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Structure from two orthographic views of rigid motion
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We study the inference of rigid three-dimensional interpretations for the structure and motion of four or more
moving points from but two orthographic views of the points. We develop an algorithm to determine whether image
data are compatible with a rigid interpretation. As a corollary of this result we find that the measure of false targets
(roughly, nonrigid objects that appear rigid) is zero. We find that if the two views have at least one rigid
interpretation, then in fact there is a canonical one-parameter family of rigid interpretations; we show how to
compute this family, and we describe precisely how the rigid interpretations vary within it. Since only two views are
used, this analysis is relevant also to stereo vision.

1. INTRODUCTION

Psychophysical experiments by Braunstein et al.' and oth-
ers have revealed a remarkable capacity of human vision. If
one presents subjects with two-dimensional (2-D) motion
displays containing as few as two frames (say, videotape
frames) of four feature points, subjects can reliably decide
whether the 2-D motions of the points have any rigid three-
dimensional (3-D) interpretations: i.e., subjects can decide,
for each 2-D motion display, whether there exists some rigid
motion of the points in R3 and some choice of viewing direc-
tion that would give rise to that display. (Points in R3 move
rigidly only if their 3-D interpoint distances remain con-
stant.) Moreover, when viewing displays that have rigid
interpretations, subjects report perceiving a single rigid in-
terpretation.

These abilities, in their full generality, are not explained
by current mathematical theories that specify sufficient con-
ditions for the inference of structure from motion. There
are diverse reasons for this failure of explanation; among
them are that (1) some accounts require more than two
frames to reach a unique rigid interpretation; (2) some ac-
counts restrict the kinds of rigid 3-D motion that can be
inferred, e.g., allowing only rigid interpretations in which the
points move about a single fixed axis in R 3 [rigid, fixed-axis
(RFA) interpretations], or in which the points move about a
single fixed axis at a constant angular velocity (CAV inter-
pretations), or in which pairs of points move only in a single
plane (planar interpretations); and (3) some accounts yield
nonrigid interpretations.

For example, among the accounts requiring more than two
views is that of Ullman,2 who proved that, if there is at least
one rigid interpretation compatible with a given set of three
frames, with each frame containing four points, then there
are, in general, at most two rigid interpretations. Among

the accounts restricting the kinds of rigid 3-D motion that
can be inferred is that of Hoffman and Bennett,3 who proved
that, if there is at least one RFA interpretation compatible
with a given set of five frames, with each frame containing
two points, then there are, in general, only two RFA inter-
pretations. In the same paper they proved that if there are
any CAV interpretations compatible with a given set of four
frames, with each frame containing two points, then there
are, in general, only two CAV interpretations. In another
paper4 they proved that if there are any RFA interpretations
compatible with a particular set three frames, each frame
containing three points, then there are, in general, just two
RFA interpretations. An algorithm for constructing RFA
interpretations was presented by Webb and Aggarwal.5

Hoffman and Flinchbaugh6 proved that, if there is at least
one planar interpretation compatible with two frames, with
each frame containing three points, then there are, in gener-
al, only two planar interpretations. Koenderink and van
Doorn7 and Bennett and Hoffman,8 among others, obtained
nonrigid interpretations in their analyses.

In this paper we investigate the two-frame case: we de-
scribe formally what rigid 3-D interpretations a vision sys-
tem, whether biological or machine, can assign to a pair of 2-
D frames when each frame contains four or more points.

When a vision system assigns a nonplanar 3-D interpreta-
tion to a 2-D display it is, of course, misinterpreting; the only
correct interpretations of a 2-D display are themselves 2-D.
However, when a vision system assigns a nonplanar 3-D
interpretation to a 2-D image it is not, ipso facto, misinter-
preting. But it is easy to show in this case that infinitely
many 3-D interpretations are all equally compatible with
any 2-D image. Thus, if a vision system picks one or more
interpretations from this infinite collection, the system
thereby reveals that its procedure for choosing 3-D interpre-
tations is biased. If one gives a 3-D interpretation, one
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cannot avoid a bias. This paper can be viewed as an investi-

gation of one bias, viz., rigidity. (The rigidity bias has been

discussed extensively in the structure-from-motion litera-
ture.

9
-1

3
)

Since our analysis in this paper requires only two views, it

can also be regarded as relevant to stereo vision.'4' 9 In the

case of stereo vision one has two distinct views of the same

object, with the views taken at the same time; in the case of

structure from motion one has two distinct views of the same

object, with the views taken at different times. Since only

the relative placements of the image plane and the object are
relevant to our analysis, the analysis applies both to motion

and to stereo vision. For simplicity of exposition, however,
we use the structure-from-motion terminology.

From the standpoint of structure from motion, the assign-

ment of rigid interpretations in the two-view case is particu-

larly interesting not only because two views are the mini-

mum number necessary to have motion at all but also be-

cause two views are the discrete-time analog of infinitesimal

motion. Thus a complete analysis of the assignment of rigid
interpretations in this case might provide a basis for a theory

of the long-term (or stable) assignment of rigid and semirig-
id 3-D interpretations, for one might expect that the long-

term assignment of rigid or quasi-rigid interpretations

would arise from the integration of rigid interpretations in

the infinitesimal case.
In Section 5 we exhibit in detail a natural group action on

the collection of (almost) all rigid interpretations of two

frames. (The group acts by transforming one rigid interpre-
tation into another. If two interpretations are given, there is

always a unique group element that effects the transforma-

tion.) The group action can be used to compute, inter alia,

the dimension of the set consisting of (almost) all rigid inter-
pretations (the so-called distinguished interpretations or

distinguished configurations). This result, in turn, allows
one to compute the dimension of the set of all image data

compatible with a rigid interpretation (the so-called distin-

guished premises). This analysis yields one proof that the
set of false targets has a measure of zero; we give a different

proof of this fact in Section 2.
It will be helpful to set out some basic notation and ter-

minology before stating our results.

Let Po, Pi, . , Pn (n 2 3) be points in R3, and let Q0, Qi,

. , Qn be the points obtained from the Pi's by means of a
rigid motion of R3. If we assume that the viewer is using a

moving coordinate system in which PO =0 Q = (0, 0, 0), then

these rigid-motion data (viz., the Pi's and the Qi's) are equiv-

alent to the 2n vectors (Pi - Po, P2 - Po, ... , Pn - Po; Q, -

QO, Q2 - QO, .. . , Qn - Qo), in which the last n vectors are
obtained from the first n by a rotation about an axis contain-
ing the origin in R3. We call this an instantaneous rotation,

since two successive positions of an object represent, as we

mentioned above, the discrete-time analog of an instanta-
neous motion of that object. Thus to infer a (nontransla-

tional) rigid motion of n + 1 points from two views is the

same thing as to infer an instantaneous rotation of n vectors
from two views; for convenience we henceforth formulate

everything in the terminology of instantaneous rotation.
We are therefore interested in configurations consisting of2n

vectors (al,, . .. , an,; al,2, . . , an,2), where each aij is in R3

and where n 2 3. The set of all such configurations may be

identified with (R3 )2n; we denote it occasionally by X. If a

configuration is an instantaneous rotation, i.e., if the last n

vectors are obtained from the first n by a rotation about an

axis through the origin, we call it a distinguished configura-

tion; the distinguished configurations form a subset E c
(R3)2n. E is a formal representation of the rigidity bias that

appears to be used (perhaps in conjunction with other bias-

es) in the interpretation of structure from motion.
We assume that there is a fixed (x, y, z) coordinate system

in R3, in which the viewing direction is the z axis (positive or

negative) and the image plane is the x-y plane, so that the

viewer, when presented with a configuration, has access to

the (x, y) coordinates of the 2n vectors. These data, which

consist of 2n vectors in the x-y plane, are called the image

data, or the premise associated to the given configuration.
The set of all premises may be identified with (R2)2n; we

denote it by Y. We will typically write a premise in the form

b = (bi,, . . bn,,; bl,2, * * , bn,2), where bij = (xij, Yij) are
the 2-D coordinates of the ith vector in frame or view j. We

will denote by r the map that assigns a premise to each

configuration by projecting the configuration onto the (x, y)

plane; 7r simply deletes the z coordinate from each vector of

the configuration. The premise associated to a distin-

guished configuration by 7r is called a distinguished premise;

the distinguished premises form a subset S c (R2)2n. Thus
,r: (R3)2n - (R2)2n, and 7r(E) = S. This structure is shown

in Fig. 1.
When presented with a premise, i.e., a vector b E (R2)2n,

the most that a viewer with a bias toward rigid interpreta-

tions can deduce is, first, whether b is in S and, if it is, the set

7r1 (b), i.e., the set of all configurations that, when their z

coordinates are removed, are equal to b.

However, a viewer with a rigidity bias selects interpreta-

tions from the set 7r'(b) n E, supposing such an interpreta-

tion to represent the configuration that was actually respon-

sible for the premise b. However, as we mentioned above,

the choice of such an interpretation cannot be deductively
valid, given the premise b, since there are infinitely many

other interpretations that, when their z coordinates are re-

moved, are equal to b. To put this another way, there is no

deductively valid way to rule out the possibility of a false

target when a distinguished premise b is presented; a false
target is represented by an interpretation in 7ri-(b) that is

not in E. (For example, a collection of points on a video

screen that simulates the retinal image of a rigid object in R3

can be a false target for a viewer with a rigidity bias.) Thus,

for an observer to infer a unique distinguished configuration
in response to a distinguished premise b, an inductive (i.e.,
not deductively valid) inference is needed. The underlying
information structure on which the inductive inferences are

superimposed consists of the relevant properties of the map

7r vis-A-vis the distinguished configurations E and the distin-

guished premises S. The object of this study is to elucidate

these properties.

configurations X = 18 D E distinguished configurations

in In

premises Y = R2 D S distinguished premises

Fig. 1. Premise and configuration spaces for the inference of in-

stantaneous rotations. The set S of distinguished premises corre-
sponds to those image data that are compatible with an instanta-
neous-rotation interpretation.
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We note in passing that the entire structure consisting of
X, Y, E, S, and 7r together with statistical information about
the probabilities assigned to distinct interpretations in the
case of multistable perceptions constitutes an example of a
formal structure called an observer. We describe this struc-
ture in Section 4.

