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Abstract

Irregular algorithms are organized around pointer-based data struc-
tures such as graphs and trees, and they are ubiquitous in applica-
tions. Recent work by the Galois project has provided a systematic
approach for parallelizing irregular applications based on the idea
of optimistic or speculative execution of programs. However, the
overhead of optimistic parallel execution can be substantial. In this
paper, we show that many irregular algorithms have structure that
can be exploited and present three key optimizations that take ad-
vantage of algorithmic structure to reduce speculative overheads.
We describe the implementation of these optimizations in the Ga-
lois system and present experimental results to demonstrate their
benefits. To the best of our knowledge, this is the first system to
exploit algorithmic structure to optimize the execution of irregular
programs.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.3
[Programming Languages]: Language Constructs and Features—
Frameworks

General Terms Algorithms, Languages, Performance

Keywords Amorphous Data-parallelism, Irregular Programs, Op-
timistic Parallelization, Synchronization Overheads, Cautious Op-
erator Implementations, One-shot Optimization, Iteration Coalesc-
ing.

1. Introduction
If you optimize everything, you will always be unhappy.

— Donald Knuth

Over the past two decades, the parallel programming commu-
nity has acquired a deep understanding of the patterns of par-
allelism and locality in dense matrix algorithms. These insights
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have led to the development of many languages and tools that
make it easier to develop parallel implementations of such algo-
rithms [7, 21]. However, outside of computational science, most
algorithms are irregular: that is, they are organized around pointer-
based data structures such as trees and graphs, not dense arrays.
At present, we have few insights into the structure of parallelism
and locality in irregular algorithms, which has stunted the develop-
ment of techniques and tools for programming these algorithms in
parallel.

Domain specialists have crafted handcoded parallel programs
for many irregular algorithms; for example, Blandford et al. de-
scribe a carefully hand-tuned implementation of Delaunay mesh
generation and refinement [1]. However, most of these efforts are
very problem-specific, and it is difficult to extract broadly applica-
ble abstractions, principles, and mechanisms from such implemen-
tations.

Recently, the Galois project has made progress in elucidating
the structure of parallelism in irregular algorithms [12]. Our work
shows (i) that a complex form of data-parallelism called amor-
phous data-parallelism is ubiquitous in irregular algorithms, and
(ii) that it is necessary in general to use optimistic or speculative
execution to exploit this parallelism. Amorphous data-parallelism
is described in detail in Section 2, but the high-level idea is to take
a data-centric view of irregular algorithms: instead of thinking in
terms of dependences between computations, we must think of an
algorithm in terms of its action on data structures, as shown in Fig-
ure 1 for a graph algorithm. An algorithm is viewed as the repeated
application of an operator to a node or edge in the graph. Each
such application, which is called an activity, usually touches only a
small portion of the overall graph (shaded regions in Figure 1), so
the operator can potentially be applied in parallel in several places
in the graph, provided these activities touch disjoint regions of the
graph. Disjointness cannot be determined statically in general since
it depends on runtime values, so it is necessary to use optimistic or
speculative parallelism to exploit this parallelism.

However, optimistic parallel execution of programs can incur
substantial overheads. A careful study of some handwritten irreg-
ular parallel programs such as Blandford et al.’s implementation
of Delaunay mesh refinement shows that a “baseline” optimistic
parallel execution system implements functionality that may not be
needed by particular algorithms. For example, when executing De-
launay mesh refinement, the baseline Galois implementation makes
backup copies of all modified mesh elements to permit rollback in
case of a conflict, but the handwritten version of this algorithm does



Figure 1. Data-centric view of algorithms.

not. Nevertheless, backup copies are required for exploiting amor-
phous data-parallelism in other irregular algorithms such as event-
driven simulation [10]. Clearly, the baseline implementation can be
optimized for some irregular algorithms but not for others, but what
general principles should guide such optimizations?

In Section 3, we address this issue, structuring our presentation
around three questions.

1. What optimizations are useful for irregular programs? The goal
is not to optimize the execution of a single irregular algorithm;
rather, the goal is to identify general-purpose optimizations that
are useful for many irregular algorithms. In this paper, we iden-
tify three optimizations called cautious implementation of oper-
ators (Section 3.1), one-shot implementation of operators (Sec-
tion 3.2), and iteration coalescing (Section 3.3). It is likely that
there are many more optimizations waiting to be discovered.

2. What structural properties should an algorithm or its imple-
mentation have for such an optimization to be applicable? We
believe that rather than applying optimizations blindly to a set
of benchmarks and measuring performance improvements, we
should take a more scientific view and understand the algorith-
mic structure that must be present to exploit particular optimiza-
tions. One difficulty with this is that despite a lot of effort by
the community [17, 22, 25], we do not currently have a sys-
tematic way of talking about algorithmic structure. Fortunately,
the framework of amorphous data-parallelism provides an ap-
proach to understanding algorithmic structure relevant to our
optimizations, as we describe in Section 3.

3. How should these optimizations be implemented in a system
like Galois? The considerations in this section suggest that a
system based on optimistic parallel execution such as Galois
should not be implemented as a monolith. Instead, it should
be implemented as a collection of services, and a particular
irregular program should be able to use only the services it
requires, thereby reducing overhead.

To study the applicability of these ideas in practice, we use sev-
eral programs from the Lonestar benchmark suite version 2.0 [13]
as well as Boruvka’s algorithm for building minimal spanning
trees [6] and the preflow-push algorithm for computing maximal
flows in a directed graph [8], which will be included in the next
release of Lonestar. In Section 4, we describe experimental results
for these applications, using an §-core Sun X2270 (Nehalem server)
and a Sun UltraSPARC T2 (Niagara 2 server). Section 5 describes
conclusions and future work.

1 Workset ws = new Workset(g.getSource ());

2 foreach (Node node : ws){

3 g.relabel (node)

4 for (neighbor : graph.getNeighbors(node)) {
5 if (graph.pushFlow(node, neighbor) > 0) {
6 if (!neighbor.isSourceOrSink())

7 ws.add(neighbor);
8 if (node.excess() <= 0)

9 break;

10 }

11

12 if (node.excess() > 0)
13 ws.add (node );

14

Figure 2. Pseudocode for the preflow-push algorithm.

h()=1
e(d)=0

Figure 3. Intermediate state of preflow-push algorithm. Each node
is labeled with its height h and its excess inflow e. Each edge is
labeled with its maximum capacity and current flow. Dashed edges
are edges in the residual graph.

2. Amorphous data-parallelism and the Galois
system

In this section, we describe the concept of amorphous data-
parallelism and argue that optimistic parallel execution is essential
to exploit this parallelism in general. We also describe the Galois
system, which is a baseline system that uses optimistic parallel
execution to exploit amorphous data-parallelism.

2.1 Example: Preflow-push

To introduce the concept of amorphous data-parallelism, we use
the preflow-push algorithm for computing maxflows in directed
graphs [5]. The pseudocode is shown in Figure 2, and the directed
graph in Figure 3 shows an intermediate state of a preflow-push
computation on a simple graph. Unlike in maxflow algorithms
based on augmenting paths, nodes in this algorithm can temporarily
have more flow coming into them than going out. In Figure 3,
the excess inflow at a node n (other than the source and sink) is
denoted by the label e (n) on that node. Each node also has a label
called height, shown as h (n), which is an estimate of the distance
from that node to the sink in the residual graph. Nodes with non-
zero excess inflow are called active nodes; in Figure 3, nodes a
and b are active nodes. The algorithm repeatedly selects an active
node node and performs two operations called push and relabel.
The push operation tries to increase the flow along some outgoing
edge (node—neighbor) to eliminate the excess flow at node if
possible; if it succeeds, the flow on that edge is updated. Increasing
the flow to neighbor may cause neighbor to become active; if
node still has excess in-flow, it remains an active node. To ensure
that flow moves from the source to the sink, the push operation
can only push flow downhill (that is, from a node to a lower-height
neighbor). Height estimates can be adjusted by relabel operations.



