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Abstract

Structure fluctuations and conformational changes accompany all biological processes involving
macromolecules. The paper presents a classification of protein residues based on the normalized
equilibrium fluctuations of the residue centers of mass in proteins and a statistical analysis of
conformation changes in the side-chains upon binding. Normal mode analysis and an elastic
network model were applied to a set of protein complexes to calculate the residue fluctuations and
develop the residue classification. Comparison with a classification based on normalized B-factors
suggests that the B-factors may underestimate protein flexibility in solvent. Our classification
shows that protein loops and disordered fragments are enriched with highly fluctuating residues
and depleted with weakly fluctuating residues. Strategies for engineering thermostable proteins are
discussed. To calculate the dihedral angles distribution functions, the configuration space was
divided into cells by a cubic grid. The effect of protein association on the distribution functions
depends on the amino acid type and a grid step in the dihedral angles space. The changes in the
dihedral angles increase from the near-backbone dihedral angle to the most distant one, for most
residues. On average, one fifth of the interface residues change the rotamer state upon binding,
whereas the rest of the interface residues undergo local readjustments within the same rotamer.
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1. Introduction

Protein–protein interactions are a key component of life processes at the molecular level.
Physical characterization of these interactions and their effects on protein structure are
important for understanding the mechanisms of protein function, our ability to manipulate
protein function/structure and design effective drugs. Despite methodological advances and
progress in computer technologies, accurate modeling of changes in protein structures upon
binding is still one of the great challenges in modern bioinformatics and computational
biology.1 It is rooted in a rich variety of conformational changes that may occur in the
unbound protein structures and upon binding. This includes structure fluctuations, allosteric
changes, domain motions, local folding–unfolding transitions, transitions between regular
secondary structure elements in “chameleon sequences,” disorder-to-order transitions and
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other changes in protein backbone and side chains. Several models were suggested to
generalize the scope of the conformational changes observed: “lock-and-key model”,2 the
induced-fit model,3 the allosteric model,4 “the protein trinity model”,5 and the
conformational selection and population shift.6,7 The key questions of predictive modeling
are what types of the changes hold upon binding and which of them make principal
contributions. Disorder-to-order and order-to-disorder transitions in side chains have been
studied. This study focuses on the structure fluctuation in the unbound proteins and
conformation changes in the side chains upon binding. The focus on the side chains is
motivated by the statistics of the unbound-to-bound changes in comprehensive non-
redundant sets of protein complexes. The Benchmark set8 has a Cα root mean square
deviation (RMSD) < 2:2 Å for 84% of complexes. The Dockground set9 used in this study
has Cα RMSD ≤ 2 Å for 71% of the complexes. Thus, conformational changes in the side
chains make the main contribution to structure changes upon binding for most complexes in
the non-redundant sets.

In this paper, we present a classification of protein amino acids based on the normalized
equilibrium fluctuations of the residue centers of mass. Normal mode analysis and an elastic
network model were implemented in a program Vibe and applied to all unbound proteins
from the Dockground set to calculate the fluctuations of each residue. The effect of structure
packing on the fluctuations in solvent and crystal is discussed. Our classification is
compared with a classification based on the normalized B-factors. We suggest that the use of
the B-factors results in the underestimation of the Gly flexibility in solvent. We discuss
relations between the scale of fluctuations and amino acid propensities for the secondary
structure elements and protein disorder. The results showed that protein loops and
disordered fragments are enriched with highly fluctuating residues and depleted with the
weekly fluctuating ones. The analysis suggests a hypothesis that protein unfolding originates
from highly fluctuating residues and their structural neighbors. Fluctuations of the interface
residues were compared with other surface residues. Some residues were found to be more
stable at the interface and form low-mobility patches. Relations between the residue
fluctuations and protein thermostability as well as strategies for engineering thermostable
proteins are discussed. To calculate the distribution functions of the dihedral angles, the
configuration space was divided into cells by a cubic grid. Correlation between bound and
unbound interface/non-interface conformations, as well as between the interface and non-
interface conformations in the bound/unbound states increases for larger grid step sizes in
the dihedral angles space. The differences induced by binding forces disappear at the
intervals comparable with the size of the clusters of the side-chain conformations mapping
the rotamers in the configuration space. The average conformation changes in each of the
dihedral angles are analyzed for all amino acid types. The scale of the changes depended on
the side chain length and the proximity of the dihedral angle to the protein backbone. For
most amino acids, the average conformational change increased from the near-backbone
dihedral angle to the most distant one. The opposite trend was found in the residues with
symmetric terminal groups (Phe, Tyr, Asp and Glu). Only one-fifth of the interface residues
changed its rotamer upon binding. The rest of the interface residues had local readjustments
within the same rotamer.