We now summarize our main results, using the terminol-
ogy of 7r, E, and S introduced above. These results hold for
any n > 3.

1. In proposition 1 of Section 2, we show that S is con-
tained in the locus of points in (R2 )2 n whose coordinates
satisfy certain polynomial equations fpq,, = 0, where 1 < p <
q < r < n (so that there are (3n) such equations). As a
corollary of this result, we find that S has a (Lebesgue)
measure of 0 in (R2

)2n; i.e., almost all premises are incompat-
ible with a rigid interpretation.

2. We introduce an additional condition, condition 1 of
Section 2, which allows one to determine whether a point
that satisfies the polynomial equations is actually in S.
Thus the polynomial conditions p,q,r = 0 together with con-
dition 1 give necessary and sufficient conditions for S; in
fact, they provide an algorithm to determine whether a pre-
mise is in S (i.e., if the two frames of four or more points are
compatible with any rigid interpretations).

3. The same computation used to verify condition 1 for a
point s of S leads immediately to an algorithm to compute
the set 7r-'(s) n E, viz., the set of all rigid interpretations
compatible with s. From this result we find that

4. 7rCl(s) E is a one-parameter family of distinguished
configurations.

These results constitute theorem 1 of Section 2. In Section
3 we study the geometry of the one-parameter family of rigid
interpretations associated with any given point s of S. To
describe the results, we note first that to each distinguished
configuration is associated a unique line through the origin
in R3, namely, the axis of the rotation that transforms the
Pi's to the Q's. We find that

5. As the distinguished configurations vary in 7r'(s) 
E, their associated axes of rotation sweep out a plane per-
pendicular to the (x, y) plane; in particular, all these axes
project to the same line (call it M) in the image plane.

Thus a natural parameter for the family of rigid interpreta-
tions that are compatible with a particular s S is the
(slant) angle a that the axis of rotation makes with, say, the
positive z axis. The structures in the family then corre-
spond uniquely to values of in the union of open intervals
(0, 7r/2) u (r/2, 7r); the structure corresponding to a (0, 7r/
2) is the reflection in the image plane of the structure corre-
sponding to 7r - a. We note that the values 0, 7r/2, and r are
omitted: there are no actual rigid structures corresponding
to these values of a; instead they correspond to degenerate
limits of rigid structures (as we describe below).

The situation may be presented geometrically as follows.
A point b (R2)2n corresponds to the 2n vectors (bl, . ,
bn,l; b, 2 , .. . bn,2) in R2. b is in S if and only if it is possible
to find n ellipses D, . . , Dn with these properties (see Fig.
2):

b2l

D0

2c~iIX

D3 to~:

M

-- b.............................................

Fig. 2. Ellipses Di, whose existence as shown means that the pre-
mise consisting of the image data bij is distinguished.

a. There exists a line M through the origin of R2 so that
the minor axes of the ellipses Di all lie on M.

b. All the ellipses have the same eccentricity.
c. For each i = 1, . . , n, the points bijl and b 2 are on D.
d. The elliptical angle on Di determined by the points

bij, and b,2 is the same for each i = 1, ... , n. (By the
elliptical angle determined by two points on an ellipse we
mean the following: choose any circle in R that projects
orthographically to the given ellipse and take the angle sub-
tended at the center of this circle by the two points on the
circle that project to the given points on the ellipse.)

The existence of the ellipses D with these properties is
equivalent to the existence of an axis L through the origin in
R3 such that (1) L projects to M, (2) the slant of L is deter-
mined by the common eccentricity of the family of ellipses,
and (3) the points of b are the projections of the successive
positions of n points in R3 that rotate about L through some
elliptical angle 0. This is illustrated in Fig. 3. The results
already summarized may be restated geometrically:

6. Given b = {bigj, there are (3n) fixed polynomials fpq,r (1
p < q < r < n) in the coordinate of the bij. If and only if

(1) all these fp,q,r vanish and (2) condition 1 of Section 2 is
satisfied, then there exists a set of ellipses D, . . , D that
satisfy the conditions described above. Moreover, if there is
one such set of ellipses, then, in fact, there is a one-parame-
ter family of them. This family can be parameterized by the
eccentricity of the ellipses or, equivalently, by the slant, a, of
the axis L. (Recall that the slant of L is the angle between L
and the positive z axis.)

Suppose that b e S is given. As the parameter a increases

Bennett et al.



Vol. 6, No. 7/July 1989/J. Opt. Soc. Am. A 1055

over the interval (0, r/2), the eccentricity of the ellipses
increases. In fact, as a approaches 7r/2, each ellipse Di de-

generates into a pair of straight lines orthogonal to M

through the points bij and bi,2. This limiting case clearly

does not correspond to a distinguished configuration.
On the other extreme, as a- approaches 0, each ellipse Di

approaches a circle whose center is the unique point on M

equidistant from bij and bi,2. Similarly, this does not corre-

spond to a distinguished configuration. If it did, then, since
the ellipses are circles, the axis of rotation of the configura-

tion must be perpendicular to the image plane (i.e., it coin-

cides with the z axis so that a = 0), in which case the centers

of the circles would project to the origin.
The elliptical angle 0 depends on a: it is strictly increas-

ing as a goes from 0 to 7r/2. The radii of the circles Ci (which

project onto the ellipses Di) also vary with a. For each i = 1,

... , n separately there is a value of a for which the radius of

CQ is minimized, but these values of a differ for the various i.

Thus there is no value of a for which these radii are mini-

mized simultaneously.
These mathematical properties appear to imply that any

given generic a family contains no mathematically distin-

guished member. In other words, there appears to be no
member of the family that, for purely mathematical reasons
(such 'as minimizing some geometrically meaningful func-

tional), should be a natural perceptual feature point of the
family. This raises the question of exactly which, if any, of

the possible distinguished configurations is perceived by a
human subject who, in response to a distinguished premise,
experiences the strong sensation of seeing a rigid object.

Such a choice of distinguished configuration is, if one uses

only a constraint of rigidity, mathematically gratuitous.
This suggests that the perceptual system may be using con-

straints other than rigidity alone to arrive at its interpreta-

tions. It is therefore of particular interest that psychophysi-

z

/ i " ' r 
Fig. 3. One-parameter family of rigid structures in R

3
that project

to the given distinguished imaged data bij} in the (x, y) plane.
These structures are parameterized by the slant a of their axes, L (a),
of rotation; all axes project to the same line M in the (x, y) plane.

cal experimentation be focused on these issues. (We are

currently working with Braunstein on this question.)
In Section 5 we discuss some group-theoretic aspects of

the instantaneous rotation observer. Let E' denote the set
whose elements are pairs, each of which consists of a distin-
guished configuration (i.e., an element of E), together with a
choice of orientation (i.e., of a positive direction) of the

rotation axis of that configuration. Thus there are two
elements of E' for each element of E. E' and E have the
same dimension. We show that there is a group J of geomet-
ric transformations that acts naturally on E' (outside of a
small subset E1' of degenerate configurations of lower di-
mension than E' itself). In fact, J acts in such a way that
anytwo elements of E' - El' are related by a unique element
of J; in mathematical terminology, Eo' = E'- E1 ' is a princi-
pal homogeneous space for J. Perceptually, this corre-
sponds to saying that the group J is a particularly natural
group of subjective transformations for instantaneous-rota-
tion percepts.

The principal homogeneous space structure on Eo' per-
mits us to compute its dimension and, consequently, the
dimension's of E and S. In this way it turns out that the
dimension of S is 3n + 2; i.e., S has n - 2 dimensions less
than the ambient space Y = (R2)2

n (in mathematical termin-
ology, S has a codimension of n - 2 in Y). For example,
when n = 3, S is defined by the single polynomial condition

fl,2,3 = 0 so that S is a hypersurface in Y and therefore has a

codimension of 1 in Y. However, when n > 3 it is not at all
obvious from the conditions defining S that S should have a
codimension of n - 2. The perceptual significance of the
fact that the codimension of S in Y increases with n is an
open question. One sample hypothesis is that, the larger the
codimension is, the rarer is the occurrence of a distinguished
premise among all possible premises; hence a distinguished
premise might be more striking when it did occur, so that the
percept of rigidity might be stronger for large n. We merely
mention this issue here for its intrinsic interest; we draw no
conclusions about it in this paper.

2. COMPUTATION OF S AND OF 7r1 (s) n E

We shall use the terminology and notation of Section 1:

a = (al,,.., an,i; al,2, ** an,2)

denotes an element of (R3)2n, i.e., a configuration consisting

of 2n vectors aij in R3. We consider ai,1, ai,2 as the position
vectors at successive times of the ith point on some moving
object, which may or may not be rigid. We assume a fixed
(x, y, z) coordinate system in R 3, and

b = (b1,l,. , bn,i; b1,2, ** bn,2)

denotes an element of (R2)2n. We consider R2 as the x-y

plane in R 3, which is the image plane of a viewer who ac-

quires images by orthographic projection along the z direc-
tion. There is a natural map

r:(R3) 2n , (R 2)in

so that, if a and b are as described above with r(a) = b, then
bij is the orthogonal projection of ai j onto the x-y plane. In

this case, let (01, e2, e3) be orthogonal unit vectors in the x, y,
and z directions, respectively; then we can write

Bennett et al.
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aij = xijgl + YiJ2 + Zi#j3,

where i = 1, . . , n and = 1, 2. Moreover,

bij = xijj 1 + YiJ2,

(1) where

kI,m = ZI,2Zm,2 - Zl,lZm,l + dim

(2) dim = b1,2 - bm2,2 - b1,1 bi,1,

with i = 1, . . , n and ] = 1, 2, and we can rewrite Eq. (1) as

a1,j = bij + Zij 3,

where i = 1, .. , n andj = 1, 2.
We express the assumption of rigid motion by two set.

