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Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the maturation of a
plethora of substrates (“clients”), including protein kinases, transcription factors, and E3 ubiq-
uitin ligases, positioning Hsp90 as a central regulator of cellular proteostasis. Hsp90 un-
dergoes large conformational changes during its ATPase cycle. The processing of clients by
cytosolic Hsp90 is assisted by a cohort of cochaperones that affect client recruitment, Hsp90
ATPase function or conformational rearrangements in Hsp90. Because of the importance of
Hsp90 in regulating central cellular pathways, strategies for the pharmacological inhibition of
theHsp90machinery in diseases suchas cancerandneurodegeneration arebeingdeveloped.
In this review, we summarize recent structural and mechanistic progress in defining the func-
tion of organelle-specific and cytosolic Hsp90, including the impact of individual cochaper-
ones on the maturation of specific clients and complexes with clients as well as ways of
exploiting Hsp90 as a drug target.

O
ne of the prerequisites for life is to adapt to
constantly changing environmental condi-

tions. Besides exposure to toxins, harmful radi-
ation, or other stressors, buffering thermal stress
is of pivotal importance. Proteins are particu-
larly prone to the detrimental effects of stress,
owing to their inherent instability, which is a
premise for structural and functional dynamics.
In the crowded cellular environment, protein
unfolding may lead to the formation of aggre-
gates in addition to the obvious loss of protein
function.

To counter stresses on the cellular level, the
increased expression of a set of stress proteins
among them molecular chaperones is induced.
Interestingly, molecular chaperones also fulfill

essential functions under physiological condi-
tions (Hartl et al. 2011). Molecular chaperones
are defined as proteins that aid in the folding of
their substrates (also called clients), while not
being part of the correctly folded, active struc-
ture. In eukaryotes, Hsp70 (heat shock protein
70) and Hsp90 are among the most prominent
members of this family. Although Hsp70 has a
broad substrate range, Hsp90 seems to perform
more specific functions and has a narrower set
of clients. Hsp90 acts rather late in the matura-
tion process of a client protein, which, in some
cases, is believed to add an additional layer of
regulation.

Historically, Hsp90 was first identified in
complexes with steroid hormone receptors
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(SHRs) and the oncoprotein viral Src kinase
(v-Src) (Brugge et al. 1981; Dougherty et al. 1984).
Since then, hundreds of Hsp90 clients have been
found, many of which are central parts of es-
sential cellular processes often involved in cell
growth and proliferation. Hence, the potential
of targeting Hsp90 pharmaceutically in the con-
text of cancer therapy has gained much interest.

Hsp90—EVOLUTION AND ISOFORMS

Hsp90 is one of the most abundant proteins in
the cell and is conserved from bacteria to man
with a sequence similarity of 50% between
Escherichia coli Hsp90 (high temperature pro-
tein G [HtpG]) and human Hsp90 (hHsp90).
Archaea lackHsp90 (Chen et al. 2006), although
most bacteria harbor one copy of Hsp90. Gene
duplicationgave rise to aconstitutivelyexpressed
isoform, named 82 kDa heat shock cognate pro-
tein (Hsc82) in Saccharomyces cerevisiae and
Hsp90β in Homo sapiens and a heat-induced
isoform (Hsp82 in yeast andHsp90α in humans)
(Gupta 1995; Johnson 2012). The closely related
constitutive and heat-induced Hsp90 isoforms
display substantial functional overlap, but iso-
form-specific functions have also emerged
(Morano et al. 1999; Millson et al. 2007). The
increased importance of the Hsp90 system in
eukaryotes is also reflected in the essentiality
of at least one Hsp90 copy in yeast, even under
normal growth conditions (Borkovich et al.
1989), whereas the loss of HtpG is compatible
with bacterial life even in the presence of heat
stress (Bardwell and Craig 1988; Borkovich
et al. 1989). S. cerevisiaeHsp82 and Hsc82 share
97% sequence identity and either isoform can
rescue the deletion of the other (Borkovich et
al. 1989; Morano et al. 1999). Whereas the con-
stitutively expressed Hsc82 is only induced 1.5–
fold to twofold upon heat shock, Hsp82 levels
increase 20-fold in yeast (Borkovich et al.
1989). Interestingly, despite the high sequence
similarity, Hsp82 seems to be more efficient in
suppressing heat sensitivity of a yeast strain ex-
pressing either Hsp82 and Hsc82 (Morano et al.
1999). In humans, the constitutively expressed
Hsp90β and the heat-induced Hsp90α share
∼85% sequence identity. There is evidence that

some clients are preferably chaperoned by one
of the isoforms, and that the isoforms convey
different levels of stress protection or inhibitor
sensitivity (Millson et al. 2007).

Additionally, organelle-specific members of
the Hsp90 family have evolved in multicellular
eukaryotes: TRAP1 (tumor necrosis factor recep-
tor associated protein 1) inmitochondria, Grp94/
Gp96 (glucose-regulated protein 94) in the endo-
plasmic reticulum (ER) and chloroplast Hsp90
(cHsp90). Of note, although less studied, cyto-
solic Hsp90 is also found in the extracellular
matrix and on cell surfaces, where it mightmod-
ulate cell migration and has therefore sparked
interest in the field of cancer research (Sidera
et al. 2004; Wong and Jay 2016). In particular,
Hsp90α, which is secreted especially during
stress (Clayton et al. 2005; Li et al. 2007), was
found to interact with matrix metalloproteinase
2 and, thus, promotes cancer cell invasiveness
(Eustace et al. 2004). Yet, how Hsp90 is secreted
through the plasma membrane is still an open
question because Hsp90 lacks known signal
peptide sequences (Picard 2004; McCready et
al. 2010). A mechanism involving the cleavage
of the carboxy-terminal MEEVDmotif as a pre-
requisite for secretion has been proposed (Wang
et al. 2009). Additionally, a potential involve-
ment in Hsp90α secretion has been attributed
to a hydrophobic patch adjacent to the Hsp90
linker region between the amino-terminal do-
main (NTD) and middle domain (MD) (Tsut-
sumi et al. 2009).