The push and relabel computation at an active node is called an
activity.

Since active nodes can be processed in any order, there is a nat-
ural parallelism that arises from processing multiple active nodes
concurrently, provided their neighborhoods are disjoint. This paral-
lelism differs from regular data-parallelism in the following crucial
ways.

e Conventional data-parallelism arises in algorithms that operate
on dense matrices and vectors. The preflow-push algorithm
performs operations over a graph data structure. An irregular,
pointer-based structure like a graph is far more difficult to
reason about than matrices and vectors.

e In preflow-push, nodes become active nodes dynamically, based
on runtime data values. In regular algorithms, however, paral-
lelism is independent of runtime values.

e Identifying active nodes that can be processed concurrently
requires knowledge of the structure of the graph, which is
known only at runtime.

2.2 Amorphous Data-parallelism

The parallelism in the preflow-push algorithm is an instance of
a more general pattern of parallelism called amorphous data-
parallelism that arises in irregular algorithms that operate on
pointer-based data structures like graphs. At each point during the
execution of such an algorithm, there are certain nodes or edges
in the graph where computation might be performed. Performing a
computation may require reading or writing other nodes and edges
in the graph. The node or edge on which a computation is centered
is called an active element, and the computation itself is called an
activity. It is convenient to think of an activity as resulting from the
application of an operator to the active node. We refer to the set of
nodes and edges that are read or written in performing the activity
as the neighborhood of that activity. In Figure 1, the filled nodes
represent active nodes, and shaded regions represent the neighbor-
hoods of those active nodes. Note that in general, the neighborhood
of an active node is distinct from the set of its neighbors in the
graph. In some algorithms like Delaunay mesh refinement, activi-
ties may modify the graph structure of the neighborhood by adding
or removing graph elements.

In general, there are many active nodes in a graph, so a sequen-
tial implementation must pick one of them and perform the ap-
propriate computation. In some algorithms such as preflow-push,
the implementation is allowed to pick any active node for execu-
tion. We call these algorithms unordered algorithms. In contrast,
other algorithms dictate an order in which active nodes must be
processed. Event-driven simulation is an example: the sequential
algorithm for event-driven simulation processes messages in global
time-order. We call these ordered algorithms.

A natural way to program these algorithms is to use the Galois
programming model [12], which is a sequential, object-oriented
programming model (such as sequential Java) augmented with two
Galois set iterators:

e Unordered-set iterator: foreach (e : Set S) do B(e) The loop
body B(e) is executed for each element e of set S. The order
in which iterations execute is indeterminate and can be chosen
by the implementation. There may be dependences between the
iterations. When an iteration executes, it may add elements to
S.

e Ordered-set iterator: foreach (e : OrderedSet S) do B(e)
This construct iterates over an ordered set S. It is similar to
the unordered set iterator above, except that a sequential imple-
mentation must choose a minimal element from set S at every

iteration. When an iteration executes, it may add new elements
to S.

Note that these iterators have a well-defined sequential seman-
tics. The pseudo-code in Figure 2 uses the unordered Galois set iter-
ator. The unordered-set iterator expresses the fact that active nodes
can be processed in any order.

Figure 1 shows how opportunities for exploiting parallelism
arise in graph algorithms: if there are many active elements at some
point in the computation, each one is a site where a processor can
perform computation, subject to neighborhood and ordering con-
straints. When active nodes are unordered, the neighborhood con-
straints must ensure that the output produced by executing the ac-
tivities in parallel is the same as the output produced by executing
the activities one at a time in some order. For ordered active ele-
ments, this order must be the same as the ordering on set elements.

Definition 2.1. Given a set of active nodes and an ordering on
active nodes, amorphous data-parallelism is the parallelism that
arises from simultaneously processing active nodes, subject to
neighborhood and ordering constraints.

Amorphous data-parallelism is a generalization of conventional
data-parallelism in which (i) concurrent operations may conflict
with each other, (ii) activities can be created dynamically, and (iii)
activities may modify the underlying data structure.

2.3 Baseline implementation: optimistic parallel execution

In the baseline programming model, the application programmer
writes sequential code in a conventional object-oriented language,
augmented with Galois set iterators. Concurrent data structures
are implemented in a data structure library, similar to the Java
collections library, that contains implementations of common data
structures such as graphs and trees.

In the baseline execution model, the graph is stored in shared-
memory, and active nodes are processed by some number of
threads. A free thread picks an arbitrary active node and specu-
latively applies the operator to that node, making calls to the graph
class API to perform operations on the graph as needed. The neigh-
borhood of an activity can be visualized as a blue ink-blot that be-
gins at the active node and spreads incrementally whenever a graph
API call is made that touches new nodes or edges in the graph.
To ensure that neighborhood constraints are respected, each graph
element has an associated logical lock that must be acquired by a
thread before it can access that element. Locks are held until the
activity terminates. Lock manipulation is performed by the code in
the graph API call, not in the application code. If a lock cannot be
acquired because it is already owned by another thread, a conflict
is reported to the runtime system, which rolls back one of the con-
flicting activities. To enable rollback, each graph API method that
modifies the graph makes a copy of the data before modification.
Like lock manipulation, rollbacks are a service implemented by the
library and runtime system.

Logical locks provide a simple approach to ensuring that neigh-
borhood constraints are respected, but they can be restrictive since
they require neighborhoods of concurrent activities to be disjoint
(such as activities ¢3 and 44 in Figure 1). Non-disjoint neighbor-
hoods are permissible if the activities do not modify nodes and
edges in the intersection for example. One solution is to use com-
mutativity conditions [12] that describe more complicated condi-
tions under which two activities can be processed in parallel; to
keep the discussion simple, we do not describe this here.

If active elements are not ordered, the activity terminates when
the application of the operator is complete and all acquired locks
are released. If active elements are ordered, active nodes can be pro-
cessed in any order, but they must commit in serial order. This can
be implemented using a data structure similar to a reorder buffer in



out-of-order processors [12]. In this case, locks are released when
the activity commits.

Since amorphous data-parallelism in irregular algorithms is a
function of runtime values, it is not possible to come up with
closed-form estimates of the amount of parallelism in these algo-
rithms in general. One measure of amorphous data-parallelism is
the number of active nodes that can be processed in parallel at each
step of the algorithm for a given input, assuming that (i) there is
an unbounded number of processors, (ii) an activity takes one time
step to execute, (iii) the system has perfect knowledge of neighbor-
hood and ordering constraints so it only executes activities that can
complete successfully, and (iv) a maximal set of activities, subject
to neighborhood and ordering constraints, is executed at each step.
This is called the available parallelism at each step, and a function
plot showing the available parallelism at each step of execution of
an irregular algorithm for a given input is called a parallelism pro-
file. In this paper, we will present parallelism profiles produced by
ParaMeter, a tool implemented on top of the Galois system [14].

2.4 The Galois system

In this section, we describe how the Galois system [12] imple-
ments the baseline model presented in the previous section. The
goal is to give the reader the right context for understanding how
the optimizations described in Section 3 can be implemented. The
system has the following components: a library of data structures
commonly used in irregular applications, a set of conflict manager
objects (CMs) that implement neighborhood constraints, a Galois
compiler that transforms programs to enable safe parallel execu-
tion, and a runtime system that orchestrates the parallel execution.

