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Abstract

The crystal structure of a putative HNH endonuclease, Gmet_0936 protein from Geobacter metallireducens GS-15, has been
determined at 2.6 Å resolution using single-wavelength anomalous dispersion method. The structure contains a two-
stranded anti-parallel b-sheet that are surrounded by two helices on each face, and reveals a Zn ion bound in each
monomer, coordinated by residues Cys38, Cys41, Cys73, and Cys76, which likely plays an important structural role in
stabilizing the overall conformation. Structural homologs of Gmet_0936 include Hpy99I endonuclease, phage T4
endonuclease VII, and other HNH endonucleases, with these enzymes sharing 15–20% amino acid sequence identity. An
overlay of Gmet_0936 and Hpy99I structures shows that most of the secondary structure elements, catalytic residues as well
as the zinc binding site (zinc ribbon) are conserved. However, Gmet_0936 lacks the N-terminal domain of Hpy99I, which
mediates DNA binding as well as dimerization. Purified Gmet_0936 forms dimers in solution and a dimer of the protein is
observed in the crystal, but with a different mode of dimerization as compared to Hpy99I. Gmet_0936 and its N77H variant
show a weak DNA binding activity in a DNA mobility shift assay and a weak Mn2+-dependent nicking activity on supercoiled
plasmids in low pH buffers. The preferred substrate appears to be acid and heat-treated DNA with AP sites, suggesting
Gmet_0936 may be a DNA repair enzyme.
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Introduction

Geobacter bacteria grow under anaerobic conditions in soils and

aquatic sediment. Geobacter species can oxidize organic compounds

and metals, including iron and manganese in anaerobic environ-

ment leading to the production of electrons which can be

harnessed in bioreactors [1]. Mixed microbial cultures can also

generate hydrogen from consortium of Geobeacter species in a

microbial electrolysis cell [2]. Biomass such as compost materials,

plant biomass, human and animal solid waste can be converted

into electricity or hydrogen by Geobacter’s metabolic activities.

Thus, Geobacter bacteria are important target for study in both bio-

remediation applications and development of renewable energy.

Geobacter metallireducens GS-15 was first isolated from aquatic

sediment [3]. The circular genome has been sequenced in the

size of 3,997,420 bp, encoding ,3,519 predicted gene products

[4]. Being a bacterium growing in sediment, G. metallireducens GS-

15 harbors restriction-modification (R-M) systems, presumably to

fight off phage infections and invasion of foreign DNA. There are

predicted restriction-modification (R-M) systems including a type

IIS (GmeI, GGATC 4/5) and a type III (GmeII, TCCAGG 25/

27), an orphan C5 methylase and an Mrr-like type IV restriction

enzyme (see REBASE) [5,6]. In addition, we found a putative

HNH-family endonuclease, ORF number Gmet_0936, that

contains the conserved catalytic residues His-Asn-Asn (HNN),

and a zinc binding domain (zinc ribbon) consisting of the

conserved motif of [CxxC]2. Companion DNA methyltransferase

(MTase) is not found adjacent to Gmet_0936 so it is unlikely that

this putative HNH endonuclease is part of an active R-M system.

Gme_0936, however, is located in proximity to Gmet_0935, a

predicted RNase HI homolog, and to Gmet_0939, a gene

predicted to be involved in repair of stalled DNA replication fork.

The HNH endonuclease catalytic domain with a zinc ribbon

(bba-Me fold) has been found in type II restriction endonucleases

(e.g. Hpy99I and PacI), non-specific endonucleases (Colicins),

DNA repair enzymes (MutS), and homing endonucleases (e.g. I-

HmuI). Therefore, it is important to understand the structure and

biochemistry of this group of enzymes. The goal of this work is to
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solve the crystal structure of Gmet_0936 protein and to study the

enzymatic activity of this putative endonuclease. Here we report

the expression, purification, and structural determination of

Gmet_0936 at 2.6 Å resolution. In addition, we report a weak

DNA binding activity of Gmet_0936 protein and the DNA nicking

activity of the wt enzyme and its variant N77H. The possible

biological function of Gmet_0936 (Gme HNH endonuclease or

Gme HNHE) is discussed.

Materials and Methods

Protein Expression and Purification for Crystallography
The full-length gene Gmet_0936 of Geobacter metallireducens

(Gme) HNH endonuclease was cloned, expressed, and purified

following standard protocols developed by the Northeast Struc-

tural Genomics Consortium (NESG) for production of selenome-

thionine enriched protein sample [7]. Briefly, the gene coding for

Gme HNHE (NESG ID number: GmR87) was cloned into a

pET21 (Novagen) derivative, yielding the plasmid pGmR87-21.1.