equations. The first set consists of the equations

al,, am,, = al,2 * am,21 1 < 1, m < n,

(3)

s of

(4)

where indicates the dot (scalar) product of vectors. n + (2)
of these equations are distinct (take, e.g., I • m). Those n
equations described in Eq. (4) for which I = m express the
assumption that the distance of each point from the origin-
does not change from the first view to the second. The (2n)
equations for which 1 d m then express the condition that
the angle between the Ith and mth position vectors does not
change from the first view to the second. Together, the
equations described by Eq. (4) imply that there exists an
orthogonal 3 X 3 matrix that relates the vectors (alj, .
anl) to the vectors (al,2, ... , an,2). Now, in general, an
orthogonal matrix represents a motion that involves both a
rotation and a reflection; thus we need some additional
equations to express that this orthogonal matrix is actually a
rotation. For this, it is enough to require that the matrix
preserve the scalar triple product of, say, the first three
vectors a, 1, a2,l, and a3,1. (If an orthogonal matrix involves
a reflection, it will reverse the sign of the scalar triple prod-
uct of any three linearly independent vectors). Thus we
need only include the additional equation

(al, 1 X a 2,) a3 ,1 = (al, 2 X a2 ,2) a3 ,2, (5)

which is the same as

xi,1 Yi,1 Zi,1 x1,2 Y1,2 Z 1 ,2

detjX 2,1 Y2,1 Z2,1 = detiX 2,2 Y2,2 Z2,2

Lx3,1 Y3,1 Z3,1J LX3,2 Y3,2 Z3 ,2 J
Thus Eq. (5) can be written in the form

=0,
where

= (X2 ,1Y3,1 - X3,1Y2 ,1)Zll -(X 1,1Y3 ,1 -X3,1Y1,)Z2,1

+ (,Y 2,1 - X2,1Y 1,)Z3,1 -(X 2 ,2Y3,2 -X3,2y2,2)Z,2

+ (, 2 Y3,2 - 3 ,2 y1 ,2 )Z2,2 -(X 1 ,2 Y2 ,2 X2,2Y1,2)Z3,2-

(6)

Now, with Eq. (3), Eq. (4) becomes

(bIJ+ ZI,1 3) (b, + ZA = (bl,2 + 1,2 3) (b.,2 + Z,293),

1<1•m<n. (7)

Expanding and simplifying, we obtain

Zl,lzm, = dim + Z,2Zm,2, 1 2 1 m < n. (8)

Equivalently, we may write Eq. (8) in the form

'ktm = 0, (9)

Thus the rigidity assumption on the configuration a is equiv-
alent to the system of equations

(10)

in the xij, yiy, and zij, for which ,6 and the fi1, are as in Eqs.
(6) and (8). These equations define the distinguished con-
figuration locus E in (R 3)2n. We can also view Eqs. (10) as
equations in the unknowns z 1,1 whose coefficients depend on
the premise b. The viewer, given a premise b, would ideally
solve the resulting system for the z, 1, thereby computing a
rigid structure compatible with the premise. We now
present the mathematical results that describe to what ex-
tent such a computation is possible.

Let 1 p < q < r n be any three distinct indices. We set

[dpp dpq dp,r-

fp,q,r = det dqp dqlq dq,r I
drop drq drr

(11)

where the dam are as in Eq. (9). (Note that since dm = d,
the above matrix is symmetric.) The fpql, may be viewed as
polynomials in the xi j and yi j and hence as functions of b E
(R2)2n. We will first prove the following proposition.

Proposition 1

A necessary condition for the system of Eq. (9): kI,m = 0
arising from a given premise b to have a solution in the zij is
that all the fpqr, as in Eq. (11), vanish on the coordinates of
the bj terms.

In other words, the distinguished premise set S, which is
the image by r of the distinguished configuration set E c
(R3)2n, is contained in the locus in (R2)2n defined by the
equations fpq = 0. We show below that the criterion of
proposition 1 may be augmented to yield a necessary and
sufficient condition that is computationally effective. In
other words, beginning with proposition 1 we derive an effec-
tive computational procedure for determining whether any
given premise, i.e., any given collection of image data, is
compatible with a rigid 3-D interpretation. Note that such
a necessary and sufficient condition that the image data be
compatible with a rigid 3-D interpretation is only a neces-
sary (but not sufficient) condition that the image data actu-
ally came from a rigid object in R3. This is because, for s S
= 7r(E), r-'(s) contains configurations not in E as well as
configurations in E. In this sense, when the observer infers
that a distinguished premise arose from a rigid object the
observer is expressing a bias toward rigid interpretations.

Proof of Proposition 1

We want to solve Eq. (9) for the z,j, given values for the x,
and Yij. Thus we assume that values for the d,n are given,
and we will try to solve the corresponding equations film = 0
for the z.

To simplify the notation, we shall use w in place of z,1 and
z1 in place of Z1,2 - With this notation, we want to solve the
system

12•1<5 m5 2n.

, = 0, 01, = , 1 < 1, m < n
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1= 2- 2 + dll = 0,

(0I,m = Zizm - wlwm + dl,m = 0, 1 < m (12

for the z's and w's, where the dlm are now fixed numbers.

It will be helpful to introduce new coordinates

u= z +w1 , V = z1 -wI. (13

In terms of these coordinates, Eqs. (12) become

q11i, = UIv1 + dj,1 = 0,

= ulvm + umvl + 2dim = 0, 1 < m. (14'

Let us assume temporarily that

dl~l 5-: 0, 1 =1, ... n.

It follows from 0b,1 = 0 in Eqs. (14) that VI #d 0.

divide the equation bl = 0 by VI to obtain

ul =-dll/vl, 1 = 1, .. , n.

Thus we

Substituting this into 01b,m = 0 (1 < m) yields

-dl,lvm/vl - dmmvl/vm + 2di,m = 0,

which (after multiplication by the nonzero quantity vvm)

is equivalent to

d ,IVm
2 + dmm V 2 -2dmivm = 0. (17)

Any solution to Eq. (17) for the v's for which no v is 0,

together with the corresponding values of the u's from Eq.
(16), gives a solution to Eq. (14). We seek necessary and

sufficient conditions for such a solution to Eq. (17) to exist.

For this purpose we first note that the left-hand side of
Eq. (17) factors:

dmmVi
2

+ dllvm
2

-
2
djmVivm = dmm( v - al,m+vm) (VI - a,r-vm),

where

al,.+ = [d1 + (dlm2
- dl,ldm,m)112]/dmm,

a = [d ,m (dl,m 2 -dlld M) /211dm.

If these equations are linearly independent, they imply that

Vp = 0 Vq = 0 V Or = 0;

but then these v's cannot be a solution to our original system,
for we seek solutions for which no vi is 0. Thus we find that,

under assumption (15), a necessary condition for the original
system [Eq. (14)] to have a solution is that, for any p < q < r
as above, there exists a choice of ap,q, aq,r, and apr such that

Eqs. (21) are linearly dependent.
It is now evident that the linear dependence of Eqs. (21) is

equivalent to

ap,qaq,r - ap,r = 0 (22)

(15) Lemma 1

For given p < q < r, the product of all eight left-hand sides of
e can Eq. (22) (obtained by taking all possible choices ap,q = ap,q+

or ap,q = ap,q , aq,r = aq,r+ or aq,r = aq,r-, and ap,r = ap,r+ or

(16) ap,r = ap,r ) is

(16d p 2/dq q2drr
6 )fpqr.

Proof
Lemma 1 may be proved by direct computation. (We first
obtained this result by using MACSYMA, but it is possible, if
a bit tedious, to do it by hand.) I

Therefore, since we are assuming that the dll are nonzero,
saying that fp,q,r vanishes is equivalent to saying that, for
some choice of values ap,q+ or ap,q- for ap,q, Eqs. (21) are

linearly dependent. Hence the vanishing of fp,q,r is neces-
sary for Eq. (17) to have a nonzero solution; so we have

proved proposition 1, under the assumption that no dl l = 0.
We now eliminate this assumption. Suppose that some

dpI = 0 for some p, and that the Eqs. (14) have a solution ul,

.. , un; VI, . V. ,vn. We then have the equation

0p = upvP- dpp = 0,

i.e.,

uPvP = 0,

so that either up or vp must be 0, and the other may be

arbitrary. Suppose, then, that up = 0 and vp is arbitrary.
(Since the equations are symmetric in u and v, the case Up = 0

may be treated analogously.) For any q, the equations

kplq =UpVq +UqVp + 2dpq=O 1 q <n,

reduce to

UqUp + 
2
dpq 0.

Now, if vP is also zero, we see that dp,q = 0 for all q. However,

in that case, the first row in the matrix in Eq. (11) is a zero

row, so that fp,q,r is necessarily zero. If, on the other hand, Vp

5- 0, we conclude that, for any q,

(18)

Thus, under our assumption that dl,l d 0 for all 1, Eq. (17) is

equivalent to

(V1 - al m vM)(v1 - ai,m vm) = 0, 1 < m. (19)

To say that (v1, .v. , vn) is a solution of this system means
that one of the linear factors in each of the (2) forms of Eq.
(19) vanishes. In other words, the desired solutions are
solutions to a system

VI - a,mVm = l, < ,

in which no vs is 0 and in which al,,m = al,m+ or al,m- [so that

there are 2(q) such systems in general].

Now, suppose that we are given a solution vl, . v. , , to

Eq. (20) for some choice of the ai,m's. For any three distinct

indices, say, p < q < r S n, we can consider the subsystem of
Eq. (20) consisting of the three equations

VP q~q = 0,

Vq - aq,rVr = 0

(20)

uq =-2dpq/vp. (23)

Now, for any q and r, we can use Eq. (23) to replace uq and Ur

in

'Pq,r = UqVr + UrVq + 2dqr = 0,

(21) and we obtain

Bennett et al.

)

L)

VP - aprVr = 0-



1058 J. Opt. Soc. Am. ANol. 6, No. 7/July 1989

(-2dpq/vp)vr + (-2dpr/vp)vq + 2dqr = 0. (24)

Now, from the equations described by

ckq,q = Uqq + dqq = 0,

we can replace vq by -dqqluq. By using Eq. (23) again, we
get

vq = dqq/(-2dp q/vp) = dqqvpl2dp q. (25)

After using Eq. (25) to replace vr and vq in Eq. (24), we obtain

-dpqdrr/dpr -dprdqqldpq + 2dqr = 0.

