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Abstract. It is well known that, for an unbounded nonnegative selfadjoint operator
A on a Hilbert space, there is a unique nonnegative square root A1^2, which is frequently
associated with the structural damping in many practical vibration systems. In this paper
we develop a general theory for the structure of A*/2, which includes the expression
of A1/2 and a program to find the domain of A1/2 explicitly from the domain of A.
The relationship between Ax^2 and related differential operators is determined for the
selfadjoint differential operator A. Finally, the theoretical results given in this paper
are applied to fourth-order "beam" operators and n-dimensional "wave" operators with
sufficient complexity for applications to elastic vibration systems.

1. Introduction. Let H be a Hilbert space with the inner product (•,•) and the
induced norm || • ||. Let A be an unbounded nonnegative selfadjoint operator on H and C
a closed linear operator on H. In the last two decades, great attention has been focused
on the following elastic system:

( y(t) + Cy{t) + Ay(t) = 0,
I 2/(0) = 2/o, 2/(0) = t/i,

where a dot denotes Jj, and y,yo,yi £ H. The usual procedure for dealing with the
system (1.1) is as follows.

Letting x\ = Al^2y,X2 = y, the system (1.1) can be transformed into an equivalent
first-order evolution system

dt"

1 5(0) = Y0,
where

*«>=&)• a=(-a>>* a-c)' «-m.

4ri{t) = Ax(t),
(1.2)
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and Alt2 is the nonnegative square root of A. The domain of A is

D(A1/2) x D{A1'2)

if D(C) C D(A1/2), where D(C) is the domain of C. For many real systems, however,
the structure of D(A1'2) is not clear except that D(A) has special boundary conditions.

On the other hand, Al^2y corresponds to structural damping for elastic vibration sys-
tems in [1] and is related to frequency proportional damping in [4]. Thus, it is necessary to
understand the relationship between A1^2 and differential operators in order that Al^2y
admits the proper physical interpretation if A is a differential operator. D. L. Russell in
[2] gave the relationship between Aly"2 and differential operators for fourth-order "beam"
operators with the "symmetric" boundary conditions but the structure of D(A'/2) is not
dealt with. A. V. Balakrishnan in [3], [4] obtained D(A1'2) and the relationship between
A1/2 and differential operators for two models of bending of uniform Bernoulli beams by
the formula introduced in [5].

In this paper, we develop a general theory for the structure of the nonnegative square
root of any unbounded nonnegative selfadjoint operator A. In Sec. 2, a program is given
to find the domain of Ax^2 and the expression of A1/2 is studied. Finally, in Sees. 3 and
4, we apply the theoretical results developed in the paper to fourth-order elastic "beam"
operators and n-dimensional "wave" operators, respectively.

2. The main results. Throughout this paper we make the following assumptions.
Let H be a complex Hilbert space with the inner product (•, •) and the induced norm

|| • ||, and let A be an unbounded nonnegative selfadjoint operator on H with compact
resolvent and domain D(A)\ let A1//2 be the nonnegative square root of A. Note that A
is nonnegative if and only if

(Ax,x) >0, Vx £ D(A).

The operator A is said to be positive if

(Ax,x) >0, Vx € D(A), x ^ 0.

Let Hi be another complex Hilbert space with the inner product (•, *)i and the induced
norm || • ||i and B : D(B) C H —> H\ be a closed linear operator such that

D(B)dD(A)- (2.1)

(Ax,x) > \\Bx\\2, Vx € D(A). (2.2)

[.x, y\ = (x, Ay) - {Bx, By)x, Vx G D(B), Vy £ D(A),

Mo = {x | x e D(A), (x, Ax) = ||£?x||2}.

We introduce several definitions in preparation for development of the structure of
A1/2. It should be noted that, throughout this paper, the definitions, given specially, all
belong to the authors.
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Definition 2.1. (B, Hi) is said to be a pseudo-square-root of A if M0 = H, where
Mo is the closure of Mq in H.

Remark 2.1. Any nonnegative selfadjoint operator A has at least one pseudo-square-
root. For example, {A1/2, H) is a pseudo-square-root of A, where B = A1/2 and Hj = H.

