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Abstract

This paper shows that structure from motion is NP-hard

for most sensible cost functions when missing data is al-

lowed. The result provides a fundamental limitation of what

is possible to achieve with any structure from motion algo-

rithm. Even though there are recent, promising attempts to

compute globally optimal solutions, there is no hope of ob-

taining a polynomial time algorithm unless P=NP.

The proof proceeds by encoding an arbitrary Boolean

formula as a structure from motion problem of polynomial

size, such that the structure from motion problem has a zero

cost solution if and only if the Boolean formula is satisfi-

able. Hence, if there was a guaranteed way to minimize the

error of the relevant family of structure from motion prob-

lems in polynomial time, the NP-complete problem 3SAT

could be solved in polynomial time, which would imply that

P=NP. The proof relies heavily on results from both struc-

ture from motion and complexity theory.

1. Introduction

Recently there has been a surge of interest in provably

optimal Structure from Motion (SfM), see [1, 9, 13]. In

recent developments, it has been shown that other cost-

functions such as max-norm for the reprojection error can

lead to tractable global optimization [15, 8, 10, 12]. For

example, in [10] it was shown that when camera rotations

are known, the camera translations and the 3D points can be

recovered in a globally optimal manner using quasi-convex

optimization. A more classical example of globally opti-

mal structure from motion is the Tomasi-Kanade algorithm

[18], which can recover least squares optimal structure from

motion under the affine camera model.

These results raise the question of under which condi-

tions, such as camera model, error function or observation

model, it is possible to find guaranteed algorithms for op-

timal structure from motion. This paper shows that when

missing data is allowed, optimal structure from motion is

NP-hard.

Most of the proven NP-complete problems have a com-

binatorial flavor. For example, it has been shown that global

minimization of even the simplest discontinuity-preserving

energy functions for stereo is NP-hard [3]. Structure from

motion appears different in nature since the optimization is

over a continuous domain. Yet, we show that when miss-

ing data [13] is allowed, structure from motion is NP-hard

for most sensible cost-functions, and camera models. Here,

missing data refers to that 3D points are not always ob-

served in all cameras. The proof relies on exhibiting com-

binatorical structure within the structure from motion prob-

lem, which allows expressing Boolean formulas in terms of

structure from motion problems.

Due to space constraints, we will have to assume that

the reader is quite familiar with Structure from Motion as

well as complexity theory. We direct readers to [7, 16] and

[17, 6, 2], respectively, for background material on these

topics. As is customary, we will keep the proofs on a more

abstract level than that of programming Turing machines,

trying to strike a balance between rigor and readability.

2. Preliminaries

In the language of complexity theory, a ’problem’ actu-

ally intends a family of instances of decision problems with

a yes/no answer. The size of an instance is measured in

terms of its description length. The class P is the class of

decision problems that can be solved in polynomial time

by a deterministic Turing machine. The class NP is the



class of decision problems that can be solved in polyno-

mial time by a non-deterministic Turing machine. The class

NP-complete is the class of decision problems in NP that

are such that all problems in NP can be reduced to them in

polynomial time. SATISFIABILITY (or SAT for short) was

the first NP-complete problem established. It is the problem

of deciding whether there is a variable assignment such that

a Boolean expression is satisfied. It was proven by Cook [4]

to be NP-complete. The proof establishes that it can be de-

cided by a Boolean expression of polynomial size whether

a string encodes an accepting computation path of a non-

deterministic Turing machine. The class NP-hard applies

to more general problems than decision problems. It is the

class of problems such that all problems in NP can be re-

duced to them in polynomial time. To show that a prob-

lem is NP-hard, one only needs to reduce a known NP-hard

problem to it in polynomial time. Karp [11] used the re-

duction technique to show that a number of decision prob-

lems, including the travelling salesman, are NP-complete.

A plethora of problems has since then been proven NP-

complete [6] including optimization problems over a con-

tinuous domain, for example, [5].

In this paper we will consider families of Structure from

Motion problems, described in terms of reprojected image

points. The reprojected image points are described in ho-

mogeneous coordinates [16], where each coordinate is a ra-

tional number. The problem size is then measured in terms

of the encoding length of the rational coordinates. Note that

it is reasonable to assume that only 3D points and cameras

that are involved in at least one of the reprojections are part

of the problem.

