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Abstract

Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the
largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering
Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an
abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these
canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface
productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean
perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and
pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely
use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators.
Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure
is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote
canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very
slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in
these canyons and the ecosystem services they provide.
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Introduction

Autogenic ecosystem engineers, such as trees or corals, modify

habitats through their physical presence [1]. Ecosystem engineers

can provide living space [2,3], alter and ameliorate physical

conditions [4,5] and affect biological interactions [6], potentially

enhancing diversity and changing patterns of species composition

and dominance on local or landscape scales [5]. In the oceans,

hermatypic corals are archetypical examples of autogenic

engineers, forming massive reefs in shallow tropical waters that

support .30% of described marine species [7].

In deeper water, the role of corals and sponges as autogenic

engineers is not well understood; nevertheless, many fishes and

macroinvertebrates inhabit deep-water coral [8,9,10,11] and

sponge [12,13] habitats. Unlike shallow-water systems, where the

processes connecting habitat with populations and communities of

dependant organisms are relatively well understood, the role of

habitat structure, including that of autogenic ecosystem engineers,

in deep-water communities is still unclear due to lack of small-scale

observational and experimental studies [14]. Biogenic structure

can affect populations of associated animals through habitat

selection at settlement, differential survival, and post-settlement

migration [15,16,17]. The result of these processes is elevated

abundances of benefited organisms associated with the habitat

feature in question. This conceptual framework is formalized in

frequency-dependent habitat selection models [18]; e.g. the ideal

free distribution model predicts positive correlation between

abundance and habitat fitness value [19,20]. Comparison of

species distribution patterns with respect to potential functionally

equivalent habitats, e.g. corals versus rock outcrops, can provide a

better indication of the importance of autogenic engineers to

associated species compared with simple observations of high

densities around corals [20]. Comparative approaches, no matter

how well designed, will not shed much light on mechanisms of

habitat effects on associated organisms; nevertheless such ap-

proaches are crucial for informing managers and designing future

experimental work.

Slow growing fragile corals are highly vulnerable to damage by

physical contact with fishing gear [11,21,22,23] leading the North

Pacific Fishery Management Council (NPFMC) to identify

gorgonian corals as essential fish habitat of particular concern

[24]. Two general concepts motivating conservation of deep-water

corals have been put forth: (1) corals are used as habitat by, and

presumably provide some important benefit to economically

important fishes and crustaceans [11,25,26] and (2) corals have

intrinsic value, are slow growing and extremely sensitive to

disturbance, and consequently have questionable potential for

recovery [20]. Nevertheless, information is lacking on distribution
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of corals and their use as fish habitat off Alaska (but see [11,27]),

and the NPFMC has identified research on this topic as a critical

need for fisheries management [28]. Here we evaluate density of

structure-forming corals and sponges in Zhemchug and Pribilof

Canyons, Bering Sea. We also measured densities of eight

common taxa of demersal fishes, and evaluated their use of corals,

sponges, and boulders as habitat in the canyons. We document

and describe fishing damage to benthic habitats observed during

our surveys.

Methods

Study sites
Zhemchug and Pribilof Canyons are enormous submarine

canyons cutting into the continental slope under the northeastern

boundary of the Aleutian Basin, southeastern Bering Sea. Volumes

of Zhemchug and Pribilof canyons are 8500 and 1300 km3,

respectively, and Zhemchug is likely the world’s largest submarine

canyon (for comparison, Monterey Canyon off California, often

described as large, has a volume of only 450 km3) [29]. These

canyons were probably excavated in the Pleistocene by mass

wasting, slumping and creeping of sediment that accumulated at

the heads of the Yukon and Kuskokwim rivers during periods of

glacially lowered sea level [29,30,31]. Pribilof Canyon is ,150 km

long and ,1500 m deep where it cuts the shelf, descending to the

continental rise at ,3000 m depth. Zhemchug Canyon is

,160 km long, up to 2600 m deep, and intersects the continental

Rise at 3400 m depth. The slopes of both canyons are largely

composed of clay and marine-derived sediments [29,32]. Detailed

geological descriptions of the canyons may be found in Scholl et al.

