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Structure Extraction from Texture via Relative Total Variation

Li Xu Qiong Yan Yang Xia Jiaya Jia∗

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Figure 1: Meaningful structure extraction from textured surfaces. Examples from left to right are graffiti on brick, marble mosaic (ca. 260
AD), crop circles, and graffiti on gate.

Abstract

It is ubiquitous that meaningful structures are formed by or appear
over textured surfaces. Extracting them under the complication of
texture patterns, which could be regular, near-regular, or irregular,
is very challenging, but of great practical importance. We propose
new inherent variation and relative total variation measures, which
capture the essential difference of these two types of visual forms,
and develop an efficient optimization system to extract main struc-
tures. The new variation measures are validated on millions of sam-
ple patches. Our approach finds a number of new applications to
manipulate, render, and reuse the immense number of “structure
with texture” images and drawings that were traditionally difficult
to be edited properly.

CR Categories: I.4.3 [Image Processing and Computer Vi-
sion]: Enhancement—Smoothing; G.1.6 [Numerical Analysis]:
Optimization—Nonlinear programming

Keywords: texture, structure, smoothing, total variation, relative
total variation, inherent variation, prior, regularized optimization

Links: DL PDF WEB CODE

1 Introduction

Many natural scenes and human-created art pieces contain texture.
For instance, graffiti and drawings can be commonly seen on brick

∗e-mail: {xuli, qyan, yxia, leojia}@cse.cuhk.edu.hk

walls, railroad boxcars, and subways; carpets, sweaters, and other
fine crafts contain various geometric patterns. In human history,
mosaic has long been be an art form to represent detailed scenes
of people and animals, and imitate paintings using stone, glass,
ceramic, and other materials. When searching in Google Images,
millions of such pictures and drawings can be found quickly.

A few examples from different sources are shown in Figure 1.
They share the similarity that semantically meaningful structures
are blended with or formed by texture elements. We call them
“structure+texture” images. It is particularly interesting that human
visual system is fully capable to understand these pictures without
needing to remove textures. In psychology [Arnheim 1956], it is
also found that “the overall structural features are the primary data
of human perception, not the individual details”.

Contrary to this almost effortless process, extract structures by a
computer is much more challenging. Tedious manual manipulation
is needed in all photo editing software that we used. A few ap-
proaches [Meyer 2001; Yin et al. 2005; Aujol et al. 2006] employ
a total variation image regularizer in optimization. This frame-
work, however, cannot satisfyingly distinguish texture from the
main structures because both of them could receive similar penal-
ties during optimization. Recent edge-preserving image editing
tools [Farbman et al. 2008; Subr et al. 2009; Farbman et al. 2010;
Kass and Solomon 2010; Paris et al. 2011; Xu et al. 2011] do not
aim to solve the same problem, and, therefore, are not optimal so-
lutions. More analysis and comparisons will be provided.

We present a simple and yet effective method based on novel local
variation measures to accomplish texture removal. We found that
with regard to our new relative total variation, which will be elab-
orated later in this paper, texture and main structure exhibit com-
pletely different properties, making them surprisingly decompos-
able. With this finding, we present an optimization framework, in
which meaningful content and textural edges are penalized differ-
ently. A robust numerical solver is also proposed to decompose the
original highly non-convex optimization problem into several linear
systems, for which fast and robust solution exists. Note that we do
not assume specific regularity or symmetry of the texture patterns,
and instead allow for a high level of randomness. Non-uniform and
anisotropic texture, thus, can be handled in a unified framework.
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Figure 2: Effect of our variation measures. (a) Input. (b) Windowed total variation map. (c) Windowed inherent variation map. (d) Relative
total variation (RTV) map, where meaningful structures are penalized much less than textures. (e) Our finally extracted structure image.

