
J. Fluid Mech. (2000), vol. 407, pp. 167–200. Printed in the United Kingdom

c© 2000 Cambridge University Press

167

Structure, diffusion and rheology of Brownian
suspensions by Stokesian Dynamics simulation

By DAVID R. FOSS AND JOHN F. BRADY

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena,
CA 91125, USA

(Received 20 April 1999 and in revised form 25 September 1999)

The non-equilibrium behaviour of concentrated colloidal dispersions is studied using
Stokesian Dynamics, a molecular-dynamics-like simulation technique for analysing
suspensions of particles immersed in a Newtonian fluid. The simulations are of a
monodisperse suspension of Brownian hard spheres in simple shear flow as a function
of the Péclet number, Pe, which measures the relative importance of hydrodynamic
and Brownian forces, over a range of volume fraction 0.316 6φ6 0.49. For Pe < 10,
Brownian motion dominates the behaviour, the suspension remains well-dispersed,
and the viscosity shear thins. The first normal stress difference is positive and the
second negative. At higher Pe, hydrodynamics dominate resulting in an increase in the
long-time self-diffusivity and the viscosity. The first normal stress difference changes
sign when hydrodynamics dominate. Simulation results are shown to agree well with
both theory and experiment.

1. Introduction

Suspensions of small particles dispersed in a fluid occur in a variety of natural and
industrial settings, such as slurries, paints, pastes, many foodstuffs, and ceramic sols. In
these microstructured fluids the suspended particles interact through hydrodynamic,
interparticle, and Brownian (or thermal) forces. The balance between thermal and
interparticle forces determines the equilibrium behaviour. Under the action of an
external driving force such as shear, hydrodynamic forces come into play and compete
with thermal and interparticle forces to set the structure and determine properties.
There have been a number of experiments on well-characterized model hard-sphere
systems (de Kruif et al. 1985; van der Werff & de Kruif 1989; van der Werff et
al. 1989; Ackerson 1990; etc.) that have greatly advanced our understanding of
colloidal dispersions, and, along with scaling theories for the behaviour at high
solids concentration (Brady 1993b; Brady & Morris 1997) and Stokesian Dynamics
simulations (Bossis & Brady 1984, 1987, 1989; Brady & Bossis 1985, 1988; Phung &
Brady 1992; Phung 1993; Phung, Brady & Bossis 1996; Ball & Melrose 1995; Dratler
& Schowalter 1996) a complete picture is emerging.

In this work we report on Stokesian Dynamics simulation studies of rheology,
diffusion, and structure of concentrated monodisperse suspensions of hard spheres.
Stokesian Dynamics is a general molecular-dynamics-like method for simulating
suspensions at low particle Reynolds number that accurately calculates the many-
body interactions necessary to capture the hydrodynamic forces transmitted through
the fluid. In a hard-sphere suspension particles interact through hydrodynamic and
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Brownian forces only, and the system is described by the minimal number of pa-
rameters – the volume fraction φ and the Péclet number, Pe. The Péclet number
is the ratio of hydrodynamic shear to thermal forces, or alternatively the ratio of
Brownian and flow time scales and is given by Pe = γ̇a2/D, where γ̇ is the magnitude
of the shear rate, and D = kT/6πηa is the Stokes–Einstein diffusivity of an isolated
spherical particle of radius a and thermal energy kT in a fluid of viscosity η.

As the Péclet number is varied the simulations reveal two characteristic regimes
of suspension behaviour. At low Péclet number (Pe6 10) the equilibrium structure
is distorted by the flow and the suspension viscosity shear thins. The shear thinning
is caused by the decrease of the direct Brownian contribution to the stress as the
magnitude of the structural deformation does not match the flow strength. The hydro-
dynamic contribution to the stress remains constant and equal to the high-frequency
dynamic viscosity, η′

∞, throughout the shear thinning process. The zero-shear-rate
viscosity is determined both as the limiting value of the steady shear viscosity as the
shear rate vanishes and from the decay of the shear stress autocorrelation at equi-
librium (Nägele & Bergenholtz 1998). The simulation viscosities show no variation
with the size of, or the number of, particles in a unit cell (27 6N 6 123) and compare
well with experiment (van der Werff & de Kruif 1989; D’Haene, Mewis & Fuller
1993). Normal stress differences have proven difficult to measure accurately at low
Péclet number but are determined by the direct Brownian contribution to the stress.
The first normal stress difference is positive and the second negative. Unlike polymer
systems, however, both normal stress differences are of comparable magnitude.

At high Péclet number the shearing forces overcome Brownian motion and push
particles into close contact where the short-range hydrodynamic lubrication forces
are important. The suspension exhibits shear thickening due to the increase in the
hydrodynamic contribution to the stress caused by the formation of clusters that
are bound by lubrication forces as first shown by Bossis & Brady (1989). The first
normal stress difference changes sign, and both normal stress differences are negative
and appear to approach an O(ηγ̇) high-Pe asymptote. The long-time self-diffusivity
also grows dramatically with Pe and reaches a purely hydrodynamic O(γ̇a2) limit
at high Pe. The appearance of diffusive motion and normal stress differences in
the deterministic pure hydrodynamic limit is surprising. Recent theoretical work by
Brady & Morris (1997) has shown, however, that the high-Pe limit is singular, and
the residual effect of weak Brownian motion introduces irreversibility, which may
result in finite normal stress differences and diffusive motion.

An unfortunate error in the simulation code used in our previous work (Phung &
Brady 1992; Phung 1993; Phung et al. 1996) has been discovered and corrected for this
paper (see § 2 for details of this error). The main effect of this correction is the absence
of a flow-induced string-ordered phase at intermediate Péclet numbers and high
concentrations that was observed in the earlier work. The low-Péclet-number shear-
thinning regime (Pe6 1) is not affected. The high-Péclet-number shear-thickening
behaviour is changed (slightly) quantitatively, but not qualitatively. Thus this paper
has a dual purpose: to correct the earlier results of Phung et al. (1996) which were for
a single volume fraction φ = 0.45; and to present results for a wide range of volume
fractions (0.316 6φ6 0.49) and to make comparison with theories for shear thinning
and thickening that have been developed recently.

In the next section we outline the Stokesian Dynamics simulation method. In § 3
we present and discuss the simulation results for rheology, diffusion, and structure in
concentrated colloidal dispersions of Brownian hard spheres. Conclusions are given
in § 4.
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2. Simulation method

A detailed derivation of the simulation method has appeared in the literature
(Durlofsky, Brady & Bossis 1987; Bossis & Brady 1987, 1989; Brady & Bossis 1988;
Brady et al. 1988; Phung et al. 1996), so we shall proceed quickly. For N rigid
particles suspended in an incompressible Newtonian fluid of viscosity η and density
ρ, the fluid motion is governed by the Navier–Stokes equations, while the particle
motion is described by the coupled N-body Langevin equation:

m ·
dU

dt
= F

H + F
P + F

B . (1)

In (1) m is the generalized mass/moment of inertia tensor, U is the particle transla-
tional/rotational velocity vector of dimension 6N, and the 6N force/torque vectors
F represent: (a) the hydrodynamic forces F

H exerted on the particles due to their
motion relative to the fluid, (b) the deterministic non-hydrodynamic forces F

P , which
may be either interparticle or external, and (c) the stochastic forces F

B that give rise
to Brownian motion.

When the particle Reynolds number is small, i.e. Re = ρa2γ̇/η ≪ 1 for the shear
flows considered here, the hydrodynamic force/torque exerted on the particles in a
suspension undergoing a bulk linear flow is

F
H = −RFU · (U − 〈U〉) + RFE:〈E 〉. (2)

In (2), 〈U〉 = 〈Γ̇〉 · x is the imposed bulk flow evaluated at the particle centres,
〈Γ̇〉 = 〈E 〉 + 〈Ω〉, and 〈E 〉 and 〈Ω〉 are the bulk rate-of-strain and vorticity tensors,
respectively, and are constant in space but may be arbitrary functions of time. The
configuration-dependent resistance tensors RFU(x) and RFE(x) give the hydrodynamic
force/torque on the particles due to their motion relative to the fluid and due to
an imposed flow, respectively. The vector x represents the generalized configuration
vector specifying the location and orientation of all N particles.

The deterministic, non-hydrodynamic force F
P is arbitrary. The stochastic or

Brownian force F
B arises from the thermal fluctuations in the fluid and is characterized

by

F
B = 0 and F

B(0)F B(t) = 2kTRFUδ(t). (3)

In (3) the overbar denotes an average over the rapid fluctuations of the solvent
molecules, k is Boltzmann’s constant, T is the absolute temperature, and δ(t) is the
delta function. The amplitude of the correlation between the Brownian forces at time
0 and at time t results from the fluctuation-dissipation theorem.

The evolution equation for the particles is obtained by integrating (1) over a time
step ∆t that is large compared with τp, the inertial relaxation time (τp = m/6πηa),
but small compared with the time over which the configuration changes. A second
integration in time produces the evolution equation for the particle positions (both
translational and orientational) with error of o(∆t):

∆x = Pe{〈U〉 + R
−1
FU · [RFE:〈E 〉 + γ̇∗−1

F
P ]}∆t + ∇ · R

−1
FU∆t + X (∆t),

X = 0 and X (∆t)X (∆t) = 2R
−1
FU∆t.

