¥ to apply high-energy approximation, see the
footnote 9 at page 15.

Rewrtiting eq. (18) from ref. [26] in terms of conformal dipoles, one gets

N, 1
i (LA (A

Y;
X/ ld%/dYQdYS 9(}/()—|—Y2)9(Y0+}/3) eN(ul)(Y17Y0)+N(l/2)(Y0+Y2)+N(1/3)(Y0+Y3)

— 00

1. 1. 1.,
d2x4d2x5d2x6 354215 5t x%ﬁ 5 tive xz216 3 tiv3 o 1 ou
% 2 12 12 x2, 22 x2. 12 x2, 72 + N, (C4)
15L56L 46 14215 25236 34236 c

where two-dimensional integrals go over transverse directions orthogonal to both n; and
ng. Combining egs. (C.2), (C.3), and (C.4) one obtains

wat wst w3t
2 — ).7:33 <$3t+7,$3t— >>

U (@10, — 1) V2 (o, —12) V22 (231, —v3)) = —

j w1t w1t w2y
(FiL (SUu + = @1 — Fi2 (war + —- 2

2 2 2 2
B w14r“122+“13
Oé?NZ/ dllldVQdU3 271'(5((.«)1 —w2— w?’) (mii)
=1
Ar's [ (L 02)? (4 4 u§)2 [w1 = R(v1)][wz — R(2)l[ws — R(vs)]
4 . .
x (W) 72T (wd,) T2 (wd,) et II » 2 WICF( +ivg)D(1 — ivy)
1t 2t k 3 .
k=153 (2 —ivg)T(1 + iv)
. . 1, -
d2 d2 d2 2 5—1—11/1 2 §+2V2 2 5—1—11/3
X/ x;; 29052936(;452) (296562) (;462> (C.5)
Ly5T56% 46 L1475 Lo5T36 L3436
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Here 276(w1 — wy — w3) comes from the longitudinal integral

dlydlsdl Y1
[ Ty e [t avidr 0 + Yoo + v

% eN(Vl )(Y1—Y0)+R(v2)(Yo+Y2)+R(v3)(Yo+Y3)

) (= 5 )m |

= e~ iw1—wa—ws3)Yo
w1 = N()]wz — N(VQ)][w:a — N(v3)] /dYO

2W5(w1_w2_w3)(nle M N

- (w1 — N(v1)][w2 — R(v2)][ws — N(v3)] (C.6)

27‘1’5((01 — W2 — w3

Strictly speaking, the integral over Yj is divergent so we need some regularization to under-
stand it. Following ref. [26] we take ng # n3 but nj - ng ~ n; - ng. We can use our formulas
for ng = nj3 case until longitudinal distances between frames “2” and “3” are smaller than
typical transverse separation azfj L~ mf, i.e. when lyl3soz < mIQ. In terms of rapidities
Y5 and Y3 this restriction means Yo + Y3 < In 512 so instead of eq. (C.6) we get

Yi
/(mjﬂwnwm+nW%+nwwf”—n—%)
—00 523
w R (Y1=Y0)+R(r2)(Yo+Y2)+R(v3)(Yo+Y3)
wo +W3 —wq
) () 57

(wl — Wy — W3)(W1 — Nl)(wg — Ny + 7“1_%2_“)3) (wg — N3 + 7‘”1_“}22_“]3)

watwz—wq
2

w2twz—w1 (%)
N (w1 — wo — w3) (w1 — V) (wa — Ng)(wg — N3) (C.7)

Thus,

watwz—wq
2

()
276(w) —wo —w3) & lim 2
n3—n2 (wl — w2 — w;),)

(C.8)

Let us emphasize that the divergence over Yj in r.h.s. of eq. (C.7) leading to this d-function
comes from boost invariance: at ng = ns one can multiply n; by some A and ny by A7!
and the correlator (C.2) will not change. Thus, the singularity at w; = wy + w3 is of
general nature and should be present in a general formula (3.14). Note, however, that for
the correlator of 3 local “forward” operators these singularities seem to disappear, see the
discussion in the end of section B.

To compare with the result (6.44) for na # ng let us finish the calculation in this
ny = ng case. The transverse integral was calculated in ref. [31] and the result is

1 - 1 . 1 .