Our method makes an enormous number of existing “struc-
ture+texture” images reusable in editing and rendering. We present
several applications, including structural edge detection, vectoriza-
tion, seamless cloning, and structure-only image composition, to
name a few. Our system also benefits general seam carving, mak-
ing the results less error-prone to ubiquitous textures.

Limitations As our method assumes neither the specific type of
texture nor the latent main structure arrangement, it cannot distin-
guish between texture and structure that are similar in scales or are
close with respect to the new variation measures. The method per-
forms best for lighting that is not very complex and images with-
out strong perspective distortion when user interaction is not in-
volved. While this is not an issue for images such as well-lit paint-
ings, drawings and mosaics on which the paper focuses, this can
be more problematic with natural images and can result in details
being overly smoothed.

2 Background

Texture usually refers to surface patterns that are similar
in appearance and local statistics [Wei et al. 2009]. Tex-
ture synthesis [Efros and Leung 1999; Wei and Levoy 2000;
Efros and Freeman 2001; Kwatra et al. 2003] can produce a large
seamless texture map from small examples. For near-regular
textures, spatial relationship is used to detect and analyze regularity
[Liu et al. 2003; Liu et al. 2004; Hays et al. 2006], enabling image-
texture separation in de-fencing [Liu et al. 2008]. These methods
count on the symmetry and regularity of texture and require prior
pattern knowledge. Image analogy [Hertzmann et al. 2001] needs
examples and may have difficulty removing texture when details
are complex and irregular.

Representative structure-texture decomposition methods that do
not require extensive texture information are those enforcing
the total variation (TV) regularizer to preserve large-scale edges
[Rudin et al. 1992; Meyer 2001; Yin et al. 2005; Aujol et al. 2006].
Aujol et al. [2006] studied four TV models and concluded that TV-
L2 [Rudin et al. 1992] is most favorable with unknown texture pat-
tern. The TV-L2 model simply uses a quadratic penalty to enforce
structural similarity between the input and output, expressed as

argmin
S

∑
p

{

1

2λ

(

Sp − Ip

)2
+ |(∇S)p |

}

, (1)

where I is the input, which could be the luminance (or log lumi-
nance) channel and p indexes 2D pixels. S is the resulting structure

image. The data term
(

Sp − Ip

)2
is to make the extracted structures

similar to those in the input image. ∑p |(∇S)p | is the TV regular-

izer, written as

∑
p

|(∇S)p | = ∑ |(∂xS)p |+ |
(

∂yS
)

p
|

with the anisotropic expression in 2D. ∂x and ∂y are the partial
derivatives in two directions. We have extensively experimented

with this form and found that the total variation regularizer has lim-
ited ability to distinguish between strong structural edges and tex-
ture. This paper contains a few examples.

In image smoothing and editing, Farbman et al. [2008] used
weighted least squares (WLS) and Xu et al. [2011] proposed
L0 gradient minimization. These methods differ from the TV-
L2 structure-texture decomposition on regularization and detailed
optimization steps. But they still depend on gradient mag-
nitudes and do not suit texture separation very well. Local
smoothing, such as bilateral filtering [Durand and Dorsey 2002;
Paris and Durand 2006; Fattal et al. 2007] and local histogram-
based filtering [Kass and Solomon 2010], can suppress details
while preserving structural edges. These approaches are also not
designed to handle texture and their straightforward employment
cannot achieve satisfactory texture removal. In [2009], Subr et al.
separated oscillations from the structure layer through extrema ex-
traction and extrapolation. The method is unlike previous filtering
approaches in its ability to smooth high-contrast details. However,
in practice, blending of texture and meaningful structures would
cause problems in extrema locating and fitting. Result comparison
and discussion for these methods are provided in Section 4.