}
(4)

Here, ∆x is the change in particle position during the time step ∆t, and X (∆t) is a
random displacement due to Brownian motion that has zero mean and covariance
given by the inverse of the resistance tensor. In (4) x has been non-dimensionalized
by the characteristic particle size a; the time by the diffusive time scale a2/D, where
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D = kT/6πηa is the diffusion coefficient of a single isolated particle; the rate-of-
strain tensor 〈E 〉 by γ̇, where γ̇ = |〈Γ̇〉| is the magnitude of the shear rate; the
shear forces by 6πηa2γ̇; and the interparticle forces by their magnitude |F P |. The
Péclet number, Pe = γ̇a2/D = 6πηa3γ̇/kT , measures the relative importance of shear
and Brownian forces, and γ̇∗ = 6πηa2γ̇/|F P | is a non-dimensional shear rate giving
the relative importance of shear and interparticle or externally imposed forces. For
simulations where Pe > 1 it is convenient to non-dimensionalize the time step ∆t with
the inverse shear rate 1/γ̇. This is done by replacing ∆t in (4) by ∆t/Pe producing an
alternative form of the evolution equation:

∆x = {〈U〉 + R
−1
FU · [RFE:〈E 〉 + γ̇∗−1

F
P ]}∆t +

1

Pe
∇ · R

−1
FU∆t +

1

Pe1/2
X (∆t),

X = 0 and X (∆t)X (∆t) = 2R
−1
FU∆t.




 (5)

The high-Péclet-number form of the evolution equation was incorrect in the Stokes-
ian Dynamics code that was used for recently published results (Phung & Brady
1992; Phung 1993 and Phung et al. 1996). The random displacement term, X (∆t),
had a 1/Pe coefficient which is too small for Pe > 1 which affected the results
of those simulations. If we had simple diffusive motion in which the mobility was
independent of the configuration, then one could simply rescale the shear rate by Pe1/2

to convert the incorrect (1/Pe) results to the correct behaviour (1/Pe1/2). However,
the configuration-dependent mobility gives rise to the deterministic displacement
∇ · R

−1
FU∆t, which acts like a repulsive force between particles, and this rescaling

produces too large a repulsive force (1/Pe1/2 instead of 1/Pe). It is well known that
suspensions with non-hydrodynamic repulsive forces order into string phases if the
forces are strong enough and the volume fraction is high enough (Bossis & Brady
1984; Rastogi 1995). Thus, the error in the earlier simulations acted to enhance this
‘repulsive’ force and produce ordering where there should be none as we show in this
work. Note, this only affects the behaviour for Pe > 1; the correct scaling for Pe < 1
is used in Phung et al. (1996).

The macroscopic properties are found from appropriate definitions and averages
over particles and over time in a dynamic simulation. Here we shall be primarily
interested in diffusion and rheology. Several ‘particle diffusivities’ may be defined.
The short-time self-diffusivity D

s
0, which measures the average instantaneous mobility

of a particle, is given by an average over all configurations: D
s
0 = 〈Dii〉, where the

subscript ii (no sum on i) indicates that only the diagonal or self terms are included
in the sum, and the angle brackets denote an average over all configurations and all
identical particles. The N-particle diffusion tensor D is given by the Stokes–Einstein
relation:

D ≡ kTR
−1
FU . (6)

The long-time self-diffusivity D
s
∞, which measures the ability of a particle to wander

far from its starting point, is defined as the limit as time approaches infinity of one
half of the time rate of change of the mean-square position of a particle:

D
s
∞ = lim

t→∞

1

2

d

dt
〈(x − 〈x〉)2〉. (7)

For rheology, the bulk stress 〈Σ〉 is needed. This is defined as an average over the
volume V containing the N particles and is given by

〈Σ〉 = −〈p〉I + 2η〈E 〉 + 〈Σp〉, (8)
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where 〈p〉 is a constant setting the level of the pressure in the incompressible medium,
and 2η〈E 〉 is the deviatoric stress contribution from the fluid. The particle contribution
to the stress 〈Σp〉 is given by

〈Σp〉 = −nkT I + n{〈S
H〉 + 〈S

P 〉 + 〈S
B〉}. (9)

Here, −nkT I is the isotropic stress associated with the thermal energy of the Brownian
particles, I is the isotropic tensor, and n is the number density of particles. There are
three contributions to the bulk stress: (a) a mechanical or contact stress transmitted
by the fluid due to the shear flow, 〈S

H〉; (b) a stress due to the interparticle forces,
〈S

P 〉; and (c) a direct contribution from Brownian 〈S
B〉; they are given by

〈S
H〉 = −〈RSU · R

−1
FU · RFE − RSE〉:〈E 〉, (10a)

〈S
P 〉 = −〈(RSU · R

−1
FU + xI ) · F

P 〉, (10b)

〈S
B〉 = −kT 〈∇ · (RSU · R

−1
FU)〉. (10c)

The configuration-dependent resistance tensors RSU(x) and RSE(x) are similar to RFU

and RFE and relate the particle ‘stresslet’ S to the particle velocities and to the
imposed rate of strain, respectively. The stresslet is the symmetric first moment of the
force distribution integrated over the particle surface.

The hydrodynamic resistance tensors RFU , RFE , etc. that appear in the evolution
equation and macroscopic stress are computed in the same manner as discussed in
Phung et al. (1996) and are not repeated here. Suffice it to say that the method ac-
curately accounts for the near-field lubrication effects and the dominant many-body
interactions. Periodic boundary conditions are used and all long-range hydrodynamic
interactions are accelerated with the Ewald summation technique. As currently imple-
mented, calculation of the hydrodynamic interactions requires O(N3) operations and
thus limits the simulations to small systems (27 6N 6 123). The same time integration
scheme used by Phung et al. (1996) is employed here.

The simulation results are for a monodisperse suspension of Brownian hard spheres.
For particles interacting as hard spheres the interparticle force is identically zero, F

P ≡
0. The no-slip hydrodynamic boundary condition at particle surfaces guarantees that
the particles behave as hard spheres (Brady 1993a). This can be appreciated by noting
that an interparticle force of hard-sphere type at contact r = 2a between two particles,
F

P = 1
2
kT r̂δ(r−2a), has no dynamical consequence. Since the relative mobility of two

particles vanishes at contact as r − 2a due to the lubrication interactions, the relative
velocity caused by a hard-sphere force is proportional to (r−2a)δ(r−2a) and vanishes.
Simulations with F

P ≡ 0 at Pe ≡ 0 were shown by Phung et al. (1996) to produce
precisely the expected hard-sphere behaviour. Similarly, the stress contribution from
hard-sphere forces at contact is zero (SP ≡ 0).

3. Results

A large number of simulations were performed for a range in volume fraction of
0.316 6φ6 0.49, Péclet numbers ranging from 0 to 104 and the number of particles
N in the unit cell ranging from 27 to 123. Many of the long runs were divided into
statistically independent subintervals in order to determine the statistical variation
in the properties. All runs for all Péclet numbers were started using hard-sphere
equilibrium configurations obtained from a Monte Carlo procedure. For each run,
the first 10 000 to 20 000 time steps were ignored when computing average properties.
The properties reported are averages over all particles and over time. All simulations
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are for simple shear flow with the flow, velocity-gradient, and vorticity directions,
respectively, along the three axes (x, y, z) of the cubic unit cell. The presentation
below is divided into three parts: rheology, diffusion and structure.

3.1. Rheology

3.1.1. Shear viscosity

In steady simple shear flow the viscosity of a suspension is related to the (x, y)
components of the bulk stress and rate of strain in the following manner:

ηr ≡
Σxy

2ηExy

.

The individual Brownian (SB) and hydrodynamic (SH ) contributions to the relative
viscosity are denoted as ηBr and ηHr , respectively; hence

ηr = 1 + ηBr + ηHr , (11)

where the 1 is the solvent contribution.
First, we can analyse the fluctuations in stress at equilibrium and extract the zero-

shear limiting viscosity from the following dimensional Green–Kubo formula ( Nägele
& Bergenholtz 1998):

η0 = η′
∞ +

V

kT

∫ ∞

0

〈σxy(t)σxy(0)〉dt. (12)

Here, η′
∞ is the high-frequency dynamic viscosity, which represents the viscous con-

tribution to the stress at equilibrium, and is easily calculated from simulation. The
instantaneous Brownian shear stress is given by σxy(t). Although its average over
long times is zero, the Brownian stress fluctuates along with the microstructure due
to Brownian motion. The shear-stress autocorrelation function 〈σxy(t)σxy(0)〉 analyses
the nature of the relaxation of these fluctuations. Here, we use the subscript xy for
simplicity, but since there are no preferred directions at equilibrium, we can also au-
tocorrelate the xz- and yz-components of the Brownian stress tensor and average the
three functions to reduce statistical noise. Simulations were run at Pe = 0 using a time
step of ∆t = 5 × 10−4 for 400 000 steps to calculate the shear-stress autocorrelation
function. A discussion of the time-dependent behaviour of the autocorrelation func-
tion is presented elsewhere (Foss 1999). Here we are only interested in the zero-shear
viscosity η0.