Multiplying by dpqdpr, we obtain

-dpq 2drr dpr2dqq + 2
dpqdp rdq r = 0. (26)

Now, recall [from Eq. (11)] that

dp,p dpq dpr-

fp,q,r = det dqp dq,q dqr .
drp dr,q drr

Given our assumption that dp,p = 0, we can check that fp q r is

the same as the left-hand side of Eq. (26), i.e., fp,q,r = 0.
On the other hand, if p, q, and r is three indices for which

none of dpp, dq,q, and dr,r is 0, then the original proof (applied
to the three-vector subsystem consisting of these indices
alone) gives the desired result that fp,q,r = 0. Thus in any
case all the fp,q,r are 0. This completes the proof of proposi-
tion 1. I

Beginning with this result, we want to develop a sufficient
condition for Eq. (17) to have a nonzero solution. To this
end, suppose that all the fp,q,r vanish; then, for each choice of
p < q < r, there is a choice for the ap,q, aq,r, and ap,r so that
the system of Eqs. (21) is linearly dependent and conse-
quently has a nonzero solution. However, if n > 3, there is
more than one choice of such p, q, and r. In particular, for a
given p and q, there is more than one value of r for which ap,q
satisfies Eq. (22). For example, in the case in which n = 4,
assuming that all the equations fp,q,r = 0 are satisfied, we will
have both

a 1 ,2a2,3 = ae1 ,3

for some choice of values of a 1,2, a2,3, and a1 ,3 and

a, 2 a2,4 = a 1 ,4

for some choice of values of al, 2, a2,4, and al, 4. However, the
choice of value of al, 2 for which the first equation holds may
not be the same as the choice of a 1,2 for which the second
equation holds. In other words, when n > 4, the fact that
fp,q,r = 0 for all p < q < r does not imply that there is a single
choice of value for each ap,q with which Eq. (22) holds for all
r. It might occur, for example that

+ + _
ae1 ,2 a 2,3 = 1 ,3 ,

whereas

_ + _

a1 ,2 a2,4 = a1 , 4 ;

in this case there is no single choice for al, 2 SO that, with this
choice, Eqs. (21) are linearly dependent for both (p, q, r) =
(1, 2, 3) and (p, q, r) =(1, 2, 4). We cannot expect, then, that

there is any choice of the apq, depending only on p and q and
not on some particular (p, q, r) triple, so that for these fixed
choices all the six equations of the form of Eq. (20) for 1 < <
m < 4 have a common nonzero solution in V1 , V2 , V3 , and V4.

Thus, assuming that all the fp,q,r vanish, we consider the
following additional condition.

Condition 1

For the given set b1,1, .. , bn,2 1 of image vectors, and for
each pair of indices 1 < 1, m <• n, there is a single fixed choice
for a,m (namely, ai,m+ or am-) so that for each p < q < r the
Eqs. (22) hold for the given fixed choices of ap,q, aq,r, and apr.

If condition 1 holds, consider the corresponding system of
equations of the type of Eq. (20) (in which the choices of the
coefficients al,m are the given fixed ones); then any of the (2)

equations in this system [Eq. (20)] is a consequence of just
the equations

V- al, 2V2 = 0,

V1 - a, 3 V3 0,

V1 - lnn 0 (27)

This is a system of only n - 1 (independent) linear equations
in n unknowns, so it has a one-dimensional (1-D) set of
solutions; in particular, it has a nonzero solution v, . , n.
However, we note that, because of the particular form of Eq.
(20), if one of the v is 0, so are all the others, so that in a
nonzero solution none of the v equals 0. Thus we obtain a
solution to Eqs. (14), in fact, a 1-D family of such solutions.

Now we note that Eqs. (14) remain unchanged if we ex-
change the u and v coordinates, i.e., if we exchange u and ul
for each I = 1, . . , n. Therefore the solution set is invariant
under such an interchange. Thus, corresponding to the 1-D
family of solutions above, there is another such family that is
obtained by exchanging the u and v coordinates in the first
family. Thus we make the following proposition.

Proposition 2

Necessary and sufficient conditions for the existence of a
solution to Eqs. (14) are that all the fp,q,r vanish and, more-
over, that condition 1 be satisfied. In this case there are two
1-D families of such solutions, which are related by exchang-
ing the u and v coordinates.

We remark that it is a relatively inexpensive computation
to check condition 1, given that the fp,q,r terms vanish. In
fact, for each p, q, and r it can be determined explicitly which
choice of ap,q makes Eq. (22) work, and then it becomes
evident whether condition 1 holds. Even for large n, one can
envisage a parallel processor that performs the necessary
verifications easily.

We believe that it is possible to express both of the condi-
tions of proposition 2 as a single set of polynomial conditions
similar to (but more complex than) the vanishing of the fp,q,r;
however, we have not yet found such conditions. In any
case, for computational purposes the conditions of proposi-
tion 2 are effective, for to solve the system of Eq. (20) explic-
itly (i.e., to produce explicitly the one-parameter family of
solutions) one must use actual values of the ap,q, so the
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verification of condition 1 is already necessary for the com-

putation.

Theorem 1

Necessary and sufficient conditions for the existence of a
rigid interpretation for the image data b are that the fp q,r

vanish and that condition 1 be satisfied. In this case there is
(generically) a unique 1-D family of interpretations.

Proof

A rigid interpretation for the image data is a solution to Eqs.

(10), consisting of the equations 01i,m = 0 and the equation 46

= 0. According to proposition 2, the conditions in question

are necessary and sufficient for the existence of solutions to
the equations 0 ,m = 0 alone, and there are then two one-

parameter families of such solutions. The proof of theorem
1 is accomplished by showing that, of these two one-parame-

ter families, the solutions in exactly one of them always
satisfy the additional equation ,1 = 0.

To see this, recall that t = 0 means

~x1 1 Y1,1 Zi [ X1 ,2 Y1,2 1,2

det X2 ,1 Y2,1 Z2 ,1 = det X2,2 Y2,2 Z2,2

Lx3,1 YU 1 Z3,1] x3 ,2 Y3,2 Z3,2]

On the other hand, when we introduced the equation i = 0,
we noted that the equations 'ki,m = 0 [for (1, m) = (1, 2), (1, 3),

(2, 3)] already imply that these determinants differ at most
by a sign. Therefore, if the determinants are not equal, they

become equal if each z1,1 is replaced by -zl,l (for I = 1, . . , n)

and each z1,2 is left as is. Now, this new set of z's is still a

solution to the equations k1,m = 0 [cf. the original form, Eq.

(9), of these equations]. Moreover, we check that this trans-
formation of the z's, when expressed in terms of the (u, v)

coordinates, corresponds to the exchanging of the u and v.
Therefore, from proposition 2, the transformation corre-
sponds to moving from one of the two one-parameter fam-

ilies of solutions to the 'ki,m = 0 to the other. Now the values

of the determinants in the expression above are clearly con-

tinuous functions of the entries and hence remain the same
as we move within any one of the one-parameter families. It

follows that one of these families consists of solutions that
satisfy the determinant equation and the other does not.
Thus we conclude the proof. I

3. GEOMETRY OF 7r1'(s) n E

We begin with a point s of S, and we consider the one-

parameter family that contains all those rigid structures
compatible with the image data b represented by s. Alge-

braically, the members of this family correspond to solutions
of the linear Eqs. (27) for (v1, ... , vn): namely, for every

such solution we define (uM, ... , un) by ul = -di,/v1, and
then (considering here, for simplicity, only the case in which

d1,1 5 0, for all 1) we get the unknowns w, and z1 (which are

simplified notations for the original depth coordinates z1,1
and Z1,2) from

z, = (u + v1)/2, w, = (u - vl)/2. (28)

Now since Eqs. (27) are homogeneous and linear, if (v,, . . ..

vn) is one solution and if t is any nonzero number, then (tvl,

... , tVn) is another solution, and in fact all solutions are

obtained in this manner for some t. Thus all solutions are
obtained from a given one by a scaling of the v's, but this

does not correspond to a scaling (in the usual sense of the
word) of the associated rigid configurations. In fact, when
the v's scale by the factor t, the u's scale by t, so that the
original z coordinates of the points in the configuration
change [by Eqs. (28)] from [(u + v)/2, (u - v)/2] to

(u + t2 v)/2t, (u - t2v)/2t. (29)

We will show that this corresponds to a nontrivial variation
of the geometry of the configurations; the variation, howev-
er, occurs within constraints that are clearly describable, as
we show explicitly below.

Before analyzing this variation for general t, we can see

immediately that the change that results from multiplying
the v's by t = -1 corresponds to the reflection of the configu-
ration in the image (x, y) plane. In fact, it is evident from
expressions (29) that the effect of t = -1 is simply to change
the signs of the z coordinates. Thus the one-parameter
family of interpretations here contains the image-plane re-
flection ambiguity that is ubiquitous in structure-from-mo-
tion theories based on orthographic projection. Tradition-
ally in such theories, for appropriate image data the 3-D

interpretation is unique up to this reflection ambiguity; this
occurs, for example, in the cases of rigid interpretations

based on three views of four points2 and fixed-axis rotation
interpretations based on three views of three points.4 In the
present case, the one-parameter family of interpretations
has two connected components, namely, t > 0 and t < 0;
these sets are disconnected because t = 0 does not corre-

spond to a solution of our equations (if d1,1 0). Thus the

usual twofold reflection ambiguity expresses itself here as
two connected components of a 1-D ambiguity.

We now present the general analysis. To review our nota-
tion, suppose that s is a point of S that corresponds to image
data consisting of 2n vectors b1,1, . . , bnl; bl,2, . *, bn,2 in
R

2. We denote the coordinates of bij by (xi , yi,j). A rigid
interpretation for these data consists of 2n vectors al,,, .. . ,
an,1; al,2, . . , an,2 in R3 , such that the coordinates (xij, Yi,j,

Zi,;) of aij satisfy Eqs. (10); thus the rigid interpretation
arises as a solution of Eqs. (10) for the zij's when the (xij,

yi,j) are given. We also use the notation aij = bij + Zije 3 ,

where P3 is the unit vector in the z direction. For simplicity
we denote Z1,2 by zj and zl,l by wi, and we let v1 = zi - wl.. We

further recall [Eq. (22)] that, in terms of the v's, the exis-

tence of the solution is equivalent to the existence, for each 1
and m, of numbers aI,m such that v1 = al,mvm and such that

ap,qa'q,r = ap,r for each p, q, and r.