[29]. Currents in the canyons are generally moderate, ,2–18 cm

s21, and follow canyon topography [33]; however, these were

measured at 50 m depth, and near bottom currents may be

considerably stronger at times [34].

Video transects from submersible dives
Video transects were conducted in Zhemchug and Pribilof

Canyons, Bering Sea (see map Figure 1), in Jul-Aug 2007 using

Deep-Worker submersibles at depths of 168–533 m (n = 7

transects for Pribilof, n = 9 for Zhemchug). Deep-Workers are

small, single-person piloted submersibles with maximum operating

depth of 600 m. Transects were located to cover the geographical

extent of the canyons and were located approximately equidis-

tantly apart. Pilots flew upslope on a constant heading, with video

camera (Sony HDR FX1) on the widest lens setting (58u horizontal

and 32u vertical angle of view) and positioned at 30u downward

from horizontal. Paired lasers 10 cm apart were projected onto the

seafloor approximately in the center of the image and were used as

a scale reference. Time and depth were recorded and cross-

referenced to the video frames. Additional dives were done with

the Deep-Worker submersibles specifically to collect specimens,

and a remotely operated vehicle (ROV) was deployed to explore

deeper habitats. Video footage from neither of these sources was

used to quantify organism densities for this manuscript. Evidence

of fishing impacts was recorded on these additional dives.

Data analysis
Non-overlapping frames were extracted from each video

transect at a constant frequency of 1 frame per 30 s using open

source utility software (Bio-Image Converter [35],). An image-

processing algorithm developed in Matlab, using adaptive thresh-

olding, connected component analysis, and the CIELAB color

space was used to locate the laser dots. Each frame was then

manually annotated using open-source software (Scientist’s Digital

Notebook [36],). To ensure the quality of each frame, we checked

overall scene quality, presence of overlap with adjacent images,

and accuracy of automated laser dot detection. Final annotations

comprise locations of laser dots and all objects of interest in the

frame, and are stored in a hierarchical XML format within the

Bisque system [37]. Each object was described by a location

centroid and a type, which was a taxon or other identifier. We

annotated a total of 54 object types, including taxa and bottom

features, using an annotation template for Digital Notebook (see

Text S1, Figure S1). These count data were compiled into comma-

separated values files for analysis.

The area of each frame was estimated using a geometrical

approach. Physical pixel resolution was computed based on the

laser dots, and the area was projected from the image plane to the

seabed, assuming that the seabed underneath the camera was

planar [38]. Corals, sponges, and fishes were enumerated in each

frame. Corals and sponges larger than ,5 cm height with their

base in the frame were counted. Dominant (.50% cover)

substrate type was scored in each frame following a generalized

version of the Wentworth scale [39] with fine sediment categories

grouped as soft sediment, and pebble categories grouped as

pebbles. Obvious fishing damage, which comprised trawl scars

and/or broken corals and sponges, were scored present/absent in

each frame following methodology used previously in the region

[11].

Image and meta data collected and annotated for this study are

publicly available on the Bisque database (http://bisque.ece.ucsb.

edu/client_service/view?resource = http://bisque.ece.ucsb.edu/

data_service/dataset/1580770) maintained by the Center for Bio-

Image Informatics at UC Santa Barbara for researchers, educators

and students and providing advanced data query, visualization

and summarization tools. All developed software is publicly

available as Matlab and Python scripts distributed on the Center

for Bio-Image Informatics web site (http://www.bioimage.ucsb.

edu/).

Coral taxa were classified into two groups for data analysis: (1)

gorgonians (Subclass Octocorallia, Order Gorgonacea), and (2) sea

whips and sea pens (Subclass Octocorallia, Order Pennatulacea).