ER-localized Grp94 arose most likely via
gene duplication in metazoa (Gupta 1995; Mar-
zec et al. 2012). Compared with its cytosolic pa-
ralogs, Grp94 has a more specialized role in the
maturation process of particular secretory and
membrane-bound proteins, such as Toll-like re-
ceptors (TLRs) and integrins (Randow and Seed
2001;Yang et al. 2007; Liu et al. 2010; Staron et al.
2010).Whether Grp94 is also involved in immu-
noglobulin folding and assembly together with
the ER-located Hsp70-binding immunoglobu-
lin protein (BiP) is not entirely clear (Melnick
et al. 1994; Yang and Li 2005; Liu and Li 2008).
Loss of Grp94 during organismal development
has detrimental effects (Wanderling et al. 2007;
Maynard et al. 2010). In contrast, isolated mam-
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malian cells do not rely on the presence ofGrp94
for viability and in Leishmania—one of the few
unicellular organisms expressing Grp94—it is
not essential but modulates virulence (Randow
and Seed 2001; Descoteaux et al. 2002). This
suggests that Grp94 fulfills rather specific func-
tions and is not required for the maturation of
extracellular proteins per se because cells lacking
Grp94 do not show global defects of cell-surface
receptor presentation (Randow and Seed 2001).
Grp94 harbors a carboxy-terminal KDEL motif
for ER-retention and lacks the carboxy-terminal
MEEVD sequence found in cytosolicHsp90 (see
below). Only a single cochaperone, named
CNPY3 (canopy fibroblast growth factor signal-
ing regulator 3) has been identified for Grp94,
which is ER-specific and seems to collaborate
with Grp94 in a client-specific way (Wakabaya-
shi et al. 2006; Liu et al. 2010).

The mitochondrial Hsp90 paralog TRAP1
has been considerably less well studied than
Grp94, but both have been linked to diseases
like Parkinson’s and cancer (Song et al. 1995;
Im 2016; Masgras et al. 2017). TRAP1 shares
50% amino acid similarity with Hsp90β. It con-
tains an amino-terminal leader sequence for
mitochondrial import (Felts et al. 2000; Kang
2012), lacks the carboxy-terminal MEEVD mo-
tif, and cochaperones do not seem to exist in
mitochondria (Felts et al. 2000). TRAP1 confers
antioxidant properties to the cell (Hua et al.
2007; Im et al. 2007; Montesano Gesualdi et al.
2007), regulates mitochondrial permeability
(Kang et al. 2007), and may have antiapoptotic
properties (Masuda et al. 2004; Hua et al. 2007;
Im 2016). Additionally, TRAP1 functions as a
metabolic switch regulating the balance between
oxidative phosphorylation and aerobic glycoly-
sis (Yoshida et al. 2013).

cHsp90 has attracted less attention in the
past, although it has an essential function in
plant development (Inoue et al. 2013). One of
the major roles of cHsp90 is associated with
protein import into the organelle (Li and Chiu
2010; Flores-Pérez and Jarvis 2013; Inoue et al.
2013) and the maturation of photosynthesis-
related proteins (Lin and Cheng 1997; Cao
et al. 2000). Importantly, in Chlamydomonas
reinhardtii, a “foldosome” has been identified

composed of Hsp90C, Hsp70B, the chloroplast
DnaJ homolog CDJ1, and the chloroplast GrpE
homolog CGE1, representing orthologs of cyto-
solic Hsp90, Hsp70, Hsp40, and the Hsp70 nu-
cleotide exchange factor GrpE (Willmund and
Schroda 2005; Willmund et al. 2008).

Hsp90—STRUCTURE AND
CONFORMATIONAL CYCLE

Cytosolic Hsp90

All members of the Hsp90 family comprise a
common domain structure consisting of the
nucleotide-binding NTD, the MD and the car-
boxy-terminal domain (CTD) (Fig. 1). Carboxy-
terminal dimerization of two Hsp90 protomers
gives rise to a V-shaped dimer with substantial
conformational dynamics, allowing transient
amino-terminal dimerization, which is essential
for chaperone function (Prodromou et al. 2000).
Whereas this general architecture is conserved
from bacteria toman, slight but functionally im-
portant differences betweenHsp90 paralogs and
orthologs are evident (Chen et al. 2006).

The NTD is rich in β-strands and forms a
nucleotide-binding pocket sharing a Bergerat
fold with members of the GHKL superfamily
(gyrase subunit B [GyrB], histidine kinase, and
DNAmismatch repair proteinMutL) (Dutta and
Inouye2000).Bindingofadenosine triphosphate
(ATP) occurs with low affinity (KD ∼400 µM),
whereas the affinity for adenosine diphosphate
(ADP) is considerably higher (KD ∼10 µM), im-
plying Hsp90 is only active if the cellular ATP:
ADP ratio favors ATP binding (Prodromou et al.
1997; Scheibel et al. 1997; Young andHartl 2000;
McLaughlin et al. 2002). The “split ATPase” na-
ture of GHKL ATPases requires conformational
rearrangements in Hsp90, which reposition the
NTD and MD so that the γ-phosphate of ATP
bound to the NTD contacts Arg380 (in yeast
Hsp82) from the MD to hydrolyze ATP (Meyer
et al. 2003; Cunningham et al. 2012). The Hsp90
nucleotide-binding pocket forces ATP to be
bound in a unique conformation (Prodromou
et al. 1997), raising the opportunity for specific
inhibition of Hsp90 with chemical compounds
like radicicol (RD) and geldanamycin (GA) (Gre-
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Figure 1. Structure of heat shock protein 90 (Hsp90) homologs. Structural models of (A) yeast Hsp90 (Protein
Data Bank [PDB]: 2CG9), (B) mitochondrial tumor necrosis factor receptor associated protein 1 (TRAP1; PDB:
4IPE), (C) endoplasmic reticulum glucose-regulated protein 94 (Grp94; PDB: 5ULS), and (D) human cytosolic
Hsp90β (PDB: 5FWL). For clarity, the Hsp90 protomers are distinctly colored. A schematic model of Hsp90
depicting the amino-terminal domain (NTD), middle domain (MD), and carboxy-terminal domain (CTD) as
well as the linker and the adenosine triphosphate (ATP) lid is shown. In the top panel, the insets provide a zoomed
view of theNTDof one protomer and the amino-terminal straps of the second protomer. In the bottom panel, the
asymmetric conformation of the two protomers in TRAP1 is depicted (circles) and an alignment of the two
protomers is shown (rectangle), highlighting the buckled conformation of the green protomer. Because the yeast
Hsp82 and human Hsp90β structures were solved in complex with p23 (gray) or cell division control protein 37
(Cdc37; gray) and cyclin-dependent kinase 4 (Cdk4; blue), the full structures are shown on the left and right,
respectively.
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nert et al. 1997; Stebbins et al. 1997; Schulte et al.
1998; Roe et al. 1999; Chiosis et al. 2002). A
charged, flexible linker (60 amino acids in yeast
Hsp82) connects the NTD and MD, thus mod-
ulating domain contacts and Hsp90 chaperone
function (Tsutsumi et al. 2012; Zuehlke and
Johnson 2012; Jahn et al. 2014). Complete dele-
tion of the linker is lethal in yeast and trunca-
tion of the linker interferes with client activa-
tion (Hainzl et al. 2009; Tsutsumi et al. 2012).
Surprisingly, E. coli HtpG and mitochondrial
TRAP1 lack a linker, although Grp94 harbors a
linker that seems to be important for ATP bind-
ing and hydrolysis (Song et al. 1995; Schulte et al.