3. Main Result

The SfM problem consists of determining a set of 3D

points and cameras such that the residuals between the re-

projected and the (given) measured points are as small as

possible. We will consider several different error norms on

the residuals for this optimization problem. More formally,

the problem can be stated as follows.

Problem (Structure from Motion). Let m denote the num-

ber of point features and n the number of images. Assume

that a set of feature correspondences {xij }(i,j)∈I is given,

where each xij denote the coordinates of the projection of

point i in image j and I ⊂ Z2 denotes an index set. Some

points may be missing (occluded) in some images. The

Structure from Motion problem consists of finding 3D points

Xi, i = 1, . . . ,m and camera matrices Pj , j = 1, . . . , n
such that the norm of all the residuals

∥

∥[ . . . , rij , . . . ]
⊤

∥

∥

is minimized. Here rij is the residual vector of image dif-

ferences between point xij and its reprojection PjXi.

Most often the 2-norm is used since it results in a stan-

dard nonlinear least-squares problem. Under the assump-

tion of independent, Gaussian noise on the measured image

points, it also gives an ML-estimate. However, our results

are true for any norm. We will make use of the following

norm properties: ||x|| = 0 if and only if x = 0 and ||x|| ≥ 0
throughout the paper.

Our main result of the paper may be stated as follows.

Theorem 1 There exists no polynomial time algorithm for

solving the Structure from Motion problem with missing

data based on a norm of reprojection residuals unless P =
NP .

The idea of our proof is quite simple: We show that any

Boolean formula can be coded by a SfM problem instance

and that the Boolean formula is satisfiable if and only if

the globally optimal solution to the SfM problem has zero

reprojection error. Thus, our strategy is similar to other ap-

proaches for showing NP-hardness; we apply polynomial

reduction (or transformation) from a known NP-complete

problem - in this case, the SAT problem - to the SfM prob-

lem. Hence, if somebody was able to come up with poly-

nomial time algorithm for globally solving the SfM prob-

lem, then one could apply the same algorithm for solving

the SAT problem in polynomial time. Since SAT is known

to be NP-complete, all problems in NP could be solved in

polynomial time if this were the case. Hence, this leads to a

contradiction unless P = NP .

In order to code a Boolean formula using a SfM problem

instance, several building blocks are needed. In the next

four sections (Sections 4 to 7), we will develop these com-

ponents, and then in Section 8 we will show how to put all

the pieces together.

4. Anchoring Frame

All the sub-configurations that represent variables, truth-

values, gates and variable transfers (all components of a

boolean formula) are anchored to a common anchor frame

in order to make sure that their relation is fixed and that

the whole configuration stays fixed up to a common overall

projective transformation. Almost any configuration will

do as anchor frame, as long as it is general enough to en-

sure a unique projective reconstruction. For example, we

may use the 3D points with homogeneous coordinates as

the columns

Xanchor =









1 0 0 0 1 1 0 0 1 1
0 1 0 0 1 1 1 0 1 1
0 0 1 0 1 0 1 1 1 0
0 0 0 1 1 0 0 1 0 1









, (1)



and the camera matrices

P 1
anchor =





1 0 0 1
0 1 0 0
0 0 1 0



 , P 2
anchor =





1 0 0 0
0 1 0 1
0 0 1 0



 ,

P 3
anchor =





1 0 0 0
0 1 0 0
0 0 1 1



 . (2)

For the moment, we will ignore the problem of handling im-

age points at the line at infinity with a standard image met-

ric. From the image projections, the 3D structure and the

camera motion can be reconstructed uniquely modulo pro-

jective coordinate system. The first five 3D points consist of

the canonical projective coordinates in space, which can be

thought of as fixing the coordinate system for the whole re-

construction. The 3D points also include the canonical pro-

jective coordinates within the plane at infinity (points one,

two, three and nine), which will be used to fix the leading

3×3 sub-matrix of a camera matrix. In a similar way, points

one, two, four and ten provide a projective basis for the xy-

plane. Note that the three cameras in the anchor frame are

enough to triangulate all points in space uniquely, and the

ten 3D points are enough to determine the pose of any new

camera.

x

y

z

Figure 1. The anchoring frame with cameras �, points at finite

coordinates•and points at infinity →. All cameras observe all

points and the solution is unique up to a projective transforma-

tion. Points (cameras) not belonging to the anchoring frame can

be locked down by being observed by (observing) cameras (points)

beloning to the frame. In particulat we use the points at the plane

at infinity to lock the rotation of cameras without restricting their

position.