The zero-shear-rate viscosity from the Green–Kubo formula is shown in table 1
and compared with data from steady-shear simulation and experiment as a function
of volume fraction, φ, in figure 1. The values calculated in this work from Green–
Kubo analysis are virtually indistinguishable from the previously reported viscosities
of Phung (1993) determined from steady-state averages at the lowest shear rate
(Pe = 0.01). This gives us confidence that the simulations were indeed performed
at low enough Pe to measure the limiting zero-shear viscosity. General agreement is
found between the values obtained from Stokesian Dynamics and the experimental
data, which are in the low-Pe limit.

We now turn our focus to the shear-rate dependence of the suspension stress. A
representative viscosity versus Péclet number curve (figure 2) for a volume fraction
of 0.45 and N = 27 shows the individual contributions to the viscosity as a function
of the Péclet number. The Brownian viscosity shear thins, becoming insignificant
compared to the hydrodynamic viscosity for Pe > 10. The hydrodynamic viscosity
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φ ηB0 η′
∞ η0

0.20 0.14 1.81 1.95
0.316 0.68 2.87 3.55
0.37 2.0 3.66 5.7
0.40 2.8 4.28 7.1
0.419 4.8 4.78 9.6
0.45 9.5 5.61 15.1
0.47 18.8 6.19 24.0
0.49 24.2 7.05 31.3

Table 1. Data for zero-shear viscosity, η0, and its different contributions as a function of φ from
Stokesian Dynamics, N = 27. The Brownian contribution, ηB0 , is calculation from a Green–Kubo
formula involving time-integration of the shear-stress autocorrelation function, equation (12). The
hydrodynamic contribution is the high-frequency dynamic viscosity, η′

∞, and is determined by
calculating 1 + ηH in the Pe → 0 limit. All viscosities are non-dimensionalized by the solvent
viscosity, η.
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Segre et al. (1995)
Shikata & Pearson (1994)
van der Werff & de Kruif (1989)
de Kruif et al. (1985)

Theory
Brady (1993)
φ

m
 = 0.63

Figure 1. Zero–shear limiting relative viscosity, η0, as a function of volume fraction φ from both
simulation and experiment. Simulation results include both previously measured values from runs
at Pe = 0.01 (Phung 1993) and values determined in this work from an equilibrium Green–Kubo
analysis.

remains roughly constant and equal to the high-frequency dynamic viscosity, η′
∞,

throughout the shear thinning process and then increases for Pe > 10. Thus, the
total viscosity goes through two regions of behaviour, a shear-thinning region at low
Pe and a shear-thickening region at high Pe. The constancy of the hydrodynamic
viscosity and the shear thinning of the Brownian viscosity has been observed in the
stress jump experiments of Mackay & Kaffashi (1995) and the optical measurements
of Bender & Wagner (1996). The uncertainty in the viscosities is shown in table 2.
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Figure 2. Peclet number dependence of the different contributions to the relative viscosity of
hard-sphere suspensions at φ = 0.45 and N = 27 determined by Stokesian Dynamics. The horizontal
lines on the far left represent the Pe → 0 limits independently determined by an equilibrium
Green–Kubo analysis.

Shear thinning can be explained in the following manner: the Brownian stress
arises from the flow-induced deformation of the equilibrium structure – particles
diffuse against the flow towards their unstressed configuration and the resultant
stress is directly proportional to the deformation. This deformation is known to be
linear in the Péclet number for very small Péclet numbers. Since the viscosity of a
suspension is simply the stress non-dimensionalized by ηγ̇, the viscosity scales as the
‘deformation’/Pe, hence ηBr ∼ O(1) as Pe → 0. In order for the Brownian viscosity
to remain constant as Pe is increased, the flow-induced deformation must continue
to increase linearly with Pe. However, the Péclet number is also the ratio of the
relaxation time due to diffusion a2/D to the time scale of the flow 1/γ̇, and as the
Péclet number increases the particle motion cannot keep up with the flow and the
structural deformation saturates. Hence the Brownian viscosity decreases as Pe → ∞.
Recent theoretical work (Brady & Morris 1997) predicts the Brownian viscosity to
decay as 1/Pe, which is in fair agreement with the results of the simulations (cf.
table 2).

The hydrodynamic stress arises because the particles are rigid and do not deform
as fluid elements. For the volume fractions studied here, 0.316 6φ6 0.49, the hydro-
dynamic viscosity varies little between a random and a regular array and is roughly
the same for any ‘well-dispersed’ structure. Although the structure evolves quite sig-
nificantly at low Péclet numbers (cf. figure 20), the suspension remains ‘well-dispersed’
and the hydrodynamic viscosity is constant. In simple shear flow particles are pushed
together along the compressive axes of the flow, while the action of Brownian motion
is to keep particles apart and well dispersed. (In fact it is the ∇ · R

−1
FU term in (4)–(5)

that acts as a repulsive radial force and balances the hydrodynamic squeezing force
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Pe N ∆t NSTEPS ηHr ηBr N1/ηγ̇ N2/ηγ̇
(×103)

0.01∗ 27 5 × 10−4 1000 4.61 ± 0.01 9.0 ± 9.1 20.7 ± 14.9 −10.43 ± 5.10
0.10 27 5 × 10−4 1000 4.54 ± 0.05 7.00 ± 1.11 4.13 ± 3.08 −3.07 ± 2.94
0.30 27 5 × 10−4 200 4.60 ± 0.16 5.79 ± 0.69 5.01 ± 2.72 −3.41 ± 2.59
1.00 27 5 × 10−4 200 4.78 ± 0.13 3.70 ± 0.27 0.95 ± 0.57 −2.12 ± 1.11
3.00 27 5 × 10−4 200 4.91 ± 0.29 2.00 ± 0.27 −0.45 ± 0.17 −1.21 ± 0.77
5.00 27 5 × 10−4 200 5.07 ± 0.27 1.46 ± 0.21 −0.65 ± 0.57 −1.13 ± 0.33
7.00 27 5 × 10−4 200 5.28 ± 0.18 1.23 ± 0.07 −0.53 ± 0.12 −1.32 ± 0.14

10.00 27 5 × 10−4 200 5.59 ± 0.47 1.07 ± 0.21 −0.25 ± 0.76 −1.39 ± 0.47
20.00 27 5 × 10−4 200 6.30 ± 0.30 0.76 ± 0.09 −1.20 ± 0.67 −1.43 ± 0.34
102 27 5 × 10−4 200 7.56 ± 0.41 0.22 ± 0.03 −1.37 ± 0.38 −1.62 ± 0.56

2 × 102 27 5 × 10−4 200 8.02 ± 0.28 0.12 ± 0.01 −1.09 ± 0.41 −1.87 ± 0.36
103 27 5 × 10−4 200 9.25 ± 0.59 0.029 ± 0.004 −1.81 ± 0.79 −1.61 ± 0.38
104 27 2.5 × 10−4 400 11.64 ± 1.11 0.004 ± 0.001 −1.12 ± 1.27 −2.44 ± 0.51

0.01∗ 63 5 × 10−4 80 4.42 ± 0.01 10.2 ± 8.2
0.43∗ 63 10−3 40 4.78 ± 0.02 6.48 ± 0.13 0.86 ± 0.10 −1.34 ± 0.11

10.0 63 5 × 10−4 200 5.77 ± 0.21 1.10 ± 0.10 −0.42 ± 0.26 −1.30 ± 0.31
103 63 5 × 10−4 200 8.87 ± 0.18 0.026 ± 0.001 −1.66 ± 0.42 −1.63 ± 0.27

0.43∗ 123 5 × 10−4 80 4.65 5.454 1.043 −1.313
10.0 123 10−3 60 5.696 1.094 −0.340 −1.146
103 123 10−3 50 8.954 0.028 −0.340 −1.683

Table 2. Simulations data with φ = 0.45. Column 1 is the Péclet number and column 2 is the
number of particles. Columns 3 and 4 are the time step and the total number of time steps. Columns
5 and 6 give the Brownian and hydrodynamic contributions to the shear viscosity (normalized by
the solvent viscosity). And columns 7 and 8 give the first and second normal stress differences.
Initial particle configurations of all the runs are random. The error estimates were determined by
dividing a simulation run up into statistically independent subintervals (5–10) and comparing the
averages for each interval (see Phung 1993). ∗Data obtained from Phung (1993).

along the compressive axes (Bossis & Brady 1989).) At high Péclet numbers hydrody-
namic forces dominate everywhere except in a thin O(Pe−1) boundary layer adjacent
to particle surfaces where there is a balance of hydrodynamic and Brownian forces
(Brady & Morris 1997). Once the Péclet number exceeds O(10) hydrodynamic forces
are capable of pushing two particles close enough together for the strong lubrication
forces to come into play; lubrication forces are singular near contact as 1/(r − 2a),
with this singularity being felt when r−2a6 10−2a. As the Péclet number is increased
particles are progressively ‘stuck’ together by the strong lubrication forces and form
non-compact aggregates or clusters. As shown in earlier work on monolayers (Bossis
& Brady 1989) the cluster size grows as the Péclet number increases. Associated with
a growing cluster size is an increase in the contact value of the pair-distribution func-
tion reported in table 3. The increased contact value is also evident in the sharpening
of the first nearest neighbour peak in figure 20.