True soft corals (Subclass Octocorallia, Order Alcyonacea) and

stoloniferen corals (Subclass Octocorallia, Order Stolonifera) also

occurred on some transects but were rare and not included in

analyses. Sponge taxa were classified as hexactinellid sponges

(Class Hexactinellida) or calcareous sponges (Class Calcarea) and

demosponges (Class Demospongiae) combined into ‘‘other spong-

es.’’

Associations of fishes with structure-forming biota (corals and

sponges) and non-biogenic structure (boulders) were evaluated

using logistic regression [Generalized linear model (GLM),

binomial distribution with logit link] on presence/absence

frame-specific data. The response variable (fish presence) was

coded 0–1 (presence-absence) as were the covariates corals and

sponges, to avoid giving too much weight to frames containing

numerous fishes and corals. The null hypothesis for these analyses

was of the form: fish sp. A was no more likely to occur in frames

containing coral than in frames not containing coral. The

generalized linear model was fit to the data by Firth-adjusted

maximum likelihood estimation of the parameter vector. We used

Firth-penalized maximum likelihood adjustment to minimize any

possible effect of collinearity and small sample sizes on the results;

non-Firth-adjusted values were very similar, suggesting that these

issues were not a problem in the data. Model parameters were

estimated numerically through an iterative fitting process.

Statistical analyses were performed in JMP (SAS Institute, version

8.0.1).

Corals, Sponges and Fish in Bering Sea Canyons
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Figure 1. Map of study area showing locations of canyons and submersible transects.
doi:10.1371/journal.pone.0033885.g001
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Results

A total of 2,753 frames from 16 dives were analyzed,

representing a total of 23.3 hours (884GB) of high definition

video. The total area sampled was ,4202 m2 (1528 m2 in Pribilof,

2674 m2 in Zhemchug). Area of frames averaged 1.5 m2 (60.02

S.E.). Transects in both canyons were dominated by soft sediment

substrate (mean 65.6% cover 615 S.E. for Pribilof Canyon,

85.4%69 for Zhemchug Canyon), with lesser coverage of pebbles

(32.3% cover 615 S.E. for Pribilof Canyon, 4.1%64 for

Zhemchug Canyon), and cobble/boulder field (6.3% cover 63

S.E. for Pribilof Canyon, 11.4%67.5 for Zhemchug Canyon).

Depth of transects ranged from 168 to 533 m; average depth of

Pribilof transects was 306 m (62 S.E., range 168–417 m), while

Zhemchug transects were deeper on average, 455 m (61 S.E.,

range 351–533 m); this difference was significant (t = 4.9, df = 14,

P,0.001). Gorgonacean corals (Plumarella superba, P. echinata, and

Swiftia pacifica) were associated with pebble and cobble bottoms

and were ,66 more abundant on the Pribilof Canyon transects

(Table 1, transect means 0–2.41 gorgonians m22, compared to 0–

0.96 gorgonians m22 in Zhemchug Canyon transects). Sponges

were also associated with hard substrate and were ,206 more

abundant in Pribilof Canyon compared with Zhemchug (Table 1).

Hexactinellid sponges were more abundant than other sponge

taxa at both canyons. Pennatulacean corals (Halipteris willemoesi and

Protoptilum sp.), however, were associated with fine sediment, and

were still ,56 more abundant on Pribilof transects (Table 1).

Overall, corals were ,56 more abundant on Pribilof Canyon

transects. Gorgonian corals and sponges were most abundant

between 200–300 m depth, whereas pennatulacean corals were

most abundant between 200–400 m depth (Figure 2).