3 Approach

We do not assume or manually determine the type of textures, as the
patterns could vary a lot in different examples. Our method contains
a general pixel-wise windowed total variation measure, written as

Dx(p) = ∑
q∈R(p)

gp, q · |(∂xS)q |,

Dy(p) = ∑
q∈R(p)

gp, q · |
(

∂yS
)

q
|, (2)

where q belongs to R(p), the rectangular region centered at pixel p.
Dx(p) and Dy(p) are windowed total variations in the x and y direc-
tions for pixel p, which count the absolute spatial difference within
the window R(p). gp, q is a weighting function defined according
to spatial affinity, expressed as

gp, q ∝ exp

(

−
(xp −xq)

2 +(yp −yq)
2

2σ2

)

, (3)

where σ controls the spatial scale of the window. In an image with
salient textures (Figure 2(a)), both the detail and structure pixels
yield large D (Figure 2(b)), which indicates that the windowed total
variation is responsive to visual saliency.

To help distinguish prominent structures from the texture elements,
besides D , our method also contains a novel windowed inherent
variation, expressed as

Lx(p) = | ∑
q∈R(p)

gp, q · (∂xS)q |,

Ly(p) = | ∑
q∈R(p)

gp, q ·
(

∂yS
)

q
|. (4)
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Figure 3: Statistical validation of the inherent and relative variations. A few examples along with manually labeled main structures are
shown in the top frame. Sample patches are randomly extracted from these examples, as illustrated in the middle row. Structure and texture
patches are included in the red and green rectangles respectively. (a)-(c) show the distributions of D , L , and RTV. The red and green curves

are for the classes of texture and structure patches respectively. (d) plots precision-recall of our normalized measure and other variations.

L captures the overall spatial variation. Different from the expres-
sion in Eq. (2), it does not incorporate the modulus. So the sum of
∂S depends on whether the gradients in a window are coincident or
not, in terms of their directions, because ∂S for one pixel could be
either positive or negative.

Key Observation There is an important finding on L that guides
our system design – that is, the resulting L in a window that only
contains texture is generally smaller than that in a window also in-
cluding structural edges. An intuitive explanation is that a major
edge in a local window contributes more similar-direction gradients
than textures with complex patterns. We show a L map in Figure
2(c), where the texture, albeit visually salient, produces smaller L
values than the main structures. It is not a special example. We will
show in Section 3.1 that this finding is actually acquired statistically
from many data.

To further enhance the contrast between texture and structure, espe-
cially for visually salient regions, we combine L with D to form an
even more effective regularizer for structure-texture decomposition.
The objective function is finally expressed as

argmin
S

∑
p

(Sp − Ip)
2 +λ ·

(

Dx(p)

Lx(p)+ ε
+

Dy(p)

Ly(p)+ ε

)

, (5)

where the term (Sp − Ip)
2 makes the input and result not de-

viate wildly. The effect of removing texture from an im-
age is introduced by the new regularizer (Dx(p)/(Lx(p)+ ε) +
Dy(p)/(Ly(p)+ ε)

)

, which we call relative total variation (RTV
for short). λ in Eq. (5) is a weight. ε is a small positive number to
avoid division by zero. The division is an element-wise operation.

Relative Total Variation (RTV) is simple and yet very effective to
make main structures stand out, thanks to the characteristics of D

and L . For the example in Figure 2, the final RTV is large around
the graffiti edges. Normalization using windowed inherent varia-
tion L is similar to circular and spherical statistics (CSS), where
the norm of the sum of unit vectors is used to normalize spherical
mean and variance [Watson 1983]. One term in CSS evaluates the
concentration of vectors. Our inherent variation shares similarities
with these spherical metrics, which yields small responses when lo-
cal gradients scatter, corresponding to textures. It differs from CSS
on incorporating a windowed total variation and working in concert
with a data fidelity term.