5. A Two-State Configuration

Our goal in this section is to create a SfM problem that

has two and only two perfect solution configurations (up to

projective ambiguity). Moreover, we require that all the so-

lutions can be described with integer points and cameras.

This will be used as a vehicle that enables us to create ’bi-

nary variables’ as well as ’NAND-gates’ in our SfM encod-

ing of a Boolean formula.

We will, however, start by deriving a tri-state configura-

tion from the well known problem of projective reconstruc-

tion from two uncalibrated views seeing seven points. This

is known to have exactly three solutions up to projective

ambiguity, and we will take care to construct a case where

all the solution configurations can be described entirely in

integers. Our motivation for this is to ensure that our solu-

tions remain in the parameter space even when we restrict

the parameter space to the rationals Q or integers Z.

We start by noting that the three solutions for fundamen-

tal matrices come from a two-dimensional nullspace (cre-

ated after putting seven linear point constraints on the fun-

damental matrix). This is really the only constraint, so if

we have two distinct fundamental matrices and create the

third as a linear combination of the first two, we obtain three

fundamental matrices that can arise as solutions to a seven-

point problem. For example, we may choose the three diag-

onal matrices

FA =





1 0 0
0 1 0
0 0 0



 , FB =





1 0 0
0 0 0
0 0 1



 , FC = FA − FB .

It can be seen that the point correspondences x ↔ x′ that

agree with these fundamental matrices are those for which

−x1x
′
1 = x2x

′
2 = x3x

′
3, (3)

or in other words

x =
[

a b c
]⊤

↔ x′ =
[

−bc ac ab
]⊤

(4)

for some choices of a, b, c. We choose the following seven

image point correspondences

[

−1 1 1
]⊤

↔
[

1 1 1
]⊤

[

1 −1 1
]⊤

↔
[

1 1 −1
]⊤

[

1 1 −1
]⊤

↔
[

1 −1 1
]⊤

[

1 1 1
]⊤

↔
[

−1 1 1
]⊤

[

1 2 3
]⊤

↔
[

−6 3 2
]⊤

[

2 1 1
]⊤

↔
[

−1 2 2
]⊤

[

1 2 1
]⊤

↔
[

−2 1 2
]⊤

. (5)

It is straightforward to verify that these point correspon-

dences result in exactly the solutions FA, FB and FC for

the fundamental matrix. A projective reconstruction for a

particular choice of projective coordinate frame is given in

Table 1. Other frames can simply be generated by applying

a projective transformation.



Solution 1:

P 1

A =

2

4

2 3 2 0

1 1 6 0

1 1 4 0

3

5 , P 2

A =

2

4

−1 −1 −6 0

2 3 2 0

3 4 4 −1

3

5 , XA =

2

6

6

4

−4 12 −14 2 −78 1 −6

3 −7 9 −1 48 0 4

0 −1 1 0 3 0 1

−1 5 −1 1 −26 1 −2

3

7

7

5

.

Solution 2:

P 1

B =

2

4

10 15 18 1

5 6 30 2

10 11 26 −3

3

5 , P 2

B =

2

4

−10 −11 −26 3

17 22 22 −6

10 15 18 1

3

5 , XB =

2

6

6

4

−4 12 −14 2 −78 0 −14

3 −7 9 −1 48 1 8

0 −1 1 0 3 0 3

−1 5 −1 1 −26 1 −2

3

7

7

5

.

Solution 3:

P 1

C =

2

4

2 3 18 2

1 3 6 4

11 13 16 −6

3

5 , P 2

C =

2

4

−7 −8 −8 3

11 13 16 −6

1 3 6 4

3

5 , XC =

2

6

6

4

−4 12 −14 2 −78 0 −22

3 −7 9 −1 48 0 12

0 −1 1 0 3 1 1

−1 5 −1 1 −26 1 −10

3

7

7

5

.