2 2 2 2 5+ 2 5ty 2 5+iv3
2 .2 .2 2 .2 2 .2 2 .2
Li5L56T 16 L14%75 95253736 L34%36

_ 39( + ZV1, 2 + ZI/Q, 2 + ZVg) (CQ)

(1) ativtive—ivg (235)2 3 HivLHivs—ivy (225)2 L fivotivy—in
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where  is related to Meyer G-function, see the explicit expression in ref. [31] (for conve-
nience, we extracted factor 73 from the definition in ref. [31]).

Rewriting the intgral (C.9) in terms of +; = 2iv; — 1 one obtains

i Wit w1t i wWat w3t W3t
<-7:73111 ($1t+77$1t—7>}—32( 2t+ 5 $2t—7>-7:33 ($3t+77$3t—7>>
_ aENZ 271'(5(0.}1 — Wy — w3) /1+ZOO dy1dyadrys
64710 x%gtxfgtxggt 1—ioco 7%7?%(2 + 72)2(2 =+ 73)2
3 -2 1
1 (14 )2 %F(2+3’V'€)F(§ %) &}(1—f 1-2,1-%)
Pl F1-%)rG+%) [wi — R(y1)][wz — R(72)][ws — R(73)]
iy 72 73
v <w%tx%3t> : (w%t$%3t> ? (wgt:c%%) 2 (i)% (C.10)
x%2t$%3t l‘%zﬂgst ‘T%?)tx%?)t mi

where v; = 2iv; — 1 similarly to eq. (6.39).

Taking residues at v} (roots of the equation (6.43)) one obtains'”

j w1 w1 w2 w2 - w3 w3
(FiL <$1t + T — t) Fi <$2t + Tt,:rzt - 7t> Fie <$3t + 7t7333t - 7t> )

2
N2 w1+w22*w3 w1+w23*w2 w2+w23*w1
S S S
= 89 c 27T5(C(J1 — w2 — Wg) <2> <2> <2>
Lot T3t T3t
* 2,2 n 2,2 z 2.2 2
“Q <1 it 1- lz _ 73) 1 <w1t9523t) 2 w2t$13t> 2 <w3tx12t> 2
2 .2 .2 2 .2 2 .2 2 .2
2’ 2’ 2 x12tx13t3323t m12tx13t L12tL23¢ T13tL23t
-2 “/ 1 %
2_ %2 75 w 2 3 7* ’
A (+ 20+ %) EI(E+ FN0p)
. 1+w2+w3 witwy—ws witwz—wo wotwsz—wy .
Here again we replaced ( ”fi ) by (xm) 2 (%) 2 (éf”) 2 which

is within LLA accuracy. This result agrees with eq. (30) from ref. [26]. In terms of structure
constant (3.14) we have

F[V*(w17g2),’7*(w2,92),7*(w3792)] (C.12)
"‘)1:‘2—’—“)3 8iglON62 Q( — ﬁv 1-3 1 g) f[ (1 +’7;)2_2%:F(2 + %)F(% — l2l:)
2 * * 2 * * %
T ’752732(1+772) I+3) i TO-3)0E+ 3N

It is instructive to compare with the result (6.44) at small v} ~
estimate of the function Q at small v; reads [26, 27]

16 + + +
Q<1_ﬂ’1_ﬁ’1_ﬁ): <1_|_’Y1 V2 M 2 73)4—0(%) (C.13)
2 2 2 17273 73 72 7

17Similarly to the case of integral (6.39), the poles at ; = 0 should cancel with contributions of low-order
diagrams without gluon ladder(s) in figure 17.
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so we get
w1 Wat Wt

; w1t [ j Wai j w3t
(F ($1t+7,x1t_7) Fos <~T2t+77332t_7> Fos <$3t+771‘3t—7) ) (C.14)

2 A2 2.2 ki 2.2 2 2.2 % 2
N WT,T 2 W5,T 2 W5,T 2

:_92 2C w127 (w1 —wo —w3)] 72” 223t 22t 123t 23t 122t 1+0 g
T L1t T13¢ L1t T3¢ T13¢L23¢ w

which corresponds to structure constant (3.14) with

F = —2ing?

at wp = wo + ws. This contribution to structure constant is imaginary in accordance
with the fact that the physical amplitude in figure 17 is purely imaginary if left and right
sides are symmetric. (The corresponding cross section describes diffractive scattering, see
refs. [41, 48]). Since the leading-order structure constant (6.47) is real, it is natural to
assume that eq. (C.12) gives the leading contribution to the imaginary part of structure
constant at w; = wo + w3 in the BFKL limit.