EXAMPLE 2.1. Let 0 be a bounded domain of Rn with smooth boundary of C2
and H — L2(Cl). Consider the following Laplace operator:

D(A) = \ u

Au = —A u,
an

= 0}

where a > 0, ^ is the normal derivative, and Au — Y^j=\ ^ is we^ known that A

is an unbounded nonnegative selfadjoint operator on L2(0).
Set Hx = (L2(fl))n; H1 is a product Hilbert space with the inner product

n

(u,v) = ^2(Uj,vj)L2(Q), Vu = (uuu2,... ,un)T, V = (Ul,1>2, ■ • • ,vny € (L2(fl))n.
3 =1

Define B : L2(f2) (L2(n))n by

D(B) = H\n), Bu = Vu=(^,...,^-
^dx\' dxn

Conditions (2.1) and (2.2) can easily be verified by using Green's formula, and

H0(n) = \u Tr2m\ I &Uue H {tt),u\gn = 77-
an

= 0 ^ C M0.
an

Hence (V, (L2(J7))n) is a pseudo-square-root of A. □
Definition 2.2. Let (B,H1) be a pseudo-square-root of A. Let Hg be a Hilbert

space with the inner product (•, *)g and the induced norm || • ||g . If there exist a bounded
positive selfadjoint operator T : Hg —* Hg and a mapping F : D(B) —> Hg such that

[x, y\ = (Trx, Ty) J, Vx, y € D(A), (2.3)

then we say that (Hg , T, T) is a positive boundary space of A corresponding to B.
Example 2.2. Let H,A,Hi, and B be given by Example 2.1. By Green's formula,

we have
dv

/ sn dn
[u, v] = -

Jd

— a f uvda, Vw G H1^), Vi> G D(A).
Jd n

u-^da

(2.4)

> an
Set Hg — L2(dQ) and T = al, where I is the identity mapping on L2(dil). Define
F : Hl(Q) -> L2(dn) by

Tu = u\da, Vit 6 i/1(f2).

It is easy to verify from (2.4) that (L2(dfl), al, F) is a positive boundary space of A
corresponding to B. □

The following proposition follows from a direct check.
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Proposition 2.1. Let (B,H\) be a pseudo-square-root of A and (Hg,T,T) a positive
boundary space of A corresponding to B. Then

\[x,y\\<2\\A1,2x\\\\Al/2x\\\\Al,2y\\, Vx, y € D{A1/2)-, (2.5)

\(TTx,ry)^\ < 2\\Ax,2x\\ \\A1/2y\\, Vx,y G D(A). (2.6)

It is well known that the spectrum of A consists of eigenvalues:

0 < Ai < A2 < ■ ■ • < An < An+i < - • •

with lim^oo An = +oo, where the multiple eigenvalues are listed according to their
algebraic multiplicities. There exists an orthonormal basis {xn} of H such that

Axn — Xnxn, ti 1,2,... .

Let k be the nonnegative integer such that

Aj =0 if j < k; Aj > 0 if j > k + 1.

If A is positive, then k — 0.

Proposition 2.2. Let (B,Hi) be a pseudo-square-root of A and (Hg,T,T) a positive
boundary space of A corresponding to B. Set

9n — rr—rxn, tpn — _— Bxn, n k -(-1, k -(- 2,... . (2.T)
V^n V

Then
f /T1/^. \

n> k + 1

is an orthonormal set in the product Hilbert space Hg x H\, where the inner product of
H+ x Hx is defined by

(^)'(j)) = (/,</) + (iM)i, V/,g e H£, Wip,4>€ Hi.

Proof. For any n, m > k + 1, we have

(Xni^Crn) T (*^ni A.Xrri) T [^nj^m] ~t~ T BXrri) 1

= \ Y^[C^9n,9m)g + {lpn,1pm)l}
V
[K/(T 1,2 9n\ (Tll2g,

V A m \ \ V'n / \ V'm
The orthonormality of {xn} in H yields the orthonormality of

'T1/2 9n

{(■ Ipn
n > k + 1

in Hg x Hi. □
First, we consider the structure of D(A1/2).



NONNEGATIVE SQUARE ROOTS OF NONNEGATIVE SELFADJOINT OPERATORS 461

Theorem 2.1. Let (B,H\) be a pseudo-square-root of A and (Hg, T, T) a positive
boundary space of A corresponding to B. Then

D(Al'2) = {x | x G D(B), [x,y] = (TrX,Ty)+, Vy € D(A)}.

Proof. Let x G D(A1/'2). Then there are {zn} in D(A) such that in H

zn —> x and All,2zn —> Ax/2x, as n —» oo.

By Proposition 2.1 and (2.2), we have that x G D(B) and that

[x,y\ = lim [zn,y\= lim {TTzn, Ty)J
n—>00 n—»oo

= (Trx,y)+ VyeD(A).