The resulting construct contains eight non-native residues at the

C-terminus (LEH6, H6 denoting a 6xHis-tag) that facilitate protein

purification. E. coli BL21 (DE3) pMGK cells, a rare codon

translation enhanced strain, were transformed with pGmR87-

21.1, and cultured in MJ9 minimal medium supplemented with

selenomethionine, lysine, phenylalanine, threonine, isoleucine,

leucine, and valine for the production of selenomethionine-labeled

HNHE [8,9]. The cells were induced overnight at 17uC using

1 mM IPTG after culturing at 37uC to mid-log phase, and were

harvested by centrifugation. Cell pellets were resuspended in a lysis

buffer (50 mM Tris-HCl, pH 7.5, 500 mM NaCl, 40 mM

imidazole, and 1 mM TCEP) and disrupted by sonication. The

resulting lysate was clarified by centrifugation at 26,0006g for

45 min at 4uC. The supernatant was loaded onto a HisTrap HP

column followed by a gel filtration column (Superdex 75 26/60,

GE Healthcare). The purified Gmet_0936 protein was concen-

trated to ,9 mg/ml. Sample purity (.98%) and molecular mass

(13.3 kDa) were verified by SDS-PAGE and matrix-assisted laser

desorption ionization time-of-flight mass spectrometry, respective-

ly.

Crystallization of Gmet_0936 Protein
Crystals of Gme HNHE were obtained by the hanging-drop

vapor diffusion method. One to three ml of concentrated protein

solution (9 mg/ml in 10 mM Tris-HCl, pH 7.5, 100 mM sodium

chloride, 0.02% (w/v) sodium azide and 5 mM dithiothreitol) were

mixed with 1 ml of the reservoir solution consisting of 0.2 M

magnesium sulfate, 20% (v/v) polyethylene glycol 8000, and

100 mM Tris-HCl (pH 8.5), followed by incubation at 4uC for 1

week. The crystals were cryo-protected using paratone-N and

flash-frozen in liquid propane for data collection.

X-ray Diffraction Data Collection, Processing, and
Structure Determination
Single anomalous dispersion (SAD) X-ray data were collected at

wavelength 0.979 Å from a single crystal of the Gmet_0936

protein at 100 K on beam line X4A at the National Synchrotron

Light Source at Brookhaven National Laboratory. The diffraction

images were processed with the program package HKL2000 [10].

The positions of Se atoms and initial SAD phases were determined

with program BnP [11]. These phases were used by program

Phenix [12] for automatic model building. Three Se atoms are

correlated to position of Met52 in the three molecules. Another

three Se atoms found by BnP turned out to be Zn atoms in the

structure, one bound to each protein molecule. Manual model

rebuilding was carried out with COOT [13]. The atomic models

were refined using the program Phenix [14], with translation,

libration, and screw-rotation (TLS) parameters. Final model has

Rfree of 0.266 and standard R factor of 0.206 (Table 1). The

Ramachandran plot showed that 92.7% residues are located in the

most favored regions, and 7.3% are in additional allowed regions.

Expression of Gmet_0936 From the IMPACT Protein
Expression System
A synthetic gene coding for Gmet_0936 in pIDTSMART-Kan

(IDT) with optimized E. coli codons was subcloned into a T7

expression vector pET21b (the insert was flanked by NdeI and

XhoI sites). The C-terminal 6xHis-tagged protein, Gmet_0936 or

its mutant variants were partially purified through a nickel spin

column from 10–20 ml IPTG-induced cell culture. For medium-

scale purification, 1 to 2 L of cells ER2566 [pET21b-gmet_0936]

were grown at 37uC to late log phase and IPTG was added to a

final concentration of 0.5 mM for protein induction at 30uC for

3 h. Gmet_0936 (H6) protein was purified through a nickel

column by gravity flow using a protocol recommended by the

manufacturer (nickel agarose FF, Qiagen). It was further purified

by chromatography through a HiTrap Heparin HP column (5 ml,

GE Healthcare). Gmet_0936 (H6) protein peak eluted at the NaCl

concentration of 0.5 to 0.55 M. Alternatively, the NdeI-XhoI

fragment was inserted into pTYB1 vector to be in fusion with

intein and chitin-binding domain (CBD). The fusion protein

Gmet_0936-intein-CBD was purified from a chitin column (NEB)

and Gmet_0936 was cleaved off by DTT and eluted. Gmet_0936

was further purified by chromatography through a HiTrap

Heparin HP column (5 ml, GE Healthcare), protein was eluted

by a NaCl gradient of 50 mM to 1 M and eluted fractions were

analyzed by SDS-PAGE. Purified fractions containing Gmet_0936

protein was stored in 0.25 M NaCl, 20 mM Tris-HCl, pH 7.5,

50% glycerol, 1 mM DTT at 220uC. Reaction buffer contains

50 mM NaCl, 10 mM Tris-HCl, pH 6 to 8, supplemented with

divalent cations (Mg2+, Mn2+, Co2+, Ni2+, or Zn2+) as specified in

each reaction. Digestion was carried out at 37uC for 1–2 h or

overnight, and reaction was stopped by addition of a stop dye

solution with EDTA (10 mM) and SDS (0.1%).

Table 1. Summary of crystallographic information.