Although the stress is purely hydrodynamic at large Péclet number, this does not
mean that Brownian motion plays no role. The limit Pe → ∞ is singular and the
residual effect of Brownian motion at particle contact limits the ultimate size of
the clusters. The relative tangential motion of two particles is resisted by a weak
logarithmic dependence on particle separation and the small amount of Brownian
motion provides a means for two near touching particles to move relative to one
another and break the connectivity of the cluster, dramatically affecting the viscosity
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Pe N 〈g(2)〉Ω Ds
0 Dr

0 Dyy Dzz

0.00∗ 27 0.210 0.604 0.059 0.055
0.01∗ 27 4.20 0.172 0.553 0.068 0.058
0.10 27 4.47 0.177 0.554 0.069 0.096
0.30 27 4.82 0.174 0.549 0.115 0.083
1.00 27 5.80 0.168 0.534 0.146 0.151
3.00 27 7.73 0.159 0.514 0.311 0.257
5.00 27 9.22 0.154 0.503 0.636 0.425
7.00 27 10.9 0.149 0.492 0.846 0.405

10.00 27 13.6 0.140 0.473 0.688 0.452
20.00 27 20.8 0.129 0.446 1.247 0.885
102 27 39.0 0.105 0.383 2.349 5.457

2 × 102 27 43.1 0.099 0.364 6.788 3.374
103 27 49.9 0.088 0.321 47.27 22.58
104 27 59.2 0.069 0.256 644.5 230.6

0.01∗ 63 4.51 0.204 0.558
0.43∗ 63 4.46 0.184 0.541

0.43∗ 123 4.94 0.204 0.551
10.00 123 14.1 0.163 0.471
103 123 50.3 0.101 0.317

Table 3. Same runs as in table 1 but showing the angularly-averaged pair-distribution function at
contact and the self-diffusivities normalized by the isolated particle Brownian diffusivities. The error
on the short-time self-diffusivities is ±1 in the last digit, and for the long-time self-diffusivities, the
error is about 30%. ∗Data obtained from Phung (1993).

(Bossis, Meunier & Brady 1991). Previously reported results (Phung et al. 1996)
in the pure hydrodynamic limit (Pe−1 ≡ 0) have not been affected by the non-
dimensionalization error as they include no Brownian motion. These simulations in
the pure hydrodynamic limit failed to reach a steady state. A typical run in this regime
would proceed in time with the viscosity slowly increasing until suddenly a large cell-
spanning cluster would form jamming particles together, sending the viscosity to
enormous values, and halting the integration. Reducing the time step allowed only a
very small additional advance in time. Increasing the size of the unit cell delayed the
onset of the catastrophic shear thickening but did not eliminate it. This behaviour
happens at moderate to large concentrations and it is not known if there is a volume
fraction below which a spanning cluster no longer forms.

The problems with (Pe−1 ≡ 0) simulations have also been discussed by Ball &
Melrose (1995), Melrose & Ball (1995), and Dratler & Schowalter (1996). In fact,
a high-Péclet-number asymptote for the viscosity was not obtained for any of the
volume fractions studied here. The size of the time step, ∆t, for the largest Péclet
number (104) runs for each volume fraction are 2.5 × 10−4 compared to 5 × 10−4 for
most of the other runs. This is because Pe = 104 runs with ∆t = 5 × 10−4 displayed
the same problems with growing clusters, diverging viscosities and halted integration
as the aforementioned (Pe−1 ≡ 0) runs. The most likely explanation for this is that the
larger time step is unable to properly resolve the Pe−1 boundary layer as the Péclet
number gets large. One can see that as Pe → ∞, the time step necessary to capture the
proper physics of the boundary layer would have to scale as Pe−1, which becomes an
unreasonable constraint numerically and is consistent with the pathological behaviour
of simulations run in the pure hydrodynamic limit (Pe−1 ≡ 0). Previous simulations
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Figure 3. Comparison of the relative viscosity of hard-sphere suspensions determined by Stokesian
Dynamics as a function of the Péclet number Pe with the experimental results (open symbols) of
van der Werff & de Kruif (1989) at low Pe and D’Haene et al. (1993) at high Pe. The thick open
symbols on the far left represent the Pe → 0 limits independently determined by an equilibrium
Green–Kubo analysis.

with the erroneous high-Pe evolution equation were able to run at Péclet numbers as
high as 106 (Phung et al. 1996; Phung 1993). The random steps in those simulations
were too small compared to the deterministic ∇·R

−1
FU term. The relative ‘enhancement’

of the ∇ · R
−1
FU term in those simulations caused the particles to act as if there was an

additional radially repulsive force between them. The ability of those runs to achieve
a steady state at higher Péclet numbers is consistent with the increased robustness
of Pe−1 ≡ 0 simulations with repulsive interparticle forces (Brady & Bossis 1985;
Dratler & Schowalter 1996; Yurkovetsky 1998).

This sensitivity to small-scale surface interactions and the singular nature of the
Pe → ∞ limit have important implications for the interpretation of experimental
viscosity measurements at high concentrations and shear rates because seemingly small
factors can dramatically influence the results. It may also explain why measurements
of viscosity at high concentrations in the pure hydrodynamic limit show a large
amount of scatter (an order of magnitude) from one researcher to the next, although
the reproducibility for an individual researcher was good (Thomas 1965). It also
suggests that if short-range surface effects can be controlled and the Péclet number is
made large enough the clusters should grow to the size of the experimental apparatus
and the behaviour should depend on the size of the measuring cell.

In figure 3 we compare the simulation viscosities with the experiments of van der
Werff & de Kruif (1989) on monodisperse spherical silica particles that have been
shown to behave to a very good approximation as hard spheres. The simulation
and experimental viscosities are in good quantitative agreement considering the
strong dependence of the viscosity on volume fraction at high volume fraction
and the uncertainty in precisely determining the experimental volume fraction. The



178 D. R. Foss and J. F. Brady

30

20

10

0
10–2 100 102

104

Pe

gr

φ = 0.316
0.37
0.40
0.419
0.45
0.47
0.49

Figure 4. The relative viscosity, ηr = 1 + ηBr + ηHr , as a function of Péclet number Pe for the range
of volume fraction 0.316 6φ6 0.49 with N = 27. The open symbols on the far left represent the
Pe → 0 limits independently determined by an equilibrium Green–Kubo analysis.

experiments do not show shear thickening as their Péclet numbers were too low.
Additional experiments by the same group up to Pe = 1200 did not display shear
thickening. It may be that shear thickening occurs at a slightly higher Péclet number
in these systems, possibly due to the fact that the silica particles are coated with
short hydrocarbon chains and therefore are weakly repulsive when brought into
near contact. However, shear thickening due solely to the growth of clusters as first
predicted in the monolayer simulations has been observed experimentally by D’Haene
et al. (1993) and Bender & Wagner (1995, 1996). As seen in figure 3 the PMMA
suspensions of D’Haene et al. (1993) show shear thickening at high Péclet number
and are in reasonable agreement with the simulation results. The experimental results
at the highest volume fraction thicken more rapidly than the simulations, which may
be due to the collapse of the stabilizing polymer chains that have been grafted onto
the particle surfaces. Or it may simply reflect the extreme volume fraction sensitivity
of the phenomena and the difficulty in accurately measuring the volume fraction.

Figure 4 shows the total relative viscosity plotted as a function of Péclet number for
all volume fractions studied. More detailed figures showing the separate hydrodynamic
and Brownian contributions for each volume fraction can be found in Foss (1999);
the trends are identical to those shown in figure 2 for φ = 0.45. The uncertainty
in the viscosities is comparable to that shown in table 2 for φ = 0.45. To examine
the shear thinning and thickening behaviour and to compare with existing theories,
it is important to separate out the contribution to the viscosity resulting from the
hydrodynamic interactions that are present in the equilibrium configuration – the
high-frequency dynamic viscosity η′

∞/η = 1 + ηHr (Pe = 0). The remaining viscosity,
∆η/η = ηr − η′

∞/η, arises from particle interactions (hydrodynamic and Brownian) in
the non-equilibrium structure induced by the flow. Theories have been advanced to
predict ∆η as a function of concentration and shear rate which we now discuss.
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Let us first examine the shear-thickening regime Pe>O(10). Brady & Morris
(1997) showed that the limit of large Péclet number is singular with an O(Pe−1) thin
boundary layer at particle–particle contact in which Brownian and hydrodynamic
forces balance. Brady & Morris also showed that the hydrodynamic contribution to
the stress from this boundary layer, which is the dominant contribution at high Pe,
scales as SH

b.l. ∼ γ̇η′
∞(φ)φ2g∞(2;φ), where g∞(2;φ) is the pair-distribution function just

outside the boundary layer at the high Péclet number (∞) and the concentration of
interest, and η′

∞(φ) is the (dimensional) high-frequency dynamic viscosity. A simple
physical explanation for this scaling is the following.