Table 1. A projective realization of a tri-state configuration for the image correspondences in (5).

The first five 3D points can now be used to fix the coor-

dinate system by making them visible in the three cameras

of the anchor frame (2), while the three different states

SA =
[

1 0 0 1
]⊤

(6)

SB =
[

0 1 0 1
]⊤

(7)

SC =
[

0 0 1 1
]⊤

, (8)

of the sixth point can be used to represent a variable.

Restricting the tri-state configuration in Table 1 in order

to obtain a two-state configuration is straightforward. Intro-

duce another camera with its camera centre somewhere on

the line spanned by SA and SB , and attach it to the anchor-

ing frame by making the anchor points (1) visible. Finally,

add the projection point xAB of SA and SB , which is, by

construction, a single image point to this view. This inval-

idates the third state since the projection of the sixth point

SC in the C-configuration results in non-zero reprojection

cost. This constrains X to

SA =
[

1 0 0 1
]⊤

, (9)

SB =
[

0 1 0 1
]⊤

. (10)

Various variables’ coordinate systems can be fused to-

gether, simply by making sure that the cameras from the

anchor frame triangulate the first five 3D points of each

coordinate system uniquely. When this is done, it ensures

that all sub-configurations are joined together uniquely in a

zero-cost reconstruction, up to a common projective trans-

formation.

6. Transferring Variables

Suppose we wish to transfer variables, that is, we have

a variable representation in terms of a point X residing in

one of the two positions Xa, Xb, and we need to constrain

a point Y , which is already known to be either in position

Ya or Yb, in such a way that Y is at Ya if and only if X is

in Xa and Y is at Yb if and only if X is in Xb. We assume

that neither of the four point positions is at infinity (none of

their fourth coordinates is zero). Moreover, we assume that

the four points are not coplanar (if they were, the transfer

could easily be done in two steps).

To accomplish the transfer, we simply need to introduce

an additional camera that sees the points X and Y at care-

fully selected image points. We introduce a new camera P

and fix its leading 3 × 3 sub-matrix to identity by observ-

ing the points at infinity from the anchoring frame (1) at the

same image directions as their respective directions at infin-

ity. We also observe the projection of point X in P at the

image point x, which must be distinct from the direction of

the line between Xa and Xb (because we wish to avoid the

possibility of them both projecting to x at the same time).

Note that this constrains the camera centre of P to lie on a

line with direction x through either Xa or Xb. In a simi-

lar way, we also observe the 3D point Y in P at the image

point y, which must be distinct from the direction of the

line between Ya and Yb. This constrains the camera centre

of P to a line with direction y through either Ya or Yb. A

configuration is now possible if and only if the directions

between X and Y is coplanar with the directions x and y.

We wish for this to be the case when and only when we

have X = Xa, Y = Ya or X = Xb, Y = Yb. Let the direc-

tions (represented by 3-vectors) between Xa, Ya and Xb, Yb

be denoted by Da and Db, respectively. To accomplish our

mission, we may select the homogenous image coordinates

x and y as

x = Da + Db, (11)

y = Da − Db. (12)



By construction, there are two possible camera matrices Pa

and Pb for the camera matrix P . Both solutions have the

leading 3×3 sub-matrix equal to identity and the properties

PaXa ∼ PbXb ∼ x and PaYa ∼ PbYb ∼ y.

An illustration is given in Figure 2. For this two-state con-

struction to work, one needs to check that we do not have

PXa ∼ x, PXb ∼ x for neither P = Pa nor P = Pb.
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Figure 2. An illustration of the transfer component. Circles are

possible point locations and diamonds are possible camera loca-

tions. See text for details. By construction, Xa has a truth-value

if and only Ya has a truth-value, similarly for Xb and Yb. Either

configuration a or b yields a zero cost reconstruction, but not both.