Library of data structures The system provides a library of par-
allel implementations of data structures, such as graphs, maps, and
sets, which are commonly used in irregular algorithms. Since a gen-
eral implementation may introduce unnecessary overhead because
it provides functionality that is not required for a particular appli-
cation, the library provides several customized versions for each
type. For example, some applications may require a directed graph,
while others require an undirected graph. Some applications may
require the ability to attach data to graph edges (e.g., to track edge
capacities in preflow-push). Programmers can either use one of the
existing implementations or provide new ones. For a data struc-
ture implementation to be suitable for the Galois system it must
satisfy two properties: (i) it should implement an existing abstract
data type, and (ii) operations on the data structure must appear to
execute atomically.

Conflict managers Each shared object accessed inside a foreach

section must be associated with a special conflict manager object
(CM) that is responsible for enforcing neighborhood constraints.
For example, a conflict manager for a graph class must ensure that
two activities do not attempt to modify the same graph node.

The system provides conflict managers for all library types.
These conflict managers implement neighborhood constraints ei-
ther by logical locking or commutativity conditions [12]. CMs in-
tercept method invocations on data structures and acquire logical
locks, or they evaluate commutativity conditions to ensure that mul-
tiple activities are independent. For example, a CM for a graph will
intercept a call to getNeighbors (n) and acquire logical locks
on node n and its neighbors.

A baseline conflict manager can be used in cases where higher-
level semantics cannot be easily exploited. The baseline CM essen-
tially acts as an exclusive lock on the entire object; invoking any
method on the data structure will attempt to acquire this lock. The
baseline CM provides a conflict detection policy similar to that of
object-based software transactional memories.

@Wrap(conflictManager = GraphConflictManager)
class Graph {
public Set<Node> getNeighbors(Node n) {
return n.neighbors;
}

//rest of methods

}

Figure 4. Source code of the graph class.

Since multiple concurrently executing activities can interact
with the conflict manager, the CM’s operations should be atomic.
Conflict managers are designed to operate with particular abstract
data types, not particular concrete implementations of data struc-
tures. Thus, a CM for an abstract data type can protect any data
structure implementing that type.

The Galois compiler ~An irregular algorithm written in the Galois
system is a standard Java program augmented with Galois set itera-
tors. The Galois compiler transforms Galois programs with set iter-
ators into a standard Java program that executes on top of the Galois
runtime system. First, a preprocessing pass transforms foreach
statements to calls to the Galois runtime system. This transforma-
tion is implemented using the Polyglot source-to-source transfor-
mation toolkit [20]. The transformed program is now a valid, par-
allel Java program and can run on any Java virtual machine, but
it cannot be executed safely in parallel, as the data structures ac-
cessed from within the set iterators do not enforce neighborhood
constraints. To produce a program that can safely execute in paral-
lel, a second pass wraps each shared data structure. This transfor-
mation is implemented in the Soot compiler framework [26]. First,
each data structure is associated with an appropriate conflict man-
ager, as specified by a Java annotation. For every method belonging
to a data structure manipulated by the client code, the compiler in-
troduces a call to a conflict manager method, called the prolog, at
the entry point of the method. Similarly, at each exit point (i.e., be-
fore returning a value or throwing an exception), it introduces a call
to an epilog method. The purpose of prolog and epilog is to deter-
mine if neighborhood constraints are violated. These methods also
record undo actions, which allow the effects of an iteration to be
undone if the iteration must be rolled back.

As an example, consider Figure 4, which shows an implementa-
tion of the get Neighbors method of the Graph class. The code
includes a directive to the compiler, @Wrap, that specifies which
specific conflict manager needs to be instantiated. Based on this in-
formation, the compiler adds a field of the indicated type within the
Graph class and then inserts invocations of prologs and epilogs ap-
propriately, as shown in Figure 5. Each invocation passes a unique
method identifier, the actual parameters, and the return value (in the
case of epilogs). One possible implementation of conflict detection
for the getNeighbors method would be as follows. In the pro-
log, the conflict manager acquires a lock on the argument node.
This prevents any other iteration from reading or writing that node.
In the epilog, the neighbors are known, and the conflict manager ac-
quires locks on those nodes as well. Because this method does not
modify the graph, no undo action is recorded by the conflict man-
ager. Note that the wrapped code includes checks to test whether
conflict management is required; conflict management need not be
performed during sequential execution or after applying certain op-
timizations, as we describe in Section 3.

The Galois runtime system The Galois runtime system coordi-
nates the parallel execution of the application. For every foreach
construct, a number of parallel iterations are launched to implement
the Galois set iterators. Each iteration works on an active node from
the workset and executes speculatively. Before operating on a piece
of shared data, an iteration interacts with the appropriate conflict
manager to ensure that the object is accessed safely. In the case



class Graph {
GraphConflictManager cm; // added by the wrapper

public Set<Node> getNeighbors(Node n) {
boolean cmOn = Runtime .isCmOn ();

if (cmOn)

cm. prolog(’getNeighbors’, this, n);
Set<Node> result = n.neighbors;
if (cmOn)

cm.epilog (’getNeighbors’, this, n, result);
return result;

// rest of methods

Figure 5. Instrumented code of the graph class.

of a conflict, an arbitration mechanism aborts one of the conflict-
ing iterations and rolls back the speculative changes. Each iteration
has an associated undo log, where the conflict manager stores the
appropriate undo information. If an iteration successfully finishes
its execution, the runtime clears all logs associated with the itera-
tion and releases the abstract locks the iteration acquired during its
execution.

3. Optimizations

As described in Section 2, optimistic parallel execution is very gen-
eral and can exploit parallelism in a wide variety of algorithms.
However, because of its generality, it implements functionality that
may not be needed for a particular irregular algorithm, leading
to unnecessary overheads. Optimizing compilers provide a useful
analogy for understanding how to structure a system for optimistic
parallel execution of programs. To implement a powerful mecha-
nism like procedure invocation, most compilers will generate rela-
tively heavy-weight code by default, but will generate light-weight
customized code for special cases of that construct that arise fre-
quently in practice, such as tail-recursive calls. By analogy, a sys-
tem for optimistic parallel execution should provide a collection of
services that are adequate to exploit amorphous data-parallelism in
any program, but it should also be possible to exploit structure in a
particular irregular algorithm to “turn off” some of these services
and provide lighter-weight parallelization if these services are not
required to exploit parallelism.

One difficulty with this agenda is that, in spite of a lot of effort
by the community [17, 22, 25], we do not yet have a systematic
way of talking about structure in algorithms in the context of paral-
lelism. Fortunately, the framework of amorphous data-parallelism
provides an approach to discussing algorithmic structure relevant
to our optimizations.

The major sources of runtime overheads in the baseline system
described in Section 2 are the following.

e Dynamic assignment of work: Threads go to the centralized
workset to get work. This requires synchronization; moreover,
if there are many threads and the computation performed in
each activity is small, contention between threads will limit
speedup.

Enforcing neighborhood constraints: Acquiring and releasing
abstract locks on neighborhood elements can be a major source
of overhead.

Copying data for rollbacks: When an activity modifies a graph
element, a copy of that element is made to enable rollbacks.
Aborted activities: When an activity is aborted, the computa-
tional work performed up to that point by that activity is wasted.
Furthermore, the runtime system needs to take corrective action
to roll back the activity, which adds to the overhead.