Now, since aij and ai,2 are the successive positions of the
ith point in the configuration, it follows that for any 1 < 1 <
m < n the axis of rotation of the configuration is collinear
with the vector

(a, 2 - al ,,) X (am,2 - am,) = [(bl,2 + Z, 2 e3) -(bl,l + ZIJel3 )]

X [(bi, 2 + Z, 2 e3) -(bi, 1 + Zm,1P3)].

From our notation vi = z - w, = Z1,2 - zl,l and vm = Zm,2 -

zm,1, this becomes

-[(bl,2-bll) + V1P3] X [(b.,2- b.,1) + v4 3];

since v1 = c,mvm, we may write it thus:

Bennett et al.



1060 J. Opt. Soc. Am. A/Vol. 6, No. 7/July 1989

[(bl,2 - b) + a,mVm3] X [(b, 2 - bm,l) + v4 3].

Expanding this expression, we obtain

01,2- b1,1) X (b, 2 - bmw,)] + [(b,2 - b) X Vm43I

+ [a1 ,mVm43 X (bm,2 bm,)].

Let us divide and multiply the second term in this sum by

(b,2-bu, 1) X (bm -bmb,)] + [(1/ajl,,)(bl,2-bl ,1) X (al,mUm#3)]

+ [mvme3 X (bm,2 - bm,l)].

After rearranging, we obtain

at,m~VA3 X [(bm,2 - bmal) - (1/al,)(bl,2 - bl-1)]

+ [(b, 2 - bl) X (b, 2 - b,)]. (30)

Note that for < m we may define am,l = 1/alm; this is
consistent with Eq. (20). We may then denote

P = 3 X [(bm,2 - bm,l) - (1/al,m)(bl, 2 - b]

= e3 X [(b., 2 - bm,l) - a,I(bl, 2 - bll)],

c = (b, 2 - bl) X (b, 2 - bm,l), (31)

where p and c are fixed vectors that depend only on the
image data; p lies in the (x, y) plane, and c is collinear with
the z axis. Thus, after replacing almum by in expression
(30), we obtain the following result: The axis of rotation of
the configuration is collinear with the vector

c + vIp.

z

/ kx,y) plane /

Fig. 4. Axis of rotation of the rigid interpretation (for the distin-
guished premise b), which corresponds to the parameter value t and
is collinear with the vector c + tp: all the axes lie in the plane
determined by c and p.

(32)

Of course expression (32) varies with VI, which represents the
particular interpretation. We know that the set of all such
interpretations is obtained, as Vl assumes all possible non-
zero real values. We thus obtain

Theorem 2

Let s be a point of S corresponding to some distinguished
image data b = bsj. Choose any numbers 1 < < m < n,
and let the vectors p and c be as in Eqs. (31); then, for any t
idt 0 in R, the rigid interpretation corresponding to = t is a
configuration whose axis of rotation L is collinear with the
vector

C + tp. (33)

All the axes are lines through the origin in the plane
determined by p and c; this is a plane perpendicular to the
x-y plane (see Fig. 4). As t varies, all possible such lines are
realized, except for the line perpendicular to the (x, y) plane
(which corresponds to the value t = 0, which is not permissi-
ble) and the line in the (x, y) plane (which corresponds to t =
+co). In Fig. 5 we illustrate several cases of configurations
corresponding to various values of t for fixed image data; the
configuration is specified by the ellipses that are the projec-
tions into the (x, y) plane of the 3-D circles of rotation.

We now make various computations that are concerned
with how the geometry of the configurations varies with t.
First, we summarize briefly the results thus far: we are
interested in rigid interpretations a consisting of the 2n
vectors a1 ,,, .. , a, 1; a,2, .. , a, 2 in R 3. With our usual
notation, we suppose that al = (xl,i, Yl,i, zi), and we denote l