7. NAND-Gate

u  v
v

u
0 1

0 1 1

1 1 0

Figure 3. Circuit board symbol for NAND gate along with tabu-

lated response

Our construction of a NAND-gate is illustrated in Fig-

ure 4. We assume that we have an in-variable u repre-

sented by two possible positions for a point Xu, such that

Xu =
[

−2 −1 1 1
]⊤

when u is true, and Xu =
[

−2 −1 0 1
]⊤

otherwise. We also assume that we

have an in-variable v represented by two possible positions

for a point Xv , such that Xv =
[

−1 −1 2 1
]⊤

when v

is true, and Xv =
[

0 −1 2 1
]⊤

otherwise. This can be

accomplished with the variable transfer method described

above.

Furthermore, two cameras Pu and Pv are introduced. We

fix the leading 3×3 sub-matrix of Pu to identity by observ-

ing the points one, two, three and nine - all at infinity - in

the anchor frame (1). Camera Pv is also constrained, but in

a slightly different way. The procedure of observing four

points at infinity from the anchor frame at corresponding

image locations makes sure that the backprojection from a

particular image point always pierces the plane at infinity at

the same location, regardless of what the remaining param-

eters of the camera are. We wish to constrain Pv in a similar

way, but instead use the xy-plane. This will make sure that

the backprojection from a particular image point will pierce

the xy-plane in a fixed point. To this end, we make Pv ob-

serve the points one, two, four and ten of the anchor frame

(1) all lying in the xy-plane. This constrains Pv to the form





1 0 t1 0
0 1 t2 0
0 0 t3 1



 . (13)

The camera Pu also observes Xu at the image

point
[

0 1 0
]⊤

, as well as the additional point
[

−2 0 2 1
]⊤

at
[

0 0 1
]⊤

. Note that this constrains

Pu to one of two locations (determined by Xu), with camera

center at
[

−2 0 1 1
]⊤

or
[

−2 0 0 1
]⊤

. We also

make Pu observe a new point XG at
[

1 0 0
]⊤

, which

constrains XG to two parallel lines in the direction of the

x-axis.

The camera Pv observes Xv at the image point
[

0 1 0
]⊤

as well as the additional point
[

1 0 2 1
]⊤

at
[

1 0 0
]⊤

. This constrains Pv to one of two

locations (determined by Xv), with camera center at
[

−1 0 2 1
]⊤

or
[

0 0 2 1
]⊤

. We also make Pv

observe the point XG at
[

0 0 1
]⊤

. This constrains XG

to two lines, but they are not parallel. Instead they converge

on the origin because of the way we constrained Pv .

The point XG is now constrained to one of the three

locations, namely:
[

0 0 0 1
]⊤

,
[

0 0 1 1
]⊤

, or
[

−1 0 2 2
]⊤

where the last location occurs if and only

if u ∧ v is true. We now tap this information into the loca-

tion of a camera Pu∧v. This is accomplished by observing

points at infinity of the anchor points ( 1), and hence mak-

ing the 3×3 sub-matrix of Pu∧v equal to identity, as well as

letting Pu∧v observe XG at
[

0 0 1
]⊤

and an additional

point
[

−1 0 −1 1
]⊤

at
[

1 0 0
]⊤

. This constrains

the projection center of Pu∧v to either
[

0 0 −1 1
]⊤

or
[

−1 0 −2 2
]⊤

, depending on whether u ∧ v is true or

false, respectively. Finally, we tap the output into a point

Xu∧v , by letting Pu∧v observe Xu∧v at
[

0 1 0
]⊤

, as

well as adding the following fixed camera (relative the an-

chor frame)




1 0 0 1
0 1 0 −1
0 0 1 1



 , (14)



which observes Xu∧v at
[

1 0 0
]⊤

. This re-

sults in Xu∧v =
[

0 1 −1 1
]⊤

or Xu∧v =
[

−1 2 −2 2
]⊤

depending on whether u ∧ v is true or

false.
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Figure 4. An illustration of the NAND-gate. Circles are possible

point locations and diamonds are possible camera locations, a box

means that this specific camera or point only has one possible lo-

cation. Variables come in as two point position pairs u ↔ u and

v ↔ v. They constrain two cameras to two locations each. The

cameras in their turn constrain a point to one of three possible lo-

cations in the middle of the NAND-gate. This point is seen by

another camera, which is constrained to one of two locations, rep-

resenting u ∧ v and its negation. This out-signal from the NAND-

gate is finally transfered onto the location of a point. Pairs of point

positions can be positioned correctly for input and output to the

NAND-gate using variable transfer.