Conversely, suppose x G D{B) such that

[x,y\ = {TTx,y)+, Vy G D(A). (2.8)

Set

Then
J = 1

an = (x,xn) = — (x,Axn)

T \^i %n\ ~t~ T Bx-ri)l

1
\/^n

or equivalently

1
X, /-T Xr

V

1
X, y==Xn

v

+ —!=(_Bx, Vn)i, Vn > fc + 1,
V

{Bx, ipn

= {T1'2Tx,T1'2gn)+ + {Bx^n)1 (2.9)
V TV2rx\ /T1^'
A SX M V»;), ('" r3" n, v„>*+i.

Thus Proposition 2.2 yields

\an\2K <
n=k+1

/rx/2rx\
V Bx )

2
< +oo,

H+xH!

so that x G D^1/2). □
When M0 = D(A), we can choose iJ"g = {0}. Thus we have
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Corollary 2.1. Let (B,Hi) be a pseudo-square-root of A. If M() = D(A), then

D(A1/2) = {x\xe D(B), [x,y\ =0, Vy G M0}.

Example 2.3. Let A be a "string vibration" operator on L2(0,1), i.e., Aw = —«"(•),
u G D(A), such that

#o(0,1) C D(A). (2.10)
Set = L2(0,1). The closed linear operator B : L2(0,1) —> L2(0,1) is defined by

D{B)^H1{ 0,1), Bu = iDu — iu'(-).

By (2.10) and integration by parts it is easily checked that (iD,L2(0,1)) is a pseudo-
square-root of A.

(i) If A has the following boundary conditions,

D(A) = {u\u£ H2{ 0, l),u(0) = u(l) = 0}, (2.11)

it is easily verified that Mo = D{A). For any u G H] (0,1), it is clear that u satisfies

[it, t>] = u(0)i/(0) — u(l)v'(l) =0, Vi> G D{A)

if and only if u(0) = u(l) = 0. By Corollary 2.1, we have

D{A1/2) = {u | uetf(0,l),u(0)=ii(l) = 0} = /J(!(0,l).

(ii) If A has the boundary conditions

D(A) = {u | u G //2(0,1), w'(0) = u'(l) = 0}, (2.12)

then Mq = D(A). For any uefl1 (0,1), it is clear that

[u, v\ = u(0)w'(0) — u(l)w'(l) = 0, Wv G D(A).

Therefore, Corollary 2.1 yields
D(A1/2) = Hl( 0,1).

(iii) If A has the boundary conditions

D(A) = {u\ue H2{0, 1),m(0) = u'( 1) = 0}, (2.13)

by a similar process, we can obtain

D(Al/2) = {u\ueHl (0,1), u(0) = 0}.

(iv) For the boundary conditions

D(A) = {u\ue H2{ 0,1), u(0) = u'(0),«(l) = 0}, (2.14)

set Hg = C and T = 1. Define T : ^(0,1) -> C by Tu = u(0). Then (C,1,F) is a
positive boundary space of A corresponding to iD. Since

[u, u] = — u(x)v'(x)\l = u(0)v'(0) — «(1)?/(1)

= (Trtt,r«)^ -u(l)w'(l), Vu G ̂ (0,1), Vu G D(A),
we have from Theorem 1.1 that

D{A1'2) = {u | u G H\0,1), u(l) = 0}. □

Now we consider explicit representations of A1'2.
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Proposition 2.3. Let (B,Hi) be a pseudo-square-root of A and (Hg,Y,T) a positive
boundary space of A corresponding to B. Let

Mo = spm | n>^+lj

be a closed linear subspace of Hg x Hi. Then

r/T1/2r*\
Bx ) "

Proof. By Theorem 2.1 and (2.2), we have

(||T1/2rx||J)2 = [x,x] = (x,Ax) - (Bx,Bx)i

< 2\\A1/2x\\2, Vx € D{A1/2).
(2.15)

We have that Al/2xn = 0, Vn, 1 < n < k, since Axn = 0, for any 1 < n < k. Therefore,
(2.2) yields

Bxn = 0, Vn, 1 < n < k. (2-16)

By (2.6), it follows that
Txra = 0, Vn, 1 < n < k. (2-17)

Suppose x G D(A1/2). Set x = anXn- From (2.6) together with (2.7), we have

OO OO OO

Tl'2Tx = anr1/2Txn = £ anY1/2rxn = ^2 \AnanT1/2g„. (2-18)
n—1 n=k+l n=/e+l

By (2.2) and (2.5), it follows that

OO OO OO

Bx ^ ^ OCjiBXfi — ^ ^ (XnBXfi — ^ ^ y/^n^n^Pri' (2.19)
n=1 n=k-\-1 n=k+l

Therefore, (2.18) and (2.19) mean that

yl/2-pT\ 00   /yl/2n \ 00
O = E / G ̂ 0, Vz e I?(41/2). (2.20)
^ y ^ \ ^n=/c+l .c—x