2. Effects of Protein Sequence Composition and Structure Packing on

Residue Fluctuations

To investigate side-chain fluctuations, we designed an elastic network model with the nodes
placed in the residue centers of mass and an inter-residue potential accounting for the
distribution of interatomic interactions between the residues (the packing density). The
approach is implemented in a program Vibe for the coarse-grained normal mode analysis in
proteins.10 Vibe was applied to 184 unbound proteins from 92 non-obligate complexes
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selected from the Dockground non-redundant set (http://dockground.bioinformatics.ku.edu).
The set has < 30% sequence identity between the complexes and is restricted to
heterodimers. Thus, it is different from sets like ComSin,11 which is redundant and includes
homodimers.

A mobility ratio was calculated for each residue as a normalized mean square fluctuation in

a protein:  is a mean square deviation of the center of mass of the
kth residue from its equilibrium position due to thermal vibrations, angular brackets denote a

Boltzmann average over the normal modes,10  is the average fluctuation of
all the residue centers of mass in a protein with N residues. Mobility ratios averaged over all
proteins are summarized in Table 1 for each amino acid type. Ranking amino acids over the
average mobility ratio yields a three-group classification: (I) highly fluctuating — Gly, Ala,
Ser, Pro, Asp; mobility ratio >1, (II) moderately fluctuating — Thr, Glu, Asn, Lys, Cys, Gln,
Arg, Val; 0.7 ≤ mobility ratio ≤ 1, and (III) weakly fluctuating — His, Leu, Met, Ile, Tyr,
Phe, Trp; mobility ratio <0.7.

Interestingly, the moderately and weakly fluctuating Groups II and III are different in the
degree of the hydrophilicity. The Group II is largely polar/hydrophilic, whereas Group III is
mostly nonpolar/hydrophobic. This difference is a consequence of the non-homogeneous
distribution of the amino acids in proteins. Polar residues prefer conformations that are more
exposed to water. Nonpolar residues prefer buried conformations that minimize the solvent
accessible surface area. On the surface, a residue has fewer nearest neighbors than in the
core, and thus experiences greater fluctuations.

Highly mobile Group I residues participate in local structure fluctuations (folding-unfolding
reactions) that can determine/control protein function and propagate external perturbations
through protein structures.12–15 Group I of the highly fluctuating residues shows higher
propensities for protein loops than for regular secondary structure elements (α-helices and
β-strands). Since the residue mobility increases with the temperature increase, we can
hypothesize that the nucleation of the unfolded phase starts from the protein loops and
clusters of the highly fluctuating residues. We think that Glycines and their most exposed
neighboring residues form first nuclei of the unfolded phase in the most exposed protein
loops. Less exposed loops get involved later due to their lesser mobility (see below a
relevant discussion of the relation between residue mobility and its exposure to solvent). It
further suggests that local and global protein thermostability can be increased by mutations
replacing highly fluctuating residues with the weakly fluctuating ones. We intend to verify
this hypothesis in our future study. However, some general aspects can be sketched here. It
is very likely that the weakly fluctuating residues should be picked from polar and charged
residues when the amino acid replacements target surface residues. Khechinashvili et al.16,17

showed that high protein thermostability correlates with a high content of the polar and
charged residues in the N- and C-terminal regions and in the extended loops. It was
suggested that the ability of these residues to establish alternative hydrogen bonds might
contribute to higher thermostability. Analysis of the sequence composition in four
homologous pairs of proteins from thermophilic and mesophilic organisms also showed that
the percentage of the charged and polar residues was higher in the thermophiles.18

Moreover, the percentage of the highly fluctuating residues Gly and Ala was significantly
higher in the mesophilic proteins than that in the thermofilic proteins. Amino acid
replacements decreasing residue mobility in the protein core will also increase structure
stability. To preserve hydrophobic character of the protein core, highly fluctuating non-polar
residues in the core should be replaced with the weakly fluctuating non-polar ones. The
optimal replacements will improve structure packing by decreasing the interior empty space
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of the protein structure. Mamonova et al.18 showed that the non-polar residues Ile and Leu
are more frequent in the thermophiles than in the mesophiles.