The stress from the boundary layer is a two-body effect and near contact the
hydrodynamic stress can be estimated from the moment of the hydrodynamic shear
force:

S
H
b.l. ∼ −n2

∫

b.l.

rF
shearg(r)dr. (13)

The hydrodynamic shear force scales as F
shear ∼ −3πη′

∞(φ)a2γ̇ × r̂(r̂ · E · r̂), where
r̂ is the unit vector along the line of centres of the two particles, and the angle
brackets on E denoting a suspension average have been dropped. In a concentrated
suspension the shear force is enhanced over that for two particles alone in the fluid in
essence because it acts through the suspension, while the resistance to this squeezing
force is through the solvent as only solvent can be in the gap between two near
touching particles. Stokesian Dynamics simulations at high Pe (Brady & Bossis 1985;
Bossis, Brady & Mathis 1988) bear this out and show that the relative velocity of
two particles near contact is enhanced in a concentrated suspension and an estimate
for the φ-dependence of that enhancement is η′

∞(φ).
Although the boundary-layer thickness is small, O(Pe−1), and therefore one might

expect that the contribution in (13) would be small, along the compressive axes of
the flow, r̂ · E · r̂ < 0 (cf. figure 20), the pair-distribution function within the boundary
layer is large, O(Pe). Brady & Morris (1997) show that along the compressive axes
gb.l.(r) ∼ Peg∞(2;φ)ḡ(θ, ϕ), where g∞(2;φ) is the value of the pair-distribution function
just outside the boundary layer, and ḡ(θ, ϕ) is the O(1) angular variation within the
boundary layer. Thus, the integral (13) for the stress from the boundary layer is

S
H
b.l. ∼ η′

∞(φ)γ̇φ2g∞(2;φ)

∫

r̂·E ·r̂<0

r̂r̂(r̂ · E · r̂)ḡ(θ, ϕ) dΩ, (14)

where dΩ represents the solid angle and the limits of angular integration are restricted
to regimes where g(r) ∼ O(Pe), i.e. the compressive axes. For a simple radial-balance
approximation, Brady & Morris show that ḡ(θ, ϕ) ∝ −r̂ · E · r̂. The expression for the
boundary-layer stress (14) is only approximate due to the approximations that have
been made for the shear forces, etc. Further, there are other contributions to the hydro-
dynamic stress from particle interactions outside the boundary layer and along the ex-
tensional axes, but we expect these to be no larger and therefore (14) to give a reason-
able estimate of the hydrodynamic stress over and above the high-frequency dynamic
viscosity (which is associated with the disordered structure outside the boundary layer).

In addition to an estimate of the hydrodynamic stress, the analysis of Brady &
Morris (1997) also shows that the Péclet number needs to be rescaled in the shear-
thickening regime. Since the Péclet number is the ratio of shear forces to Brownian
forces, the rescaled Péclet number is simply Pe = 6πη′

∞(φ)a3γ̇/kT = Pe η′
∞(φ)/η.

From figure 4 one sees that the higher the concentration the earlier shear thickening
begins, in agreement with this rescaling.
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Figure 5. The difference of the total viscosity, ηr , from its equilibrium hydrodynamic contribution,
η′

∞, scaled by η′
∞φ

2g0(2) is plotted as a function of rescaled Péclet number Pe = Pe η′
∞/η for volume

fractions 0.316 6φ6 0.49 with N = 27. The open symbols on the far left represent the Pe → 0
limits independently determined by an equilibrium Green–Kubo analysis.

The last item needed is the contact value of the pair-distribution function outside
the boundary layer g∞(2;φ). On this the theory of Brady & Morris (1997) is silent.
We could use simulation results, but then that would not result in a predictive theory.
Instead, we have chosen to use the equilibrium pair distribution for hard spheres,
g0(2;φ), which is a known function of φ, for example from the Carnahan–Starling
equation of state:

g0(2;φ) =
1 − 1

2
φ

(1 − φ)3
, φ < 0.50.

This is, of course, not correct, but it should give a reasonable estimate over the
range of φ investigated here. Near close packing, this would not necessarily be a
good estimate as g0(2) diverges at random close packing φrc ≈ 0.63 (not with the
Carnahan–Starling equation, however), while g∞(2) may diverge in a different manner
and at different maximum concentration.

These arguments suggest that a plot of

∆η

η′
∞(φ)

1

φ2g0(2;φ)
=

η(φ;Pe) − η′
∞(φ)

η′
∞(φ)φ2g0(2;φ)

versus Pe = Pe η′
∞(φ)/η should collapse the shear-thickening behaviour to a single

universal curve for all φ. Figure 5 shows the data for all shear rates in figure 4
replotted according to this scaling estimate. The shear-thickening data collapse quite
well, showing that Pe is the appropriate scale for the shear rate and that the boundary
layer scaling with the equilibrium pair-distribution function g0(2;φ) collapse the
magnitude well.
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Figure 6. The difference of the total hydrodynamic contribution to the viscosity, 1 + ηH , from
its equilibrium contribution, η′

∞, scaled by η′
∞φ

2g0(2)/η is plotted as a function of rescaled Péclet

number Pe = Pe η′
∞/η for volume fractions 0.316 6φ6 0.49 with N = 27.

Figure 5 also shows that the viscosity does not approach an asymptote as Pe → ∞.
This is shown more clearly in figure 6 where only the scaled hydrodynamic viscosity
(over and above the high-frequency dynamic viscosity) is plotted versus the scaled
Péclet number. This behaviour confirms the results of Ball & Melrose (1995) and
Dratler & Schowalter (1996) that in the pure hydrodynamic limit (Pe → ∞ for
hard spheres) a steady shear viscosity does not exist because hydrodynamic clusters
form whose size diverges as Pe → ∞. The growth with Pe in figure 6 is very
weak, approximately as (lnPe), although caution must be exercised in drawing firm
conclusions because the system sizes are small and the periodicity would likely affect
the detailed behaviour. One would expect, for example, that there would be a critical
volume fraction below which infinite clusters would not form and an asymptotic
viscosity would exist.

In figure 5 we plotted the data for all shear rates according to the high-shear-
rate scaling behaviour and, while the spread in the shear-thinning data is reduced,
this scaling does not appear to completely collapse the shear-thinning data. At low
shear rates it is the Brownian contribution to the stress that is responsible for shear-
thinning. To obtain an estimate for the shear-thinning behaviour, we start by rewriting
the Brownian contribution to the stress in the equivalent form

n〈S
B〉 = −n2kTa

∫

r=2a

r̂r̂g(r) dS + nkT 〈RSU · R
−1
FU · ∇ lnPN〉, (15)

which can be obtained from (10c) by introducing the probability density for the N-
particle configuration PN(x, t) and integrating by parts (Brady 1993a). This form for
〈S

B〉 is particularly convenient in that it separates out the contribution for particles in
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contact (the first integral), which is of exactly the same form as in atomic or molecular
hard spheres, from the remainder which is due to hydrodynamic interactions (RSU)
among particles.

Here, we focus on the contact integral which has been shown to give a good estimate
of the Brownian stress at high densities (Brady 1993b). The low-shear viscosity can be
extracted from this integral by using the first perturbation due to flow to the equilib-
rium structure, f(r), defined by g(r) = g0(r)[1+f(r)]. The equilibrium stress is just the
isotropic osmotic pressure, −Π0

I . The first contribution to the viscosity is due to the
O(Pe) correction to the microstructure and results in a constant low-Pe Newtonian
plateau with viscosity equal to the zero-shear viscosity, η0; thus we can write

f(r) = P̂ ef̂(r),

where f̂(r) is independent of the flow strength and P̂ e = Pe/D̂(φ), where D̂(φ) is
the characteristic diffusivity non-dimensionalized by the Stokes–Einstein diffusivity,
D. Substituting the expression for f(r) into the contact integral in (15) gives the
following expression for the deviatoric part of the Brownian stress:

n〈S
B〉 + Π0

I = −
27

2π
ηγ̇φ2 g

0(2;φ)

D̂(φ)

∫
r̂r̂f̂(2; θ, ϕ) dΩ. (16)

The characteristic diffusivity is determined by the appropriate relaxation time for rhe-
ological response: a2/D̂(φ)D. With this scaled Péclet number, all of the Pe-dependence

of the microstructure at all volume fractions is included in P̂ e. In the dilute limit, all
particle diffusivities are equal to the diffusivity of an isolated particle, D. Thus, D̂ = 1
and (16) reduces to the the Brownian stress as previously calculated by various two-
particle theories (Batchelor 1977; Brady & Vicic 1995; Lionberger 1998; Vicic 1999).

The precise nature of D̂(φ) is still an open question. Many quantities have been
suggested. Brady (1993b) suggests using the equilibrium short-time self-diffusivity,
D̂(φ) = Ds

0(φ)/D ≈ η/η′
∞(φ), as this incorporates the primary effect of the hydrody-

namic interactions. The shear-thinning behaviour from this scaling is the same as the
one used above to collapse the shear-thickening data in figure 5. As noted before, this
scaling is effective in reducing the spread in the data, but a sufficient collapse is not
obtained. One can see this more clearly when the same scaling is used for only the
Brownian contribution to the stress in figure 7. Nevertheless, use of the short-time
self-diffusivity is successful in removing all of the hydrodynamics, and thus data from
suspensions with and without hydrodynamic interactions should be indistinguishable
with this scaling (Foss & Brady 2000).