Commercially important Pacific ocean perch, Sebastes alutus,

were more abundant by two orders of magnitude on Pribilof

Canyon transects compared to Zhemchug Canyon (Table 2), and

total rockfish abundance was likewise much higher in Pribilof

Canyon (Table 2). Rajids (skates), cottids (sculpins), and zoarcids

(eelpouts) were also more abundant on Pribilof Canyon transects

(Table 2). Abundance of agonids (poachers), and the giant

grenadier, Albatrossia pectoralis, was higher in Zhemchug Canyon

(Table 2). Densities of pleuronectid flounders were similar in

transects at both canyons. Less common fishes counted included

Gadus macrocephalus (Pacific cod), Anoplopoma fimbria (sablefish),

Zaprora silenus (prowfish), and liparids (snailfishes).

Because the depth of transects was significantly different

between canyons, we analyzed the associations of fishes with

structure separately for each canyon. In both canyons, rockfish

(combined) were significantly more likely to be encountered near

boulders and gorgonian corals (Table 3). In Zhemchug Canyon,

rockfish were also more likely to be encountered near pennatu-

lacean corals. Pacific ocean perch were significantly associated

with boulders, sponges, and gorgonian corals in Pribilof Canyon,

where this species was most abundant (Figure 3). In Zhemchug

canyon, Pacific ocean perch were significantly associated with

pennatulacean corals, but not with boulders and gorgonians,

which were less abundant there (Table 3). Sebastes spp. (S. borealis,

the shortraker rockfish, and S. aleutianus, the rougheye rockfish)

were associated with boulders and gorgonians in Zhemchug

Canyon; none were observed on Pribilof transects. Sebastolobus

alascanus, the shortspine thornyhead, was significantly associated

with gorgonian and pennatulacean corals in Zhemchug canyon,

but showed no associations in Pribilof transects (Table 3). Poachers

and sculpins were significantly associated with gorgonians in

Pribilof Canyon. Pleuronectid flounders were not associated with

corals or boulders in either canyon (Table 3).

Evidence of fishing disturbance was observed on a total of 13

occasions, (9 in Pribilof Canyon, 4 in Zhemchug Canyon) at

depths of 154–966 meters (Table 4). Three of the 16 Deep-Worker

transects had obvious evidence of fishing damage, which was

recorded present in 0.26% of frames, covering 28.8 m2. Additional

observations of damage were made on collecting dives and ROV

transects (Table 4). Most observations were trawl scars evident due

to gouging of soft sediments (Figure 4A). In some cases, damage to

corals was evident, e.g. in Pribilof Canyon, at 280 m depth, in the

form of trawl scars on the seafloor and numerous gorgonians and

the pennatulacean Halipteris willemoesi toppled and all lying in the

same direction on the seafloor. Other evidence of fishing damage

Table 1. Mean density estimates (numbers m22 6 S.E.) and depth range of common corals and sponges in Pribilof and Zhemchug
Canyons, Bering Sea.

Taxon Pribilof Canyon Zhemchug Canyon Depth range (m)

Gorgonacea

Plumarella spp. 0.72 (60.4) 0 237–356

Swiftia pacifica 0 0.08 (60.1) 351–530

Keratoisis sp. 0.01 (60.01) 0.05 (60.1) 466–533

Total gorgonians 0.73 (60.4) 0.13 (60.1) 237–533

Pennatulacea

Protoptilum sp. 0.17 (60.1) 0.04 (60.02) 185–529

Halipteris willemoisi 0.07 (60.1) 0.001 (60.001) 254–488

Total pennatulaceans 0.24 (60.2) 0.05 (60.02) 185–529

Total corals 0.97 (60.4) 0.18 (60.1)

Porifera

Hexactinellidae 0.40 (60.3) 0.02 (60.01) 241–466

Other sponges 0.24 (60.2) 0.001 (60.002) 201–306

Total sponges 0.41 (60.4) 0.02 (60.01) 201–466

Means are based on estimated transect densities, n = 7 transects for Pribilof, n = 9 for Zhemchug.
doi:10.1371/journal.pone.0033885.t001
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included debris such as large tangles of line and netting (e.g.

Figure 4B).