Conversely, suppose (g,t/j)T G -Mo> where g £ Hg and tp £ Hi. By Proposition 2.2,
we have

/ n=fc+l N 7

where En=k+i \Pn\2 < +00. Setting x = T,n=k+i it is easily checked that
x G Di^A1/2) and (g,ip)T = (T1/,2rx, Bx)T. □
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Proposition 2.4. Let {B,Hi) be a pseudo-square-root of A and (Hg,T,T) a positive
boundary space of A corresponding to B. Define B : H —> Hg x H i by

TJ/2rx\D(B) = D(Al'2), Bx = ( V^X) . (2.21)

Then
B : H -> #+ x Hi

is a closed linear operator.
Proof. Suppose that {zn} C D{AX/2) such that in H, zn —> a;, as n —> oo, such that in

i?+,T1/2rzn —> <7, as n —* oo, and such that in Hi, Bzn —> tp, as n —> oo, where x £ H,
g £ -Hg\ and ip £ H\. From the closedness of B it follows that x £ D(B) and Bx = ip.
From (2.6) and (2.2), it follows that Y1 /'zYx = g. Therefore B is closed. □

Now we consider the expression of A1'2.

Theorem 2.2. Let (B,Hi) be a pseudo-square-root of A and (Hg,T,T) a positive
boundary space of A corresponding to B. Then there exists a bounded linear operator
Q : Hg x Hi —► H such that

(i) ||Q|| < 1, Q '■ Mo —* H is isometric;
(ii) Al/2x — QBx, for any x £ D(Al/2).

Proof. For any (g,4>)T £ Mo, set

9 \ _ I Tl/29n
Oin

n=k-1-1

= £
■*' „3tl V fn

Define a linear operator Q : Hg x Hi —> H as shown below: for (g,ip)T £ Mo, set

Q (^) = H anXn>
n=k-(-1

in the orthogonal complement of .Mo in Hg x Hi, define Q by the zero operator.
It is easily checked that (i) holds. For any x £ D(A1^2), by (2.20) we have

OO

QBx = ^2 \/~Kotnxn = Aa/2x. □
n=/c+1

From the proof of Theorem 2.2, we know that, if Fx = 0, Vx £ D(A1^2), then Q can
be defined from Hi to H. In fact, we have the following result.

Theorem 2.3. Let (B,H\) be a pseudo-square-root of A. Set

Ro = span{i/;ra | n > k + 1}.

Then Mo = D(A) if and only if there exists a bounded linear operator Q : Hi —> H such
that

(i) IIQH < 1) Q : Ro -*■ H is isometric;
(ii) Axl2x = QBx, Vx £ D(Ax/2).
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Proof. The "only if" part follows from Theorem 2.2.
The "if" part. By (ii) we have that \/X^xn = Alt2xn = QBxn, Vn > k + 1, i.e.,

Qipn = xn, n = k + 1, k + 2,... . (2.22)

The isometry of Q : Ro —i► H yields

(ipm Iprn) 1 — (^n> m)i Vh, 771 ̂ k -f- 1. (2.23)

From the orthogonality of {xn} in H we obtain that

\xn i ^m] — (XniXm) \j *A

In addition, we have by a calculation that

= 0, Vn,m>fc + 1. (2.24)

[:rra,:r] = [x,xn] = 0, Wx £ D(A), 1 <n < k. (2.25)

For any x,y e D(A), x = Y^^LianXn, V = XX=i PnXn, we have from (2.24) and (2.25)
that

OC OO

[x,y] = ^2^2 anPm[Xn,Xm] - 0.
n=l m= 1

Thus M0 = D{A). □
Example 2.4. Let A and B be given by Example 2.3.
(i) Let A have any one of the boundary conditions of (2.11), (3.12), and (2.13). Then

Mo = D(A). By Theorem 2.3, there is a bounded linear operator Q : L2(0,1) —> L2(0,1)
such that

Alt2u = Q(iu), Vu € D(A1^2).