1999; Johnson 2012). The MD carries the bind-
ing site forHsp90 clients and cochaperones. The
CTD allows constitutive dimerization of Hsp90
through two carboxy-terminal helices forming a
four-helix bundle (Ali et al. 2006; Pearl and
Prodromou 2006). As mentioned, the carboxy-
terminal MEEVD motif is present in cytosolic
Hsp90 paralogs only. It mediates binding to
tetratricopeptide repeat (TPR)-containing co-
chaperones.

After ATP binding to the NTD, the ATP lid
closes over the bound nucleotide to yield a first
intermediate state (Fig. 2). Further structural
rearrangements lead to an amino-terminally
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Figure 2. Hsp90 chaperone cycle. Hsp90 transitions through different conformational states during its ATPase
cycle. Shown are intermediates of the cycle and how we envision client transfer and maturation. Some Hsp90
cochaperones preferentially bind specific Hsp90 conformations as indicated by the coloring of the circles in the
middle and the association and dissociation of stress-inducible protein 1/Hsp70/Hsp90-organizing protein (Sti1/
Hop) and large peptidylprolyl isomerases (PPIases) are depicted.
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dimerized state (closed state 1) with swapped
segments in the NTDs (Ali et al. 2006) and a
compaction of the distance between the MD
and NTD (closed state 2), resulting in the
ATPase-competent conformation (Prodromou
et al. 2000; Cunningham et al. 2008, 2012; Hes-
sling et al. 2009). Subsequent release of ADP and
phosphate as well as amino-terminal dissociation
completes the Hsp90 chaperone cycle. Whereas
the Hsp90 ATPase activity is essential in vivo
(Obermann et al. 1998; Panaretou et al. 1998;
Mishra and Bolon 2014), recent studies with the
ATPase-deficientHsp82E33Amutant,whichstill
bindsATPand undergoes conformational transi-
tions, suggest that inprinciple theability tosample
different conformational states in defined dwell
times is sufficient tosupport theessential function
of Hsp90 in yeast (Zierer et al. 2016).

The general model of the Hsp90 ATPase
cycle is applicable to all Hsp90 paralogs and iso-
forms.However, isoform-specific differences ex-
ist, which will be described below. Of note, eu-
karyotic Hsp90works in a nondeterministic way
and all conformations are accessible even in the
absence of nucleotide, although bacterial HtpG
seems to function in a more deterministic and
nucleotide-dependent manner (Shiau et al.
2006; Southworth and Agard 2008; Graf et al.
2009; Mickler et al. 2009; Ratzke et al. 2012). In
the light of an expansion of the “cochaperome”
from none in bacteria via yeast (12 cochaper-
ones) tohumans (>20 cochaperones), it is tempt-
ing to speculate that the directionality of the
conformational Hsp90 cycle in eukaryotes is in-
creasingly influenced by cochaperones (Table 1)
(Ratzke et al. 2014).

Hsp90 displays extremely slow ATPase ki-
netics that are limited by the large structural
rearrangements during the cycle with conver-
sion rates of 1 ATP min−1 for yeast Hsp82 and
0.1 ATP min−1 for hHsp90 (Prodromou et al.
1997; Scheibel et al. 1997; Stebbins et al. 1997;
McLaughlin et al. 2002). Bacterial HtpG hydro-
lyzes ATP at a rate between that of Hsp82 and
Hsp90. Interestingly, ATPase hydrolysis is pH-
dependent (Cunningham et al. 2012; Jin et al.
2017). The ATPase rate of Grp94 is less clear and
rates close to yeast Hsp90 and cytosolic hHsp90
have been reported (Dollins et al. 2007; Frey

et al. 2007;Marzec et al. 2012). Different ATPase
rates have also been suggested for human mito-
chondrial TRAP1, and importantly, ATPase
activity seems to be strongly temperature-de-
pendent with a 200-fold increase between 25°C
and 55°C (Leskovar et al. 2008; Partridge et al.
2014; Jin et al. 2017).