D Calculation of A(vy,vs,vs)

The function A(vq,v9,v3) is represented by the integral (6.35). It is convenient to take
x = (1,0) and rewrite the integral as

- 1 A’z d*z
Avi,ve,13) = Aeq, €2, €3) = 7_‘_3/61221(1222)4 240 (D.1)
- 0
2 —e2r 2 e
2 21— ~20 10
S A [ zo>2] ngg]

where we denote ¢; = % — iv; in a view of a later estimate at ¢, — 0. Unfortunately, the
integral (D.1) diverges as ¢; — 0 so we need to define it as an analytic continuation of a
convergent integral

1
(1= )1 — 2P
1

% (3o — —€1 P 5 | D.2
A e T AT

- 1
A%(e1,€2,€3) = 7r3/d2zod2zld222

This integral is obviously convergent if ¢; > 0 and |1 —a| < ¢;. (We will relax the condition
€; > 0 later). The “Feynman diagram” integral is depicted in figure 18 the denominators
being conventional 2-dim propagators (albeit with non-integer powers) except [2%,, + (z19+
294)%] 7 denoted by a dotted line.

To calculate this integral, we will rewrite [23y, + (215 + 22,)?] in the denominator as
(Zo — 21)(22 — Z1) where 2z = 2z, + 12, Z = 2, — 12, and use the expansion

1 B = T(e; +m+n) o= e+ k+1) ol
(G2 — 21) (20 — 21) _mzn;O len)miml (L~ %2)"A g_:o Tapn L) A

(D.3)
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1
a-e, Zy 2-a-e,

Figure 18. Correlator defining the function A(e;) (= A(e;)) in eq. (D.1). Dotted line depicts the
unusial propagator (235, + (21, + 224)?] 7" between points z; and z».

Next, we use the expansion (D.3), calculate the integrals, reassemble the sum over m,n, k,[
and continue analytically to a = 0 in the final result.

Using the integral

/d221 2" Z¢ MNa+B—n—1) mnl (1—a)['(1—5+m) (D.4)

T |z—z2z2 2P T(a)D(B—n)[22[e+m172 " T(2—a—pB+m)

one obtains after some algebra

A%(e1, €2, €3)

_ sinm(a + e)sinTey sinm(e3 — a) sinmes i Fler+m—+n)T(eg +k+1)

w3 sin7(ez + €3) ['(e1)m!n! T(ep)k!

m,n,k,l=0
myllat+te—1+mI'(l-—a-—m)I'(1—-e)l(e2+a—1+k)
< (=1) T(e2) T(at k)
Mes+l+1—a)l(a—1—1)T(1—e3)[(1+€e3—a+n)
T'(e3) I'2—a+n)

y I(ea +m)T'(e3 + 1) T'(ea + k)'(e3 + n)
I(ea+es+m+1) I'(ea + €3+ k+n)
__sin m(a + e2) sin ey sin w(eg — a) sin weg i I'(eg +m+n) i I'(er +k+1)
I'(er)m!n! [(ep)kN!

m3sin (e + €3) S~

1
X (—1)m+l/0 duy dvy dugdvadty dts u‘f+62_2+m(1 —uy) (1 - vl)_€211?+a_2+ku§3_a+l
% (1 _ u2)a—2—l(1 - U2)—63U§37a+nti271+m(1 o tl)e3—1+lt§271+k(1 o t2)53—1+n (D.5)
Now one can reassemble the sum (D.3) and get

- sinm(a+€s)sinmegsinm(eg—a)sinmes
Ko(er,epcq) — S04 (es—a)

1
duydvydusdvadt dt
m3sinm(ea+e3) /0 e ata

% ucll+e2—2(1_ul)qfa(l_01)762v§2+a—2u§3—a(1_u2)el+a72(1_,02)763,053—0,
><t?_l(l—t1)63_1t§2_1<1—t2>63_1 [(1—u1)(1—v2)+u1t1+(1—u1)v2t2} A
X [(1—UQ)(l—Ul)+U2(1—t1)+(1—u2)vl(1—t2)] A (D.G)
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Next, using Mellin-Barnes integral