3.1 Verification

To verify the effectiveness of the RTV measure, we build a dataset,
which contains millions of patches along with manually created la-
bels. In the first place, we collect 200 “structure+texture” images
and ask five student helpers to draw strokes snapping to important
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structure edges. The remaining pixels are treated as not contain-
ing meaningful changes. So each image has a corresponding stroke
map. A few test images and corresponding stroke maps are shown
in the blue frame of Figure 3. Based on them, we wrote a program to
randomly draw structure and texture patches respectively, all with
size 29× 29. Structure patches contain labeled strokes while the
texture patches do not. Several of them are shown in the red and
green rectangles in Figure 3. We in total collect 2.2 million of
patches. The numbers of the structure and texture patches are with
ratio 1:3. The dataset as well as the labeled stroke maps can be
downloaded from the project website.

With all these patches, we calculate respective values based on the
windowed total variation, windowed inherent variation, and rela-
tive total variation, and plot the distributions in Figure 3(a)-(c). We
fix the spatial scale σ to 5 in Eq. (3) for simplicity’s sake. These
plots reveal the following facts statistically. First, the total varia-
tion cannot well distinguish structure from texture because the two
peaks in (a) are very close. Second, the windowed inherent varia-
tion distributions are more discriminative since the peak of the tex-
ture curve arises near the zero variation. Third, the relative total
variation distributions are most separable. There are conspicuous
peaks for both sets of patches, which are distant in different ranges.
It, thus, is most suitable for structure extraction. These facts are in
compliance with our observation presented in Section 3.

We also quantitatively compare these measures by classifying
patches into the structure and texture categories and computing
precision-recall. By normalizing the measures and varying the clas-
sification threshold in [0,1], we plot precision-recall curves in Fig-
ure 3(d). For comparison, we also evaluate widowed total variation
and windowed L0.8 regularizer that approximates the sparse prior in
the WLS method. Our relative total variation has a clear superiority
over other alternatives.

Difference to texture classification Note that our final goal is
not texture/structure classification, but instead another challenging
task, i.e., texture removal from different “structure+texture” im-
ages. The variation metric needs to be simple to form a prac-
tical solution to finely separate texture and structure from each
other for each pixel. Our method, therefore, is different by na-
ture from texture classification and segmentation [Tuceryan 1994;
Malik et al. 2001; Liu et al. 2004; Hays et al. 2006], and from ap-
plications in contour extraction [Arbelaez et al. 2011] and saliency
detection [Goferman et al. 2010].

3.2 Numerical Solution

The objective function in Eq. (5) is non-convex. Its solution
thus cannot be obtained trivially. We propose an efficient solver
based on the knowledge that an objective function with the penalty
of a quadratic measure can be optimized linearly [Szeliski 2006;
Lischinski et al. 2006; Krishnan and Szeliski 2011]. Our approach
decomposes the RTV measure into a non-linear term and a
quadratic term. The advantage is that the problem with the non-
linear part, intriguingly, can be transformed to solving a series of
linear equation systems, in a way similar to iterative re-weighted
least squares.

We first discuss the x-direction measure. The y-direction term can
be dealt with similarly. We expand the penalty as

∑
p

Dx(p)

Lx(p)+ ε
= ∑

p

∑
q∈R(p)

gp,q · |(∂xS)q |

| ∑
q∈R(p)

gp,q · (∂xS)q |+ ε
. (6)

By re-organizing the terms and grouping elements that contain

Algorithm 1 Structure Extraction from Texture

1: input: image I, scale parameter σ , strength parameter λ

2: initialization: t = 0, S0 ← I
3: for t=0:2 do
4: compute weights w and u in Eqs. (8), (9), (11), and (12)
5: solve the linear system in Eq. (14)
6: end for
7: output: structure image S

|(∂xS)q |, we obtain

∑
p

Dx(p)

Lx(p)+ ε
= ∑

q
∑

p∈R(q)

gp,q

| ∑
q∈R(p)

gp,q · (∂xS)q |+ ε
|(∂xS)q |

≈ ∑
q

∑
p∈R(q)

gp,q

Lx(p)+ ε

1

|(∂xS)q |+ εs
(∂xS)2

q

= ∑
q

ux qwx q (∂xS)2
q . (7)