Set
OO

F(t, s) = J2(Qxn)(t)xn(s), 0 < t, s < 1.
71=1

Then

i1/2u = i [ F(t,£)u'(Z)dZ, MueD(A1'2).
Jo

(ii) Let the boundary conditions of A be given as (2.14). Then (C, 1,T) is a positive
boundary space of A corresponding to B, where Tw = «(0), Vu £ H1^0,1). By Theorem
2.2, there is a bounded linear operator Q : C x L2(0,1) —> L2(0,1) such that

A1/2u = Q , Vu G D(Al/2) = {u\u£ H1(0,l),u(l) = 0}.

Let {£«(•)} be the orthonormal basis of L2(0,1) consisting of the eigenfunctions of A.
Set

ei2(o,i), «>1, 0<t<l,
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Zn(t) = Q ( ° ) € i2(0,l), n > 1, 0 <t < 1,
\ %n J

oo oo

Fd{t,s) - ^yn{t)xn(s), F(t,s) = y^Zn(t)xn(s), 0 < t, s < 1.
n=l n=1

Then we have that

a1'2u = q("(00)) + Q 0

— ^ ]K^n)L2(0,l)yn(Q "I" ̂  5 ̂ n)L2(0,l)^n(^) (2.26)
n=l n—1

= f1 Fd(t,0u(0d£ + i [ F(t,H)u'(Odt V«efl(^/2). □
Jo Jo

Finally, we consider the relationship between A1/2 and B from a different point of
view. For the elastic "beam" operator A, i.e., Au = u^(-), u G D(A) c //4(0,1), and
the assumption that the boundary conditions of A are "symmetric" (see Section 3, (3.3)),
D. L. Russell [2] proved that there is a bounded linear operator P : L2(0,1) —> L2(0,1)
such that

PA^2u = -«"(•), VueD{A1/2).

Here we have the following general result.

Theorem 2.4. Let (B,Hi) be a pseudo-square-root, of A. Then there is a bounded
linear operator P : H —> H\ with ||P|| < 1 such that

PAl/2x = Bx, Vx € D(A1/2). (2.27)

Proof. Define P : H —> Hi by

OO OO

Px = ^2 anipn, Vx = ^2 anXn G H. (2.28)
n=k+1 n=1

Let (Hg ,T,F) be a positive boundary space of A corresponding to B. Set

^ ' n=k-f-1 ^ ' n= 1

Since lan|2 < +°° we know that (g,ip)T G Hg x Hi. Hence

Px = ip G Hi, Vx £ H,

and ^

\\Px\\l < \\g\\d++ HWi = X] la™l2 - II^H2' Va; = S "n1" e h,
n=k+1 n=l
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that is, ||P|| < 1. Furthermore, for any x = anXn G D(A1^2), we have

OO

PA^I2x = y/\~^anPxn — Bx. □
n=k+l

By Theorem 2.4, if P : H —> R0 has a bounded inverse P~l : Ro —* H, then A1//2
can be written as A1/2 — P~lB, where P~l : Ko ~^' H is not isometric in general. In
particular, if {ipn\n > k + 1} is an orthogonal set in Hj (which is not true in general),
then the above assertion holds. In the following we give a necessary condition on the
orthogonality of {ipn\n > k + 1} if dim(Hq) < +oo by which an error in [2] can be
corrected (see Sec. 3).

Proposition 2.5. Let (B,Hi) be a pseudo-square-root of A and (Hg ,T,F) a positive
boundary space of A corresponding to B with dim(iJ^) < oo. If {ipn\n > k 4- 1} is an
orthogonal set in Hi, then there is a positive integer uq such that

[xn,xn] = 0, Vn > n0. (2.29)

Proof. Suppose dim(//J) = to. By an argument similar to the proof of Proposition
2.2, we have

(xn,xj) = J>^- (T1/2ffn,T1/25j)J + (^rM^j)i , Vn,j > k + 1. (2.30)
y j J

Thus {Yl/2gn\n > k + 1} is an orthogonal set in Hg. Since dim{Hg) = to, there are
at most to nonzero elements in {T 1'2gn\n > k + 1}. Therefore, there exists a positive
integer no > k + 1 such that

T1/23„ =0, Mn> n0.

Prom (2.24), we have

[xn,xn] = Xn[(xn,xn) - (^„,^„)i] = 0, Vn>n0. □

3. Applications to elastic "beam" operators. Let H = L2(0,1). In this section,
we shall consider elastic "beam" operators defined by

Au = u^\-), u e D{A) C i/4(0,1). (3.1)

Since ^

(-Au,w)L2(o,i) = u"'u\q — u"u'\o + [ \u"\2dt, Vu£D(A),
Jo

it is supposed that
u'"u\l - u"v!\l >0, VuG D(A). (3.2)

Set Hi = L2{0,1). Define B : L2(0,1) -♦ L2(0,1) by

D{B) = H2( 0,1), Bu= -D2u=

The following proposition can be easily verified.
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PROPOSITION 3.1. Let A be a nonnegative selfadjoint operator that satisfies (3.1) and
(3.2). Then (-D2, L2(0,1)) is a pseudo-square-root of A.