Discussion

Submarine canyons have been identified as potential hotspots of

deep-water biomass and productivity due to enhanced substrate

and topographic complexity compared to slope habitats, as well as

topographic enhancement of flux and deposition of organic matter

[40]. In one of the few biological studies comparing shelf areas to a

deep-sea canyon, De Leo et al [40] measured infaunal biomass in

Kaikoura Canyon off New Zealand that was 100-fold higher than

ever measured for a non-chemosynthetic deep-sea benthic habitat,

and 10 times higher than nearby shelf benthos. Zhemchug and

Pribilof Canyons lie in the highly productive ‘‘green belt’’ along

the Bering Sea shelf edge [41], and primary production over the

canyons is stimulated by stationary mesoscale eddies that enhance

upwelling and can temporally extend spring phytoplankton

blooms [42]. Surface-derived particulate organic carbon (POC)

comprised the main source of carbon for deep-water corals, as

revealed by stable isotope analyses [43,44]. Thus, upwelling along

the shelf edge and resultant high flux of phytodetritus to the

seafloor, combined with the availability of hard substrate (albeit

limited) on canyon slopes, likely sustains the high densities of corals

and sponges measured in this study.

Abundance data for deep-water corals are scarce and are most

often only reported as present or absent. Highest densities of corals

within the depth range investigated were found at depths between

200–400 m, similar with other studies of corals in that depth range

[11,26,45]. Overall mean coral density estimated in both canyons

Figure 2. Relative abundance by depth of corals (total gorgonians n = 1301, total pennatulaceans n = 552) and total sponges
(n = 1039) in Pribilof and Zhemchug Canyons, Bering Sea. Sample sizes (# images analyzed) for each depth strata were: 150–200: n = 77, 200–
300: n = 483, 300–400: n = 396, 400–550: n = 1872.
doi:10.1371/journal.pone.0033885.g002
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was 0.43 colonies m22, approximately one third the density

measured in the central Aleutian Islands via a census [11]. Density

in the two canyons, however, differed considerably; Pribilof

Canyon had coral densities estimated at 0.97 colonies m22 only

somewhat lower than that measured in the Aleutian Islands (1.23

colonies m22). Coral densities estimated at Zhemchug Canyon

were much lower (0.18 colonies m22), but similar or higher than

those observed in other coral-rich areas of the world (e.g. the

Weddell Sea, Antarctica (0.12 colonies m22 [46],), Atlantic

Canada (0.005–0.048 colonies m22 [45]), and Norway (0.043–

.069 colonies m22 [25]), indicating that both canyons support

significant deep-water coral habitats. The somewhat deeper

average depth of the Zhemchug Canyon transects may have

influenced the lower coral density found there.

The overall density of corals estimated for the Bering Sea

canyons are low compared to those measured via a census in the

central Aleutian Islands [11] and the habitats formed by the corals

Table 2. Mean density estimates (numbers m22 6 S.E.) of
common fishes in Pribilof and Zhemchug Canyons, Bering
Sea.

Taxon Pribilof Canyon Zhemchug Canyon

Scorpaenidae

Sebastes alutus 0.11 (60.03) 0.002 (60.001)

Sebastes spp. 0 0.02 (60.02)

Sebastolobus alascanus 0.07 (60.1) 0.02 (60.01)

Total rockfish 0.18 (60.1) 0.04 (60.02)

Agonidae (poachers) 0.01 (60.003) 0.05 (60.02)

Cottidae (sculpins) 0.01 (60.004) 0.002 (60.001)

Macrouridae (grenadiers)

Albatrossia pectoralis 0 0.004 (60.002)

Pleuronectidae (right-eyed flounders) 0.02 (60.01) 0.02 (60.004)

Rajidae (skates) 0.01 (60.004) 0.004 (60.001)

Zoarcidae (eelpout) 0.01 (60.01) 0.002 (60.001)

Sebastes spp. includes S. borealis, the shortraker rockfish, and S. aleutianus, the
rougheye rockfish.
Means are based on estimated transect densities, n = 7 transects for Pribilof
Canyon, n = 9 for Zhemchug Canyon.
doi:10.1371/journal.pone.0033885.t002

Figure 3. Pacific ocean perch (Sebastes alutus) with the
gorgonian coral Plumarella sp. at a depth of 230 m in Pribilof
Canyon, Bering Sea.
doi:10.1371/journal.pone.0033885.g003

Table 3. Significance values (p levels) for all GLM covariates.