8. Collecting the Components Into a Boolean

Formula

We now have all the components necessary to encode a

Boolean formula in terms of a SfM problem.

For each formula, we use a single anchor frame to

which all the other components are anchored. All the

Boolean variables are represented with a two-state configu-

ration each. The two-state configurations are linked into the

NAND-gates with variable transfer components. Note that

the NOT operation is most efficiently implemented by just

switching the two point locations in the variable transfer.

The outputs from the NAND-gates can also be transferred in

a similar manner and be used as input to other NAND-gates.

Note also that by switching the two output point locations,

a NAND-gate can just as easily be used as AND-gate. As is

well known, all Boolean expressions can be written solely in

terms of NAND-gates. Hence we can encode any Boolean

expression by connecting together the various components

(although it is important to notice that the only thing ac-

tually encoded are the reprojected image points and which

camera and 3D point they relate to). The output from the

final NAND-gate representing the whole expression can be

required to be TRUE by observing the corresponding point

location with one of the anchor cameras (2). Our labor re-

sults in:

Theorem 2 Assume that a SfM problem is built according

to a Boolean formula with the components described above

for anchoring the coordinate frame, variable construction,

variable transfer and the NAND-gate. If the formula is sat-

isfiable, the SfM problem has a non-zero but finite number

of exact zero-cost solutions. More precisely, the structure

from motion problem has exactly as many zero-cost solu-

tions as there are satisfying variable assignments of the for-

mula. Moreover, these solutions can be described with inte-

ger parameters. If the formula is not satisfiable, the struc-

ture from motion problem has no exact zero-cost solutions.

9. Proving the NP-Hardness

We have shown that we can transfer any formula from

the SAT problem into the SfM problem. However, we wish

to limit the signal depth of the formula, that is the number

of times an output signal is used again as input to a new

NAND-gate. Luckily, we can do just that without any loss

of generality, by using a reduction from 3SAT. 3SAT is also

known to be NP-complete [6] and consists of the problem

of satisfying a Boolean formula in conjunctive normal form

with only three literals per clause, i.e. a formula such as

(ui ∨ uj ∨ uk) ∧ . . . ∧ (uw ∨ uj ∨ uk). (15)

Each clause (ui ∨ uj ∨ uk) can be encoded according to

(ui ∧ uj) ∧ uk, (16)

which is as simple as two gates (note again that any re-

quired negations come for free in the variable transfers).

Each clause has an output-gate that is required to return

TRUE, and rather than collecting all these signals together,

we simply require each one to be TRUE by observing the

representing 3D point with a camera in the anchor frame.

The signal depth is then limited to two gates with associ-

ated transfers. Hence, the polynomial reduction to the SfM

problem is indeed polynomial.

There is one detail we have ignored so far that may cause

some problems (or least, irritation by a punctilious reader).



In our construction of a SfM problem instance, there are im-

age points at the line at infinity of the image plane. Our im-

age metric cannot actually measure these points since they

are not part of the real plane. But this is easily corrected for

by changing the image coordinate system (by a homogra-

phy) such that no points will appear at infinity, hence push-

ing back all image points to the standard real plane. An-

other detail - which we will continue to ignore - is that our

SfM construction makes no guarantees that a zero-cost re-

construction actually obeys all chirality conditions, that is,

that all points are in front of all cameras.

This concludes our proof that the SfM problem with

missing data is NP-hard.

10. Conclusions

Strictly speaking, we have proved that projective struc-

ture from motion with missing data is NP-hard for any sen-

sible cost function. We leave proofs for other settings to

further study, but conjecture that similar proofs can be cre-

ated for most camera models and settings, for example us-

ing the four-fold or eight-fold ambiguity in calibrated pose

(depending on whether orientation is enforced), or the re-

flection symmetries arising in affine structure from motion.

Other relevant questions that we leave for further research

are whether structure from motion remains NP-hard even if

we demand that a unique solution exists, or whether struc-

ture from motion under perspective is NP-hard even without

missing data.
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