I'(a) 1 I'(a—s1)(s1 —s2) T(s2)
(A+B+C)a (2771)2/ 51052~ jamsr T peim O (D-7)

one can rewrite eq. (D.6) as follows

- sinm(a + e2) sin(ez) sinw(e3 — a) sinm(ez)

A - _ Jé D.
(e1 e2,€3) m3sinm(ex + €3)%(e1) (e1 e2,€3) (D-8)
where I%(€1, €2, €3) = I%%®%(eq1, €9, €3) and
[%1,%2,03,04 (61, €9, 63) (Dg)
0+i%0 g1 dsodssdsy
_/61-00 W F(el — 81 — SQ)F(Sl)P(SQ)F(El — 83 — 84)F<83)F(84)

« F(EQ —14+a3— Sl)F(Sl —as + 1) F(l +e€3—a; — 53)F(a1 -1+ 83)
I'(e2) [(e3)
" F(ea — 1+ a2 — s4)['(1 — €1 — €2 + 53+ s4)
F(GQ —€1 + 83)
" I(1+e3—ag—s52)(1 —€1 —e3+ 51+ s2) ['(e2 — 51)'(e3 — s3) ['(€2 — s2)'(€3 — 54)
F(Q—a4—€1+81) F(62+€3—81—83) F(62+€3—82—84)

Here we assume |1 —a;| < § < §, then the MB integral is well-defined with all the “left”
poles of the type I'(s; + ...) to the left of the contour of integration over s; and “right”
poles ~ I'(... — s;) to the right of the contour.

Next, we need to continue analytically to a; = 0. We will do this separately for each a;
paying attention to the poles which intersect the contour of integration and taking residues
in those poles as explained in the book [50]. First, note that analytic continuation in a4
is trivial: “right” pole at sy = 1 4+ €3 — a4 moves to the right and away from the contour.
Thus, we set aqs = 0 in what follows. At a next step, we continue a; to a; = 0. There are
two poles affected by that: pole at s3 = 1 + €3 — a1 and pole at s3 = 1 — a;. While the
first pole is always to the right of the contour, the second pole intersects the contour so we
need to take a residue at s3 = 1 — a;. The integral 1%1:92:%.0 at q; < 1 — § takes the form

J91:92:030 — 1 | g of eq. (D.9)

a1=a4=0

0+i%0 g1 dsods
—|—I‘(1—a1)/6‘ (127?)3%(61—sl—SQ)P(sl)r(SZ)r(aﬁq—1—54)r(54) (D.10)

[(ea—1+az—s1)(s1—az+1) T(ea—1+ag—54)T(2—a1 —€1—€a+54)

F(Eg) F(17a1+a2761)
L tes—so)l(1—e1—estsi+s2) lea—s1)l(ar+es—1) Dea—s52)I'(e3—54)
I'(2—e1+s1) I(a;+e2+es—s1—1) T'(ea+ez—s2—54)

Now we should continue from a; =1 —¢ to a; = 0. In the first term in r.h.s. of eq. (D.10)
there are no more crossings of the contour so we can just set a; = 0. In the second term,
the pole at s4 = a1 + €1 + €2 — 2 will always stay to the left of the cut but the pole at
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s4 = a1 + €1 — 1 will move from s4 = €1 — 6 to s4 = €1 — 1 so it will cross the contour and
we need to take the residue. The residue yields

5+iood8 ds
r(1- al)/ “ 2D (er — 51— s2)D(s1)0(s2)D(ar + €1 — 1) (D.11)
d—1io0 (27”’)
o F(ea —1+4az—s51)'(s1 —az+1)T(e2 —e1 + a2 —a1)I'(2 —a; — e — €2+ 54)
F(eg) F(l—al + as —61)
o P +e =)l —e —e+s1453) ea —s1)(a1 + 63— 1)
['2—¢€+s1) I(a;+ex+e3—51—1)

F(EQ — SQ)F(l — €1 — €3 — al)
I(1+e+e3—€ —s2—aq)

The continuation a; — 0 in eq. (D.11) does not cross the integration contours so we can
set a; = 0 and get for eq. (D.9)