Pribilof Canyon

Fish taxa

covariate Sebastes alutus Sebastes spp. Sebastolobus alascanus Total rockfish Agonidae Cottidae Pleuronectidae

depth 20.01 (0.003)
,0.0001

- 0.02 (0.006),0.0001 20.004
(0.002),0.0001

0.0007 (0.004) 0.001 0.18 0.01
(0.003),0.0001

boulders 2.96 (0.9) 0.0007 - 1.00 2.72 (0.9) 0.001 1.00 0.67 1.00

gorgonian corals 1.12 (0.3) 0.0003 - 1.00 0.88 (0.3) 0.001 23.00 (1.5) 0.04 1.63 (0.8) 0.04 0.42

pennatulacean corals 0.65 - 0.67 0.14 0.75 0.17 0.16

sponges 0.74 (0.3) 0.01 - 1.00 0.45 (0.3) 0.04 0.27 0.71 0.48

Zhemchug Canyon

Fish taxa

covariate Sebastes alutus Sebastes spp. Sebastolobus alascanus Total rockfish Agonidae Cottidae Pleuronectidae

depth 0.01
(0.01),0.002

20.001 (0.01)
0.001

0.01 (0.006) 0.0002 0.007 (0.004)
0.0002

0.003 (0.003) 0.001 0.33 0.001 (0.003)
0.001

boulders 1.00 7.71 (1.6),0.0001 1.00 6.54 (1.6),0.0001 1.00 0.85 1.00

gorgonian corals 1.00 2.27 (0.8) 0.03 2.48 (0.5),0.0001 2.26 (0.5),0.0001 0.11 0.22 0.20

pennatulacean corals 3.61 (0.9) 0.003 0.32 2.00 (0.7) 0.04 2.07 (0.5) 0.0007 0.37 0.11 0.37

sponges 1.00 1.00 0.44 0.22 0.91 0.53 1.00

Parameter values (standard error) are given above bolded p values for significant covariates. Sebastes spp. includes S. borealis, the shortraker rockfish, and S. aleutianus,
the rougheye rockfish.
Fish, coral, sponge and boulder data were analyzed as presence-absence. Transect data were pooled. Each fish taxa or category was analyzed separately. Significance
was evaluated at a= 0.05. Fish taxa from Table 2 not presented here exhibited no significant relationships with any covariate.
doi:10.1371/journal.pone.0033885.t003
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are very different in the two regions (i.e. dense coral and sponge

gardens were not observed in the canyons). The fields of

gorgonians and pennatulaceans observed in the canyons are quite

patchy in distribution and separated by large areas of open silt/

sand habitat (85% of the total frames contained no corals).

Nonetheless, however, the habitats formed by the corals and

sponges appear to be utilized by many of the fish species present in

the Canyons. Aleutian Island coral gardens (sensu [11]) have

extremely high local densities of corals [11], more than three times

the overall density of Pribilof Canyon, and are also particularly

species rich (more than 40 species total). By contrast, we observed

15 total coral species in the Bering Sea Canyons. However, our

collections (and photo identifications) included many northern

range extensions and new records for the region, indicating that

the canyons are more species rich than previously known [47].

Our collections included one scleractinian (Caryophyllia alaskensis – a

northern range extension), one antipatharian (Bathypathes sp. –

northernmost record in the Pacific Ocean), one alcyonacean

(Anthomastus sp. – likely representing a northern range extension),

one stoloniferan (Clavularia sp. – a new record for the region), seven

gorgonians (Plumarella superba, P. echinata, Primnoa pacifica, P. wingi.,

Keratoisis sp., Swiftia pacifica, and Paragorgia arborea – several of which

represent new records for the region and northern range

extensions), and three pennatulaceans (Halipteris willemoesi, Proto-

ptilum sp., and cf. Pennatula sp. – the latter two taxa representing

probable range extensions).