M

...... ......-.. -........................................................ ...

~~~~~~. .... .... .............. ;;

Fig. 5. Ellipses for the interpretations corresponding to two dis-
tinct values of t (for the same image data bij,).

= Z1,2 - Z,1, l = Z,2 + ,1. If our image data (which consist of
the x and y coordinates) are distinguished, i.e., if the data lie
in the locus S in (R2)2n, then we can find numbers al,m as in
Eqs. (18): for each (, m), = mvm. There is then a one-
parameter family of possible rigid interpretations that cor-
responds to the one-parameter family of solutions of the
system of linear equations [see Eq. (20)] for the v's. If (vl,
. . . , Vn) is a solution, so is (tv, . . , tvn) for any nonzero t.
Thus the set of interpretations is parameterized naturally by
nonzero values of VI for any fixed 1. However, we adopt the
convention of letting v = t. We can then view each vl as a
function of t, namely, v(t) = al,1t; v(1) = 1.
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Axis of Rotation

For any I d m we can define vectors p and c as in Eqs. (31),

and then for any nonzero value of v1 there is a unique inter-

pretation a whose axis of rotation is collinear with the vector

vlp + c. If we use (1', m') instead of (1, m), the corresponding

vectors p' and c' are different, but vl'p' + c' will be collinear
with v1p + c [provided that vl, and v1 are components of the

same solution vector v1, . . , vn of Eq. (20)].

Thus, in order to have a standard representation for the
axis of rotation, we can let = 1 and m = 2 in theorem 2, and

we obtain that, for some given image data bl,i = (xij, yl~i), the
axis of rotation of the configuration for the parameter value
v1 = t is collinear with the vector [recalling Eqs. (31)]

te[(b2,2 - b2,1) - a2,1(bl,2 - bll)]

+ [(bl,2 - bl,l) X (b2,2 - b2,1)] = t, - tB 2 + Ce3,

where

A = a 2 ,1(Y1 ,2 - Y1,1) - (Y2,2 - Y2,1),

B = a2,(x, 2 - x1,1) - (x2,2 -X2,1)

C = (X,2 - X,1)(Y2,2 - Y2,) - (X2 ,2 - 2,)(Y, 2 -Y11)-

(34)

We will denote the unit vector in this direction by P(t), so

that

P(t) =
tA, - tB 2 + Ce3

[t
2
(A

2
+ B

2
) + C

2
]1/2

=() 2At2(Ax,1 - By,,) + ACU! - ACt2 1

2[t2
(A

2
+ B

2
) + C

2
]

= -2Bt2 (Ax,, - By,,,) - BCa + BCt2 1

C2 (1)(t) = - 2[t
2
(A

2
+ B2

) + C
2
]

(1) 2Ct2 (Ax,, - By1,,) + C2
1 t2-

2t[t2 (A + B2) + C
(38)

where A, B, and C are as in Eqs. (34) and where al = ut(1) and

D = v(1).

It follows that the projection into the image (x, y) plane of
the Ith center of rotation is the point [c(l)(t), c2(l)(t)] given by

2At2(Ax,,,- By, 1 ) + ACal - ACt2o1

2[t2
(A

2
+ B

2
) + C

2
]

-2Bt2 (Ax1,, - By,,1) - BC + BCt2Dv

2[t2 (A2 + B2
) + C

2]
(39)

The dependence of this point on the parameter t is illustrat-
ed in Fig. 6. The point [c

1
(l)(t), c2 (fl(t)] is the center of the

(35)

Centers of Rotation

Now suppose that a(t) is the interpretation corresponding to
the parameter value v1 = t; then the center of the rotation of
the point al,(t) [into the point al,2(t)] is the projection of
a1,1(t) onto the axis of rotation, i.e.,

(36)

We now compute this. We have

a 1,1 (t) = [xll, Y 1 , z 1 ,,(t)J = 1x1,l, yl1 , [ui(t) - vl(t)]/2}.

Let us denote

al =uJ(l)

DJ vJ(l);

then from expressions (29) we have

[ul ( l) - v1]/2 = (al - OD)/2t,

so we may write

al1,, = [X1,,, y 1 (al - t
2
D)/2t].

Then, using the expression for (t) given in

obtain the following proposition.

(37)

Eq. (35), we

Proposition 3

With our usual notation, if a(t) is the rigid interpretation
corresponding to the parameter value v = t, then for any I =

1, ... , n the center of rotation of all(t) into a 2(t) is the

point (cl( 1)(t), c2(Q)(t), c3(')(t)] of R3 given by

Fig. 6. The actual centers of the ellipses for an interpretation
corresponding to a small value of t (t = 0.25) are the ci, marked with
filled circles; the limiting projected centers as t -- are the di,
marked with open circles. Note that the ellipses are almost circular
for this value of t but there is still a clear discrepancy between the ci
and the di.

Bennett et al.

[aij(t) -P(O]NO.



1062 J. Opt. Soc. Am. A/Vol. 6, No. 7/July 1989

ellipse in the image plane that is the projection of the circle
of rotation in R3 of the point al,(t) into the point al,2(t); of
course, for any t the points aj,1(t) and al,2 (t) project to the
image points b1,1 = (xl,i, yi,1) and b1,2 = (, 2 Yl,2). As t varies,
the projected centers are constrained to move on the line M
generated by p [as in Eqs. (31)], since this line is the common
projection of the axes of rotation for all t.

We note that for generic image data (for which d1,1 szd 0),
the image points bl,l and b1,2 cannot be equidistant from the
projected center of rotation [cl(fl(t), c2(1)(t)] for any permissi-
ble, i.e., nonzero, value of t. In fact, if they are equidistant
from this projected center, then the ellipse is a circle so that
the axis of rotation points in the z direction; but this corre-
sponds to t = 0, a contradiction. However, we have the
following proposition.

Proposition 4

As t - 0, the axis direction P(t) approaches the z axis, and

the center of rotation [c1)(t), c2(
1 )(t), c3(1 )(t)] (for any 1)

approaches along this axis. However the limiting position
of the projected center of rotation [expression (39)] is the
unique point on the line M that is equidistant from the
image points b1,1 and b1,2.

Proof

That the axis direction approaches the z axis as t - 0 follows
from theorem 2. That the center of rotation goes to as t -
0 follows from the fact that c3(l)(t) X as t - 0; this fact is
immediate from Eqs. (38).

To prove the latter assertion, we will consider the case in
which I = 1; this is sufficient, since the points can always be
renumbered so that the former Ith point becomes the first
point in the new ordering. It is then evident from expres-
sion (39) that the limiting position of the projected center is

d = (Aa 1/2C, -Ba 1 /2C). (40)

We then compute

lb,1 - d112 -lb 1,2 - d2 = [(xl,l - AaI/2C)2+ (y1,, + Ba1/2C32]

- [(x1,2 - Aal/2C)2 + (Y1,2 + Ba 1/2C) 2].

Expanding and simplifying, we may write this expression in
the form

(x1, 2 -x1, 2
2) + (yl,1 - Y1,2 )

+ (x1,2 - x1 ,1)Aa, - (Y1,2 - y,,)Bal (41)
C

If we substitute in for A and B by using Eqs. (34), the
numerator of the second term in expression (41) becomes

Bennett et al.

_C, -X1,2 ,,1)(Y2,2-Y2,,) -(X2,2-X2,1)(Yl,2 -Y1,)] = -a 1 C.

Hence the second term in expression (41) is just -1; i.e.,
expression (41) is

(x1 2- x 1,2
2
) + ( 1,12 - Y1, 2

2
) - 1.

Noting that 0l = v(1) = 1 by convention, we may write this
as follows:

(X1 2-x, 2
2 ) + (yl,1

2 - Y1,2
2) - ZF

But in configuration a(1) we have u1 = Z1,2 + z1,1, D1 = Z1,2 -

z1,1, so that ap1 l = z1,12 - 1,22. Thus expression (41) is

x1 2 + y1,1
2 + Z,1 - x1,2 - Y1,2

2 - 1,22

= la,,,(1)12
- lal, 2(M)12 = 0,

since configuration a(1) is rigid. This concludes the proof of
proposition 4. I

Angle of Rotation

We know that, for each t d 0, there is a rotation through
some angle 0(t) about an axis collinear with the vector P(t);
this rotation carries a, 1(t) into al,2(t) for each I = 1, . . , n.
We now study the variation of the angle 0(t) with the param-
eter t.

Let R(t) denote the matrix of the rotation in question for
the parameter value t. We can then express the angle 0(t) of
this rotation by the formula

cos[0(t)] = Tr R(t) - 1
2

(42)

where Tr denotes the trace of the matrix, i.e., the sum of its
diagonal elements. (Since the trace of a linear map is inde-
pendent of the coordinate system, this formula may be
proved in general simply by verifying it in the case in which
the axis of rotation is, say, the z axis.)

Suppose that a(t) is a rigid interpretation, consisting of
points al,(t) = (xl,i, yl,, zi i), 1 = 1, . . , n; i = 1, 2; note that zl,
depends on t, but we exclude this from the notation for the
sake of simplicity. The matrix R(t) then is specified unique-
ly by

Yl,2 = R(t)IY,

LZ1,2J Zl,,

for = 1, 2, 3. Thus, if we let

x 1, x2 ,i X3,

T 1(t) = Y1,i Y2,i Y3,1

[Z1,i Z2,i Z3,iJ

i = 1, 2,

81(X1,2- 1 ,1)[a2 , 1 (Y1,2 - Y1,1) - (Y2,2 - Y2,1

- al(Y1 ,2 - Y1,1)[C2,1(x1,2 - x,1) - (x2 ,2 -X2,01]

When we expand this, the a1ca2,1 terms cancel, and the ex-
pression is simply

then R(t) is specified uniquely by the
R(t)T,(t) = T 2(t); i.e.,

R(t) = T 2 (t)T1-(t).

matrix equation

(43)

From this, we compute directly that
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Tr[R(t)] =

(X,1Y2,1 - 2,j1,y)Z 3 ,2 + (,Y 2 ,2 - 2 ,2y1,1)Z3,1 + (, 2y 2,1 - 2,y1,2)Z3,1 

+ ( 3,Y,1 - X,,Y 3,)Z 2 ,2 + ( 3,1Y,2 - Xl,2y3,1)Z2,1 + ( 3,2 y1,1 - Xl,ly, 2 )Z2,1

+ (X2,1, - X,1Y 2, 1)Z3,2 + ( 2,1Y3, 2 - x3, 2y2 1)l, + (X2,2Y3,1- X3,1 y2,)Zl,l

11Y21- X2,,y,,)z 3,1 + ( 3,,Y, - X,Y 3,,z 2,1 + ( 2,,Y, -X3Y21ll

To simplify the notation, let us write this in the form

/ F1,,z3,2 + F, 2z3,1 + F,3Z3,

+ F2 ,1Z2,2 + F2 ,2 Z2 ,1 + F2,3Z2,1

+ F3,lZ,, 2 + F3,2 Z1,1 + F3 ,3Z1,1,,

D3Z3, + D2 Z2 ,1 + Dlzll
(44)

where F1, = (x,, 1 y 2,1 - 2,ly1,1), F1,2 = (X1,1Y2,2 - 2 ,2y1,1), etc.
and D3 = (xl,Ly2,1 - x 2,Ly,1,), etc. We now express the depen-
dence on t by substituting zl,l = (C1 - t

201 )/2t, Z1,2 = (a1 +

t 2ol)/2t into expression (44), where, as stated above, al =

ul(l), DI = vul). We get

[ F1,1(a3 + t2D3)/2t + F1,2( 3 - t2 v3 )/2t + F1,3( 3 - t2 ,3)/2t1
+ F2,,(a2 + t 2D2)/2t + F2,2 (a2 - t2 o2)/2t + F2,3(a2 - t2D2 )/2t

+ F3 , (a, + tD 1)/2t + F -,2 (a t2 o,)/2t + F3 ,3 (,- t2 o,)/2tJ

D3(a3 - t2D3)/2t + D2(a2 - t2o2)/2t + D1(al -t2 )/2t

Here we may collect terms and cancel the common factor 1/

2t in the numerator and denominator, to obtain

[ (F1,1 + F1,2 + Fl,3)a3 + (F2,1 + F2,2 + F2 ,3)a2 + (F3,1 + F3 ,2 +

+ (F1,, - F1,2 - F, 3)t2 D3 + (F2,1 - F2,2 - F2,3)t
2 D2 + (F3,1 - F3,2

to 0. For this purpose we may simply differentiate (A +
t2B)/(C + t2D) and set it equal to 0, to obtain

2tB(C + t2D) - 2tD(A + t2B) = 0,

which simplifies to become

t(BC-AD) = 0. (49)

Thus, for generic image data compatible with rigid inter-
pretations, the only possible extremum occurs when t = 0,

but this is not a permissible value of t, since it corresponds to
no actual rigid structure. However, it is a minimum of the
function of t given in Eq. (48), and as t goes to jo the angle

(45)

F 3,3)U1Z I

-F,3t2D

(Dial + D2P 2 + Dfa3) - t2(DD1 + D2V2 + D3 3)

Thus we have found that

Tr R(t) = (A + t2B)/(C + t2D), (47)

where

A = (F1,, + F1,2 + Fl,3)a 3 + (F2,1 + F2,2 + F2,3)u2

+ (F3,1 + F3,2 + F3,3)all

B = (F,1 - F1,2 - F, 3)D3 + (F2,1 -F 2,2 -F2,3)2

+ (F3,1 - F3,2 -F3,3)1

C = Dial + D2a2 + D3A 3 ,

D = -(Djoj + D2A 2 + D3A 3).

Note that the quantities A, B, C, and D depend only on the
image data (and not on t).

Finally, we obtain

cos[0(t)] = (A + t2 B)/(C + t2D) - 1,
2

(48)

where A, B, C, and D are independent of t.

Our goal here is to determine whether the geometric quan-

tity 0(t) attains any extrema in our one-parameter family of

configurations. Accordingly, we differentiate the right-
hand side of Eq. (48) with respect to t and set the result equal

0(t) increases monotonically to 1800. In fact, we make the
following proposition.

Proposition 5

As t increases through positive or negative values, the angle
0(t) is strictly increasing: it attains no extrema in the family
of rigid interpretations for the given image data. The limit-
ing value of 0(t) as t - 0 may be described as follows: For

any 1 = 1, ... , n, it is the angle subtended at the limit
position as t - 0 of the lth projected center by the image
points b1,, and b1,2 (these points are equidistant from that
limit position by proposition 4).

Radii of Rotation

The radius of rotation r(M (t) of the Ith point in the configura-
tion a(t) is the distance of, say, al,,(t) from the center of
rotation [cl(l)(t), c2()(t), c3(

1)(t)]. Thus

r(1)(t)2 = [cl(l)(t) - x 1,,]
2 + [c2 (')(t) - yl,1]

+ [c3(1)(t) - 2 t * (50)