J0170:02,03.0 () eo e3) (D.12)

d+ioco
:/5_1»00 ds’”(l;jj)sjds‘* Dler — 51 — 59)T(51)T(s2)T (€1 — s5 — 54)T(s5)T(54)
o Flee—14as —s)l(s1 —az+1) D1 +e3—s3)l'(s5 —1)
F(Gz) F(63)
« F(62—1+a2—84)1—‘(1—61 —€2+$3+84)
F((Iz — €1 + 83)
o P +e— )1 —e —e3 + 514 53) ea — 51)(eg — s3) Iz — 52)I'(e — 54)

I'(2—¢€+s1) ['(ea + €3 — 51 — s3) ['(ea + €3 — 59 — s4)
d+ioo
+/6_m Wr(q — 51— 59)0(51)T(52)T (€1 — 1 — 54)T(54)
" [(e2 —1+4a3z—s1)['(s1 —az3+1)T(ea =1+ ag —54)['(2 — €1 — €2 + 54)
ING)) (14 a2 —€1)
o DL +es —52)I'(1 —e1 —es + 51+ 52) Dleo — 51)L'(e3 — 1) Dea — 52)I'(e3 — 54)
I'(2—¢€+s1) I(ea +€e3—s1— 1) T'(ea + €3 — 59 — s4)
d+ioco
+/6—ioo CEl;:j)sglj(el — 51— 52)['(s1)T(s2)T' (€7 — 1)
" Iea—14a3—s1)I(s1 —ag+1)T(e2 — €1 + a2)[(2 — €1 — €2 + s4)
['(ez) I'(1+ a2 —€)
" (14 e3—s9)T(1 —€1 —e3+ 51+ 52) T(ea —s1)T(e3 — 1) T'(ea — s2)T'(1 — €1 — €3)
I'2—e€ +s1) l(ea+ez3—s1—1) (1 +e2+e3—€1—52)

Repeating this procedure for as and as one obtains after some algebra

2 2

_ sin“ mweg sin” weg 0.a0—30.a2—0.0
A €9, — a1—U,a2 ,a3 s ,€92, D13
(c1,€2,63) m3sinm(ez+e€3)2 (1) (enezea) | )
Ial_>0ﬂ2_>0’a3_>0’0(61,62,63) =J; (6i)+J2(€i)+. . -+J14(€z') (D.14)
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where

Jy = / Mm%@jd“ T(e1—s1—s2)0(51)0(52)0 (€1 — 53— 54)T(s3)T(4)
§—ico (27i)
yJLlea—1—s)l(s1+1) D(1+es—s3)l(s3—1) Te2—1-s54)I(1—e1—ea+s3+s54)
I'(e2) I'(e3) ['(—€e1+s3)
o Ltes—so)l(1—e1—estsi+s2) Dea—s1)l(eg—53) D(ea—s52)L'(e5—54)
I'(2—e1+s1) I(ea+e3—s1—s3) T'(ea+ez—sa—34)
I(ea—1)T'(1+e3—€2) 0+i%0 7¢1 dsodss
I(e2)l(e3) /Moo (2mi)?
xT(14+€e1—ea—s3)I(s3)(e2—1—51)T(s1+1)I'(1+€e3—53)(s3—1) (D.16)
% F(1+63—82)P(1—61—63+81+82) F(GQ—Sl)P(Eg—Sg) P(EQ—SQ)
['(2—e€1+s1) [(eate3—s1—s3) T'(1+e3—s2)

(D.15)

Jo =

F(el — 81 —SQ)F(Sl)F(SQ)

F(eg—l) 5+iood81d$2d84
=— —————T'(e1—s1—59)T T T'(eg—1—s4)T
Ty [ e s s PP (s2)T (61— T (s
F<€2—1—34)F(2—61—62—|—34) F(1+63—82>
I'(eg—1—357)T 1
xD(ez=1=s))T(s141) T(1—e) T(2—€+51)
F(Eg—sl) F(EQ_SQ)F(€3—S4)
F(62+€3—81—1) F(62+€3—82—84)

I'(ea—1) /‘Hioo dsadszdsy
D(es)T(1—€1+€2) J5s_ino  (27i)3

XF(1—€1—63—|—81—|—82) (D.17)

Jy=

F(l—l-él—62—82)F(Sg)F(61—53—84)

x [ (s3)T(s4)T(14€3—s3)T(s3—1) N 1(235j)sr3§;(—_6;—f28$53+84)