In this section, we describe three optimizations for reducing
these overheads. Section 3.1 introduces the notion of cautious im-

plementations of operators and argues that under some fairly gen-
eral conditions, optimistic parallel execution can be implemented
without making back-up copies of data for rollbacks. This opti-
mization is important because in practice, most irregular algorithms
have cautious operator implementations. Section 3.2 describes a
one-shot implementation of operators, which targets the overheads
from aborted activities. Intuitively, one-shot execution detects con-
flicts as early as possible to avoid wasting effort in performing com-
putations that ultimately get aborted. Section 3.3 describes itera-
tion coalescing, which can be viewed as a data-centric version of
loop chunking [23]. It targets the overheads of dynamic work as-
signment and the cost of acquiring and releasing abstract locks. In
some programs, it can also improve the exploitation of locality of
reference.

3.1 Cautious implementations of operators

As mentioned in the introduction, Blandford er al.’s implementa-
tion of Delaunay mesh refinement [1] uses an optimistic parallel
execution strategy similar to the one used in the Galois system, but
it rolls back conflicting computations without using logs or backup
copies of modified data. However, logs or backup copies of modi-
fied data are needed for other algorithms such as event-driven sim-
ulation. In this section, we describe the program structure that per-
mits optimistic parallel execution to be performed without making
backup copies of modified data, and how this optimization can be
implemented in the Galois system.

Definition 3.1. An implementation of an operator is said to be
cautious if it reads all the elements of its neighborhood before it
modifies any of them.

Operators can usually be implemented in different ways: for
example, one implementation might read node A, write to node A,
read node B, and write to node B, in that order, whereas a different
implementation might perform the two reads before the writes. By
Definition 3.1, the second implementation is cautious, but the first
one is not.

If (i) the implementation of an operator is cautious and (ii) active
nodes are unordered, all conflicts are detected before any modifica-
tions are made to the graph. Logical locks associated with graph
elements are acquired during the read-only phase of the operator.
If a lock cannot be acquired, there is a conflict, and the computa-
tion is rolled back simply by releasing all locks acquired up to that
point; otherwise, all locks are released when the computation fin-
ishes. The runtime system ensures that once the “fail-safe point”
is passed, the computation is not rolled back. This is possible in
general only for unordered algorithms; for ordered algorithms, a
conflicting activity a; with higher priority may require an activ-
ity a2 to be rolled back after a2 has begun to make modifications
to the graph. Notice that exploiting cautious implementations also
reduces the cost of acquiring abstract locks, because after the fail-
safe point has been passed, graph API calls do not need to check
whether locks have been acquired on graph elements. We refer to
this as a zero-copy implementation.

In our experience, the straight-forward implementations of most
operators are cautious. For example, the operator in Delaunay mesh
refinement is cautious because the cavity of a bad triangle must
be determined before it can be retriangulated. Other examples are
Boruvka’s algorithm for computing minimal spanning trees (MST)
and the preflow-push algorithm for maxflow computations. In con-
trast, the operator for the well-known Delaunay triangulation algo-
rithm of Guibas, Knuth and Sharir [9, 13] does not have a naturally
cautious implementation. The operator in this algorithm inserts a
point into a triangle, splitting that triangle into three smaller trian-
gles. The Delaunay condition may be violated for the new triangles
as well as for triangles in the vicinity of the original triangle, so the



1 wl.add(graph.getSource ());

2 foreach (Node node : wl){
Neighborhood . add (node);
Neighborhood.add(g.getNeighbors(node));
ONESHOT . set (Neighborhood );
g.relabel (node);
for (Node neighbor : g.getNeighbors(node)) {

//rest of the code remains the same
}
}

SO XN B W
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Figure 6. Preflow-push code with the one-shot optimization.

algorithm performs a series of graph mutations called edge flips to
restore the Delaunay condition for all triangles. The only way to
determine which edges need to be flipped is to perform edge flip-
ping incrementally, so the natural implementation of this operator
is not cautious.

Notice that, in principle, every operator has a trivial cautious
implementation that acquires locks on all graph elements before be-
ginning the computation. The obvious disadvantage of this imple-
mentation is that it prevents the exploitation of parallelism. How-
ever, for some operators that do not have a natural cautious imple-
mentation, it may be possible to judiciously over-approximate the
neighborhood to obtain a cautious implementation without hurting
parallelism too much. There is a tradeoff in these cases between
the exploitation of parallelism and the complexity of operator im-
plementation. We leave the exploration of this tradeoff for future
research.

Implementation in Galois: The cautious optimization requires
the user to indicate whether the operator implementation is cau-
tious. In principle, compiler analysis can be used in many cases
to determine whether an operator implementation is cautious, but
we have not yet incorporated this analysis into our compiler. Each
conflict manager type provides a cautious mode of operation, in
which the conflict manager object does not store undo information
when intercepting methods. Additionally, after intercepting the first
method that modifies the data structure, it turns off all conflict man-
agement for the current iteration. The user can direct the compiler
to instrument the application either in cautious or standard mode.

Related work: To the best of our knowledge, we are the first to
identify cautiousness as a general property of many irregular algo-
rithms. However, cautiousness has been used implicitly in hand-
written parallel implementations of some irregular applications.
The DMR implementation of Blandford er al. uses “test” locks;
if locks cannot be acquired, the operation attempting to acquire the
lock is aborted and retried at another time. Therefore, this DMR
code first attempts to grab all of its locks and only begins per-
forming updates to the cavity after these locks have been success-
fully acquired. We get the benefit of this optimization by exploit-
ing the general property of cautiousness in the implementations of
operators. Recently, Lubllinerman ez al. have proposed a parallel
programming and implementation model for unordered algorithms
with cautious operator implementations [16]. Zero-copy implemen-
tation should not be confused with two-phase locking in databases,
since under two-phase locking, updates to locked objects can be
interleaved arbitrarily with acquiring locks on new objects.

3.2 One-shot implementation

In some algorithms, it is possible to predict the neighborhood of an
activity without performing any computation. In other algorithms,
it is possible to compute fairly tight over-approximations to neigh-
borhoods. For example, in the preflow-push algorithm, the neigh-
borhood of an active node consists of its neighbors in the graph

and the edges between the active node and those neighbors. In such
cases, it is possible to acquire all locks needed by an activity before
any computation is performed. If no conflict is detected, locking
can be disabled for the rest of the activity. This is called the one-
shot optimization.

The advantages of this optimization are similar to those ob-
tained by exploiting cautious operators, but the overhead of aborts
is even lower since no computation is performed before conflicts
are detected. In principle, the one-shot technique can be used for
any algorithm since one approximation to the neighborhood of an
activity is the entire graph. However, as in the case of cautious op-
erators, over-approximating neighborhoods may reduce parallelism
and increase the number of aborted activities.

Implementation in Galois: We require users to specify whether
the implementation of the operator is one-shot. However, the imple-
mentation in the Galois system also requires that the user provide
code to identify an operator’s neighborhood. The Galois system in-
cludes a singleton object, called ONE_SHOT, which provides the
method ONE_SHOT.set (Collection). The user identifies a
set of objects that constitute the neighborhood of an active element
and invokes ONE_SHOT . set () on that collection. The Galois sys-
tem then acquires the appropriate locks and turns off conflict detec-
tion for the remainder of the iteration. As in the case of the cautious
optimization, the system does not record undo actions.

Figure 6 shows how the preflow-push code has been modified
so that the one-shot optimization is enabled. The only changes from
Figure 2 are the addition of lines 3, 4, and 5.