First, we introduce a main result given in [2], Consider the real Hilbert space L2(0,1).
Set

B(u, v) — u"'(-)v(-) — u"{-)v' + u'(-)v"(•) — u(-)v"'(•), Vm, v G D(A)-

ipn(-) = D2xn(-), n>k+ 1,

where Xn,xn, and k are the same as those in Sec. 2. D. L. Russell in [2] has shown the
following result.

Let A be a nonnegative selfadjoint operator on L2(0,1) with the compact resolvent
such that (3.1) and (3.2) hold. Suppose that

B(u, v) = 0, \/u,v £ D(A), (3-3)

at x = 0 and at x = 1. Then
(i) there is a bounded linear operator P : L2(0,1) —> L2(0,1) such that

PAx'2u = —D2u, Vw € D{Al/2). (3.4)

(ii) Set Ro = span{^n|n > k + 1}. Then P has a bounded inverse on Roj which
extends to a bounded linear operator Q on L2(0,1), so that likewise

A1/2u = Q(-D2)u, \/u€D(A1/2). □

From the proof of the above assertion (ii) in [2, pp. 761-765] we know that the assertion
(ii) is based on the assertion that {ipn\n > k + 1} is an orthogonal set in L2(0,1).
Unfortunately, Proposition 3.2 below shows that in general {ipn\n > k + 1} is not an
orthogonal set in L2(0,1) under the assumption (3.3) only. Therefore, the proof of the
assertion (ii) given in [2] failed. By Theorem 2.2 and Theorem 2.3, the assertion (ii) can
be revised (see Example 3.1 below).

Example 3.1. Let us consider a cantilever with elastic forces applying at the free
end, x = 1. The boundary conditions become

u(0) = u'(0) = 0, u"'{\) -mt(l) = 0, u"{\) +/?u'(l) = 0, (3.5)

where a > 0, (3 > 0.
Set H+ = C2. Define Y : C2 —> C2 by

T =

Define r : H2(0,1) —> C2 by

a 0
0 /3

Fu = (?(!))'
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It can easily be verified that

[m,i>] = au(l)v(l) + (3u'(l)v'(1), Vu,v G D(A). (3-6)

Then (C2, Y,T) is a positive boundary space of A corresponding to — D2. Since

[m, v\ = au( l)v(l) + /3u' (l)v' (I) — u( 0)i/"(0) + u'(0)v"(0)

= (xru, rv)C2 - u(o)v"'(o) + u'(o)v"(o), Vu g h2(o, i), v e D(A),
from Theorem 2.1, we have

D(A1/2) = {u I u€ H2(0, 1),[u,v] = (Tru,rw)C2, Vv G D(A)}

= {u | u £ H2{0, l),u(0) = u'(0) — 0}.

By Theorem 2.2, there is a bounded linear operator Q : C2 x L2(0,1) —» L2(0,1) such
that

/ s/au{ 1) \
Ax'2u = Q vW(l) , Vw G D{A1'2).

V -«"(■) /
By an argument similar to Example 2.4, we can find i7^ (£,£), Fg2(t,£), and for
0 < t, £ < 1, such that

Al/2u = \fa f1 f Xh &£)»'(£)<% - f F(t,S)u"(£)<%,
J o Jo Jo

Vu G D(A1/2). □

Proposition 3.2. Let A be the "beam" operator on L2{0,1) with the boundary con-
ditions given by (3.5). Then (3.3) holds but {ipn\n > k + 1} is not an orthogonal set
in L2(0,1), where = — (\/A^)-1:r"(-), An is the eigenvalue of A, and xn(*) is the
eigenfunction of A corresponding to An, for all n > 1.

Proof. It is easily checked that (3.3) holds.
Suppose that {ipn\n > k + 1} is an orthogonal set in L2(0,1). By Proposition 2.5,

there is a positive integer no such that

[xn,xn] = a|a:„(l)|2 + P\x'n{l)\2 =0, Vn > n0.