Resolution range (Å) 30-2.6

Number of observations 613,776

Rmerge (%)1 8.2 (46.8)

I/sI 29.0 (4.9)

Redundancy 10.6 (10.0)

Completeness (%) 98.7 (95.1)

R factor2 (%) 20.5 (23.7)

free R factor2 (%) 26.6 (31.0)

rms deviation in bond lengths (Å) 0.008

rms deviation in bond angles (u) 1.1

PDB entry codes2 4H9D

1The numbers in parentheses are for the highest resolution shell, 2.7-2.6 Å for
data processing statistics and 2.86-2.6 Å for refinement statistics.
2The coordinates and structure factors have been deposited in PDB and are
accessible under accession number 4H9D.
doi:10.1371/journal.pone.0072114.t001
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DNA Mobility Shift Assay
FAM-labeled duplex oligos were incubated with 6xHis-tagged

N77H or Gme HNHE at room temperature for 20 min and the

DNA-protein complexes were resolved in a 10% PAG gel. The

image of DNA-protein complex was derived by scanning on a

variable mode imager (Typhoon 9400, GE Healthcare).

Oligo 1 sequence: 59 ACG ATA GTT ACC GGA TAA GGC

GCA GCG G 39 (ACCGG-top).

Oligo 2 sequence: 59 CCG CTG CGC CTT ATC CG G TAA

CTA TCG T-FAM 39 (ACCGG-bottom).

Preparation of Acid-damaged Plasmid DNA (heat/acid
Depurination of DNA)
The published procedure for acid and heat damaged (depuri-

nated) DNA was followed [15]. Briefly, 20 mg of pBR322 DNA

was treated in 20 mM citrate acetate (pH 5.0), 0.1 M NaCl, at

70uC for 1 to 2 h in a total reaction volume of 100 ml. The acid/

heat treated DNA was then purified through a Qiagen spin

column and resuspended in 10 mM Tris-HCl buffer (pH 8) and

then used for nicking reactions with Gme HNHE or its variants.

Site-directed Mutagenesis of Gmet_0936 to Create
Variants D53A, H54A, N68A, and N77H
Gmet_0936 variants were created by PCR mutagenesis using a

pair of non-overlapping primers and Phusion DNA polymeraseH
(NEB). PCR products were purified through spin columns,

phosphorylated by T4 polynucleotide kinase and ligated by T4

DNA ligase. Ligated DNA was used to transform E. coli competent

cells ER2566 and transformants were selected on LB agar Amp

plates. The desired mutations were confirmed by DNA sequencing

of the alleles on plasmids.

Accession Numbers
The PDB entry codes (coordinates and structure factors) have

been deposited in pdb database and received the accession

number: 4H9D.

Results and Discussion

Identification of Gmet_0936 Protein Homologs
A BlastP search for homologous proteins in GenBank using

Gmet_0936 as a query identified over 50 small putative HNH

endonucleases (92 to 133 aa in length) with more than 50% amino

acid (aa) sequence identity. The top ten close homologs with the

predicted secondary structure are shown in Fig. 1 (PROMAL3D

alignment, the rest of homologs not shown) [16]. Gmet_0936

homologs can be found in Geobacter species and some members of

Geobacteraceae, Desulfuromonadales, and Pelobacteraceae. For

example, Gmet_0936 shares 75% aa sequence identity to a

putative HNHE (protein ID: YP_001231596) from Geobacter

uraniireducens. It also shares 76% aa sequence identity to a putative

HNHE (protein ID: NP_953119) encoded in the genome of

Geobacter sulfurreducens PCA strain. The presence of a large number

of close homologs suggests that Gmet_0936 and its relatives may

have some unknown biological function, possibly in DNA repair or

recombination.

Crystal Structure of the Putative HNH Endonuclease
Crystal structure of Gmet_0936 protein, a putative HNH

endonuclease from G. metallireducens GS-15 was determined at

2.6 Å resolution, using selenomethionyl (Se-Met) derivatized

protein and single-wavelength anomalous dispersion method of

phase determination. The structure model was refined to working

and free R-factors of 0.206 and 0.266, respectively. The data

processing and refinement statistics are presented in Table 1.

There are 3 molecules of the Gmet_0936 protein in the

asymmetric unit, named A, B, and C, containing residues 1–98,

5–95, and 16–95 respectively. The structure of each monomer

contains a two-stranded anti-parallel b-sheet (b1–b2) that is

surrounded by two helices on each face (a1–a4) (Fig. 2A). The
overall shape of the monomer is rather flat, with dimensions of

35630615 Å3. The conformations of the three molecules in the

asymmetric unit are similar, with rms distance of ,0.7 Å among

their equivalent Ca atoms. The structure revealed a Zn ion

associated with each monomer, coordinated by residues Cys38,

Cys41 (in the long loop connecting helix a2 and strand b1), Cys73,

and Cys76 (near the N-terminal end of helix a3) (Fig. 2A). The

zinc ion likely plays an important structural role, stabilizing the

overall conformation of the Gmet_0936 protein monomer.

The Gme endonuclease belongs to the family of HNH

endonucleases which is also known as bba-Me endonucleases.