Abundance of hexactinellid sponges in Pribilof Canyon was

similar to that of the corals at 0.40 m22; unfortunately few sponge

abundance data from other areas are available for comparison. In

the Eastern Gulf of Alaska, large sponges were found at mean

densities of 0–0.12 m22 in untrawled areas; experimental trawling

significantly reduced sponge densities [48]. Deep-water bioherms

off the Pacific Coast of Canada harbored abundant (11.6–26%)

cover of hexactinellid sponges [49]. Density of the hexactinellid

sponge Pheronema carpenteri in the Porcupine Seabight (Northeast

Atlantic), averaged 0.34 m22 at 1000–1300 m depth, with local

aggregations attaining higher densities [50]. Density of Hyalonema

sp. averaged 0.01 m22 at 4100 m depth off California, but

densities of dead hexactinellid stalks were much higher and

harbored a high-diversity epifaunal community [12]. Overall, the

hexactinellid sponge densities observed in this study were

comparable to those reported as high density in areas elsewhere.

Fishes, particularly rockfishes, were associated with corals

significantly more often than would be expected given the

abundance of corals, a result consistent with other studies of

Alaskan corals [11,27,51]. Rockfishes were also, however,

significantly associated with boulders, and it is unclear at present

whether corals generally serve as hard structure interchangeably

with rocks and other forms of structure, or provide added fitness

benefits to fishes such as food sources [20]. Both corals and

sponges harbor diverse and abundant assemblages of macroinver-

tebrates that may be prey for fishes [8,12,52]. Pacific ocean perch

Figure 4. Examples of fishing damage to benthos in Pribilof
Canyon, Bering Sea. A) trawl scar, 264 m depth, B) derelict fishing
gear entangled on corals, 405 m depth.
doi:10.1371/journal.pone.0033885.g004

Table 4. Locations and depths of benthic fishing damage observed at Pribilof and Zhemchug Canyons.

Date Damage type Canyon Depth (m) vehicle position

7/29/2007 debris (line) Pribilof 410 DW N 55u52.5718 W 168u56.4128

7/30/2007 trawl scar Pribilof 275 DW N 56u09.5988 W 168u48.6511

8/2/2007 trawl scar Pribilof 336 DW N 55u59.9834 W 169u40.6453

8/2/2007 trawl scar Pribilof 264 DW N 55u59.9834 W 169u40.6453

8/2/2007 trawl scar Pribilof 284 DW N 55u59.9834 W 169u40.6453

8/2/2007 trawl scar Pribilof 860 ROV N 55u57.716 W 169u39.965

8/2/2007 trawl scar Pribilof 852 ROV N 55u57.716 W 169u39.965

8/2/2007 debris (chain, line) Pribilof 821 ROV N 55u57.716 W 169u39.965

8/4/2007 debris (net) Zhemchug 966 ROV N 57u50.47 W 174u17.64

8/6/2007 trawl scar Zhemchug 154 ROV N 57u50.6 W 174u17.7

8/8/2007 debris (cable) Zhemchug 161 ROV N 57u51.67 W 173u50.14

8/8/2007 debris (line) Zhemchug 317 ROV N 58u10.08 W 174u10.51

Coordinates represent the initial starting position of each dive. DW = Deep Worker.
doi:10.1371/journal.pone.0033885.t004
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was found preferentially inhabiting flat pebble bottoms in the