It is interesting to note the high correlation, with the 0.7 correlation coefficient, between our
classification and the reciprocal average numbers of contacts calculated for each amino acid
type.19 The form of the inter-residue potential used in the normal mode analysis explains the
correlation (see Ref. 10). We used a Tirion-like potential that is proportional to the number
of the interatomic interactions between the residues. After Boltzmann averaging, this factor
contributes to the denominator in the expression for the mean-square fluctuations, causing
the observed correlation. In a model suggested by Halle,20 the contact density factor
emerges explicitly in the denominator of the expression for the mean-square fluctuations.
The important role of local interactions and the mean coordination for predicting protein
flexibility and unfolding is also supported by studies of Thorpe et al.21

Comparing our classification with a classification suggested by Dunker et al.5 to
characterize amino acid propensities for protein disorder (Table 1), one can notice a striking
difference between Groups I and III. The majority of the Group I of the highly fluctuating
residues belongs to the disorder-promoting residues that are often found in the disordered
segments. The majority of the Group III of the weakly fluctuating residues belongs to the
order-promoting residues that are less frequently found in the disordered segments. The
relation between the two classifications is easily explained by the dynamic nature of the
protein disorder. Protein segments enriched with the highly mobile residues are unable to
fold into a unique structure because of the fluctuations that prevent its formation. If,
nevertheless, ordered, such segments tend to form irregular secondary structure elements
(loops), because large fluctuations also tend to destroy the long-range order.

The results (Table 1) show that Gly has the highest mobility in our classification. Although
this agrees with common knowledge, scales based on the normalized average B-factors of
the backbone atoms put Gly, “generally considered to be the most flexible amino acid”,23 in
the middle of the flexibility scale (see Table 1 for the results from Vihinen et al.23). It
isimportant to understand how this relates to the well-known fact of increased flexibility in
the Gly-rich proteins (e.g. collagen) and fragments (loops and structural hinges). It is likely
that the conformation flexibility, structure fluctuations and large-scale internal motions are
damped in the crystal in comparison to that in solution. As a result, the B-factor — a
measure of atom vibrations in the solid state — underestimates protein flexibility in
solution. As the residues with the largest flexibility. Glycines are affected the most. It is
supported by the Halle’s model20 showing that the crystal packing (more precisely, the
number of noncovalent neighbors including atoms from adjacent crystal cells) determines
the B-factors in protein structures and by Eyal et al.24 study showing that the B-factors of
the residues with the crystal contacts are less than those of the fully exposed residues. These
results are in agreement with the observation that the B-factors of the side-chain atoms are
greater than the B-factors of the backbone atoms.25 The more exposed side-chain atoms
have less nearest neighbors than the largely buried backbone atoms and thus have greater B-
factors. An increase of the B-factors values from the near-backbone atoms to the outer atoms
was first reported for myoglobin26,27 and lysozyme,28 and then confirmed for a large set of
proteins.29 The mobility ratios calculated here by Vibe follow the same trend by increasing
from the protein core to the surface for all amino acid types.10

Another closely related evidence of the packing density effect is that the B-factors increase
with the increase of the atom solvent accessible area.25 A large-scale analysis of the
catalytic residues in a set of 178 enzymes showed that 80% of these residues have a relative
solvent accessibility <20% of that in the fully exposed residues.30 These buried residues
have lower B-factors than the non-catalytic residues.30,31 Enhanced packing can produce

Ruvinsky et al. Page 4

J Bioinform Comput Biol. Author manuscript; available in PMC 2012 July 23.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



low-mobility interface pads that can be “landing ground” for binding proteins. These pads
will be enriched with the weakly fluctuating residues of the Group III and thus are mostly
non-polar. Besides the Group III residues, the low-mobility pads can also include residues
from the Groups I and II if their interface fluctuations are substantially reduced. The most
significant difference between interface and non-interface fluctuations relates to Gly, Ala,
Ser, Cys, Leu and Trp (Fig. 1). Gly, Ala and Ser have the highest abilities to fluctuate, and
Trp is always the most stable residue, on the non-interface surface and at the interface. At
the interface, these six residues lose >0.25 of their mobility ratio at the non-interface surface.
For comparison, 0.3 and 0.35 are the ranges of mobility in Groups II and III (Table 1). On
average, these residues show a 39% reduction in the mobility ratio. The reduction of the
interface mobility relates mainly to fluctuations of the nonpolar residues with the exception
of Ser, a polar residue. Attractions between nonpolar residues are considered a factor
stabilizing protein complexes.32 Most common residues at protein interfaces,33,34 Gly, Ala,
Leu and Ser contribute to the continuous topology of the low-mobility pads. Cys and Trp are
the most infrequent interface residues. The most conserved interface residues35 Trp, Met and
Phe demonstrate decreased mobility at the interface.