Related work: One-shot optimization is analogous to pessimistic
locking techniques developed for transactions [3, 18]. In the same
spirit as one-shot execution, pessimistic approaches eliminate the
need for expensive conflict detection during parallel execution.
Static analysis is used to determine which locks must be acquired.
Since static analysis techniques for programs that manipulate point-
ers are not very accurate, pessimistic locking implementations may
end up locking the entire graph. Notice that in our approach, appli-
cation programs do not manipulate pointers directly; instead, they
make calls to a graph API that is implemented by the library. Static
analysis of this higher-level code can exploit the semantics of API
calls, so in principle, it can produce more accurate results than static
analysis of low-level C code that manipulates pointers directly. We
have not finished the implementation of this analysis in our system,
so we currently rely on user directives.

3.3 Iteration coalescing

The final optimization we discuss is iteration coalescing, which can
be viewed as a data-centric version of loop chunking [23]. In the
context of regular programs, researchers have long recognized that
dynamically assigning work to threads has significant overhead, so
OpenMP [21], for example, supports chunking of iterations, which
permits multiple iterations to be handed out to a thread at a time.

In the Galois baseline implementation, each iteration executes
a single activity. This means that the processing of an active ele-
ment incurs two overheads: (i) acquiring work from the workset,
and (ii) acquiring abstract locks for the neighborhood. Iteration co-
alescing reduces these overheads by breaking the one-to-one cor-
respondence between iterations and activities. In an OpenMP-like
implementation, a single iteration would grab multiple active ele-
ments from the workset, reducing the cost of accessing the workset.
However, the neighborhoods for these activities may not have much
overlap, so the cost of locking may not necessarily be reduced with
this strategy.

A smarter, data-centric approach would chunk activities whose
neighborhoods overlap. One way to achieve this is the following:
in algorithms in which active elements are generated dynamically



(e.g., preflow-push, where an activity might push flow to a node,
which then becomes active), an iteration that generates a new active
element processes that element without putting it on the workset.
This is effective because in many algorithms, including preflow-
push and Delaunay mesh refinement, the neighborhood of the new
activity is likely to overlap with the neighborhood of its parent ac-
tivity. This allows us to exploit a phenomenon called lock locality:
because the neighborhoods of chunked activities overlap, the num-
ber of new locks that need to be acquired for the second activity is
reduced. The better the lock locality of a program, the more we can
amortize the cost of acquiring locks. Notice that a data-centric work
assignment strategy also increases data locality, improving cache
performance. There are algorithms that may not benefit from this
strategy; for example, in ray-tracing, the neighborhoods of child
rays may not overlap much with the neighborhood of their parent
ray.
The downside of iteration coalescing is that it increases the
effective neighborhood size of the active elements processed by an
iteration, which increases the likelihood of conflicts. We mitigate
this effect in two ways. If a conflict is detected, only the currently
executing activity is rolled back; previously executed activities
can be safely committed. Second, we place an upper bound on
how many iterations can be coalesced, using application-specific
heuristics.

Iteration coalescing is applicable only to unordered algorithms,
and the implementation described above is most effective for al-
gorithms that have the following characteristics: (i) the amount of
computation in each activity is relatively small compared to the
overheads of accessing the workset and acquiring locks, (ii) active
elements are generated dynamically, and (iii) the neighborhood of a
dynamically created activity overlaps significantly with the neigh-
borhood of its parent activity.

Implementation in Galois: The implementation of iteration coa-
lescing is the following. Each iteration maintains an iteration-local
workset. When an activity generates new active elements, these ac-
tive elements are placed on the local workset. When an activity is
completed, the iteration gets work from its local workset if possi-
ble, without releasing abstract locks. This process continues until
either (i) the maximum coalescing factor is reached, (ii) a conflict
is detected, or (iii) the local workset is empty. When the iteration
finishes, it releases all its abstract locks. If a conflict is detected,
the currently executing activity is rolled back, and work executed
earlier is committed. Any work left on the local workset is moved
to the global workset.

Related work: We do not know of any analog of data-centric
chunking in the literature. However, the implementation of partial
rollback of iterations during conflict handling is similar to the
implementation of partial rollback of nested transactions [19, 24].
In that setting, when a nested transaction encounters a conflict, it
is possible to only roll back the nested transaction, rather than the
parent transaction as well. In a similar vein, when we encounter
a conflict while performing iteration coalescing, we need only
abort the currently executing activity, rather than all previously
completed activities.

4. Experimental evaluation

In this section, we report our evaluation of the three optimizations
described in Section 3.

We used two machines for our experiments. One machine was a
Sun Fire X2270 (Nehalem server) running Ubuntu Linux version
8.06. The system contains two quad-core 2.93 GHz Intel Xeon
processors. The 8 CPUs share 24 GB of main memory. Each core
has two 32 KB L1 caches and a unified 256 KB L2 cache. Each
processor has an 8 MB L3 cache that is shared among the cores. We

Program Time/iteration (usec.)
DMR 100

Boruvka 3

Preflow-push | 0.64

SP 0.13

Table 1. Average serial runtime per iteration.

used the Sun HotSpot 64-bit server virtual machine version 1.6.0.
The second platform was a Sun UltraSPARC T2 (Niagara 2 server)
running Solaris 10. The system consists of a single chip with 8
cores running at 1.4 GHz. Each core is 8-way hyperthreaded for a
total of 64 virtual cores. Each core has an 8 KB L1 data cache and a
16 KB L1 instruction cache. The 8 cores share an 8-bank, uniform
access, 4 MB L2 cache.

We used the following benchmark programs. The Lonestar 2.0
benchmark suite is a collection of five irregular applications: Delau-
nay triangulation, Delaunay mesh refinement (DMR), survey prop-
agation (SP), Barnes-Hut, and agglomerative clustering. The oper-
ators for Delaunay triangulation and agglomerative clustering are
not cautious, so the optimizations discussed in this paper are not
useful for these codes (although agglomerative clustering might
benefit from iteration coalescing). The most time-consuming part
of the Barnes-Hut code iterates over a read-only tree, and it can
be parallelized trivially. Therefore, we focused on DMR and SP
from the Lonestar benchmark suite. In addition, we evaluated the
optimizations on an implementation of Boruvka’s algorithm for
building minimal spanning trees [6] and an implementation of the
preflow-push algorithm for computing maximal flows in a directed
graph [8]. These two benchmarks will appear in the next release of
the Lonestar suite. The benchmarks and the Galois runtime system
are written in Java. To account for the effects of JIT compilation,
each benchmark was run nine times, and the median runtime is re-
ported. We also minimize the influence of garbage collection by
maximizing the size of the heap used by the JVM.

Table 1 shows the average time per activity (iteration) when
sequential Java implementations of these algorithms are executed
on one core of the Nehalem server. These times span a wide range,
allowing us to evaluate the effectiveness of the optimizations on
programs with very different behavior.

To measure the performance improvement from the optimiza-
tions introduced in this paper, we used baseline Galois versions of
the four benchmarks. For DMR, preflow-push, and SP, the base-
line implementation uses Metis [11] to partition the input graph so
that there are 4 partitions per thread in each of the experiments de-
scribed below. Each partition has a lock that must be acquired by
a thread that wants to access a node or edge in that partition. The
over-decomposition permits a thread to do useful work even if one
of its partitions is temporarily locked by a different thread [15]. It is
difficult to partition the underlying graph in the Boruvka MST al-
gorithm since it is ultimately coalesced into a single node, so we do
not use partitioning for this algorithm; instead we associate locks
with nodes and edges of the graph. We do not include the time for
graph partitioning in the runtimes reported below.