eastern Gulf of Alaska [53]. In that study, presence of corals was

not evaluated as a factor influencing fish distribution, although we

note that the photo of S. alutus in the paper shows the fish among a

dense grove of the pennatulacean Halipteris willemoesi [53]. Later,

Brodeur [54] observed aggregations of Pacific ocean perch

associated with H. willemoesi, and suggested that the sea pens filled

the need for vertical structure for this fish species. Our results

support this observation, but do not provide evidence for the

relative importance of corals, sponges, and other biogenic

structure versus nonbiogenic structure, e.g. boulders, to these

fishes. Nevertheless, boulders, seamounts, and other sources of

high-profile vertical relief are relatively rare in the deep sea [55]

and abundant corals likely provide important fish habitat in low-

relief areas even if their habitat quality does not differ from that of

abiotic structure.

Pacific ocean perch is a late-maturing, slow-growing viviparous

species and were historically the target of an important trawl

fishery in the eastern Bering Sea until stocks were severely depleted

about a decade ago [56]. Stocks have since increased and recently

a small directed fishery has been reopened, and Pacific ocean

perch continue to be taken as bycatch by other trawl fisheries.

Dispersal of Pacific ocean perch is apparently quite limited, with

genetic structure evident at geographic scales of 70–400 km,

indicating that management of this species should be on a finer

geographic scale than the current assessment areas [57]. Pacific

ocean perch populations in areas such as the Canyons studied

here, therefore, may be rendered less resilient if local habitats are

degraded by benthic fishing impacts.

An ecosystem approach to management [58,59], which

recognizes that the value of intact ecosystems is greater than the

sum of their parts [60], is now the general, though sometimes

necessarily imprecise, goal of fisheries management [61]. Witherell

et al [62] summarized progress towards, and future implementa-

tion of, an ecosystem approach to management of Alaskan

groundfish fisheries by the North Pacific Fishery Management

Council. This included, as required under the 1996 Magnuson–

Stevens Act amendments, identification and conservation of

essential fish habitat (EFH), as well as habitat areas of particular

concern (HAPC), which are specific EFH’s distinguished by their

particularly important ecological function and vulnerability to

anthropogenic impacts [63]. Corals were used as the prima facie

example of a HAPC in Alaskan waters [28,62]. Our results

support this notion, indicating that commercially important fishes

preferentially utilize corals for habitat. Although some of these

fishes also use boulders, boulders and corals are typically

associated [64], and together they comprise inseparable elements

of the habitat. Although it is of ecological and evolutionary interest

to separate the relative fitness values of these different forms of

habitat, from a resource management standpoint, a conservative

approach suggests that they be considered at least equivalent. Like

most deep ocean habitats, these canyons are dominated by low-

relief soft substrate, making corals important habitat elements

providing vertical relief. Thus, based on the survey data reported

here, Pribilof and Zhemchug Canyons can be regarded as

harboring areas of high densities of slow-growing corals that form

the foundation of complex communities as well as habitat areas of

particular concern due to their vulnerability and use by

commercially important fishes.

Deep-water gorgonian corals grow slowly and can live for

hundreds of years [65,66,67], making likely recovery times after

disturbance very long [68]. Anthropogenic disturbance by bottom

trawling has been shown to devastate corals, not surprisingly, since

bottom trawls typically incorporate heavy chains and doors that

are dragged along the seafloor [69]. Heavily trawled areas in the

Aleutian Islands were devoid of hydrocorals, and levels of damage

to corals were positively correlated with trawling effort [70].

Bottom longline and pot gear can also damage corals, although

this damage is likely less intense than that from trawling [11]. In

this study, fishing damage was observed on several dives (Figure 4,

Table 4); suggesting that bottom-contact fishing is clearly a source

of disturbance to corals in Pribilof and Zhemchug Canyons. The

high densities of corals in these shelf-edge canyons, and their use as

fish habitat, suggests that conservation of these unique areas be

given priority status in fisheries management decisions. Canyons

and other topographic features on the edges of continental shelves

likely represent high productivity areas throughout the deep sea

[40], and the ecology and conservation of these habitats and the

ecosystem services they provide deserve more attention.
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