This conserved bbaMe fold with a bound zinc ion has been found

in a wide range of nucleic acid enzymes including non-specific

endonucleases, type II restriction enzymes, homing endonucleases,

holiday junction resolvase, and DNA repair enzymes. We next

performed homolog search of known structures in pdb. Structural

homologs of the Gme HNHE was identified with the program

DaliLite [17]. These include the restriction endonuclease Hpy99I

(CGWCG, PDB code 3FC3) [18], phage T4 endonuclease VII, a

holiday junction specific endonuclease (PDB code 2QNC) [19],

periplasmic nuclease Vvn from Vibrio vulnificus (1OUO) [20], and

endonuclease I from bacterium Vibrio salmonicida (2PU3) [21], with

Z scores of 4.3, 3.9, 3.5, and 3.5, respectively. The root mean

squared distance for ,65 equivalent Ca atoms is 3.1–3.6 Å, and

the proteins share 15–20% amino acid sequence identity with

Gme HNHE. An overlay of the structures of Gme HNHE and

Hpy99I is shown in Fig. 2B. Overall, most of the secondary

structure elements, as well as the zinc binding site, have

counterparts in the two protein structures. Moreover, the catalytic

residues in the active site are also mostly conserved between the

two structures (see below). On the other hand, Hpy99I contains

extra structural elements at the N-terminus (residues 1–105),

which mediate the binding of the DNA substrate as well as

dimerization [18]. These elements are absent in Gme HNHE

(Fig. 2B). The lack of a companion DNA methyltransferase

(MTase) and the ability of high expression of Gme HNHE protein

in E. coli, and the lack of apparent DNA digestion pattern in Mg++

buffer led to the conclusion that Gme HNHE is not a typical type

II restriction enzyme (see below for DNA nicking activity).

Sequence analysis suggests that residues Asp53, His54, Asn68

and Asn77 are in the active site of the HNH endonuclease.

Residues Asp53 and His54 are at the end of strand b1, on the

surface of the monomer, and Asn68 and Asn77 are located close to

these two residues (Fig. 2A). Moreover, residues Asp53-His54 are

equivalent to important catalytic residues (Asp148-His149) in the

structural homolog Hpy99I (Fig. 2B), a bba-Me type II REase

[18]. Asn77 is equivalent to Asn165, although Asn68 does not

have a counterpart in Hpy99I (Fig. 2B). Asn77 directly follows a

ligand to the zinc ion (Cys76) in both Gme HNH endonuclease

and Hpy99I, indicating a tight coupling between zinc binding and

the organization of the active site. Overall, structural and sequence

analyses have identified the putative active site of this HNH

endonuclease (see mutagenesis data below). The conserved bba-

Metal fold is also found in the PacI restriction enzyme where the

typical His residue is now occupied by an Arg residue in the

catalytic site consisting of H42-R93-Y100-N113, further illustrating

the diversity of the HNH family enzymes [22].

Structure of an HNH Endonuclease and Its Activity
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Studies in solution indicate that the Gme HNHE is primarily a

dimer (see molecular sizing chromatography results below). Two

of the three molecules in the crystallographic asymmetric unit

form a dimer (Fig. 3A), which may correspond to the dimer in

solution. Part of the interface of this dimer is ionic/hydrophilic in

nature, including residues Arg32, Arg35, His39 and Arg66.

However, the third molecule does not form a similar dimer. In

fact, it appears to be mostly monomeric, and has only weak

association with its crystallographic symmetry-mate. The crystal-

lization solution, with 0.2 M Mg sulfate and therefore relatively

high ionic strength, may have partly destabilized the dimer. The

dimer of this nuclease is entirely different from that of Hpy99I, in

complex with duplex DNA (Fig. 3B) [18]. Therefore, the binding
mode of the Gme HNHE to its DNA substrate may be different as

well. The HNH catalytic domain (bba-metal fold) and catalytic

residues are conserved among non-specific endonucleases, HNH-

family restriction enzymes, and DNA repair endonuclease such as

phage T4 endonuclease VII (DNA resolvase to release arrested Y-

DNA structure). Fig. 4 shows the catalytic residues of Gme

HNHE, Hpy99I, phage T4 endonuclease VII, Vvn nuclease, and

endonuclease I. A large group of HNH-family DNA nicking

enzymes encoded by phage and prophage were discovered

recently [23]. These nickases display low amino acid sequence

similarity to Gme HNHE. Some type IV restriction enzymes such

as Sco_McrA and E. coli McrA also have the conserved HNH

catalytic domain and a zinc binding site. Sco_McrA cleaves

phosphorothioated DNA as well as methylated DNA and prefers

Mn2+ or Co2+ for catalytic activity [24]. Thus, the property of

Mn2+ –dependent catalytic activity is shared by Gme HNHE,

Sco_McrA endonuclease, and some phage/prophage encoded

nicking enzymes. E. coli McrA restricted incoming 5 mC modified

l phage or plasmid DNA or 5 hmC-modified T4gt [25] [26].

Although the type IV restriction enzyme McrA (or McrA

homologs) and phage-encoded HNH nicking enzymes share low

amino acid sequence similarity to Gmet_0936, the structure-

guided sequence alignment (Phyre server) [27] shows that these

enzymes display similar predicted structure models in the zinc

binding site and the HNH (HNN) catalytic domain (data not

shown).

The Zn binding site of Gme HNHE is reminiscent of the zinc

ribbon of the 134-aa nuclease domain of Colicin E9 containing a

zinc-finger-like HNH motif that binds divalent transition metal

ions (Zn2+, Co2+, or Ni2+) with binding affinity for Zn2+ three

order of magnitude higher than other divalent cations. The metal

ion is coordinated by three His residues and Zn2+ is not required

for the endonuclease activity, but necessary for structure

stabilization [28].