The second line in (7) is an approximation due to the introduction
of εs for numerical stability. The re-arrangement of the terms de-

composes the measure into a quadratic term (∂xS)2
q and a non-linear

part ux qwx q. They are respectively

ux q = ∑
p∈R(q)

gp,q

Lx(p)+ ε
=

(

Gσ ∗
1

|Gσ ∗∂xS|+ε

)

q

, (8)

wx q =
1

|(∂xS)q |+ εs
. (9)

Expression (8) indicates that ux for each pixel actually incorporates
neighboring gradient information in an isotropic spatial filter man-
ner. Gσ is a Gaussian filter with standard deviation σ . The division
in (8) is element-wise and ∗ is the convolution operator. wx is only
related to the pixel-wise gradient.

Similarly, we can express the y-directional penalty as

∑
p

Dy(p)

Ly(p)+ ε
= ∑

q

uy qwy q

(

∂yS
)2

q
, (10)

where
(

∂yS
)2

q
is the quadratic y-component partial derivative and

uy qwy q is similarly the non-linear part. They are respectively

uy q =

(

Gσ ∗
1

|Gσ ∗∂yS|+ε

)

q

, (11)

wy q =
1

|
(

∂yS
)

q
|+ εs

. (12)

With these operations, Eq. (5) can be written in a matrix form:

(vS −vI)
T (vS −vI)+λ

(

vT
S CT

x UxWxCxvS +vT
S CT

y UyWyCyvS

)

, (13)

where vS and vI are the vector representation of S and I respec-
tively. Cx are Cy are the Toeplitz matrices from the discrete gradient
operators with forward difference. Ux, Uy, Wx, and Wy are diago-
nal matrices. Their diagonal values are respectively Ux[i, i] = ux i,
Uy[i, i] = uy i, Wx[i, i] = wx i, Wy[i, i] = wy i.

The form in (13) enables a special iterative optimization procedure.
Due to the decomposition of the non-linear and quadratic parts, a
numerically stable approximation is naturally obtained, which was
found very effective in our experiments to quickly estimate the
structure and texture images. Our optimization process is as fol-
lows.
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(a) S0 = I (b) S1 (c) S2 (d) Final S

Figure 4: Structure images in different iterations.

Step 1 From the estimated structure image S in the previous iter-
ation, it is straightforward to calculate the values of u and w based
on Eqs. (8), (9), (11), and (12), which form the matrices of U and
W in Eq. (13).

Step 2 Using the values of Ux, Uy, Wx, and Wy, minimization boils
down to solving a linear system in each iteration as

(1+λLt) · vt+1
S = vI , (14)

where 1 is an identity matrix and Lt = CT
x U t

xW t
xCx +CT

y U t
yW t

yCy

is the weight matrix computed based on the structural vector vt
S.

(1 + λLt) is the symmetric positive definite Laplacian matrix. We
use the forward difference to approximate discrete gradients, which
results in a sparse five-point Laplacian matrix. Efficient solvers are
available for it. Both the isotropic and anisotropic treatments of the
total variation can be applied. The whole optimization process is
summarized in Algorithm 1.

4 More Analysis

Iterations Our method quickly updates the structure image S in
iterations. The intermediate results are shown in Figure 4. We
found empirically 3-5 iterations are enough to suppress texture. The
fast convergence manifests the effectiveness of our solver.

Computation Cost The proposed solver has two main phases in
each iteration to calculate the weights (line 4 in Algorithm 1) and
solve the linear system (line 5 in Algorithm 1). In weight computa-
tion, as expressed in Eq. (8), two convolutions are involved, which
are with complexity O(σ2N), where N is the total number of pix-
els in an image. Acceleration by Fourier transform may introduce
boundary artifacts given large Gaussian kernels. We instead make
use of the nice separation property of Gaussian to obtain two 1D
filters, resulting in an O(σN) complexity method.