F(€2 _32)F(63 —54)
[(ea+€3—52—54)

['(e1—€2)

5+ioodsld32
e — 1 _
h= g T DN ea) [ G

F(1+63—82)F(1—61—63+81+82)F(€2—51)F(62—82)
I'(eg—1—s1)T 1
x (€2 s1)l'(s1+1) L(2—e;+51)(eg+e3—51—1)(1+e€3—53)
F(Eg—q)r(l—62)F(1+63—61)
I(e2)T'(1—€7)

XF(1+63*82)F(€2*61*63+82) (D18)

F(El — 81 —32)1“(31)1“(52)

(D.19)

J6: F(Gl—l)r(eg,—l) (DQO)

d+ioo dstds
X/ L . 22 I‘(el—31—SQ)F(sl)F(SQ)F(GQ—1—81)F(31+1)
d—ioo (2772)

[(14+e3—s2)'(1—€; —€e3+s1+52)(e2—51)(e2—52)

I'(2—e1+s1)(ea+e3—s1—1)I'(1+ex+e3—€1—52)

o= I?(e;—1)I'(1+e3—€2) /5+i°°d32d33

D(es)D(1+ea—e€1)  Js_ino (2mi)?
XT'(s2)['(14€1—€e2—s3)T(s3)T'(1+€e3—s3)[(s3—1)

I'(e3—s3) TI'(ea—s2)

[(1+ez—s3) I(1+ez—s2)

F(1+61—62—82) (D21)

xT'(14+€e3—s592)'(e2—€1 —€3+52)
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d+ioco d52d84
Jg=— T(14€—er—
s /5100 (27Ti)2 ( faze 82)

T(ea—1—54)T(2—€1—€2+34)
(1—63)F(1—€1)
L tes—s2)l(ea—e1—ez+s2) Dea—s2)T(e3 —54)

X F(EQ — 1)F(82)F(€1 —1 —S4)F(84)

I'(2—e1+s1) I(ea+e3—s2—54)
[(eg—1)T(e1+e3—e€3) /5+i°°d33d54
Jg = I'(2e9—€1— T'(e1 —s3—s4)T
? F(63) (62 “ 63) §—1i00 (27”')2 (61 % 84) (83)

F(ea—1—54)'(1—€1—€2+53+54)(€3—54)

X (s4)T (e3—s3)I(s3—1) T(—€1+53)(2e2— €1 —54)

T I'(1+ez—e — I'(14€1—€ea—59)I'(s
. (1—e3)l(1+e2—e1) (Ites—er) S—ico 271 ( 1—€=52)T(s2)
1(62 32)
['(14+€e3—s9)] —e— _o\F2 92)
XT'(14+€e3—s2)[(e2—€1 —€3+52) e

J11 = —F(El — 1)F(62 — 1)

I(ea—e)(1—e2) 0+i00 7.
(1—e3)I'(1—€1) /5 o P(1+e1—e2—s2)['(s2)

271
o F(1+63—82)F(62—61—63+82) F(62—32)F(1+63—61)
[(1+ex—er) [(1+ex+e3—€1—s2)

F(262—61 —63)F(1+63—€2)
I‘(eg)I‘(l—61+62)

—100

J12 :F2(62*1)F(61 +€3*€2)

8+i00 . I'(e3—s3)
X — I'(14+€1—e9—53)'(s3)'(1+e3—53)'(s3—1) —————
/5_1,00 o T(1e1 =2 ) ()T (1-+es —53)ss ~ 1) g oo

[(1—e3)T(e2—1)T'(€14+€3—€2) /‘Hioo dsy
= — I'(e1—1—s4)1
J13 (I1—e3)T'(1—¢) §—ico 21 (e s0)T(s4)

I'(2e2—e1—e3)I'(e3—
xT'(eg—1—54)T(2—€1—€2+34) (6;(;22_631)—223) =

['(2e0—e1—€3)) T (14€e3—€2)
(1—63)P(1+62—61)

J1a = —F(l —63)F2(62 — 1)F(€1 +e€3 —62)F(61 —62)

Ji5 = *F(l*Eg)F(EQ*l)F(El +63*€2)F(61*1)
F(ea—€1)T(1—€2) T'(2e0—€1—e3) T (1+€3—€7)
F(l—él) (1—63)F(1—|—262—261)

(D.22)

(D.23)

(D.24)

(D.25)

(D.26)

(D.27)

(D.28)

(D.29)

The combination of eq. (D.13) and (D.14) is the final result for the function A(v;) (our

notation is v; = —2¢;).