Grp94 and TRAP1

The nucleotide-binding pocket of the NTD is
considered themost conserved structural feature
ofHsp90 (Fig. 1). The extended conformation of
Grp94 is similar to Hsp82 and hHsp90α in the
absence of nucleotides (Krukenberg et al. 2009).
Similar to cytosolic, mammalian Hsp90, the
equilibrium is only slightly shifted to the closed
population when nucleotides are present (Kru-
kenberg et al. 2009). Nucleotide binding induces
large conformational changes in Grp94 that lead
to a twisted conformation that is different from
cytosolic Hsp90s (Dollins et al. 2007). This con-
formation is apparently not catalytically active,
yet Grp94 possesses ATPase activity and this
activity is required for chaperone function (Im-
mormino et al. 2004; Dollins et al. 2007; Frey
et al. 2007; Ostrovsky et al. 2009). In this struc-
ture ofGrp94, theATP lid, which contains afive-
residue extension compared with cytosolic
Hsp90, remains in an extended conformation,
probably inhibiting ATPase function (Immor-
mino et al. 2004; Dollins et al. 2007). Of note,
a recent structure of fully closed Grp94 resolved
a closed lid providing evidence for the generality
of the Hsp90 ATPase cycle (Huck et al. 2017).
Grp94, like cytosolic hHsp90α/β and TRAP1,
carries an amino-terminal extension of 10–50
residues, which is absent in yeast and bacterial
Hsp90 (Fig. 1C) (Chen et al. 2006). The Grp94
pre-N-domain “strap” is the longest in the
Hsp90 family and was shown to suppress the
Grp94 ATPase activity and regulate dimer clo-
sure (Dollins et al. 2007; Huck et al. 2017). In
a crystal structure, the pre-N-domains swap
across the two protomers to form loose contacts
with the opposing monomer (Huck et al. 2017).

In TRAP1, the amino-terminal straps
have been shown to form tighter contacts with
the opposing protomer to stabilize the closed
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conformation (Fig. 1D) (Lavery et al. 2014). Ad-
ditionally, the pre-N-domain in TRAP1 is be-
lieved to convey temperature sensitivity to
TRAP1 and regulate its ATPase rate (Partridge
et al. 2014). Besides the missing charged linker
between the NTD and MD, the most striking
structural feature of TRAP1 is themarked asym-
metry between the two monomers in the MD:
CTD interface imparted by a helix swap, leaving
one of themonomers in a buckled conformation
(Fig. 1D) (Lavery et al. 2014). Different studies
established amodel for the TRAP1ATPase cycle
including an open apo-conformation, an inter-
mediate state inwhich theNTDscome intoprox-
imity in a coiled coil dimer and a closed confor-
mation (Leskovar et al. 2008; Lavery et al. 2014;
Partridge et al. 2014; Sung et al. 2016; Elnatan
et al. 2017). Of note, a sequential and determin-
istic mechanism for ATP hydrolysis has been
proposed, in which the buckled monomer first
hydrolysesATP. Symmetrymay then flip forcing
the othermonomer into a buckled conformation
and after the second ATP hydrolysis the mono-
mers can revert to an open state (Elnatan et al.
2017).

Hsp90—REGULATION

As Hsp90 is a key regulator of a plethora of
cellular pathways that—if misregulated—may
cause detrimental defects, its activity must be
precisely controlled.The regulatorymechanisms
that control Hsp90 have been reviewed in-depth
elsewhere (Mollapour and Neckers 2012; Mayer
and Le Breton 2015; Prodromou 2016; Sima and
Richter 2018) and only an overview will be pre-
sented here. On the transcriptional level, Hsp90
expression is mainly induced by heat shock fac-
tor 1 (HSF1), which acts as a master regulator of
the heat shock response (HSR) in eukaryotes
(McMillan et al. 1998; Åkerfelt et al. 2010; Rich-
ter et al. 2010). HSF1 itself is regulated by chap-
erones, providing adirect link betweenproteome
stress and expression of heat shock proteins
(Voellmy and Boellmann 2007; Kijima et al.
2018; Zheng et al. 2018). Despite HSF1 function
being conserved fromyeast toman, yeastHSF1 is
constitutively active and essential even under
physiological conditions, whereas mammalian

HSF1 is dispensable and remains in a repressed
state in the absence of stress (Jakobsen and Pel-
ham 1988; Sarge et al. 1993; Sistonen et al. 1994;
Solís et al. 2016). Notably, a recent study showed
that Hsp90 may play a role in modulating HSF1
dynamics by terminatingHSF1 activity inmam-
malian cells (Kijima et al. 2018). Overexpression
of Hsp70 and Hsp90 relieves the essential nature
of HSF1 in yeast, stressing the central function of
these chaperones inproteostasis (Solís et al. 2016).
Importantly, other transcriptional regulators of
Hsp90 like multicopy suppressor of SNF1 muta-
tion 2/4 (Msn2/4) in yeast and signal transducer
andactivatorof transcription3 (STAT-3), nuclear
factor for interleukin 6 (NF-IL6) and interferon γ
(IFN-γ) inmammals have been identified (Gasch
et al. 2000; Prodromou 2016).

Besides transcriptional regulation, Hsp90
is regulated by posttranslational modifications
(PTMs), interaction with Hsp90 cochaperones
(see below), and surprisingly, even by binding
to clients. Numerous PTMs including small
ubiquitin-like modifier addition (SUMOyla-
tion), acetylation, phosphorylation, and S-nitro-
sylationhavebeendescribed and reviewedbefore
(Mayer and Le Breton 2015; Prodromou 2016;
Sima and Richter 2018). Notably, PTMs may
not only have local effects that alter client and
cochaperone binding, but modifications have
been implicated in interdomain communication
acting as conformational switches (Morra et al.
2009; Retzlaff et al. 2009;Mollapour andNeckers
2012; Soroka et al. 2012). We are far from
understanding the effect of individual PTMs.
Hyperphosphorylation of Hsp90 is negatively
correlated with Hsp90 chaperone activity in
vivo (Wandinger et al. 2006; Mollapour et al.
2011), yet, phosphorylationhas alsobeen report-
ed to positively affect the maturation of some
clients highlighting that dynamic PTMs are re-
quired for optimal Hsp90 function. Generally,
acetylation and nitrosylation are considered to
weaken the interaction of Hsp90 with clients,
favoring their destabilization and degradation
(Scroggins et al. 2007; Ai et al. 2009; Retzlaff
et al. 2009; Zhang et al. 2010).