Therefore, xn is a solution of the following boundary value problem:

f x14)(()=Aa((), 0 < i < 1,
\ xn(0) = <(0) = xn{l) = x'n{\) = <(1) = <'(1) = 0,

for all n > tiq. It is obvious that the problem (3.7) has the unique zero solution, for all
n > no- Thus

xn = 0, Vn > no-

This is a contradiction. □
Remark 3.1. It should be noted that there is a modified inner product, as shown in

Proposition 2.2, relative to which ipn may be considered orthogonal. Thus, the statement
made in [2] is correct if restricted to "SDE" boundary conditions (strictly distributed
energy [2]). Without the SDE assumption, the potential energy form associated with the
operator A includes some boundary terms.

Finally, we conclude this section by giving an example derived from the pointwise
control of a flexible manipulator arm [6].
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Example 3.2. Let H = C3 x L2 (0,1) with the inner product

($i,$2) = "102 + ^1^2+66 + / ViV2dt

where = (aj, (ij, £j, ipj)T G C3 x L2(0,1). Define the linear operator A by

A0 =
( ~V"(0) \~0"{ 1)

^"(1)
v v(4)(-) y

v=
/V(o)\

</>(!)
V'(l)

V v(-) /
z?(A) = {</> = (^'(0), v(i)^'(i)^(-))r I V e h\o,1)^(0) = 0}.

It is easily checked that A is a nonnegative selfadjoint operator on C3 x L2(0,1).
Set Hi = L2{0,1). Define B : C3 x L2(0,1) -► L2(0,1) by

/V(o)\
B(p = -D\ = -/(•), = ^ ,

\ </>(•) /
£>(B) = = (^(0)^(1), *>'(1), ¥>(•))' I V e H2(0,1)}.

It is easily checked that (5, £2(0,1)) is a pseudo-square-root of A. Since

$,01=0, \/xjj,0 e D{A),
then Mo = D(A). Since

bp, 0} = ~tp(0)ip"'(0), W> G £>(5), G -D(A),
by Corollary 2.1, we have

D{Al/2) = $ | D{B),$,0\ = 0,V<pG £>(,4)}

= {^ = (^'(o),v(i),V'/(i),V'(-))T ! *t> e tf2(o, i),v(o) = 0}.
Furthermore, by Theorem 2.3, there is a bounded linear operator Q : L2(0,1) —> C3 x
L2(0,1) such that

A1'2^ = -Q{ip"), V-0 = {ip'(0),il>(l),ip'(l),ip{-))T 6 £>(A1/2).

Since Q : L2(0,1) —> C3 x L2(0,1) is bounded, Q has the form

/ 9i(u)\

Qu = 92^\ , Vu G L2(0,1),53 (w)
V Qo« /

where (•) are bounded linear functional, for j = J, 2,3, and Q0 : L2(0,1) —> L2(0,1) is
a bounded linear operator. By the Riesz theorem and an argument similar to Example
2.4, we obtain fj G L2(0,1) and F(t,s), j = 1,2,3, 0 < t, s < 1, such that

( -f„1fi(O0'(Od{ \
fof2(0<P"(Od{A1/20 =

V-/01

, = (^'(0)^(1), ^'(l)^(.))Te^M1/2). □
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4. Applications to n-dimensional "wave" operators. In this section we shall
apply the results given in previous sections to a variety of boundary value problems
of n-dimensional "wave" operators. To our knowledge, there presently is no available
method for readily calculating the square root of high-dimensional Laplace operators.
Let f1 C R™ be a bounded domain of Rn with smooth boundary dfl of class C2 and
the normal derivative.

Example 4.1. Let dQ — Ti U I^ U r3. Consider the Laplace operator on L2(f2)

D(A) = \ u u£H2(n),u\ri — 0
du
dn

n f du°'U + aU = 0

Au = —Au, (4.1)

where a > 0.
Set Hi = (L2(f2))n. Define the closed linear operator B : L2(tt) —> (L2(fl))n by

D(B) = H1^), Bu = Vw =
du du du
dx\' dx2' ' dxn

It is easily checked that (V, (L2(Q))n) is a pseudo-square-root of A. By Green's formula,
we have

1 f dv wx, v = — / u—~ da
Jan dn

f u—da + a ( uv da, Vu€//1(f2), Vv £ D(A).
Jr i on Jr3

(4.2)

Set Hg = L2{T3) and T = al, where I is the identity mapping on L2(r3). Define
r : ff1(fi) —> L2(r3) by

Tu = w|r3, Vueff1^).