Purification of Gmet_0936 Protein and its N77H Variant
and DNA Binding/nicking Assays
The 6xHis-tagged (13.3 kDa) and none-His-tagged Gmet_0936

protein (12.7 kDa) purified from chitin/Heparin columns showed

slightly larger apparent molecular size than the predicted

molecular masses (Fig. S1A). By multiple sequence alignment

with other known HNH endonucleases and by structure-guided

analysis, the possible catalytic residues of Gmet_0936 protein are

D53, H54, N68, and N77. N77 position is usually occupied by a

Figure 1. PROMALS3D multiple sequence alignment of putative HNH endonucleases. Consensus predicted secondary structure symbols:
alpha-helix: h; beta-strand: e. Consensus amino acid symbols are: conserved amino acids are in bold and uppercase letters; aliphatic (I, V, L): l;
aromatic (Y, H, W, F): @; hydrophobic (W, F, Y, M, L, I, V, A, C, T, H): h; alcohol (S, T): o; polar residues (D, E, H, K, N, Q, R, S, T): p; tiny (A, G, C, S): t; small
(A, G, C, S, V, N, D, T, P): s; bulky residues (E, F, I, K, L, M, Q, R, W, Y): b; positively charged (K, R, H): +; negatively charged (D, E):2; charged (D, E, K, R, H):
c. 4 h9d_chainA, Gme HNHE from G. metallireducens GS-15 (15 C-terminal residues EPSDGEGLEH6 are disordered and not resolved in the structure.
Other HNH endonuclease homologs in the alignment are: Gbe, G. bemidjiensis Bem; GspM21, Geobacter sp. M21; Gda, G. daltonii FRC-32; Gur, G.
uraniireducens Rf4; GspM18, Geobacter sp. M18; Gsu, G. sulfurreducens PCA; Glo, G. lovleyi SZ; Cni, Calditerrivibrio nitroreducens DSM 19672; Dde,
Deferribacter desulfuricans SSM1; Sfu, Syntrophobacter fumaroxidans MPOB.
doi:10.1371/journal.pone.0072114.g001

Structure of an HNH Endonuclease and Its Activity
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His residue in many HNH endonucleases (gp74 endonuclease of

phage HK97 also has a His residue immediately after the CxxC

motif) [29]. Therefore, N77 was mutated to His by site-directed

mutagenesis and the His-tagged protein N77H (H6) was partially

purified (Fig. S1B and C) and assayed for endonuclease activity.

Fig. 5A shows that at 20-fold molar excess of protein vs DNA,

2–3 protein bound complexes were detected in the gel shift assay.

At higher protein concentration, more substrate DNA was bound

and shifted towards slow migrating complexes. Since the precise

binding specificity of the Gmet_0936 (H6) and its N77H (H6)

variant is still unknown, the bound complexes are probably

resulted from non-specific DNA binding activity. In the control

experiment, the Bsu HNH endonuclease which has a DNA

nicking specificity of CGQGT (ACCG) bound the duplex oligos

and formed a high molecular weight complex (Fig. 5A, lane 11). It

was concluded that Gmet_0936 (H6) and N77H (H6) variant are

weak DNA binding proteins. Gme HNHE may need other DNA

binding partner(s) for high affinity DNA binding.

We next digested various DNA substrates with purified Gme

HNHE and N77H (H6) enzymes in buffers with different divalent

cations such as Mg2+, Mn2+, Zn2+, Ca2+, Co2+, or Ni2+ at various

pH levels (pH 6 to 8). N77H (H6) enzyme displays detectable DNA

nicking activity in Mn2+ buffers at low pH (pH 6 to 7) (data not

shown). Purified Gme HNHE and N77H (H6) enzymes display

weak DNA nicking activity in overnight digestions at pH 7 in a

Mn++ buffer. Fig. 5B (lanes 1–2, 10–11) shows that N77H (H6)

and Gme HNHE enzymes nick dsDNA (wX174 and M13 RFI

DNA) and they also changed the migration pattern of ssDNA

(M13 ssDNA, lanes13–15) in the overnight digestion. Both

enzymes do not appear to cleave pre-nicked wX174 RFII DNA

(lanes 4–6). Multiple attempts to determine the nicking specificity

(nicking site) of N77H (H6) were not successful when nicked and

gel-purified pBR322 DNA was used as templates for run-off

sequencing, suggesting that N77H (H6) endonuclease nicks

plasmid DNA non-specifically. In a control experiment, nicked

pBR322 by site-specific and strand-specific nicking enzymes

(N.wGamma) gave rise to sharp drop in sequencing peaks in

run-off sequencing (data not shown).

N77H (H6) Endonuclease Prefers Nicking on Acid and
Heat Treated DNA
Since Gme N77H (H6) endonuclease is more active in low pH

buffers (activity in pH 6, 6.5, and 7) it was suspected that the rate

of DNA depurination was enhanced at the lower pH levels (pH 6–

7), resulting in the apparent elevated DNA nicking activity.