High similarity in packing densities of the backbone atoms of different residues36 explains
why the B-factors of these atoms are similar.37 The normalized B-factors of the backbone
atoms23 (Table 1) vary by 18% of the value that is much smaller than the 85% variation of
the mobility ratio of the residue center of mass. The larger variation of the mobility ratio
suggests better sensitivity of this scale. It suggests the use of the mobility ratios instead of
normalized B-factors in the algorithms for predicting protein flexibility and rigidity from the
sequence.

3. Side-Chain Configuration Space in Protein Interactions

To reveal some of the general principles of unbound-to-bound conformational changes, we
compared distribution functions of the interface and non-interface side chain dihedral angles
in bound and unbound proteins in the Dockground set of the 233 non-obligate protein–
protein complexes. The set contained the unbound structures of both proteins for 99
complexes and the unbound structure of one of the proteins for 134 complexes. The
structures were selected from PDB, based on the following criteria: sequence identity
between bound and unbound structures >97%, and sequence identity between complexes
<30%, with homomultimers and crystal packing complexes excluded. To calculate the
distribution function for the dihedral angles, the configurational space was divided into cells
by a cubic n-dimensional grid (n is the number of dihedral angles in a side chain) and the
corresponding probabilities of the interface and non-interface side-chain conformation in
bound and unbound structures were calculated for each grid cell. An example of such
distribution is shown in Fig. 2. Figure 3 shows the Pearson correlation coefficient between
bound and unbound interface (A)/non-interface (B) distribution functions calculated as

(1)

for different grid steps in the dihedral angles space (Xi and Yi are the probabilities of bound
and unbound side-chain conformations in a grid cell i, X̄ and Ȳ are the average probabilities
of bound and unbound side-chain conformations). To decrease the effect of the grid
discretization, the grid was chosen randomly 100 times, and the average correlation
coefficients were considered for each value of the grid step for the interface and non-
interface side chains. Figure 3 shows that for the majority of the amino acid types, there is
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high correlation between bound and unbound probability functions. The exceptions (R ≤
0.70) are Met and Arg at the interface and the noninterface, Glu and Gln at the interface. In
general, the correlation coefficients increase with the grid step increase. The interface
correlation coefficients for Met and Arg are less than the corresponding non-interface
correlation coefficients and reach 0.7 for the 70°/30° grid step used for the interface/non-
interface statistics. This two-fold difference in the grid step suggests larger conformation
changes in these residues at the interface. The interface correlation coefficient for Gln
reaches 0.7 for the 30° grid step. The interface correlation coefficient for Glu crosses the 0.7
level for the grid step in the 20°–30° interval.

The statistical analysis of the width of the peaks in the dihedral angle distribution functions
shows that 70° is a typical width for all residues. The distance of 120° between two adjacent
side-chain rotamers is larger than the rotamer width, and so libraries of bound and unbound
rotamers should be similar (Kirys et al., in press). Analysis of the significance of the
correlation coefficients was done for all amino acid types, at each grid step. The correlation
coefficients are significantly different from zero (p < 0.0001). Similar behavior was found
for the correlations between interface and non-interface side-chain distribution functions in
bound and unbound states. Figure 4 shows that low to moderate correlations exist at the 10°
grid step for Gln, Lys, Glu, Met, His, Arg and Trp. All correlation coefficients exceed 0.7 at
50° grid step. The results suggest that the difference between bound and unbound
conformations appears at small grid steps and disappear at large grid steps typically used in
rotamer libraries.