Apparently, simply scaling out the hydrodynamics is not sufficient, and there
appears to be another contribution to D̂(φ) from the relaxation of the dynamic
microstructure. A simple choice would be to use the equilibrium long-time self-
diffusivity, D̂(φ) = Ds

∞(φ)/D. A collapse of the viscosity data using this scaling is

shown in figure 8. We have used the values of D̂s
∞(φ) obtained from these simulations

(cf. § 3.2). This choice of D̂(φ) arguably works better than that used in figure 5,
especially at the higher volume fractions. (Note the scale of the ordinate in figures 5
and 8.) Note that the collapse of the shear-thickening data is much worse than before,
as the arguments presented here concern only the Brownian stress. A plot of only the
Brownian contribution to the viscosity is shown in figure 9.

Another diffusivity often suggested as a good candidate for D̂(φ) is the wavelength-
dependent collective diffusivity evaluated at the peak of the structure factor,
Dc(kmax)/D (Verberg, de Schepper & Cohen 1997; Pusey et al 1997), as this rep-
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Figure 7. The Brownian contribution to the viscosity, ηB , scaled by η′
∞φ

2g0(2)/η and plotted as

a function of rescaled Péclet number Pe = Pe η′
∞/η for volume fractions 0.316 6φ6 0.49 with

N = 27. The open symbols on the far left represent the Pe → 0 limits independently determined by
an equilibrium Green–Kubo analysis.

resents relaxation of the dominant ‘cage’ structure and is also the slowest rate of
structural decay present. No plots of this possible collapse are shown as we have not
calculated Dc(kmax)/D in our simulation.

There may be no simple relationship between D̂(φ) and a previously known diffu-
sivity. The aforementioned relationship between D̂(φ) and Ds

0(φ)/D was first suggested
by the experimental data of van der Werff et al. (1989). Although, in general, this
collapse of our data is unsuccessful, it does appear valid for the lower volume frac-
tions (φ6 0.40). Data from experiments by Shikata & Pearson (1994) show that the
relationship between D̂(φ) and Ds

0(φ)/D0 holds up to φ = 0.50 before it breaks down.
They suggest that at higher volume fractions, other relaxation processes, perhaps
associated with a glass transition, become increasingly important at high densities.
Pusey et al. (1997) also note a particularly strong slowing down of the structural relax-
ation for φ > 0.40. Very recent work on mode-coupling theory (Banchio, Bergenholtz
& Nägele 1999) makes a strong case for glass-like behaviour at high concentrations.

3.1.2. Normal stress differences

The first and second normal stress differences are defined by

N1 = 〈Σxx〉 − 〈Σyy〉, (17a)

N2 = 〈Σyy〉 − 〈Σzz〉, (17b)

and the individual Brownian and hydrodynamic contributions for φ = 0.45 are shown
in figures 10 and 11. Figures for the other volume fractions are available in Foss
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Figure 8. The difference of the total viscosity, ηr , from its equilibrium viscous contribution, η′
∞, scaled

by φ2g0(2)/D̂s
∞ and plotted as a function of rescaled Péclet number Pe/D̂s

∞ for volume fractions

0.316 6φ6 0.49 with N = 27. D̂s
∞ is the long-time self-diffusivity scaled by the Stokes–Einstein

value D = kT/6πηa. The open symbols on the far left represent the Pe → 0 limits independently
determined by an equilibrium Green–Kubo analysis.

(1999). Note that the hydrodynamic contributions are negative for all Pe while the
Brownian contribution is positive for N1 and negative for N2.

Flow-reversal symmetry requires that both normal stress differences vanish as
Pe → 0. At low Péclet numbers, the normal stress differences are dominated by the
Brownian contributions resulting in a positive N1 and a negative N2 (Brady & Vicic
1995). The quality of the data at low Pe in figures 10 and 11 is quite poor and
one cannot discern a trend towards zero for small Pe. It appears that the Brownian
noise at low Péclet numbers that makes low-shear viscosities difficult to measure both
in simulation and by experiment may be even worse for measuring normal stress
differences. The normal stress differences show much greater fluctuation from one
time step to the next, requiring very long runs and perhaps large systems to obtain
meaningful averages. The signs of each of the normal stress differences, however, are
discernible and correct.

The sign of the Brownian contribution to each normal stress difference can be
ascertained by examining the microstructure and how it affects the integrand, −r̂r̂g(r),
of the contact integral for the Brownian stress in (15). Figure 12 shows two projections
of the radial distribution function, g(r), onto the (x, y)-plane. The projections are
divided into eight sections, each labelled with a plus or a minus. The signs correspond
to the effect that a particle in that region would have on the normal stress differences
given that the stress tensor is proportional to −r̂r̂g(r). For determining the sign of
the second normal stress difference, the microstructure is assumed to be axisymmetric
outside the plane of shear as is seen below to be the case (cf. figure 21). The
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Figure 9. The Brownian contribution to the viscosity, ηB , scaled by φ2g0(2)/D̂s
∞ and plotted as

a function of rescaled Péclet number Pe/D̂s
∞ for volume fractions 0.316 6φ6 0.49 with N = 27.

D̂s
∞ is the long-time self-diffusivity scaled by the Stokes–Einstein value D = kT/6πηa. The open

symbols on the far left represent the Pe → 0 limits independently determined by an equilibrium
Green–Kubo analysis.

projections in figure 12 show that in addition to the buildup of particle probability in
the compressional zone, some of the probability has been convected downstream into
the neighbouring extensional zone creating an asymmetry about the compressional
axes. From the relative magnitudes of the probabilities in the eight labelled sections
of each projection, one can see that NB

1 is positive and NB
2 is negative due to the

deficit of particle pairs along the extensional axes where Brownian motion pushes
particles apart and hydrodynamic shear forces pull them apart. Physically, NB

1 is
positive because Brownian motion acts like a repulsive force between two particles
and pushes them apart along the compressive and extensional axes, which would then
push apart the plates of a rheometer.

As the Péclet number increases from zero, the deformation, and thus the Brownian
contribution to the normal stress differences, also increases. A maximum is reached
near Pe ≈ 1 as the deformation cannot keep up with the flow and the Brownian
contributions decay at high Péclet numbers like 1/Pe (Brady & Morris 1997), while
the hydrodynamic contributions take over.

The signs of the hydrodynamic normal stress differences can also be explained by
examining the suspension microstructure. At high Péclet number, the hydrodynamic
stress is dominated by the boundary layer and the normal stress differences can be
determined from (14) and thus the relevant tensor to examine is r̂r̂(r̂ · E · r̂)g(r).
Projections of the pair-distribution function onto the shear plane, similar to those
used to explain the signs of the Brownian contribution, are shown in figure 13. Again,
the projections are divided into eight sections, but this time with signs corresponding
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Figure 10. The hydrodynamic and Brownian contributions to the first normal stress difference for
N = 27 and φ = 0.45 as a function of the Péclet number.

to the contribution to the normal stress differences given by the stress tensor that is
proportional to r̂r̂(r̂ · E · r̂). Examining the relative magnitudes of the probabilities
in the eight labelled sections shows that both NH

1 and NH
2 are negative. As is the

case at low Péclet numbers, the contributions from the two octants spanning the
compressional axes essentially cancel, leaving the dominant contributions from the
octants above the extensional axes. Here, the hydrodynamic stress is negative because
the flow must pull apart the closely spaced particles stuck together by the lubrication
forces. This pulling apart would in turn pull together the plates of a rheometer and
hence give a negative first normal stress difference. The hydrodynamic contribution
to the normal stress differences is much smaller than the Brownian at low Pe and
increases in magnitude as the Péclet number is increased, resulting in a sign change
of N1 for Pe near 10.

In the pure hydrodynamic limit (Pe−1 ≡ 0) the normal stress differences are ex-
pected to vanish because of symmetry requirements. However, the singular boundary-
layer behaviour as Pe → ∞ results in an asymmetric pair-distribution function at
contact, clearly seen in figure 20 for Pe = 103, and normal stress differences that
approach an O(ηγ̇) asymptote at very high Péclet numbers. Brady & Morris (1997)
show that for perfect hard spheres without interparticle forces, the asymmetry van-
ishes as Pe−0.22 as Pe → ∞. Again, hard spheres in the limit of pure hydrodynamics
are singular. If a repulsive force is added, no matter how short-ranged, the asymmetry
will not vanish as Pe → ∞, resulting in finite normal stress differences. As discussed
earlier, it is numerically difficult to resolve the boundary layer at very high Péclet
numbers and this difficulty may result in the particles behaving as if there were an
interparticle force present and explain why the normal stress differences obtained
from simulation do not vanish at high Péclet numbers. Experimentally, perfect hard
spheres are difficult to achieve, and one should expect finite normal stress differences.
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Figure 11. The hydrodynamic and Brownian contributions to the second normal stress difference
for N = 27 and φ = 0.45 as a function of the Péclet number.
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Figure 12. Projections of the pair distribution function, g(r), into the (x, y)-plane for N = 27,
φ = 0.45, and Pe = 1. Light regions represent high probability and dark low. The projections are
divided into eight sections each denoting the sign of the contribution to the Brownian normal stress
difference from a particle in that region. The projections (a) and (b) are divided and labelled for
determining N1 and N2, respectively. The Brownian stress is assumed to be proportional to −r̂r̂ and
g(r) is assumed to be symmetric about the z-axis.