Therefore we tested the nicking activity of Gme N77H (H6)

enzyme on acid and heat damaged pBR322 DNA. Fig. S2A
shows the partial nicking activity of N77H (H6) on regular pBR322

in an Mn++ buffer at pH 7.0. Fig. S2B shows that following acid

and heat treatment for 2 h, some supercoiled DNA was converted

to nicked circular DNA (breaks of DNA backbones in addition to

depurination) (see lane 1, zero time point). Most of the supercoiled

DNA was converted to nicked circular DNA after 90 min

digestion by N77H (H6). It was concluded that the DNA nicking

activity of N77H (H6) could be enhanced by acid and heat

treatment of plasmid DNA. However, we cannot exclude other

catalytic activity for this enzyme, which may be more physiolog-

ically relevant.

Site-directed Mutagenesis of the Putative Active site
We also constructed four other 6xHis-tagged variants: D53A,

H54A, N68A, and N77A; and these four mutant proteins were

partially purified from nickel spin columns. The protein expression

level in crude cell lysate and in nickel column purified fractions

was normal for the D53A variant, but much reduced for the H54A

and N68A variants (,5 to 10% of wt), and poorly expressed for

the K14E/N77A double mutant (we were unable to isolate N77A

Figure 2. Crystal structure of the Gmet_0936 protein, a
putative HNH endonuclease from Geobacter metallireducens

GS-15. A. Schematic drawing of the structure of Gmet_0936 protein.
The secondary structure elements are labeled. A bound zinc ion and its
four Cys ligands are shown as a sphere (pink) and in stick models (in
gray), respectively. Residues 53, 54, 68, 77 are shown as stick models (in
green). B. Overlay of the structure of HNH endonuclease (in color) with
the restriction endonuclease Hpy99I (in gray) [18]. Residues in the zinc
binding site and the active site are shown as stick models. The N-
terminal residues of Hpy99I (1–105) are not shown. C. Molecular surface
of the active site region of the HNH endonuclease. Residues His54,
Asp53 and Asn77 are given different colors and labeled.
doi:10.1371/journal.pone.0072114.g002

Figure 3. Structure of the Gmet_0936 protein dimer. A.
Schematic drawing of the Gmet_0936 protein dimer. The two molecules
are colored in cyan and green. Residues Asp53-His54 in the putative
active site are shown as stick models. The two-fold axis of the dimer is
indicated by the red oval. B. Structure of Hpy99I dimer in complex with
duplex DNA [18]. The catalytic domains are colored in cyan and green,
and the N-terminal segment in yellow. The DNA duplex is in orange.
doi:10.1371/journal.pone.0072114.g003
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single mutant since Asn77 to Ala substitution was accompanied by

a secondary mutation K14E) (Fig. S3). In addition, K14E/N77A

transformation into a T7 expression strain (ER2566) was only

about 0.4% of the wt Gme HNHE (data not shown), indicating

that K14E/N77A may be toxic to the expression host, possibly

due to its tight DNA binding and interference with transcription or

DNA replication (it was noted that N77H plasmid was able to be

transferred into the T7 expression strain at equal efficiency as the

wt gene on the same vector). The Gme H54A variant is also toxic

to E. coli with reduced transformation efficiency. The partially

purified mutant proteins D53A, H54A, N68A displayed reduced

nicking activity on pBR322 (buffer pH 7.0, 1 mM Mn++) (data not

shown). The activity of K14E/N77A cannot be determined due to

the poor expression and lack of purified protein. From the

mutagenesis result, it was concluded that H54, N68, and N77 are

critical for both enzyme activity and for maintaining proper

structural folding as well. The role of D53 residue is less important

for structure integrity and it’s negative charge of side chain may

contribute to the catalytic site by stabilizing a metal ion.

Gme HNHE is not a Holiday Junction Resolvase by Itself
Due to the structure similarity in the HNH catalytic domain of

Gme HNHE and phage T4 endonuclease VII, we tested N77H

(H6) variant in nicking pUC19 DNA and a pUC-derivative that

contains a long stretch of [AT]20 tracks that can form a cruciform

structure. Both plasmids were nicked non-specifically by N77H

(H6) endonuclease, with equal nicking activity on the plasmid with

a cruciform structure (data not shown). We concluded that Gme

HNHE is unlikely a holiday junction resolvase by itself.

Figure 4. Structural comparison of the conserved bba-metal fold and catalytic sites of Gme HNHE, Hpy99I, phage T4 endonuclease
VII, periplasmic nuclease Vvn from Vibrio vulnificus, and endonuclease I from bacterium Vibrio salmonicida. Some additional secondary
structures (b sheets) were inserted in the bba-Me fold in Vvn nuclease and endonuclease I.
doi:10.1371/journal.pone.0072114.g004
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Molecular Sizing Column Chromatography of non-His-
tagged Gme HNHE
To determine the oligomerization state of Gme HNHE, we

performed molecular sizing column chromatography for the

enzyme (purified by chitin and Heparin columns). Ten ml of the

purified non-His-tagged Gme HNHE (4 or 8 mg/ml) was injected

into a Superdex 200 5/150 GL column (3 ml bed volume; GE

Healthcare). The partition coefficient (Kav) of Gmet_0936 protein

was determined by Kav= (ve2vo)/(vt2vo) where ve is the elution

volume, vo is the void volume of the column and vt is the total

column volume. vo was determined empirically from the elution

time of blue dextran and vt was the total column volume 3 ml. A

standard curve was created by obtaining the Kav values of the

standard protein ribonuclease A (13.5 kDa), ovalbumin (43 kDa)

and conalbumin (75 kDa) (GE Healthcare) run under the same

conditions. The Kav values for two enzyme concentrations and the

standard proteins are represented by open circles and block

squares, respectively. The Kav values and the derived apparent

molecular weight of Gmet_0936 protein are 0.899 and 0.891,

corresponding to 26.2 kDa and 25.3 kDa for the 4 mg/ml and

8 mg/ml injection, respectively (Fig. S4). The apparent molecular

weight of the Gme HNHE is consistent with a dimer configura-

tion.