The second step is to solve a linear system with a 5-point spatially
inhomogeneous sparse Laplacian matrix. Several solutions are
available [Levin et al. 2004; Szeliski 2006; Lischinski et al. 2006;
Farbman et al. 2008; Krishnan and Szeliski 2011]. Fast solvers,
such as the multi-resolution preconditioned conjugate gradient
(PCG) and numerical multigrid scheme, can reach O(N) complex-
ity. Our method using the PCG speedup only needs 2 seconds to

process a single channel 800 × 600 image on a PC with an Intel
i7 3.40GHz CPU and 4GB memory. To handle color images, we
compute the weights in Eqs. (8), (9), (11), and (12) considering all
three color channels so that they share the same preconditioner. It
takes 3.7 seconds to process an 800×600 color image on the same
PC. Our code is publicly available.

Parameter Adjustment We normalize all pixel values to the in-
terval [0,1]. ε and εs are two small positive numbers to avoid di-
vision by zeros. ε is fixed to 1e− 3. We found that making εs a
bit larger helps preserve smoothly varying structures. It is set to
2e− 2 empirically. λ in Eq. (5) is a weight inevitable in regular-
ized optimization. Altering its value can control the smoothness
of the result, but does not help texture separation too much. As
illustrated in Figure 5, increasing λ causes more blurriness; many
textures, however, are still retained. The value of λ typically varies
in a small range [0.01,0.03] in practice.

In contrast, spatial parameter σ in Eq. (3) controls the window size
for computing the windowed variations. It depends on the scale of
texture elements and is thus vital in texture-structure separation. We
make σ tunable for different images in interval (0,8]. The texture-
suppression effect by increasing σ is illustrated in Figure 5. We also
note that gradually decreasing σ in each iteration helps improve
the edge sharpness, without compromising the texture-suppression
ability.

Non-uniform and Anisotropic Texture When a surface is with
multiple texture patterns or is viewed in a non-frontal direction, tex-
ture elements can be with varying scales. Two examples are shown
in Figures 5 and 7. These images are not problematic to our method
in general because textures with their scales smaller than the one
corresponding to σ all receive penalties in the RTV measure. Our
results in Figures 5 and 7 bear this out. More examples are included
in the project website. Of course, if structures at afar are with sim-
ilar scales as textures at the near end, both could be removed. We
will discuss this issue more in Section 7. While RTV counts on lo-
cal statistics, we do not assume local gradients to be isotropy. The
measure works well as long as opposite gradients in a window can-
cel out each other, regardless whether the pattern is isotropic or not.
Figures 2 and 13 show examples with strong directional patterns.
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(a) Input (b) λ = 0.01, σ = 0.5 (c) λ = 0.02, σ = 0.5 (d) λ = 0.03, σ = 0.5

(e) Close-ups (f) λ = 0.01, σ = 0.5 (g) λ = 0.01, σ = 1 (h) λ = 0.01, σ = 3

Figure 5: Effect of varying parameters. Tuning σ is much more effective than tweaking λ in structure-texture separation. (b)-(d) shows that
varying λ blurs edges and cannot remove texture very well. In (f)-(h), we alter scale σ , which maintains sharp edges while separating texture.

(a) Input (b) TV [Rudin et al. 1992] (c) WLS (λ = 12,α = 1.2) (d) L0 smoothing [Xu et al. 2011]

(e) BLF (σr = 0.3, σs = 45) (f) [Kass and Solomon 2010] (g) [Subr et al. 2009] (h) Our result (λ = 0.015, σ = 6)

Figure 6: Results and comparison on “Pompeii Fish Mosaic”.