Theup-regulationofGrp94expression isone
of thehallmarksof theunfoldedprotein response
(UPR) and hence its regulation is distinct from
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cytosolic Hsp90. Like the ER-Hsp70 BiP, Grp94
is regulated by the protein kinase R-like ER
kinase/eukaryotic elongation factor 2 (PERK/
eEF2), inositol-requiring enzyme 1/X-box-
binding protein 1 (IRE1/XBP-1) and activating
transcription factor 6 (ATF6) pathways and in
homology with cytosolic Hsp90 and Hsp70,
down-regulation of Grp94 induces the expres-
sion of BiP (Marzec et al. 2012). How TRAP1
activity is controlled is not very well understood
(Altieri et al. 2012). It is up-regulated by theMyc
oncogene, yet several posttranslational mecha-
nisms are assumed to play a role in regulating
mitochondrial TRAP1 levels because silencing
of the transcription factor nuclear factor ery-
throid 2-related factor 2 (NRF2) resulted in
reduced protein levels, despite transcription re-
maining unaltered (Coller et al. 2000; Kowalik et
al. 2016).BothGrp94andTRAP1arealso subject
toPTMs, yet the biological functionhas remained
elusive so far for many modifications (Cloutier
and Coulombe 2013; Masgras et al. 2017).

Hsp90—COCHAPERONES

A plethora of cochaperones that interact with
cytosolic Hsp90 have been identified, adding an-
other layer of regulation to Hsp90 chaperone
function (Table 1) (Schopf et al. 2017). Cocha-
perones are generally defined as proteins that in-
teract with Hsp90 and assist its function, al-
though they are not dependent on Hsp90 for
their own folding and stability. All three Hsp90
domains harbor interaction sites for cochaper-
ones (Li et al. 2012).Thesemaybind inconcert or
antagonize eachother.Moreover, theymayplaya
role at different stages of the Hsp90 cycle, have
different effects on the Hsp90 ATPase and show
client specificity (Figs. 2 and3;Table 1).Whereas
they are structurally diverse, some structural
commonalities have helped to categorize Hsp90
cochaperones.

Tetratricopeptide Repeat (TPR) Domain-
Containing Cochaperones

Several cochaperones harboring the α-helical
TPR domain interact with the carboxy-terminal
Hsp90 MEEVD motif (Chen et al. 1998; Scheu-

fler et al. 2000; Brinker et al. 2002). One of the
best-studied TPR cochaperones is the adaptor
Hop (Hsp70/90-organizing protein, stress-
inducible protein 1 [Sti1] in yeast) acting as a
linker between the Hsp70 and Hsp90 systems
(Fig. 3). Containing three TPR domains (TPR1,
TPR2A, and TPR2B), Sti1/Hop can simultane-
ously bind Hsp70 and Hsp90 and support client
transfer fromHsp70 to Hsp90 (Chen and Smith
1998; Johnsonetal. 1998;Wegeleet al. 2006;Rohl
et al. 2015). Additionally, Sti1/Hop contains two
aspartate and proline-rich domains (DP do-
mains) that are important for client activation
in vivo (Flom et al. 2007; Schmid et al. 2012).
Importantly, the binding of Hsp90 to Sti1/Hop
significantly impacts the association of Hsp70
(Rohl et al. 2015). Recent studies reveal a bi-
partite architecture of Sti1/Hop, in which an
amino-terminal module consisting of TPR1/
DP1 and a carboxy-terminal module consisting
of TPR2A/TPR2B and DP2 are connected via a
flexible linker (Rohl et al. 2015). Sti1/Hop seems
to keep Hsp90 in a client-acceptor state by pre-
venting Hsp90 closing and is thus a strong non-
competitive ATPase inhibitor (Prodromou et al.
1999; Richter et al. 2003; Li et al. 2011). A
largely open issue is why Sti1/Hop harbors
three Hsp90/Hsp70-binding sites and how the
different TPR and DP modules modulate the
interaction with Hsp70 and Hsp90. The inhibi-
tion of amino-terminal dimerization is mediat-
ed by additional contacts of Sti1/Hop with the
Hsp90 MD (Schmid et al. 2012). Interestingly,
direct contacts between Hsp90 and Hsp70 have
been reported in bacteria, which lack cochaper-
ones, and also in yeast, suggesting that a direct
transfer is also possible (Genest et al. 2015; Kra-
vats et al. 2018). Consistent with this idea, the
deletion of Sti1 in yeast is not lethal (Chang
et al. 1997) and some Hsp90 clients do not
show Sti1 dependence for their activity (Sahas-
rabudhe et al. 2017).

Protein phosphatase 5 (PP5; protein phos-
phatase T 1 [Ppt1] in yeast) is a TPR-containing
phosphatase and cochaperone that dephosphor-
ylates Hsp90 and the kinase-specific cochaper-
one cell division control protein 37 (Cdc37)
(Wandinger et al. 2006; Vaughan et al. 2008).
Besides, PP5was shown to also dephosphorylate
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the tau protein, which interacts with microtu-
bules and is involved in Alzheimer’s disease
(Shelton et al. 2017b). In the inactive state,
PP5 is autoinhibited by the amino-terminal
TPR domain blocking access to the carboxy-
terminal phosphatase domain (Ramsey and

Chinkers 2002; Yang et al. 2005). Hyperphos-
phorylation of Hsp90, attributable to the loss of
Ppt1/PP5, has been shown to negatively affect
client maturation and phosphorylation/dephos-
phorylation cycles of Cdc37, which are required
for kinase maturation (Wandinger et al. 2006;

Hsp90β:

Cdk4Cdk4:

Hsp90β:

Cdk4Cdk4:

Cdc37Cdc37

Hsp82:

GR-LBDGR-LBD:

GR-LBDGR-LBD:

Aha1-NAha1-N

Aha1-NAha1-N

Hsp82:
Hsp90β:Cdk4 Hsp82:GR-LBD

Sba1Sba1

Hsp90β:

Cdk4Cdk4:

Sba1Sba1

Figure 3.Hsp90 client comparison. Structural models showing the binding of Cdk4 (blue) to humanHsp90β and
the glucocorticoid receptor (GR) ligand-binding domain (GR–LBD) (orange) to yeast Hsp82. TheHsp90β:Cdk4:
Cdc37 complex is based on a cryogenic electron microscopy (cryo-EM) structure (PDB: 5FWL), whereas the
Hsp90:GR–LBD:p23 structure is a pseudoatomic model combining data from cryo-EM, nuclear magnetic
resonance (NMR) analysis, and small-angle X-ray scattering (SAXS) (Lorenz et al. 2014). Yeast Hsp82 (PDB:
2CG9) and humanHsp90β (PDB: 5FWL)were aligned in PyMOL to visualize the overlapping binding sites of the
activator of Hsp90 ATPase protein 1 (Aha1) N-domain (red) and p23 (yellow) with the client-binding site. The
binding site of the Aha1 N-domain was derived from an Aha1-N:Hsp90-MD crystal structure (PDB: 1USU) and
docking experiments of Aha1-N on yeast Hsp82 (Retzlaff et al. 2010).
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Vaughan et al. 2008; Soroka et al. 2012). Thus,
Ppt1/PP5 is an important regulator of Hsp90
function.

cis/trans PPIases constitute another impor-
tant groupofTPR-containing cochaperones that
include the structurally unrelated cyclophilin
(Cyp) and tacrolimus (FK506)-binding protein
(FKBP) families of prolyl isomerases. FKBP51,
FKBP52, and Cyp40 represent the most impor-
tant members of this cochaperone family in
vertebrates. They all harbor a TPR domain that
mediatesHsp90 binding and an amino-terminal
PPIase domain (Ratajczak and Carrello 1996;
Riggs et al. 2004). FKBP51, FKBP52, and Cyp40
show Hsp90-independent chaperone activity in
vitro (Bose et al. 1996; Freeman et al. 1996; Pirkl
and Buchner 2001). Strikingly, although the
PPIase domain seems to be important for the
function of PPIases, the enzymatic function
seems to be dispensable for Hsp90-mediated cli-
ent maturation (Riggs et al. 2003, 2007). The
PPIase cochaperones present in yeast, cyclospor-
in-sensitive proline rotamase 6 (Cpr6) andCpr7,
are related to vertebrate Cyp40. Despite 47%
sequence homology, Cpr6 and Cpr7 seem to
have very different functions, which also holds
true for FKBP51 and FKBP52 for which even
opposing effects on glucocorticoid receptor
(GR) activity have been shown (Hutchison
et al. 1993; Smith and Toft 1993; Smith et al.
1993; Duina et al. 1996, 1998; Mayr et al. 2000;
Riggs et al. 2003; Zuehlke and Johnson 2012;
Zuehlke et al. 2013). Interestingly, although
the PPIase activity of FKBPs seems irrelevant
for GR activation, the differences between
FKBP51 and FKBP52 seem to be largely defined
by the structure of the PPIase domain (Riggs
et al. 2007; Storer et al. 2011).

Little is known about the TPR-containing
cochaperone cyclophilin 7 suppressor ([Cns1];
tetratricopeptide repeat protein 4 [Ttc4] in hu-
mans), one of the three essential cochaperones
in yeast. An association of Cns1 and Cpr7 with
the ribosome and a genetic interaction between
Cns1 and Cpr7 have been shown, thus suggest-
ing a link of Hsp90 to protein biosynthesis (Te-
sic et al. 2003; Tenge et al. 2015). Yet, the func-
tion of these cochaperones on translation has
remained elusive so far.

Suppressor of G2 allele of S-phase kinase-
associated protein 1 (Sgt1) is another essential
cochaperone in yeast that also comprises a TPR
domain in addition to a cysteine and histidine-
rich domain (CHORD)-Sgt1 (CS) and a Sgt1-
specific (SGS)domain (Azevedoet al. 2002). Sur-
prisingly, it binds to the Hsp90 NTD in a TPR-
independent manner (Zhang et al. 2008a). In
yeast, Sgt1 was shown to be involved in kineto-
chore assembly and in higher eukaryotes in the
activation of leucine-rich repeat (LRR) receptors
that are pivotal in the innate immune defense
(Kitagawa et al. 1999; Catlett and Kaplan 2006;
Mayor et al. 2007).

Non-TPR-Containing Cochaperones

The preference of cochaperones for certain
structural motifs in clients and the partaking
in thematuration of specific clients is not limited
to Sgt1 (Taipale et al. 2014). The cochaperone
TPR-containing protein associated with Hsp90
1 (Tah1) and protein interacting with Hsp90 1
(Pih1) are suggested to specifically promote the
assembly of the RuvB-like protein 1 (Rvb1)-
Rvb2-Tah1-Pih1 (R2TP) complex that is re-
quired for small nucleolar ribonucleoprotein
(snoRNP) biogenesis (Zhao et al. 2005, 2008).
For the formation of this complex, the stabilizing
effect of Tah1 on Pih1 is required, which in turn
binds Rvb1/2 (Kakihara and Houry 2012).

Cdc37 represents the third essential cochap-
erone in yeast and is considered a kinase-spe-
cific cochaperone involved in the recruitment
and maturation of up to 60% of human kinases
that depend on Hsp90 (Grammatikakis et al.
1999; Citri et al. 2006; Taipale et al. 2012).
Cdc37 forms contacts with the NTD of Hsp90
and partially inhibits its ATPase activity (Sili-
gardi et al. 2002; Roe et al. 2004). Yet, contacts
to the MD have also been proposed (Eckl et al.
2013, 2015). A recent cryogenic electronmicros-
copy (cryo-EM) structure finally resolved the
structure of Cdc37 and the kinase cyclin-depen-
dent kinase 4 (Cdk4) bound to hHsp90 (Verba
et al. 2016). Cdc37 is wrapped around one of the
Hsp90 monomers with the kinase clamped be-
tween the Hsp90 monomers (Verba et al. 2016).
This structure has important implications on
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the mechanism of the Hsp90:kinase interaction
(see below).