Analytical Gel Filtration and Static Light Scattering of
6xHis-tagged Gme HNHE
To analyze the oligomerization state of the Gme HNHE with a

C-terminal 6xHis tag (LEH6, the same protein in the crystal

structure), Gme HNHE (H6) was purified to near homogeneity

from a nickel column and a gel filtration column. Thawed aliquot

of the protein crystallization stock was subjected to analytical gel

filtration on a Shodex 802.5 column (Showa Denko, Tokyo,

Japan) running at 4uC in 100 mM NaCl, 0.025% (w/v) NaN3,

100 mM Tris-HCl (pH 7.5). The column eluant was monitored

using static light scattering and refractive index detectors

(miniDAWNTM TREOS and Optilab T-rEX, Wyatt Technolo-

gies, Santa Barbara, CA). Debye analysis shows a molecular mass

of 23.9 kDa, indicating that Gme HNHE (H6) is a dimer (data not

shown), which is consistent to the result derived from molecular

sizing column described above for the non-His tagged protein. In

term of cleavage/nicking mechanism, it is not clear why Gme

HNHE only nicks DNA and does not cause extensive ds breaks on

acid/heat damaged DNA.

The biological function of Gme HNHE is unknown. Due to its

weak DNA binding activity, Gme HNHE may require other

protein partners to be recruited to DNA lesion sites, and introduce

nicks at or near AP sites. With the availability of the 6xHis-tagged

Gme HNHE and N77H variant, it is now possible to identify the

protein interaction partner from cell extracts of Geobacter metallir-

educens GS-15 by binding the protein complex in a nickel agarose

column, or using Gme HNHE-intein-CBD fusion to bind the

interacting partner in co-purification from a chitin column. The

N77H (H6) variant shows improved non-specific DNA nicking

activity on acid and heat damaged plasmid DNA. Therefore, we

suspect that Gme HNHE may play a role in DNA repair and/or

recombination. The structural similarity of Gme HNHE and the

C-terminus of Hpy99I restriction enzyme suggested divergent

evolution of the HNH (HNN/HNK) family endonucleases: one

towards possible DNA repair funtion (nicking of damaged DNA

for homologous recombination repair) and the other towards DNA

restriction by fusion with a sequence-specific DNA recognition

domain. The structure of Gme HNHE reported here comple-

ments the structural information derived from other HNH family

nucleases including His-Cys box homing endonuclease, restriction

endonuclease, DNA repair enzyme, holiday junction resolvase,

and non-specific Colicin endonucleases.

Recently, a protein called HlpB essential for cell viability with

the conserved HNH motif was discovered in Bacillus subtilis (hlpB

or yisB gene) [30]. The depletion of HlpB leads to growth arrest

and to the generation of cells containing a single, decondensed

nucleoid. Purified HlpB protein showed cooperative binding to ds

and ssDNA in the presence of divalent cations, but no apparent

DNA cleavage or nicking were detected. Lethality of the hlpB

deletion was relieved by the knock out of addA and of addAB, two

genes encoding proteins forming a RecBCD-like end resection

complex. These results suggest that HlpB plays a role in DNA

repair by rescuing AddAB-mediated recombination intermediates

in B. subtilis and possibly has similar function in other bacteria.

The HlpB (100 aa residues) and Gme HNHE (104 aa residues)

only share 11% aa sequence identity. Based on the biochemical

Figure 5. DNA mobility shift assay (DNA binding assay) in the absence of divalent cations and DNA nicking activity assays for
6xHis-tagged N77H in buffers with different metal ions. A. Fluorescein-labeled duplex oligos were incubated with varying amount of 6xHis-
tagged N77H or Gme HNHE at room temperature for 20 min and the DNA-protein complexes were resolved in a 10% PAG gel.K to 86 indicates the
relative protein concentration (1x = 0.5 mg protein). Arrows indicate the substrates and the bound complexes. N.Bsu, Bacillus subtilis HNH nicking
endonuclease. The binding buffer in this assay lacks divalent cations and therefore does not support DNA nicking. B. DNA nicking assay for WT and
N77H (H6). Lanes 1–3, wX174 RFI DNA (dsDNA); lanes 4–6, wX174 RFII DNA (dsDNA, nicked circular); lanes 7–9, wX174 ssDNA; lanes 10–12, M13 RFI
(dsDNA); lanes 13–15, M13 ssDNA; lane 16, nicked M13 RFI DNA by Nb.BsmI; lane 17, 2-log DNA ladder.
doi:10.1371/journal.pone.0072114.g005
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properties of HlpB and Gme HNHE, we suspect that Gme HNHE

likely plays a different DNA repair function from that of HlpB

protein. More genetic and biochemical studies are needed to

pinpoint the biological function of Gme HNHE.