By (4.2), we have

[■u,v]=a / wtJcicr = (Tr«,rw)Zy2(p3), Vu,v € D(A).
J r3

Thus (L2(r3),a/, T) is a positive boundary space of A corresponding to V. From Theo-
rem 2.1 and (4.2), we have

D{A1/2) = {u | u e H\n),u\ri = 0}. (4.3)

By Theorem 2.2, there is a bounded linear operator Q : L2{T3) x (L2(Q))n —> L2(fl)
such that

Al'2u = Q ( ) , Vu £ D(A1/2). (4.4)

Suppose that {^(C)} is the orthonormal basis of L2(Q.) consisting of the eigenfunctions
of A and ej — (0,... ,1,, 0)T 6 Rn+1, j — 0,1,..., n. Setting

Uj{0 = Q(xj|r3e0) € L2(ft), Zj,m(C) = Q(xjem) € i2(fi), j > 1, 1 < m < n, ( € O,
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oo oo

Fd(c,0 = ̂ 2vj(0xj{0, Fm(C,0 = YlZj<m^Xj{€), VC, ten, 1 <m<n.
j=1 j=l

We finally obtain

Al'2u = ^ [ Fe(C,0«(0df+ E [ Fm(COJ-u(Od^ Vu£D(A"2). □
if! m=1 JO OXm

Example 4.2. Let ^4 be the Laplace operator with the domain

D(A)=|«|«e H'm, j^udv = o, ̂  = jij /sn A»<fo} ,

where |0ft| is the measure of <9ft in lRn_1.
Let (V, (L2(ft))n) be given by Example 4.1. Then (V, (L2(ft))n) is a pseudo-square-

root of A. Since

\u,v] = - [ u^-da = —^7 [ Avda [ uda = 0, \/u,v £ D(A),
Jd dn |<9ft| Jm Ja

then Mo = D(A). By Corollary 2.1, we have that

D(A1/2) = {u | u £ [u, v] =0, Wv £ D(A)}

f (4.5)= {ix | u £ H (ft), / uda = 0}.
JdQ

By Theorem 2.3, there exists a bounded linear operator Q : (L2(ft))n —> L2(ft) such that

A1'2u = Q(Vti), u £ D(A1/2).

By an argument similar to Example 4.1, there exist Fm(£,£), for m = 1,2such
that

Al/*u= E VuG^A1/2). □ (4.6)
^Jn dxm

Example 4.3. Let A be the Laplace operator with the domain

D(A) = {« | « £ H2(Q), ( -T^-dcr = 0,w|an = constant}.
Jan on

Then (V, (L2(ft))ra) is a pseudo-square-root of A.

^nCe d~ d~
[u,v] — — u—da = —u\an —da = 0, Vu,v £ D(A),

Jdn dn JdQ dn
we know that Mq — D(A). Suppose u £ #x(ft) such that

[it, v\ — — f u—da = 0, \/v £ D(A).
JdQ on

It is easily checked by the trace operator theorem that

I ugda = 0, Vg £ L2(dfl), f gdo = 0.
J dQ J dtt

Thus u\aci — constant. Therefore, by Corollary 2.1, we have

D{A1/2) = {u\ue [u, v] = 0, Vi; 6 D{A)}

= {u | u £ H (ft),u|an = constant}.

In addition, by Theorem 2.3, A1/2 has the form of (4.6). □
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Example 4.4. Let

O(C) (C))nxn» &ij G C ^ — ̂ 5

be a symmetric matrix on Cn and suppose that there is 6 > 0 such that
n n

^ ^ ̂  ^ &ij (C— ^l/^l > = (Ml 5 M2•>•••■> /^n) ^ ^ ^
j—1i=l

Define A by
D(A) = {u | u e H2(Q),u\dn = 0},

It is easily checked that A is a nonnegative selfadjoint operator on L2(f2).
Set Hi = (L2(fl))n. Define B : L2(Q) -> (L2(fl))n by

D(B) = H\n), Bu = (o( C))1/2Vu.

It is easily checked that ((a(C))1^2V, (L2(f2))n) is a pseudo-square-root of A. By Green's
formula, we have

n \

— j nj da = 0, Vu,v e D(A),

where n = (n-i, 712,..., nra) is the unit normal direction of dfl. Thus Mq = D(A). Hence

D{A1/2) = {u | u g H1(fi)1 [u,«] = 0, Vv G D(i4)}

= {u | u G H1(fi),M|9n = 0}.

By Theorem 2.3, there is a bounded linear operator Q : (L2(J7))™ —> L2(fl) such that

A1/2u = Q((a(C))1/2V«), Vw G D{Al/2).

By an argument similar to Example 4.2, A1^2 also has a form of (4.6).
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