p23/Sba1 binds to a different binding site as
shown in the crystal structure with yeast Hsp82
(Fig. 3) (Ali et al. 2006). The binding site is con-
served inhHsp90 as determined bynuclearmag-
netic resonance (NMR) spectroscopy (Karagoz
et al. 2011) and two p23 molecules seem to be
able to bind simultaneously to opposite faces of
the Hsp90 dimer (Richter et al. 2004; Ali et al.
2006; McLaughlin et al. 2006). The cochaperone
stabilizes the closed Hsp90 dimer and inhibits
the Hsp90 ATPase (Richter et al. 2004; Mc-
Laughlin et al. 2006). Notably, ATP is bound
to the Hsp90:p23 complex, suggesting a non-
competitive mechanism of inhibition (Sullivan
et al. 1997; Richter et al. 2004; Ali et al. 2006).
p23/Sba1 comprises a folded domain and an un-
structured carboxy-terminal tail that is impor-
tant for chaperone function (Weikl et al. 1999;
Weaver et al. 2000). Of note, it was also shown
that p23 shows Hsp90-independent chaperone
activity (Bose et al. 1996; Freeman et al. 1996). In
addition to the central role p23/Sba1 plays in the
Hsp90 cycle, p23/Sba1 also exerts Hsp90-inde-
pendent functions. These include chromatin re-
modeling, ribosome biogenesis (Echtenkamp
et al. 2011, 2016), andHsp90-independent inter-
action with tumor-suppressor protein 53 (p53),
which is supposed to compete with its DNA
binding (Wu et al. 2018).

So far, activator of Hsp90 ATPase protein 1
(Aha1) is one of the few known cochaperones
that strongly increases the Hsp90 ATPase rate.
In yeast, Cpr6 and high-copy Hsp90 suppressor
1 (Hch1) were found to alsomoderately increase
ATP hydrolysis (Panaretou et al. 2002). Mecha-
nistically, Aha1 facilitates amino-terminal di-
merization of yeast Hsp90 in an asymmetric
manner, in which one Aha1 molecule is suffi-
cient to accelerate the cycle (Figs. 2 and 3) (Pa-
naretou et al. 2002; Meyer et al. 2004b; Retzlaff
et al. 2010). Binding of Aha1 has been mapped
to the Hsp90 NTD and MD (Meyer et al. 2004a;
Retzlaff et al. 2010). It has been suggested that
Aha1 acts as a regulator of the dwell time Hsp90
spends bound to a client (Koulov et al. 2010).
This is consistent with findings that revealed a
rescue of misfolded cystic fibrosis transmem-

brane conductance regulator (CFTR) upon
Aha1 down-regulation in mammals and, sur-
prisingly, activation of the GR in yeast when
Aha1 was knocked out (Wang et al. 2006;
Dunn et al. 2015; Sahasrabudhe et al. 2017).
Overlapping binding sites of Aha1 and GR on
Hsp90 suggest competitive binding as a way of
regulating GR activity (Lorenz et al. 2014; Sahas-
rabudhe et al. 2017). The identification of small
molecules that functionally impair the Aha1–
Hsp90 interaction may therefore prove thera-
peutically useful in the future (Stiegler et al.
2017). Of note, Aha1 has a homolog, Hch1, in
yeast that was lost during evolution in higher
eukaryotes. Interestingly, phosphorylation of
Tyr627 in hHsp90 is suspected to functionally
replace Hch1 because this PTM has comparable
effects on client activity as Hch1 has in yeast
(Zuehlke et al. 2017).

Recently, Tsc1 from the tuberous sclerosis
complex (TSC) has been identified as a bona
fide Hsp90 cochaperone that inhibits Hsp90
ATPase and modulates client maturation
(Woodford et al. 2017). Importantly, Tsc1 forms
a trimeric complex with Tsc2 and Hsp90, in
which Tsc2 is stabilized. How Tsc1 binds and
regulates Hsp90 is largely unknown, but con-
tacts with the CTD andMD have been proposed
(Woodford et al. 2017).

Owing to the notable molar excess of Hsp90
over cochaperones in vivo (Table 1), symmetric
complexes of two cochaperones bound to an
Hsp90 dimer are unlikely. However, specific
mixed cochaperone:Hsp90 complexes such as
the Hsp90:Sti1:Cpr6 and Hsp90:Aha1:Cpr6
complexes have been identified in yeast that
are important for cycle progression (Fig. 2) (Li
et al. 2011, 2013). Analyses of complexes with
hHsp90, Hsp70, Hop, and FKBP52 also revealed
the prevalence of mixed Hsp90:cochaperone
complexes in the hHsp90 system (Ebong et al.
2011). Besides synergistic interactions, some co-
chaperones also compete for Hsp90 binding,
further increasing the complexity of Hsp90 reg-
ulation (Li et al. 2011; Freilich et al. 2018). Im-
portantly, a number of cochaperones strictly
bind specific conformational states of Hsp90,
which positions them at distinct points of the
cycle. In the current model for the cochaperone-
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assisted conformational cycle of yeast Hsp90,
Sti1/Hop binds the open Hsp90 conformation
and facilitates substrate transfer from the Hsp70
system (Fig. 2). Cdc37 specifically recruits ki-
nases to Hsp90, although Sti1 is also important
for kinase maturation (Lee et al. 2004; Taipale
et al. 2014; Sahasrabudhe et al. 2017). How
Cdc37 and Sti1 collaborate in client recruitment
is poorly understood. Additionally, spontane-
ous binding of clients to Hsp90 and direct trans-
fer from Hsp70 to Hsp90 are possible. PPIases
like Cpr6 can bind to the second carboxy-termi-
nal MEEVDmotif simultaneously to Sti1. Bind-
ing of Aha1 competes with Sti1 binding and
also accelerates the Hsp90 cycle by promoting
amino-terminal dimerization. In the presence of
ATP, Hsp90 transitions to closed state 1 and
after further compaction to closed state 2 form-
ing the “late complex,” in which p23/Sba1 binds
together with a PPIase. This interaction also
weakens the Sti1/Hop binding in the absence
of Aha1. Importantly, this model lacks informa-
tion about the influence of clients on the asso-
ciation of cochaperones. Recently, it was shown
that even closely related Hsp90 clients rely on
an individual subset of cochaperones for their
activation and even point mutations affecting
client folding could change the cochaperone de-
pendency (Sahasrabudhe et al. 2017). Some co-
chaperones like p23/Sba1 and Sgt1 were shown
to have more general effects, whereas others im-
pacted folding in a client-specific way. This sug-
gests that the general Hsp90 cochaperone cycle
is modulated to optimize folding for different
clients. Importantly, however, client specificity
of cochaperones does not exclude parallel, subtle
effects of all cochaperones on a wider range of
clients, for example, attributable to modulation
of the Hsp90 ATPase and competition for bind-
ing sites. In conclusion, the general Hsp90 cycle
involves the successive binding of cochaperones
along the cycle. Additionally, the effect of cocha-
perones is tuned in a client-dependent manner
to provide a suitable folding platform for each
client. Another level of complexity is added to
the system when we consider that some clients
like p53 may change the chaperone and cocha-
perone landscape by inducing the expression of
a subset of cochaperones (Mattison et al. 2017).