We have derived an expression for the c/(1)(t) terms in Eqs.
(38), so we can insert this into Eq. (50) to get a computable
expression for r(l)(t) 2 as a function of t. We find that this

function has a local minimum at t = 0 and has several other
local minima at certain nonzero values of t. However, there

(46)

. .
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is not, in general, a single nonzero value of t that is simulta-
neously a local minimum of the functions r(l)(t) for the dif-

ferent indices = 1, .. , n; this may be seen by checking a

generic example.

We may summarize the preceding analyses as follows:
The one-parameter family of rigid interpretations (for some
given distinguished image data) has no feature points:
there is no member of the family for which there is attained
an extremum of the angle of rotation. Similarly there is no

structure in the family for which the radii of rotation of all
the points in the configuration have simultaneous extrema.
However, in the limiting case corresponding to t = 0, these
quantities are minimized. This case does not represent an
actual rigid structure but is a virtual structure, which dis-
plays the limiting geometric properties of the family, and in
that sense it may be regarded as a token of the family.

The fact that there is no mathematically singular member
of the family itself means that, of all the possible rigid inter-
pretations compatible with the image data, there is no ca-
nonical choice of an actual rigid interpretation for a subject

who is presented with those data. Yet there is no doubt that
the subject sees a rigid object, in the sense that the subjective

experience of rigidity is highly correlated with the event that
the image data permit a rigid interpretation (i.e., the event
that the image data lies in the distinguished premise set S.)
This raises the question of which, if any, of the actual rigid
structures is being seen. Moreover, since the virtual struc-
ture corresponding to the limiting case in which t = 0 is so
strongly mathematically singular with regard to the family,
we might ask whether it plays any role in the perceptual
representation.

In this regard it would be desirable to design, if possible, a

psychophysical experiment that would produce significant
statistics for the image-plane projection of the centers of
rotation perceived by the subject. For example, the sub-
jects' task might be to locate each of the n centers of rotation
for a given image configuration on the display screen. One
interesting possibility is that the perceived centers of rota-
tion may be those that correspond to the limiting value t = 0,
even though this would be incompatible, in general, with the
holistic percept of rigid rotation (unless the image display is
consistent with an interpretation of rotation about an axis
parallel to the viewing direction, and we may assume that
this is not the case). However, if we are to draw any conclu-

sions here, the experiment must produce data samples with
rather small variance, and it remains to be seen whether this
can be accomplished.

On the other hand, regardless of whether subjects can
precisely locate individual centers of rotation, it is a reason-
able hypothesis that a given subject will display a character-
istic preference for perceiving certain members of the fam-
ily. In other words, we would expect that each subject has
an interpretation kernel; i.e., for each set of image data there
is a probability distribution on the set of rigid interpreta-
tions that are compatible with those image data. This is the
distribution of the rigid interpretations "output" by that
subject while viewing those image data. The study of this
hypothesis again poses a problem for the design of appropri-
ate psychophysical experiments, but results from pilot stud-
ies by Braunstein 2 l are at least broadly suggestive. For

example, it is evident that the structures that correspond to
large values of t (and therefore involve large angles of rota-

tion) are least likely to be seen, without effort, by most
subjects.

4. OBSERVER THEORY

In this section we recall briefly the formal definition of an
observer, in the sense of observer theory (cf. Refs. 22-24).
This definition states the structure common to all perceptu-
al inferences, regardless of their modality. Our goal in this
section is limited to indicating how the structure-from-mo-
tion inference treated in this paper is one instance of the
general observer definition. More-detailed expositions of
the motivation and philosophy of observer theory, and some
of its further developments, may be found in the papers
cited above.

An observer is a sextuple 0 = (X, Y E, S, r, ) satisfying
the following conditions (see Fig. 7):

(a) X and Y are measurable spaces.25 X denotes the
configuration space of 0, and Y denotes its premise space.

(b) E is a measurable subset of X, called the set of distin-
guished configurations; S is a measurable subset of Y, called
the set of distinguished premises.

(c) 7r: X - Y is a measurable, surjective function 2 6 such
that r(E) = S. r is called the perspective map of the observ-
er.

(d) is the interpretation kernel of 0. It provides, for
each s e S, a way to assign probabilities to measurable sets in
7r (s) n E; if A c 7r-'(s) E, the corresponding probability

-L1(s)n E

47

Fig. 7. Schematic of an observer. Y is the space of premises. S is
the distinguished premises. X is the configuration space. E is the
distinguished configurations. For each premise s E S, the conclu-
sion of the observer is a probability measure (s, ) supported on
7r'(s) n E (which happens to consist of two points in the case
illustrated).

Bennett et al.
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is denoted -(s, A). We denote by -(s, ) this assignment A

n(s, A); thus n(s, ) is a probability measure on -rz'(s) n E.

Intuitively, the premise space Y is a mathematical
representation of the set of proximal stimuli for the obser-
ver's inferences. The configuration space X provides the
syntax for the observer's perceptual interpretations; the sin-
gle configurations, represented by the elements of X, are the
atoms of the syntax. The perspective map 7r determines
what configurations are compatible with a given premise:
the configurations compatible with the premise y in Y are
those in 7r-1(y). The observer is biased: when presented

with a premise y not in S, the observer concludes only that
there is no compatible distinguished interpretation. This is
a deductively valid inference. If the premise is in S, say, s,
then its conclusion is the probability measure i7(s, ). In this
way nonzero probabilities are assigned only to interpreta-

tions in ri-'(s) n E, and in this sense E expresses the obser-
ver's bias.

We note that, in the case of a premise s in S, the observer's
inference fails to be deductively valid for two reasons. First,
the observer will assign probabilities only to interpretations
compatible with s that are also in E. However, it is possible

that the premise s arose from interaction of the observer
with a state of affairs that corresponds to a configuration in
7r'1(s) - E, i.e., a nondistinguished configuration that is
nevertheless compatible with the distinguished premise s.
Such a state of affairs (or the configuration to which it
corresponds) is a false target. The second reason why, given

the distinguished premise, the inference fails to be deduc-
tively valid is that there is, in general, not just one point in
7r'(s) r) E that is assigned a positive measure by n(s, ). In
fact, the inference is, in general, fundamentally probabilistic
and not simply a result of noise: there is a fundamental
perceptual uncertainty that corresponds to the fact that the
map 7r (even when restricted to E) is many to one.

In this paper we study a particular observer 0, namely, the
instantaneous-rotation observer. The reader will note that
we have been using the observer notation and terminology
from the outset. For this particular 0, we have X = (R3)2n
and Y = (R2)2n, and 7r: X - Ycorresponds to the orthogonal
projection of each copy of R3 onto its (x, y) plane R2 . [The

measurable structure on X and Y may be taken to be the
usual one for Euclidean spaces: o(X) is the smallest alge-

bra containing all spheres.] If we view an element of X as
two n-tuples of vectors in R 3, then the distinguished configu-

rations, E, consist of those for which the second n-tuple of
points is related to the first n-tuple by a rotation about an
axis through the origin. We can then define the set of
distinguished premises S c Yto be the image 7r(E) of E in Y.
In Section 2 of this paper we have found equations for E, and
then in Section 3 we have deduced effective conditions to
determine whether a given premise y is in S; these conditions
are a representation of the first part of the observer's infer-
ence procedure, namely, the decision about whether a pre-
mise is distinguished. In Section 3 we have analyzed the set
7r1

(s) n E: we determined that this set is parameterized by
nonzero real numbers t, etc.

According to the observer definition, the observer's con-
clusion, given the premise s, is a probability measure on this

set; the various conclusions corresponding to different
points s of S are collected in the interpretation kernel q. We

have noted in the last part of Section 3 that there is in
general no choice of a single element in 7r-'(s) that for purely

mathematical reasons is destined to serve as a canonical
interpretation, given the premise s. In other words, there is
no canonical choice for an interpretation kernel q in which
the probability measure 7(s, ) assigns a probability of 1 to a
particular point of 7r'(s) n E and a probability of 0 to all
other points in -- 1'(s) n E. For this reason, the interpreta-
tion kernel iq, such as it may be, contains nontrivial informa-
tion about the structure of the observer. The hypothetical
psychophysical studies mentioned briefly at the end of Sec-
tion 3 have as their goal the determination of q for individual

subjects or classes of subjects. In any case the psychophysi-
cal studies already undertaken (in collaboration with Braun-
stein21 ) suggest strongly that our abstract observer is, in fact,
instantiated in the human perceptual system. (This does
not mean, however, that there necessarily exists in the brain
a neural network that solves the algebraic equations that
define E and S.)

5. GROUP ACTION

We now introduce a new observer (9' whose premise space Y

is the same as that of our instantaneous-rotation observer (0
but whose configuration space X' and distinguished configu-
rations E' are natural augmentations of the corresponding
sets X and E for 0. This new observer is of particular
interest, because there is here a well-behaved group action
(defined almost everywhere) on X' and E'. It is tempting to
assert that this group action models a perceptually natural
group of mental geometric transformations of the configura-
tions. Here we content ourselves with describing the math-
ematical structure and using it to obtain results about the
geometry of our original observer 0. In particular this ap-
proach enables us to compute the dimensions of E and S,
information that is not easy to obtain directly, even from the
explicit algebraic conditions defining E and S that we have
derived in Sections 2 and 3 above.

Let n 3 be given. We use our usual notation: X =

(R3 )2n, Y = (R 2)2
n; elements of X are denoted by x or by a =

(al, . . , an,,; al,2, .. , an,2); elements of Yare denoted b =
(b, . , bn,; bl, 2 , bn, 2 ); : X- Y is defined by 7r(a) =

b, where bl,i is the projection of al i onto the (x, y) plane.

Terminology

An axis in R 3 is an oriented line A through the origin, i.e., a

line with its positive direction specified. We denote the set
of such axes by A.