4. Unbound-to-Bound Conformational Changes in the Side Chains

The results show that on average five interface side chains have a conformational transition
>100° upon protein–protein binding (Fig. 5). The most probable number of the transitions is
three to four. The average interface has 26 residues. If Ala, Pro and Gly are excluded, the
average interface has 22 amino acids. Thus, only one-fifth of the interface residues that are
able to change the side-chain conformation do that upon binding. Thus, the induced fit
mechanism applies to a small part of the interface. Most of the interface residues undergo
local conformation changes (readjustments) not leading to the transitions between the
rotamer states. Those local readjustments may or may not reflect specifics of protein–protein
interactions. Thermal fluctuations of a side chain around its equilibrium rotamer populate a
number of the intra-rotamer states. One of these states is selected upon binding. Such
selection mechanism, followed by weak changes of the internal energy and protein
structures, can be named “lubricated lock-and-key model”,38 meaning that the fluctuations
provide fine-scale interface plasticity for the binding proteins. This model describes binding
of 11% of the protein–protein complexes in the non-redundant Dockground set.38 Figure 6
shows the average changes of each dihedral angle in the interface amino acids. Most of the
amino acids have larger changes of the outer angle in comparison with the near-backbone
angle. An opposite trend, where the outer dihedral angle changes less than the near-
backbone one, is observed in Phe, Tyr, Asp and Glu. It is explained by the reduced interval
of variability of the outer dihedral angle due to the symmetry of the aromatic and charged
terminal groups in these amino acids. All average changes are <100°. This suggests that the
most probable conformation change takes place within the same energy minimum and thus
does not alter the side chain conformation, in agreement with the results in Fig. 5. The angle
changes increase with the increase in the number of the dihedral angles from two to four.
This relation between the number of the dihedral angles (the side-chain length) and the
amplitude of the change may be explained by the difference in sampling times spent by short
and long side chains to optimize their conformations upon binding. The longer residues
establish interactions across interface earlier than the shorter residues and thus have more
time for conformational sampling. The dihedral angle change decreases in residues with one
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dihedral angle (Ser, Val, Thr and Cys) with the increase of the amino acid’s mass and the
main moments of inertia. Weak changes in the Cys residues may be also related to disulfide
bonds imposing constraints on the side chain motions.

5. Conclusions

A classification of protein amino acids based on the normalized equilibrium fluctuations of
the residue centers of mass was suggested. Normal mode analysis and an elastic network
model were implemented in a program Vibe and applied to unbound proteins from the
Dockground set to calculate the residue fluctuations. The results were compared with a
flexibility scale based on the normalized B-factors. The analysis showed that use of the B-
factors results in underestimation of Gly flexibility in solvent. Our classification correlated
with the amino acid propensities for the secondary structure elements and protein disorder.
The results showed that protein loops and disordered fragments are enriched with highly
fluctuating residues and depleted with the weekly fluctuating ones. We suggested a
hypothesis that protein unfolding proceeds from highly fluctuating residues and their
structural neighbors. The abilities of interface and non-interface surface residues to fluctuate
were compared. Some residues were shown to be more stable at the interface, forming
continuous low-mobility patches. Strategies for engineering proteins with enhanced
thermostability were discussed.

To calculate the distribution function for the dihedral angles, the configuration space was
divided into cells by a cubic grid. The results showed that the correlation between bound and
unbound interface/non-interface side chain conformations, as well as between the interface
and non-interface side chain conformations in the bound/unbound states increase with the
grid step increase. The differences induced by binding forces disappear at the grid step
comparable with the size of the clusters of the side-chain conformations. The average
conformation changes in each of the dihedral angles were analyzed for all amino acid types.
The scale of the changes depended on the side chain length and the proximity of the dihedral
angle to the protein backbone. In most amino acids, the average conformation change
increased from the near-backbone dihedral angle to the most distant one. The opposite trend
was found in the residues with symmetric terminal groups (Phe, Tyr, Asp and Glu). Only
one-fifth of the interface residues change its rotamer upon binding. The rest of the interface
residues undergo local readjustments within the same rotamer.
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Fig. 1.
The difference between the non-interface surface and interface mobility ratios.
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Fig. 2.
Distribution function of Ser dihedral angle.
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Fig. 3.
Correlation between dihedral angle distribution functions in bound and unbound proteins.
(a) interface, (b) non-interface. The grid steps are 20° (■), 40° (●), 60° (▲) and 100° (▼).
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Fig. 4.
Correlation coefficient between the interface and non-interface distribution functions in the
bound and unbound states. The grid steps are 10° (■, □), 30° (●, ○) and 50° (▲, △).
Closed and open symbols correspond to bound and unbound states.
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Fig. 5.
Probability of conformational transitions at the interface. The probability distribution of the
number of transitions (△) as a function of the interface size. Probability distribution of the
interface size: all residues included (■); Ala, Gly and Pro excluded (□).
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Fig. 6.
Average change of the dihedral angles in the side chains. The outlined numbers 1, 2, 3 and 4
correspond to the number of the dihedral angle in the side chains.
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