Figure 7 shows runtimes for Delaunay mesh refinement, Boru-
vka’s algorithm, preflow-push, and survey propagation. For Delau-
nay mesh refinement, Boruvka’s algorithm, and preflowpush, we
report the runtime of a baseline version (i.e., with no optimiza-
tions), versions with a single optimization applied, and a version
with all the applicable optimizations enabled. For reasons described
in Section 4.4, we report the normalized runtime per 10 million ac-
tivities and do not evaluate the baseline version for survey propa-
gation. Figures 8 and 9 show detailed experimental results. Among



1 Workset ws = new Workset(g.badTriangles ());
2 foreach (Triangle node : ws) {

3 if (node no longer in graph)

4 continue ;

5 Cavity ¢ = new Cavity (node);

6 c.expand ();

7 c.retriangulate ();

8 g.removeNodes (c.getOldNodes ());
9 g.addNodes (c.getNewNodes ());
g.addEdges (c.getNewEdges ());
ws.add (c.badTriangles ());

Figure 10. Pseudocode for Delaunay mesh refinement.
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Figure 11. Parallelism profile for Delaunay mesh refinement.

other numbers, these figures show (i) the abort ratio (the number
of aborted iterations divided by the number of aborted and com-
mitted iterations)’, (i) the average and maximum number of locks
acquired by an activity, (iii) change (percent improvement of the
running time of an optimized version over the baseline version, for
the same number of threads).

4.1 Delaunay mesh refinement

DMR is an irregular algorithm that uses iterative refinement to
eliminate badly shaped triangles from a mesh of triangles while
ensuring that all triangles satisfy a certain geometric property called
the Delaunay condition. To fix a bad triangle, a new point is added
at its circumcenter, and the bad triangle and some of its neighbors
are replaced with new triangles; these neighboring triangles are
said to lie in the cavity of the bad triangle. Re-triangulating a
cavity may generate new bad triangles but it can be shown that
at least in 2D, this iterative refinement process will ultimately
terminate and produce a mesh without bad triangles. Figure 10
shows the pseudocode. Each iteration of the while loop refines one
bad triangle. Each bad triangle is an active node, and the cavity
generated while processing a bad triangle is the neighborhood of
the active node.

The operator implementation in DMR is cautious because it ex-
pands a cavity (line 6) before modifying anything in its neighbor-
hood (lines 8-10). However, the one-shot optimization cannot be
used because the cavity is a function of the shape and distribution
of the triangles in the mesh. Therefore, absent any knowledge of
geometry [4], we cannot place a bound on a cavity (i.e., neighbor-
hood of an active node) before executing an iteration.

It is important to remember that the cost of aborted iterations depends
both on the abort ratio and on how much work aborted iterations perform
on average before being rolled back. A high abort ratio is not necessarily
fatal to performance if most aborted iterations are rolled back before they
perform much work, as is often the case when some of the optimizations
described in this paper are applied.

1 Graph g /% input graph =/

2 MST mst new MST(g); //initialize MST from g

3 Workset ws = new Workset(g.getNodes ());

4 foreach (Node n : ws) {

Edge e = minWeight(g. getNeighbors(n));

Node 1 = contract(e); //contract edge e, forming [
// Add edge e to the MST

mst.addEdge(e);

//add new node back to workset

ws.add(1l);

— O O 00 ~JON W

—_—

Figure 12. Pseudocode for Boruvka’s algorithm.
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Figure 13. Parallelism profile for Boruvka’s algorithm.

4.1.1 Results

The input mesh consists of 550,000 randomly generated triangles,
of which approximately half are “bad.” Figure 11 shows the paral-
lelism profile for this application. The parallelism increases initially
because conflicts between bad triangles are reduced as the mesh is
refined and becomes larger. As bad triangles get eliminated from
the mesh, the amount of parallelism drops.

The cautious implementation of the operator gives a small but
measurable improvement of 12-15%. Figure 8 shows that the av-
erage number of locks held by an iteration in both the baseline and
cautious implementations is close to 1. This means that most cav-
ities lie within a single partition, showing the effectiveness of the
partitioner for this problem. In the worst case, a cavity touches 3—4
partitions even when the number of partitions is 64 (for 16 threads).

Iteration coalescing provides modest improvements of 6-9% for
this code. Each iteration of DMR performs a lot of computation, so
the relative cost of getting work from the workset and of acquiring
locks is small, limiting the benefits of iteration coalescing. Further-
more, iteration coalescing causes the abort ratio to increase, as can
be seen in Figure 8, since the effective neighborhood of an iteration
increases.

On both machines, the best version uses only the cautious op-
erator implementation. Speedup over serial code is 6.86 on the
Nehalem server and 8.5 on the Niagara 2 server, obtained on 8
cores/16 threads in both cases.

4.2 Boruvka’s algorithm

Boruvka’s algorithm is a method for finding the minimum span-
ning tree (MST) of a graph (Figure 12). The intuition behind this
algorithm is that the MST starts as a forest, with each node in its
own component. Each component then finds the lightest weight
edge that connects it to another component, adds that edge to the
MST and merges the two components together. The membership of
nodes in components can be maintained by contracting the nodes
along the lightest edge into a single component with the same con-
nectivity as the two original components. The original components
are removed from the graph. A union-find data structure may also
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Figure 7. Execution times on Nehalem (top) and Niagara 2 (bottom). Dotted lines show serial execution time.

be used to maintain the components but we do not evaluate such a
variant in this paper.

The active nodes are the nodes of the graph. To update the
connectivity in the contracted component, the neighbors of the
node incident on the lightest edge must be updated as well. The
neighborhood of an active node therefore consists of the set of
neighbors of the active node and the neighbors of the node incident
on the lightest edge.

It is difficult to use partitioning with this algorithm since it con-
tracts the graph repeatedly until only one node is left. Therefore,
we associate locks with nodes and edges in this code. The operator
implementation given in Figure 12 is cautious. Strictly speaking,
the one-shot implementation cannot be used because, without exe-
cuting the code, we do not know which edge incident on the active
node is the lightest one. However, it is possible to over-approximate
the neighborhood as the set of neighbors of the active node together
with the set of neighbors of these nodes. This over-approximation
permits us to evaluate the one-shot optimization.

4.2.1 Results

The input to the algorithm is a 2D mesh with 202,500 nodes. Fig-
ure 13 shows the parallelism profile for this application. Initially,
there is a high amount of parallelism, but it quickly tapers off as
the graph becomes smaller.

Figure 8 shows that the cautious implementation optimization
produces an improvement of about 9-22% over the baseline imple-
mentation on the Nehalem server, and 20-23% on the Niagara 2
server. The operator in Boruvka’s algorithm has two phases: the

first phase finds an edge to contract, and the second phase performs
edge contraction. The first phase only reads the graph, so cautious-
ness only helps during the edge-contraction phase, where nodes
can be removed and edges re-targeted without acquiring locks or
recording undo actions.

The one-shot optimization degrades performance substantially
on the Nehalem server, and improves performance by 4-9% on
the Niagara 2 server. Applying this optimization requires over-
approximating the neighborhood, as explained above, which in-
creases locking overheads as well as the probability of conflicts.
Figure 8 shows that the average number of locks held by an activity
is roughly twice the number held in the baseline (or cautious) im-
plementation. Furthermore, the operator also performs more com-
putation in traversing the graph.