The set A of axes corresponds to the set of points on the
unit sphere S2 centered at the origin: each such point deter-
mines a line through the origin, whose positive direction is
taken to be the direction from the origin to the point. Let

X'= A X X = (A, x)A e A, x e XI. (51)

X' is the configuration space of new observer 0'; an element
x' = (.A, x) of X' now is called a configuration. We call A

the reference axis of the configuration x'.
We have a natural map

f:X' -X
defined by

(.A, x) = x; (52)

Bennett et al.
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X' E'

P
p= 7rof

Y D S
Fig. 8. X' is the configuration space, and E' is the distinguished
configuration space, of the observer d'. The premise space Y and
distinguished premise space S for (' are the same as for the original
instantaneous-rotation observer 0.

then we can define

P: X' Y

by

p = r O f, i.e., p(.A, x) = 7r(x). (53)

p is the perspective map of (9'; Yis the premise space of (9' as
well as of (9.

Let E' be the set of those elements of X' in which the two
n-tuples of points (al, . ,an,) and (al,2, ... , a,,) of R3

are related by a rigid rotation of R 3 about the given axis A.

Thus

E= (A; a,, . * , a,,,, a) e X'lcail ,= ai,2;

1 2 i 2 n; where a E S0(3, R) is a rotation about.A}.

(54)

E' is the distinguished configuration space of (9'. Thus we
now use the terms distinguished configurations or instanta-
neous rotations to refer to the elements of E'. Note that

f (E') E,

where f is as in Eq. (52). We note that while f: X' - X is
infinite to one, its restriction to E' is (Lebesgue) generically
two to one. For given a point a of E for which the vectors
al,, a2,1, . . , an, are linearly independent, the rotation a of
R3 such that aal,1 = al,2 for all I = 1, . . , n is determined
uniquely (since n 2 3). Hence the axis of T is determined
uniquely as a linear subspace of R3 and therefore up to
orientation as an element of A. Thus for each e e E there
are exactly two oh's such that (.A, e) E E'; these oh's corre-

spond to the same line through the origin but have opposite
orientations.

Figure 8 illustrates schematically the relations among X',
Y, E', S, and p. These spaces and maps together define the
observer (9' (except for the interpretation kernel as defined
in Section 4).

Given an axis A and a point a E R3 that does not lie on A1,
we shall denote this by a it A. We consider subsets

XO = [A; (aij)] E X'laij 4 A V i, j,

E0 = E' n X 0'.

a limit of distinguished configurations in which no point lies
on the axis. Thus E' is the closure of Eo'.

We think of the configurations as corresponding to two
successive positions of n points (plus origin) moving arbi-
trarily in R3, together with a choice of reference axis A;
successivity refers to some particular discrete time scale. In
this sense, the set E' of augmented instantaneous rotations
consists of those configurations that are in fact (rigid) rota-
tions about their reference axis. We reiterate that every
rigid motion of n + 1 points, one of which is fixed at the
origin, corresponds to exactly two elements of E': (.A, a)
and (A', a), where A and A' are of opposite orientations.

Now, since f(E') = E, it follows that p(E') = r(E) = S.

where S c Y is the same set of distinguished premises as
before; S consists of those image data (i.e., two views of n

points) that are compatible with at least one rigid interpre-
tation. We let

So = p(Ed). (56)

We note that, since E' is the closure of Eo', S is the closure of
so.

For the purpose of our group action we first describe X0'
and Eo' in cylindrical coordinates. We represent each ele-
ment x' Xo' in the form

x= (A

V, r2,12 * * * , rn, hij, . .. , hnJ 11,2, .* * * n,1

r1,2, r2,2, * * * rn,2 hl,2' .. * hn,2 11,2 * * * I 1n,2/

(57)

where we have fixed a coordinate system in R3 and where the
symbols are defined as follows:

A is the reference axis of x',
0 is a unit vector at the origin, perpendicular to A,
rij, are angles with 0 < rij < 2r,

A

(55)

These sets emerge as principal homogeneous spaces for cer-

tain groups. For any element of E', the rotation a corre-
sponding to it [as in Eq. (54)] is determined uniquely by the
axis A and any single pair (ai,, ai,2). Note that a distin-
guished configuration in which some aid lies on the axis A is

plane perpendicular toA
Fig. 9. Cylindrical coordinates for X. is the projection of al,,.
The dashed line at an angle rj to is the projection of aj.
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hij are arbitrary real numbers,
lij are positive real numbers.

x' in Eq. (57) corresponds to the element [A, (aij)] in Xo'
defined as follows: let L denote the plane perpendicular to
A. Then is the unit vector in L in the direction of the
projection in L of al,,. rij is then the angle between D and
the projection in L of aij. h and lij are as illustrated in
Fig. 9; in particular, li, is the perpendicular distance from
aij to A. This is illustrated in Fig. 9. Notice that D is well
defined, since al,, A. Similarly, the rij are well defined,
since aij s A. The augmented instantaneous rotations may
be described within X' in a natural way as the solution set of

= (I

with A e S0(3, R), the a terms in S', the Pterms in R, and the
X terms in R*. We write elements j of J in the form

J= ( C'2, ... "n 6 ,1 * * nX, ... Xn) (62)

We view Jas a subgroup of G by identifying j in Eq. (62) with
the element hy of G given by/ °0~~2l * * * an ;I, * * * X ton Al, .. * * Xn

l =B.

6 a2+6 -- an+b ¢1 - ion Xi, -. --1'

We now describe the action of G on X0 '. Let x' E Xo' be as in

Eq. (57) and -y E G as in Eq. (61); then

OD (r2,, + a2 ,,) .* , (rn,l + an,l) (hij + ,), .., (hn,l + nj) X,l,1,, * * X . n,1n,
* (63)

r, 2 + al,2 (r2,2 + a2,2), ..., (rn,2 + an,2) (hl,2 + 1,2), ..., (hn,2 + n,2) Xl,211,2, * * * , n,21n,2

equations that are linear in these coordinates, as described
in the proposition below.

Proposition 6

Eo' is the subset of X0' consisting of those elements x' whose
representation in the form of Eq. (57) has the following
properties:

(1) ri,2 = r2,2 - r2 ,1 = ... = r n2 -
(2) hij, = hi,2 for each i = 1, . . , n.

(3) 4,, = 1i,2 for each i = 1, . . , n.

To see this, let e' denote an element of X0 ' for which these
conditions are satisfied. Let us denote by the common
value of r2,2 - r2,1, . . , r,2 - rn,1. For each i = 1, . . , n
denote by hi and 1i the common values of hij, = hi,2 and i =

li,2 If we also drop the second subscripts on the r2,j, ...

rn,1, then we can write e' in the form

e' = (d, D, r2, . . ., rn, 0, hi, . * , hn, 11, 1 * n). (58)

As before, let aj be the vector of R3 whose cylindrical coor-

dinates relative to A are (ri, hi, 1i), where the angle r is
measured with respect to 0 (so that r1 = 0). Let a denote the
rotation about the axis A through the angle 0; then

e' = (A, al,,, . . , an,1; al,2, . .. , an,2) e E'. (59)

We now introduce groups G and J for which X0 ' and Eo',

respectively, are principal homogeneous (although for our
application we use only that E0 ' is principal homogeneous for

J):

G = S0(3, R) X (S1)nl X (SI)n X R n X Rn X (R*)n X (R*)n,

J = S0(3, R) X (S1)nl1 X Si X R n X (R*)n. (60)

5' is the circle group, namely, the additive group R/2-Z; R is
the additive group of real numbers, and R* is the multiplica-
tive group of positive real numbers. We denote elements '
of G in the form

Here #.A and D denote the axis and the vector in R3 that are
the images of A and under the rotation . This induces an
action of Jon Eo' that may then be described as follows: If e'
is as in Eq. (58) and j is as in Eq. (62), then

je' = [,A, D, (r2 + a2 ), * , (rn + an),

0 + , (h, + ,), ... X (hn + ,), Xl, ... , Xnln). (64)

We can now see that, for any pair (x', x') of elements of X0 ',
there is a unique -y e G such that x' = yx'. Suppose that x' is

as in Eq. (57) and x"has components .A, , d2,1, etc. For any
two pairs (.A, 0) and (., ), each consisting of an oriented
axis and a unit vector orthogonal to it, there is a unique A

such that (.Z, ) = (A, /3D). This gives us the coordinate 3
of the required y e G. From Eq. (63) and Fig. 1 it is clear
that the remaining coordinates of y are fixed by the require-
ments that

"i'j = dij- rj (mod 2r),

Xij= l/lij

Xij is a well-defined element of R*, since neither j nor li is
zero. Therefore X0 ' is a principal homogeneous space for G,

and E' is a principal homogeneous space for J.
We can also use the principal homogeneous structure of

Eo' to make dimension calculations for E' (and S). First,
observe that dim(E' - Eo') is less than dim(Eo'). This is

because when we restrict some aj to lie on the axis A of the
configuration we are eliminating one parameter of variation
in the configuration, namely, the distance lij of ai j from A.
Thus dim(E') = dim(Eo'). Now, from the principal homoge-
neous space structure, it follows that the dimension of Eo' is
the same as the dimension of J, which is 3n + 3, as can be
seen from Eqs. (60) by counting the dimensions of the groups
in the expression for J as a product. We conclude that

dim(E') = 3n + 3. (65)

(61)

2,11 (* * - In j, 1,1, * * * X tnj Xll * * nI
l = 1 

al1,2 at2,21 * * * , agn,2 t1,21 * * * X 3n,2 X1,21 .. I * Xn,2

-
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We now use the following fact:

If g: Z - W is any differentiable map, and if for all w e W
the dimension of g-'(w) is constant, say, d, then dim(Z) =
dim(W) + d.

Let us apply this fact to the restriction of the map f to E',
i.e., :E' E. We know that, for all e e E, fl(e) consists

of two points, so that d = dimVE'1(e)] = 0. It follows that

dim(E') = dim(E). Thus from Eq. (65) we get

dim(E) = 3n + 3. (66)

Let us now apply this fact again to the restriction of 7r to E,
i.e., 7rE: E - S. We have shown in Sections 2 and 3 that
7r1 (s) has a dimension of 1 for all s E S. Therefore dim(E)
= dim(S) + 1; i.e.,

dim(S) = 3n + 2. (67)

Finally, we note that the dimension of Y = (R2)2
n is 4n, so

that the codimension of S in Y [i.e., dim(Y) - dim(S)] is n -
2:

codimy(S) = n - 2. (68)

It follows that for n > 3 the dimension of S is strictly less
than that of Y, so that S has a measure of zero in the sense of
the Lebesgue measure on Y. If we take this Lebesgue mea-
sure to be a natural unbiased measure on Y, this implies that
the natural measure of false targets is zero.

In particular, codimy(S) increases with n. An interesting
question is whether this is related to changes in strength of
percept, if any exists, as n increases. In other words, as the
number of points in the premise display increases, does the
special event of a distinguished premise become more strik-
ing, and, if so, is this related to the fact that this special event
becomes rarer (in the sense of larger codimension) as n

increases? We merely wish to raise this issue here; we will
not comment further on it in this paper.

We summarize. We have defined all but the interpreta-
tion kernel of an augmented instantaneous-rotation observ-
er. The observer is augmented in that the axis A is included
explicitly as part of the configuration. By so augmenting
the configurations we are essentially able to exhibit X' and
E' as principal homogeneous spaces for the groups G and J
("essentially" signifies that we have deleted the degenerate
subsets X' - X0 ' and E' - Eo'); this also has the effect of
linearizing the equations for E' in. X'. The introduction of
A into the configuration is thus attractive for mathematical
reasons, but it raises an interesting question about the per-
ceptual salience of the axis of rotation. Does the human
visual system recover the axis of rotation in the relevant
displays of structure from motion? If so, how precisely?
Casual inspection suggests that the axis is perceptually sa-
lient, but this question deserves careful experimental inves-
tigation.
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