Unfortunately, no experimental data are available for individual normal stress differ-
ences on model Brownian hard-sphere suspensions (or non-hard-sphere suspensions
for that matter).

At high Péclet numbers the theory of Brady & Morris (1997) used to collapse the
shear-thickening viscosity can also be used to collapse the first and second normal
stress differences. Figures 14 and 15 show N1 and N2 scaled with η′

∞(φ)γ̇φ2g0(2;φ) as a
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Figure 13. As figure 12 but for Pe = 1000. The Brownian stress is assumed to be proportional to
r̂r̂(r̂ · E · r̂) and g(r) is assumed to be symmetric about the z-axis.
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∞/η for volume fractions 0.316 6φ6 0.49 with N = 27.

function of the scaled Péclet number Pe = Pe η′
∞(φ)/η. The data for all concentration

collapse reasonably well onto a single curve. The scaling theory with D̂(φ) could also
be used to scale the normal stress differences at low Péclet number, but the quality
of the simulation data is too poor to draw any conclusions from the comparison.

The particle contribution to the stress defined in (9) is not traceless and the
hydrodynamic functions necessary to compute the trace – the shear-rate-dependent
osmotic pressure – were determined in Jeffrey, Morris & Brady (1993) and have
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Figure 15. The second normal stress difference, N2, scaled by η′
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2g0(2) and plotted as a function
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been used in recent non-Brownian simulations (Yurkovetsky 1998). The extension to
Brownian simulations has not yet been made and remains a goal for future work.

3.2. Diffusion

In figures 16 and 17 we show the average translational and rotational mobilities of a
particle, Ds

0 and Dr
0, respectively, as a function of Pe. At Pe ≡ 0 these instantaneous

mobilities (multiplied by kT ) correspond to the short-time self-diffusion coefficients.
The mobilities have been normalized by the infinite-dilution self-diffusion coefficients
kT/6πηa and kT/8πηa3, respectively, and are averages of the separate xx-, yy- and
zz-components. The individual rotational mobilities are all identical to within the
statistical uncertainty, while the yy- and zz-components of the translation mobility
are identical and the xx-component is perhaps 10% larger. The local mobility is to
a very good approximation isotropic despite the structure formed during flow. The
most important feature to note is that the mobilities remain roughly constant until
the suspension starts to shear thicken, after which they decrease monotonically with
increasing Pe. This decrease is a manifestation of the closely touching particle clusters
that form hindering the local motion of a particle.

The long-time mean-square displacement of a Brownian particle is convectively
enhanced by the flow. For a simple shear flow the mean-square displacement is
expected to grow in time according to (Elrick 1962; Morris & Brady 1996)

〈x2(t)〉 = 2Dxxt + 2Dyyt[1 + 1
3
(Pe t)2], (18a)

〈y2(t)〉 = 2Dyyt, (18b)

〈z2(t)〉 = 2Dzzt, (18c)

〈x(t)y(t)〉 = 2Dxyt + Dyyt (Pe t), (18d)
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Figure 16. The average particle translational mobilities as a function of Pe for volume fractions
0.316 6φ6 0.49. At Pe ≡ 0 these instantaneous mobilities (multiplied by kT ) correspond to the
short-time self-diffusion coefficients. The mobilities have been normalized by the diffusion coefficient
of an isolated Brownian particle, kT/6πηa.
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as t → ∞. Because the x-displacement is dominated by the convective dispersion
growing as t3, it is not possible to determine the Dxx and Dxy coefficients by simply
monitoring the displacements. An alternative method that removes the convectively-
enhanced dispersion and leaves the underlying diffusive motion is to subtract off
the contributions to the particle motion in (4)–(5) due to the affine flow, ∆x

a =
〈U〉∆t, when calculating the mean-square displacements, which leads to the following
temporal behaviour:

〈(x − x
a)(x − x

a)〉 = 2D
s
∞t, (19)

as t → ∞. All elements of the long-time self-diffusivity tensor, D
s
∞, can be calculated

directly using this method. Apart from the xy-component, the other off-diagonal
components of D

s
∞ were examined and found to be negligible. This method has been

particularly useful in calculating the diffusivities in planar extensional flow (Sami
1996) where the affine flow has components in both the x- and y-directions which
lead to exponential rather than algebraic growth of the convectively enhanced terms.

We present results from steady-shear simulations of this work by examining the
particle mean-square displacements for the small system at long times. Analysis done
here at quite long times (between 10 and 20 dimensionless time units) would seem
to be appropriate due to the infinite time limit in the definition of the long-time
diffusivity (7); however, the mean-square displacements are time-correlation functions
that relate particle positions from one time to another. Such correlation functions
are quite difficult to accurately measure at long times due to the growth of statistical
noise with time. In a related work (Foss & Brady 1999) we use a different method
that focuses on the behaviour of the mean-square displacements during many short
simulations, but still long enough to have attained the long-time asymptote, which
we believe produces more accurate and consistent data. We include the long-time
analysis in this work despite the increased noise in the data because it is at long
times and serves as a good comparison with our other work. The statistical error in
the long-time self-diffusivities is about 30%. For a more detailed discussion of the
long-time self-diffusivity in flow, see Foss & Brady (1999).

The Péclet-number dependence for φ = 0.45 of the xx-, yy-, zz-components of D
s
∞

normalized by the diffusion coefficient of an isolated particle is shown in figure 18.
Data for the other volume fractions can be found in Foss (1999). As Pe → 0 the
diffusivities approach the long-time self-diffusivities of equilibrium dispersions and
agree well with the experimental measurements of van Megen, Underwood & Snook
(1986); a comparison of these data with experiment can be found in Brady (1994). The
action of the flow is to enhance the self-diffusivity, with the leading correction scaling
as Pe3/2 (Morris & Brady 1996). As the Péclet number increases, the self-diffusivities
continue to increase without the ‘dip’ at intermediate Péclet numbers that was present
in the previous work (Phung et al. 1996). The ‘dip’ was evidence of the formation of
an ordered phase in this region of Péclet number causing the diffusivities to drop.
The monotonically increasing behaviour of the diffusivities is an indication that no
ordered phase is present in the current simulations (cf. figure 20). As Pe → ∞, the
results show that the normalized self-diffusivities grow approximately linearly with
Pe, or in dimensional terms Dyy ∼ γ̇a2, corresponding to hydrodynamic diffusion. The
simulation results for the shear-induced or hydrodynamic diffusivities show quite a
bit of scatter, but are in reasonable agreement (within a factor of 2; see Foss & Brady
1999) with the experiments of Eckstein, Bailey & Shapiro (1977), Leighton & Acrivos
(1987) and Phan & Leighton (1993). Again, the singular effect of Brownian motion
is important in leading to diffusive behaviour as Pe → ∞. A pure hydrodynamic
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Figure 18. The long-time self-diffusivities in the velocity, Dxx, velocity-gradient, Dyy , and vorticity,
Dzz , directions for φ = 0.45 as a function of Pe. The diffusivities have been normalized by
the diffusion coefficient of an isolated Brownian particle, kT/6πηa. At large Pe the dimensional
long-time diffusivities scale hydrodynamically as γ̇a2.

system is completely deterministic and, although the evolution equations for particle
positions are highly nonlinear and may give rise to deterministic chaos, the small
amount of Brownian motion (or surface roughness or interparticle forces) provides
the necessary irreversibility for loss of dependence on initial conditions. We were not
able to determine long-time self-diffusivities from the simulations with N > 27 as the
runs were not long enough to reach the asymptotic temporal behaviour; thus, we do
not know the effect of the size of the simulation cell on the diffusivities. The values
obtained here are in agreement with the monolayer results of Bossis & Brady (1987)
when allowance is made for converting area fraction to volume fraction.

The enhancement of the long-time self-diffusivity by flow is indicative of a different
mechanism for creating diffusive motion in sheared suspensions. Direct particle–
particle ‘collisions’ induced by the shearing motion are responsible for the random
walk. The action of this mechanism is seen in figure 19 where the long-time self-
diffusivities in the zz-direction at Pe = 0.01 and Pe = 1000 are shown as a function
of the volume fraction. At low Péclet numbers the long-time diffusivity decreases with
increasing concentration, while at high Péclet number it increases with increasing
φ. At low Pe particle interactions hinder the motion of a tagged particle, while at
high Pe they help. At intermediate Péclet numbers one should therefore find the
long-time diffusivities to be independent of, or non-monotonic in, φ. Unfortunately,
experimental data are only available at zero and infinite Pe.
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3.3. Structure

An analysis of the microstructure shows that no ordered phase is present for the
full range of Pe and volume fractions studied, 0.316 6φ6 0.49. Figure 20 shows the
projection of the pair-distribution function onto the plane of shear for φ = 0.45. Near
equilibrium, the flow provides a weak perturbation to the equilibrium behaviour. The
hint of an eight-fold symmetry seen in figures 20 and 21 at small Pe is due to the small
size of the simulation cell. This structure is completely absent for larger systems as
seen in figure 22. As the Péclet number increases, the first nearest-neighbour peak at
contact becomes intensified along the compressive axes of the flow and becomes less
intense along the extensional axes. Physically, particles are being convected together
along the compressive axes (the upstream side), come into near contact, rotate together
as a doublet, and then depart on the downstream side where Brownian motion and the
shearing flow act together to separate the particles. The intensification and sharpening
of the nearest-neighbour peak as the Péclet number increases is further qualitative
evidence of the O(Pe−1) boundary layer discussed by Brady & Morris (1997).