In this code, the useful work per iteration is an order of mag-
nitude lower than in DMR. Therefore, we would expect iteration
coalescing to be more useful than in the case of DMR. Iteration co-
alescing results in an improvement of 1-8% over the baseline in the
two machines. To explain these results, we appeal to lock locality.
We can estimate the lock locality in the algorithm by examining the
average number of locks acquired per activity, as seen in Figure 8.
When applying iteration coalescing to a program with high lock
locality, we expect to acquire fewer locks per activity, as many nec-
essary locks will have been acquired by earlier activities. We see
that this is not the case in Boruvka’s algorithm; the average number
of locks acquired per activity does not change when we apply itera-
tion coalescing. Thus, the primary benefit of coalescing is to reduce
workset overheads. However, combining iteration coalescing with



Nehalem Niagara 2 Nehalem Niagara 2
abort ave max | time change time change || abort ave max | time change | time change
ratio lock lock | (ms) (ms) ratio lock lock | (ms) (ms)

Serial
| | 21025 | 142050 Il | 1243 | 5665
Baseline
1 0.00 1.02 3] 30514 0.00% 240038 0.00% 0.00 5.67 39| 4390 0.00% | 32920 0.00%
2 0.01 1.04 3| 16066 0.00% 121845 0.00% 0.00 5.66 34| 2755 0.00% | 16748 0.00%
4 0.01 1.04 3| 8522 0.00% 64449 0.00% 0.00 5.67 45| 1569 0.00% 8599 0.00%
8 0.00 1.06 4] 5153 0.00% 33868 0.00% 0.01 5.67 42| 1083 0.00% 4564 0.00%
16 0.01 1.07 3| 3499 0.00% 20386 0.00% 0.03 5.67 34| 1428 0.00% 2649 0.00%
Cautious
1 0.00 1.02 3] 26999 11.52% | 203080 15.40% 0.00 5.17 37| 3409 22.35% | 25295 23.16%
2 0.02 1.02 3| 13974 13.02% | 104739 14.04% 0.00 5.17 36| 2329 15.46% | 12910 22.92%
4 0.01 1.04 3| 7260 14.81% 54346 15.68% 0.00 5.17 35| 1358 13.45% 6677 22.35%
8 0.00 1.05 4] 4679 9.20% 29070 14.17% 0.00 5.17 38 960 11.36% 3581 21.54%
16 0.01 1.07 4] 3067 12.35% 16768 17.75% 0.01 5.17 35| 1305 8.61% 2130 19.59%
One-shot
0.00 9.90 82| 4492 -2.32% | 29868 9.27%
0.00 9.90 89| 3080 -11.80% | 15355 8.32%
0.00 9.91 83| 1998 -27.34% | 7903 8.09%
0.01 9.88 82| 1525 -40.81% | 4237 7.16%
0.06 9.87 83| 2115 -48.11% | 2532 4.42%
Coalescing
1 0.00 0.00 4] 28500 6.60% 220924 7.96% 0.00 5.67 166| 4114 6.29% | 31255 5.06%
2 0.04 0.22 3| 15013 6.55% 116720 4.21% 0.00 5.66 167| 2648 3.88% | 16430 1.90%
4 0.06 0.22 4] 7939 6.84% 61720 4.23% 0.00 5.65 171| 1486 5.29% 8430 1.97%
8 0.11 0.23 4] 4678 9.22% 33713  0.46% 0.01 560 162 998 7.85% 4481 1.82%
16 0.17 0.23 4] 3616 -3.34% 20268 0.58% 0.03 553 162| 1325 7.21% 2614 1.32%
Coalescing+Cautious
1 0.00 0.00 4] 24913 18.36% | 187109 22.05% 0.00 5.17 152| 3443 21.57% | 25584 22.28%
2 0.09 0.22 3| 13148 18.16% | 100165 17.79% 0.00 5.16 152| 2188 20.58% | 13220 21.07%
4 0.12 0.22 4] 6964 18.28% 53917 16.34% 0.00 5.14 160| 1296 17.40% 6804 20.87%
8 0.08 0.23 4] 4142 19.62% 28376 16.22% 0.01 5.12 157 898 17.08% 3598 21.17%
16 0.13 0.23 4] 3143 10.17% 17044 16.39% 0.04 5.04 152| 1338 6.30% 2106 20.50%

Figure 8. Detailed results for Delaunay mesh refinement and Boruvka’s algorithm.

the cautious optimization results in performance improvements of
roughly 20% over baseline on both machines.

On both machines, the version that uses the cautious operator
implementation and iteration coalescing performs best. Speedups
over serial code are 1.38 on the Nehalem server and 2.69 on the
Niagara 2 server, obtained on 8 cores/16 threads on both machines.

4.3 Preflow-push

The preflow-push algorithm was described in Section 2.1. The
pseudocode in Figure 2 shows a cautious operator implementation
because it reads its neighborhood (line 4) before it modifies any
node or edge in the graph (line 5). The one-shot optimization also
applies to this operator because the neighborhood of an active node
can be identified before performing any computation.

The execution time of an iteration is relatively small compared
to the costs of getting an active node from the workset or to the
costs of acquiring locks on the neighborhood. Therefore, preflow-
push is likely to benefit from iteration coalescing.

4.3.1 Results

The preflow-push experiments use a graph with 2500 nodes as
input. For lack of space, we omit the parallelism profile for this
algorithm. Compared to the other algorithms in this paper, preflow-
push has a relatively small amount of parallelism and a long critical
path.

In our implementation, the graph is partitioned with an over-
decomposition factor of 4. Applying the cautious optimization to
preflow-push results in performance improvements of 41-48% on
the Nehalem server and almost the same level of improvement on

the Niagara 2 server. The one-shot implementation performs even
better, giving about 50% improvement on the Nehalem server.

Because the amount of work per iteration is relatively small, we
would expect iteration coalescing to be beneficial. On the Nehalem
server, it improves performance by 6-22%. This is more or less true
on the Niagara 2 server as well, except for 2 threads where there is
a slowdown. We have not been able to explain the slowdown for 2
threads, since we would expect iteration coalescing to be beneficial
for this program. Iteration coalescing performs better for preflow-
push than for Boruvka’s algorithm due to both the higher relative
workset overheads and improved lock locality. As we see in Fig-
ure 9, applying coalescing to preflow-push dramatically decreases
the average number of locks acquired per activity.

Combining the iteration coalescing and one-shot optimizations
provides a performance improvements of 50-78% over the baseline
implementation.

On both machines, the version that uses the one-shot optimiza-
tion and iteration coalescing performs best. Speedups over serial
code are 1.07 on the Nehalem server (4 cores/4 threads) and 1.12
on the Niagara 2 server (8 cores/8 threads).

4.4 Survey propagation

Survey propagation is a heuristic SAT-solver based on Bayesian
inference [2]. The algorithm represents the Boolean formula as a
factor graph, which is a bipartite graph with variables on one side
and clauses on the other side. An edge connects a variable to a
clause if the variable participates in the clause. The edge is given a
value of —1 if the literal in the clause is negated and +1 otherwise.
The general strategy of survey propagation is to iteratively update



Nehalem Niagara 2 Nehalem Niagara 2
abort ave max | time <change | time change || abort ave max | ntime change | ntime change
ratio lock lock (ms) (ms) ratio lock lock (ms) (ms)
Serial

| | 3748 | 35749 | 3300 | 38928
Baseline

1 0.00 1.18 2| 24174 0.00% |269753 0.00%

2 0.01 1.39 2| 15507 0.00% |142727 0.00%

4 0.06 1.85 3| 11503 0.00% 81254 0.00%

8 0.25 2.75 5| 10890 0.00% 67336 0.00%

16 0.42 358 8| 13014 0.00% 65388 0.00%
Cautious

1 0.00 1.18 2| 14111 41.63% |170711 36.72% 0.00 2.27 4] 23810 0.00% |262738 0.00%
2 0.01 1.39 2| 8599 44.55% | 92647 35.09% 0.28 2.37 8| 23740 0.00% |213489 0.00%
4 0.05 1.84 3 6063 47.29% | 55292 31.95% 0.42 255 15| 17760 0.00% |140475 0.00%
8 0.17 2.76 5 6003 44.88% | 42654 36.65% 0.49 2.67 20| 12230 0.00% 81710 0.00%
16 0.33 358 7 7621 41.44% | 43979 32.74% 0.50 2.79 30 9660 0.00% 47919 0.00%
One-shot