(a) (b) BLF (c) [Subr et al. 2009] (d) Our result (λ = 0.01, σ = 2)

Figure 7: Structure extraction result comparison on the “Unicorn and Phoenix” mosaic image.
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(a) (b)

(d)(c) (e) (f)

Figure 8: Structure vectorization. (a) Input. (b) Our structure image S. (e) Upscaled image after vectorizing (a) as a whole. (f) Upscaling
result by only vectorizing (b) while the texture image is treated as a bitmap and is bilinearly interpolated. Close-ups of (e)-(f) are shown in
(c)-(d).

(a) (b) (c) (d) (e)

Figure 9: Edge simplification from a cluttered scene. Directly applying edge detection yields erroneous results in (b) and (c) even by varying
parameters. Our method can maintain meaningful edges and suppress texture, as shown in (d). It helps edge extraction.

5 Comparison

We compare our method with a few others on structure-texture sep-
aration. In our framework, the windowed inherent variation can be
deemed as a way for normalization and is incorporated into opti-
mization as weights ux and uy in Eqs. (8) and (11). If we set them
to 1, our solver becomes an iterative method for TV-regularized op-
timization with significantly weakened ability to extract structure
from texture. If we further set the iteration number to 1, it turns to
the WLS optimization method, except for using original intensities
instead of difference in the log luminance channel. This connection
discloses that the proposed windowed inherent variation metric is
essential to distinguish between structure and texture in optimiza-
tion, and is a generalization of several other regularizer forms.

Figure 6(a) shows a “Pompeii Fish Mosaic” image. The main struc-
tures are formed by many tiles with salient but fine tessera bound-
aries, making their extraction very challenging. Results from other
methods are presented from (b)-(g). We have hand tuned param-
eters for these methods. Note that the TV-regularized method, bi-
lateral filtering, and weighted least squares [Farbman et al. 2008]
were used in natural image smoothing. They do not have ef-
fective terms to deal with textures. The dominant mode fil-
ter [Kass and Solomon 2010] and L0 smoothing [Xu et al. 2011]
preserve and enhance sharp edges. In dealing with the “struc-
ture+texture” images, they also have respective limitations. In com-
parison, our framework makes use of local signed gradients and
the relative total variation (RTV) exhibits special properties. The
method of Subr et al. [2009] is a multi-scale smoothing approach
and we show the output from the second scale. Increasing the spa-
tial parameter could further blur main edges. Our result is shown in
(h). Another comparison is on the “Unicorn and Phoenix” example
shown in Figure 7. More are included in the project website.

6 Applications

Meaningful structure extraction from textured surfaces enables
many applications. We show a few in image editing, rendering,
and vectorization.

6.1 Vectorization

Image vectorization is to turn a raster image to a vector graph that
is supposedly arbitrarily scalable. Most vectorization methods can-
not well represent fine details. It is also particularly difficult to
deal with the structure+texture images due to complex patterns and
common existence of local intensity oscillation. For the image
shown in Figure 8(a), state-of-the-art vectorization software Vec-
tor Magic [2010] mistakes texture patterns. When the vectorized
image is upscaled with a factor of 8, visual artifacts are noticeable,
as shown in (e) and magnified in (c).

We propose a different way for vectorization. In the beginning,
texture and structures are decomposed by the method presented in
this paper, resulting in the structure image shown in Figure 8(b).
A vector graph can be easily formed for it. During upscaling, the
vectorized structure image is directly magnified. In the meantime,
the corresponding texture image is resized as a bitmap simply using
bilinear interpolation. We finally compose the two layers and obtain
the result shown in Figure 8(f). This mixture algorithm can produce
visually more pleasing results with sharp boundaries even with a
large scaling factor, while not losing or mistaking details as much
as traditional vectorization. Close-ups in (c) and (d) show clearly
the difference.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Edge detection from a cluttered scene. (a) Input image.
(b) Canny edge detection result. (c)-(d) Results of globalPb [2011]
with threshold 0.05 and 0.1 respectively. (e) Our structure map. (f)
Our corresponding edge map.