It is important to note that in contrast to the earlier work (Phung & Brady 1992;
Phung 1993; Phung et al. 1996), no ordered structure is obtained using the correct
high-Pe evolution equation (5). Figure 21 shows the projection of the pair-distribution
function in the velocity-gradient–vorticity plane and no hexagonal pattern typical of
flow-induced string-ordering is evident. Analysis of larger systems (N = 123) has also
failed to show any order (see figure 22). The ordering in the earlier work can be
directly attributed to the ∇ · R

−1
FU term in the evolution equation which acts like a

radially repulsive Brownian force (Bossis & Brady 1987). In the earlier work, this term
is ‘enhanced’ by a factor of Pe1/2 in comparison to the other Brownian displacement
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Figure 20. The pair-distribution function projected onto the velocity–velocity-gradient plane for
N = 27 and φ = 0.45.
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Figure 21. The pair-distribution function projected onto the velocity-gradient–vorticity plane for
N = 27 and φ = 0.45.

term, providing an additional repulsion between particles. This repulsion prevents
the particles from getting close enough for the singular hydrodynamic lubrication
forces to come into play. These close-ranged forces cause particles to form temporary
doublets that rotate in shear flow and disrupt any order that may form. A simulation
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Figure 22. Projections of the pair-distribution function in all three planes for N = 123 at
Pe = 0.43, 10, and 1000.

performed with a pairwise-additive short-range repulsive DLVO-type interparticle
force also removes the lubrication forces and enables the suspension to order (see
figure 23). The form for the DLVO-type force is for two constant-charge spheres
immersed in an ionic solvent (Russel, Saville & Schowalter 1989), which is the
same form used in previous Stokesian Dynamics simulations (Bossis & Brady 1984;
Yurkovetsky 1998), and is given by

F
P = −|F P |

e−τh

1 − e−τh
r̂,

where, r̂ is the unit vector along the line of centres of a pair of particles, h = (r−2a)/a is
non-dimensional particle separation, and τ = κa is the non-dimensional inverse Debye
length (κ−1 is the Debye length). For this particular run, we use |F P | = 200kT/a, and
τ = 200.

Flow-induced ordering is commonly seen experimentally in electrostatically-
stabilized dispersions (Ackerson 1990; Laun et al. 1992; Chen, Ackerson & Zukoski
1994) which utilize DLVO-type repulsive forces between the particles to prevent
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Figure 23. Pair distribution functions for N = 27, φ = 0.40 and Pe = 100 for the hard-sphere
case (a, b) shows no flow-induced ordering while using a DLVO-type repulsive force (c, d) (γ̇∗ = 0.5,
τ = 100) shows hexagonally-packed string ordering. The pair-distribution function is projected onto
the velocity–velocity-gradient plane for (a, c) and the velocity-gradient–vorticity plane for (b, d).

flocculation. Evidently, these repulsive forces are sufficiently long-ranged and strong
enough to exclude the lubrication forces and allow the string-ordered phase to form in
certain ranges of shear rate. Our first paper on Stokesian Dynamics (Bossis & Brady
1984) showed order for a suspension of non-Brownian particles interacting through
hydrodynamic and repulsive colloidal forces. Non-equilibrium molecular dynamics
simulations have also exhibited string formation (Erpenbeck 1984; Hess 1985; Heyes
1986), as have Brownian Dynamics simulations (Heyes 1988; Xue & Grest 1990; Ras-
togi 1995; Foss & Brady 2000) where all hydrodynamic interactions are neglected, i.e.
setting RFU = I , and RFE = RSU = RSE = 0 in (2)–(10c). What the above examples all
have in common is the absence of short-ranged lubrication forces that tend to disrupt
any order that may form. Interestingly, sterically stabilized colloidal dispersions in
which short polymer chains are grafted onto particle surfaces have not been observed
to string order (Bender & Wagner 1996). Evidently, the steric layers do not prevent
the lubrication interactions.

There has been no evidence of any effect of system size for the simulations
performed for φ < 0.49. At φ = 0.49 and Pe = 100, some order was found for
N = 27, while a simulation with N = 63 shows no order (see figure 24); no noticeable
change in the viscosities was observed, however. These finite-size effects become
increasingly important as the volume fraction is increased. N = 27 simulations for
φ > 0.49 have shown a strong tendency to order over the full range of Péclet numbers
despite the lack of order in the limited number of runs we have been able to perform
for larger systems where N = 123 and, unlike the case above, the effect of the order
on the viscosities was quite significant. Clearly, larger runs must be used to examine
the rheological behaviour for these very dense suspensions.

The absence of string ordering for non-repulsive systems makes a strong argument
about the connection between shear thinning/thickening and flow-induced ordering.
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Figure 24. Pair distribution functions for φ = 0.49 and Pe = 100 using N = 27 (a, b) shows
hexagonally-packed string ordering while increasing the system size to N = 63 (c, d), shows no
flow-induced ordering. The pair-distribution function is projected onto the velocity–velocity-gradient
plane for (a, c) and the velocity-gradient–vorticity plane for (b, d).

It has often been stated that shear thinning is caused by the formation of an ordered
phase causing the suspension to flow more easily. Similarly, the onset of shear
thickening has often been connected with the melting of this order. Since no order
has been observed here, there is no necessary relationship between flow-induced order
and shear thinning/thickening.

4. Conclusions

In this paper we have investigated the non-equilibrium behaviour of concentrated
colloidal dispersions of hard spheres in simple shear flow by Stokesian Dynamics
simulation. The suspension is governed by the competition between Brownian and
hydrodynamic forces as measured by the Péclet number. At low Péclet number the
equilibrium structure is perturbed but the suspension shear thins. This shear thinning
results from the decrease of the direct Brownian contribution to the stress as the
structural deformation cannot keep up with the shear flow. The hydrodynamic con-
tribution to the viscosity remains constant and equal to the high-frequency dynamic
viscosity throughout the shear-thinning process.

At high Péclet numbers (Pe > 10), the effects of Brownian motion give way to
hydrodynamic forces which result in a thin boundary layer of high particle probability
near contact whose thickness scales as O(Pe−1) where hydrodynamic and Brownian
forces balance (as shown by Brady & Morris 1997). More particle pairs near contact
increase the effects of lubrication forces causing the viscosity to increase. As the Péclet
number is increased, the boundary layer becomes thinner and the probability density
in the boundary layer increases, further enhancing the effects of lubrication, and the
suspension shear thickens.

In the infinite-Péclet-number limit a suspension of perfect hard spheres appears to
be singular in that a small amount of Brownian motion or interparticle forces has a
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dramatic effect on structure and properties. The thin O(Pe−1) boundary layer leads to
an asymmetry in the pair-distribution function and a loss of flow reversal symmetry.
This asymmetry produces O(ηγ̇) hydrodynamic normal stress differences and O(γ̇a2)
shear-induced particle diffusivities in the infinite-Pe limit.

No flow-induced ordering was observed over the range of volume fractions studied
here (0.316 6φ6 0.49) due to the action of close-ranged lubrication forces. Systems
with repulsive forces are known to exhibit this type of ordering due to the exclusion of
hydrodynamic lubrication. Otherwise, analogous behaviour in terms of shear thinning
and thickening and structure formation has been seen in colloidal dispersions with
repulsive forces. Indeed, one can often scale the behaviour of repulsive systems by
using an equivalent volume fraction that incorporates the short-range repulsion into
an effective particle radius (Ackerson 1990; Brady 1993b). Long-range repulsive forces
are somewhat different in that hydrodynamic interactions are minimized or absent,
which results in a different scaling for the dependence of the viscosity on concentration
(Brady 1993b), but the shear thinning and ordering phenomena are still present.

Although the results we have presented here are for small system sizes, the viscosities
appear to agree quantitatively with experiment. There are no measurements of normal
stresses or diffusivities as a function of Pe, however. The results give confidence that
Stokesian Dynamics can be used to quantitatively study the behaviour of colloidal
dispersions over a wide range of conditions.

The highest volume fraction studied in this work is φ = 0.49. It is well known that
monodisperse hard spheres undergo an equilibrium phase transition at φ ≈ 0.494 to a
crystalline structure. Suspensions above this transition exhibit shear-induced melting
upon inception of simple shear flow. It is possible that hard-sphere suspensions at
these large densities may also exhibit a string-ordered microstructure at high shear
rates. Simulations of such dense suspensions require larger system sizes than are
currently practical using conventional Stokesian Dynamics. As simulation algorithms
improve and hardware computational speed increases, we look forward to studying
the behaviour of very dense colloidal dispersions.

This work would not have been possible without the assistance of Thanh N.
Phung who wrote the Stokesian Dynamics codes. The work was supported in part
by grants CTS-9020646, CTS-9420415, and INT-9415673 from the National Science
Foundation.
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