Unfortunately, I was not able to find a representation of the

sum (D.13) which would be explicitly symmetric in €1, €2, and e3. However, the result (D.34)

in the limit ¢; — 0 obtained below is symmetric.

To get A(e;) at small ¢; we need to estimate the behavior of the integrals Ji-Ji3 as

€; — 0. As an example, let us consider integral Jy given by eq. (D.23). The contours of

integration over s3 and s, are pinched between “left” and “right” poles as the separation

between them vanishes in the limit ¢; — 0. Shifting contours of integration over s3 and sy
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to the left of the real axis and taking residues at s3 = 0 and s4 = 0 one obtains

F(GQ — 1)F(61 + €3 — 52) /5+ioo d83d54
Jg T(cs) ['(2e2 — €1 — €3) i (2T (e1 — s3 — s4)T'(s3)
T(eg —1—54)T(1 — €1 — T(es —
X F(84)F(63 — SS)F(SS _ 1) (62 34) ( €1 — €3+ 83+ 54) (63 54)

['(—€1 + s3)'(2€2 — €1 — s4)
I2(eg — D)T(€1 + €3 — €2)

(26 — €1 — €3)

P(262 — 61)
—d+i00 . I .
R N = s (s — sl (s — ) )
+ FIEG(Q_;:)L)F(QQ —e1 —€3)'(€1 + €3 — €2)
—d+1i00 »
X\/(S:oo %F(q — 54)(54)(e2 — 1 — s4)T(1 — €1 — €2 + 84)F(21;§€i . i)54)
x [1h(er — sa) +¥(e3) — (1 — €1 — €2 + 84) + P(—e1) — 2¢(1) — 1]
+ IQF((Gi;)l)F(QEQ —e1—e3)'(e1 +e3 —e)[(e)I'(1 — €1 — 62)F(2P€§63_)61>
x [h(er) +v(es) — (1= e1 = ) + Y(—e1) = 29(1) = 1] (D.30)

where ¢ (z) = I'(x)/T'(z). Now the integrals over s3 and/or s4 in the r.h.s. of eq. (D.30)
are not pinched so the only singularities at €¢; — 0 come from the explicit factors like I'(¢;)

or Y(e;). Actually, it is easy to see that the last non-integral term is the most singular so
one obtains

€;—0 2¢9 — €1 1
e%e%(el +e3 —€2)(260 — €1 — €3) et ( )
Similar estimates of remaining integrals yield
1 €a+€3)? €2t+€3
JlNJ2NO<4)v J32%’ Ji~ =5 )
€ €1€5€s ese5(e1+ez—€2)
J €2+€3 J €2+€3 1
5= ) 6= ) T= ’
ere5es(e1—€2) €2e3e3(e1—€2) e3es(€1+€e3—€2)
€2t+€3 1
Jg ~ — s Jl() ~
616363(614-63—62) 6%(61—62)(614-63—62)
1 —1
Jip o~ — , Jig =
c163(€1—€2)(€1+€3—€2) e2e3(€1+e3—€2)(2e2—€1—e€3)
2e0—€; -1
J13 ~ ) J14 =
cre3e3(e1+e3—€2)(2e2—€1—€3) €3(2e3—€1—€3)(e1+e3—€2)(e1—€2)
1
Ji5 =~ (D.32)

e162(2e0—€1—€3)(e1—€2)(e1+€3—€2)

It is easy to see that

1
J4+J7+Js+J9+J10+J11+J12+J13+J14+J15=O(64)
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so we get

J170.a2=0,a3200 () e ea) ~ J3 + J5 + Jg 7% +0 (14) (D.33)
€1€5€5 €
and therefore
Aler, ea,e3) = 1+ O(e;) (D.34)
which is quoted in eq. (6.42) in terms of 7; = —2¢;. Note that the symmetric form of

this result for A(eq, €2, €3) is a check for the calculation of the integral (D.1) which is not
obviously symmetric in €1, €9, €3.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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