6.2 Edge Simplification and Detection

Our method can be applied to edge simplification and extraction
thanks to its ability to remove many details and find main edges.

Figure 9 shows an image example that contains visually salient
background and foreground textures. They could mislead edge de-
tection. Note that tweaking the parameters of Canny edge detector
[Canny 1986] cannot produce a reasonable contour, as shown in
(b)-(c). The main edges are broken while many edgelets are gener-
ated. Our structure result (d) contains meaningful visual informa-
tion, making edge detection more reliable.

In Figure 10, we present a world map mosaic image. Directly de-
tected edges from it (shown in (b)) using the Canny detector is com-
pletely unusable, owing to the large contrast and small scale of the
tiles. globalPb [Arbelaez et al. 2011] is a state-of-the-art edge de-
tection method based on multiple cues. Its results commonly in-
clude part of the texture boundaries as important edges, as demon-
strated in Figure 10(c) and (d). Thus the goal and edge detection
effect differ from ours. Our structure map and edges detected on it
are presented in (e) and (f).

(a) (b) (c)

(d) (e) (f)

Figure 11: Texture enhancement. (a) and (d) are the input images.
(b) and (e) show our structure image results. (c) and (f) are the
texture enhancement results.

(a) (b)

(c) (d)

Figure 12: Our method can be useful for image composition be-
cause our structure images contain main edges and boundaries.
Details and texture that easily conflict in the source and target im-
ages are removed. Our result shown in (d) is visually more pleasing
than the one in (c).

6.3 Enhancement and Composition

We can also enhance texture layers to improve contrast and create
different visual impressions. Two image examples are included in
Figure 11. The mosaic and cloth patterns in (a) and (d) are repeti-
tive. They can be nicely separated from the images by our method.
We then enhance the texture contrast and add the respective layers
back to create the magnification effect.

Graffiti images, paintings, and drawings sometimes cannot
be directly used in seamless cloning and image composition
[Pérez et al. 2003] because the source and target textures are incom-
patible. As shown in Figures 12 and 13, even the mixing-gradient
image cloning, which locally selects the maximum gradient from
the source and target images, does not produce visually plausible
results. Using our produced structure images (b), composition can
be achieved more naturally, as shown in (d).
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(a) (b)

(c) (d)

Figure 13: Another composition example. (a) Input. (b) Our struc-
ture image. (c) Image composition using (a). (d) Image composition
using (b).

6.4 Content-aware Image Resizing

Our method also profits content-aware seam carving. Natural
scenes generally contain many details, such as waves, grass,
sand, mountain, rock, and tree. They are less important
than the objects of interest, but would influence image resizing
[Avidan and Shamir 2007]. We show in Figure 14 an example.
Wave, in this image, is with large-magnitude gradients and affects
seam carving. As shown in (e) and (g), the horizontal and vertical
seams cross mainly the sail, making the result in (c) not acceptable.

Our method can help address this issue. Our extracted structure
map in (b) has much less texture, making the majority of the seams
not pass through the remaining salient edges, i.e., the sail in (f) and
(h). Our final result in (d) is produced by removing seams from the
input image (a). More results are presented in our website.

7 Concluding Remarks

We have presented a new system for meaningful structure extraction
from texture. Our main contribution is twofold. First, we proposed
novel variation measures to capture the nature of structure and tex-
ture. We have extensively evaluated these measures and conclude
that they are indeed powerful to make these two types of visual in-
formation separable in many cases. Second, we fashioned a new
optimization scheme to transform the original non-linear problem
to a set of subproblems that are much easier to solve quickly. Sev-
eral applications making use of these images and drawings were
proposed.

Our method does not need prior texture information. It could, thus,
mistake part of structures as texture, if they are visually similar in
scales. One example is shown in Figure 15, where structures are not
all preserved. It is because the scale and shape of these edges are
overly close to those of the underlying texture, significantly obscure
the difference from the statistical perspective.
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