1 0.00 1.18 2| 11344 53.07% |139424 48.31% 0.00 2.35 4] 16590 30.32% |168776 35.76%
2 0.01 1.39 2 7436 52.05% | 76953 46.08% 0.24 239 8| 18620 21.57% |151453 29.06%
4 0.05 1.84 3| 5474 52.41% | 46147 43.21% 0.36 2.55 12| 14480 18.47% |103148 26.57%
8 0.16 2.76 5| 5636 48.25% | 39203 41.78% 0.44 272 18] 10230 16.35% | 62399 23.63%
16 0.31 357 7 7025 46.02% | 38990 40.37% 0.46 2.81 19 8050 16.67% | 37306 22.15%
Coalescing

1 0.00 0.00 4] 18888 21.87% |194600 27.86%

2 0.17 0.09 5| 14488 6.57% |147702 -3.49%

4 0.23 0.23 7| 10783 6.26% 79456 2.21%

8 0.38 0.46 9] 9599 11.85% | 60322 10.42%

16 0.52 1.03 14| 10283 20.99% | 58506 10.52%
Coalescing+One-shot

1 0.00 0.00 4] 6259 74.11% | 60019 77.75%

2 0.06 0.09 5| 5273 66.00% | 53470 62.54%

4 0.10 0.23 8] 3515 69.44% | 37888 53.37%

8 0.20 0.46 10| 3631 66.66% | 32026 52.44%

16 0.35 0.99 14| 5428 58.29% | 33015 49.51%

Figure 9. Detailed results for preflow-push and survey propagation.

1:  FactorGraph f = /% read initial formula x*/;

2: Workset ws = new Workset(f.clausesAndVariables ());
3: foreach Node n in ws {

4: if (/* time out or number of variables is small */) {
5: break;

6: }

7: if (n.isVariable ()) {

8: n.updateVariable ();

9: if (/« n is frozen x/) {

10: /% remove n from graph x/

11: continue; /x if no contradiction %/

12: }

13: } else {

14: n.updateClause ();

15: }

16: ws.add(n);

17:

Figure 14. Pseudocode for survey propagation.

each variable with the likelihood that it should be assigned a truth
value of true or false.

Pseudocode for the algorithm is shown in Figure 14. The algo-
rithm proceeds as follows. At each step, a node is chosen at ran-
dom and processed. To process a node, the algorithm updates the
value of the node based on the values of its neighbors. After a num-
ber of updates, the value for a variable may become “frozen”, i.e.,
set to true or false. At that point, the variable is removed from the
graph. If a node is not frozen, it is returned to the workset to be
processed again. As the algorithm progresses and variables become
frozen, the graph begins to shrink. Note that, although the algorithm
chooses variables to update at random, the algorithm is nonetheless

highly order dependent: different orders of processing will lead to
variables becoming frozen at different times.

The termination condition for survey propagation is fairly com-
plex: when the number of variables is small enough, the iterations
are terminated, and the remaining problem is solved using a local
heuristic such as WalkSAT. Alternatively, if there is no progress
after some number of iterations, the algorithm may just give up.

The operator in the baseline implementation of survey propa-
gation is not cautious because activities modify the neighbors of
active nodes one at a time and remove part of the graph if the active
node has been frozen. Because the average iteration performs very
little work (see Table 1), the various Galois overheads dominate
the execution time by far, making this implementation prohibitively
slow. To speed it up, we added distributed lazy freezing to limit the
neighborhood sizes and made the implementation cautious by hav-
ing each iteration first touch all neighbors of the active node. We
only report results for this version, which performs reasonably well
and can trivially be made one-shot. Hence, survey propagation not
only benefits from cautiousness but requires it for good parallel
performance.

4.4.1 Results

The survey propagation experiments use a random 3-SAT formula
with 1000 variables and 4200 clauses. The parallelism profile of
this algorithm is basically a step function. Each iteration of sur-
vey propagation touches a single node in the factor graph and a
small neighborhood around that node. Iterations conflict with one
another if those neighborhoods overlap. The structure of the graph
is largely constant, except for occasionally removing a node. Thus,



the available parallelism reflects the connectivity of the graph and
remains roughly constant, dropping occasionally as nodes are re-
moved from the graph. Note that survey propagation terminates be-
fore the workset is empty.

In our implementation, the graph is partitioned with an over-
decomposition factor of 4. Because the graph is relatively small
with 5200 nodes, the 16-thread runs result in partitions with only 81
nodes. Moreover, the nodes are connected in a random fashion. As a
consequence, the probability of a neighborhood spanning multiple
partitions is quite high and grows with the number of threads, which
is reflected in the average and maximum number of locks acquired
per iteration and especially in the abort ratios (see Figure 9).

One-shot provides a substantial performance improvement over
cautious of 17-30% on the Niagara 2 server and 22-36% on the
Nehalem server. The reason for this significant improvement is the
high overhead of conflict checking and lock acquiring relative to
the small amount of application work performed by each iteration.
Conflict checking and lock acquiring are turned off almost imme-
diately in the one-shot implementation, but not in the cautious im-
plementation. The amount of time a one-shot iteration spends exe-
cuting before conflict management is turned off increases with the
lock count and the abort ratio, which explains why the benefit of
one-shot over cautious decreases with larger numbers of threads.

On both machines, the version that uses the one-shot optimiza-
tion performs best. Speedups over serial code are 0.41 (a slow-
down) on the Nehalem server and 1.04 on the Niagara 2 server,
obtained on 8 cores/16 threads on both machines.

5. Conclusions and future work

In this paper, we presented three optimizations for irregular pro-
grams with amorphous data-parallelism: exploiting cautious oper-
ator implementations, one-shot implementations, and iteration co-
alescing. These optimizations are driven by the high-level structure
of algorithms and by the concepts of amorphous data-parallelism.

There are several directions for future work. The cautious and
one-shot optimizations rely on properties of operator implemen-
tations. Currently, we rely on programmer annotations to convey
these properties to the system. An area of future work is to im-
plement compiler analyses that identify whether an operator im-
plementation is cautious or one-shot. With respect to the cautious
operator optimization, our implementation finds the latest point at
which the cautious property can be exploited, i.e., immediately be-
fore the first write to a shared data structure. It is possible that the
neighborhood is completely accessed at an earlier point in execu-
tion. Therefore, another possible analysis would be to locate the
earliest point at which the cautious property can be exploited.

The optimizations in this paper target structural properties of
algorithms and implementations. It would be interesting to study
optimizations that target properties of particular machines, such as
simultaneous multi-threading (SMT). Comparing the 8 thread and
16 thread performance numbers on the Nehalem and the Niagara 2
servers, we see that there is some benefit for some algorithms from
using SMT. What architecture-specific optimizations are useful for
irregular programs?

In the end, perhaps the most important message of this paper
is that systems for supporting optimistic parallelism should not be
structured as monoliths; instead, they should be engineered as a
collection of services that can be deployed selectively as needed
for the parallelization of a particular algorithm.
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