Conclusion

The crystal structure of Gmet_0936 protein from Geobacter

metallireducens GS-15 was determined at 2.6 Å resolution. The

structure contains a two-stranded anti-parallel b-sheet surrounded

by two helices on each face, and reveals a Zn binding site in each

monomer, coordinated by residues Cys38, Cys41, Cys73, and

Cys76. Structural homologs of Gmet_0936 include Hpy99I

endonuclease, phage T4 endonuclease VII, and other HNH

endonucleases with the conserved bba-Me structural fold. An

overlay of Gmet_0936 and Hpy99I structures shows that most of

the secondary structure elements, catalytic residues as well as the

zinc binding site (zinc ribbon) are conserved. However,

Gmet_0936 lacks the N-terminal domain of Hpy99I, which

mediates DNA binding as well as dimerization. Purified

Gmet_0936 forms dimers in solution and a dimer of the protein

is observed in the crystal, but with a different mode of dimerization

as compared to Hpy99I. Gmet_0936 and its N77H variant show a

weak DNA binding activity in a DNA mobility shift assay and a

weak Mn2+-dependent nicking activity on supercoiled plasmids in

low pH buffers. The preferred substrate is acid and heat-treated

DNA with AP sites, suggesting that Gmet_0936 may be a DNA

repair enzyme. Site-directed mutagenesis indicated that the

catalytic residues His53, N68, and N77 are also important for

maintaining proper structure folding of the protein.

Supporting Information

Figure S1 SDS-PAGE analysis of purified His-tagged
and non-His-tagged proteins. A. Partially purified proteins:

6xHis-tagged Gme HNHE with the non-native C-terminal amino

acid (aa) residues LEH6, predicted molecular mass: 13,264 Dalton,

pI = 6.71. Gme HNHE with non-native C-terminal residues

LEGSS following intein cleavage, predicted molecular mass:

12,672 Dalton, pI = 5.43. Lane 1, IPTG-induced and clarified

cell lysate (SN, supernatant); lanes 2 and 3, flow-through (FT) from

the nickel column; lanes 4 and 5, eluted fractions containing Gme

HNHE (H6) protein; lanes 6 and 8, eluted fractions containing

Gme HNHE from a Heparin column purification; lane 7, chitin

column eluent containing Gme HNHE after DTT cleavage; lane

9, protein ladder (NEB). B. SDS-PAGE analysis of partially

purified N77H (H6) protein. Lane 1, eluent from a nickel column;

lane 2, IPTG-induced and clarified cell lysate (SN, supernatant);

lane 3, total proteins in cell lysate; lane 4, protein ladder. C. SDS-

PAGE analysis of purified N77H (H6) protein eluted fractions from

a Heparin column.

(TIFF)

Figure S2 N77H (H6) DNA nicking activity assays on
regular pBR322 and acid/heat damaged pBR322 DNA.

A. A time course of N77H (H6) nicking activity on pBR322. PstI,

linear DNA; Nt, nicked circular form by Nt.BspQI; nicking

reaction time course (10 to 90 min) at 37oC in an Mn++ buffer (1

mM). zero=DNA plus buffer, no enzyme added. B. A time course

of N77H (H6) nicking activity on acid/heat damaged pBR322

(sodium citrate, pH 5.0, 70oC for 2 h pre-treatment to inflict

damage). Following acid/heat treatment, a fraction of the

supercoiled DNA had been converted to linear and nicked

circular forms (see zero time point).

(TIFF)

Figure S3 SDS-PAGE analysis of Gme HNHE variants in

cell extract and in partially purified protein fractions

from nickel spin columns. A. SDS-PAGE analysis of WT

Gme HNHE and its variants. Lane 1–2, protein ladder and

purified Gme HNHE; lanes 3–9, IPTG-induced cell extracts

containing WT Gme HNHE, and its variants D53A, H54A,

N68A, N77H, and K14E/N77A (two isolates). B. SDS-PAGE

analysis of partially purified WT Gme HNHE and its variants.

Lane 10–11, protein ladder and purified WT Gme HNHE

(Heparin); lanes 12–18, partially purified enzymes from nickel spin

columns: WT Gme HNHE and its variants D53A, H54A, N68A,

N77H, and K14E/N77A (two isolates).

(TIFF)

Figure S4 Molecular sizing column chromatography to

determine the oligomerization state of the Gme HNHE.

The partition coefficient (Kav) of Gme HNHE was determined by

Kav= (ve2vo)/(vt2vo) where ve is the elution volume, vo is the void

volume of the column and vt is the total column volume. vo was

determined empirically from the elution time of blue dextran and

vt was the total column volume 3 ml. A standard curve was created

by obtaining the Kav values of the standard protein ribonuclease A

(13.5 kDa), ovalbumin (43 kDa) and conalbumin (75 kDa) run

under the same conditions. The Kav values for two enzyme

concentrations and the standard proteins are represented by open

circles and block squares, respectively. The Kav values and the

derived apparent molecular weight of Gme HNHE are 0.899 and

0.891, corresponding to 26.2 kDa and 25.3 kDa for the 4 mg/ml

and 8 mg/ml injection, respectively.

(TIFF)
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