Hsp90—HETEROGENEOUS EFFECTS
ON CLIENTS

Client Spectrum

Because many Hsp90 clients represent central
hubs of complex biological pathways, Hsp90
is a key factor of cellular regulation. A com-
prehensive list of Hsp90 clients is maintained
by the Picard laboratory (see www.picard.ch/
downloads; Echeverría et al. 2011). Historically,
SHRs, in particular the GR and the progesterone
receptor (PR) as well as kinases like v-Src are the
most intensively studied Hsp90 clients (Brugge
et al. 1981;Pratt andToft 1997;Pratt andDittmar
1998). Notably, it is estimated that 60% of the
human kinome are dependent on Hsp90 to
some degree (Taipale et al. 2012). An emerging
class of Hsp90 clients are E3 ubiquitin ligases, of
which 30% interactwithHsp90,whereas, surpris-
ingly, only 7% of transcription factors are Hsp90
interactors, although transcription factors have
long been seen as bona fide Hsp90 clients (Tai-
pale et al. 2012). In particular, p53 has found
significant attention as anHsp90 client, including
cancer-associated mutants (Blagosklonny et al.
1996; Sepehrnia et al. 1996; Whitesell et al. 1998;
Deb et al. 1999; Nagata et al. 1999; Rudiger et al.
2002; Wang and Chen 2003; Müller et al. 2004;
Walerych et al. 2004; Alexandrova et al. 2015).

Of note, we usually refer to Hsp90 clients as
proteins that constitutively require Hsp90 to
maintain an active state. A recent study using
multiplexed proteome dynamics profiling re-
vealed a remarkably high number of clients
that require Hsp90 only transiently during de
novo synthesis (Savitski et al. 2018). Because of
the short-lived nature of the Hsp90 dependence
of these proteins, they have found little recogni-
tion in the past, but become relevant for better
understanding the pleiotropic effects of Hsp90
inhibitors in therapy.

How Hsp90 Recognizes and Folds Clients

Thedeterminants that define anHsp90 client are
still subject to debate and not very well under-
stood. No common binding motifs, such as hy-
drophobic sequences that occur in Hsp70 sub-
strates, are known in Hsp90 clients. In addition,
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the dichotomous separation in client and non-
client has been challenged because a continuous
spectrum of Hsp90-binding affinities has been
reported in human cells (Taipale et al. 2012).
Insight into client specificity has been obtained
from studieswith closely related client/nonclient
pairs like v-Src and the nonclient kinase cellular
Src kinase (c-Src), which share 98% sequence
identity, suggesting that a combination of factors
contribute to Hsp90 dependence, including
folding cooperativity, overall stability, and re-
duced compactness (Falsone et al. 2004; Taipale
et al. 2012; Boczek et al. 2015; Keramisanou et al.
2016; Savitski et al. 2018). In addition, the recent
structure of Hsp90 in complex with Cdk4 and
Cdc37 revealed the structural motif in kinases
that is recognized by Hsp90 (Verba et al. 2016).

Clients can be grouped in a few different cat-
egories depending on thewayHsp90 aids in their
maturation. Kinases seem to require Hsp90 to
maintain a specific active state (Grammatikakis
et al. 1999; Polier et al. 2013; Boczek et al. 2015).
In the case of kinases, Hsp90 facilitates ATP
binding by the kinase, which in turn stabilizes
the kinase (Eckl et al. 2016). Another category
relies onHsp90 for the assembly of protein com-
plexes such as the kinetochore, the R2TP com-
plex involved in snoRNPbiogenesis, and also the
purinosome required for purine biosynthesis
(Kitagawa et al. 1999; Zhao et al. 2008; Pedley
et al. 2018). Yet, in a third categoryHsp90 action
favors ligand binding as it does in SHRs (Pratt
and Dittmar 1998; Kirschke et al. 2014; Lorenz
et al. 2014). Also, the heme insertion into β- and
γ-globins is dependent on Hsp90 (Ghosh et al.
2018). Furthermore, Hsp90 also promotes heme
insertion into soluble guanylyl cyclase and in-
ducible nitric oxide (NO) synthase (Ghosh
et al. 2011; Ghosh and Stuehr 2012). In analogy,
theRNA-induced silencingcomplexcomponent
Argonaute 2 (Ago2) requires the action ofHsp90
to reach an open conformation capable of bind-
ing RNA as a ligand (Iki et al. 2010; Iwasaki et al.
2010; Tsuboyama et al. 2018).

Hsp90 Client-Binding Site

As with all chaperones, client maturation re-
quires regulated binding to and release from

Hsp90, which is accompanied by large con-
formational changes connected to the ATPase
cycle. Consistently, clients bind with rather
moderate affinity in the lower micromolar range
(Müller et al. 2004; Karagoz et al. 2014; Lorenz
et al. 2014). Interestingly, for some clients like
the GR, affinity is affected by the Hsp90 confor-
mation, whereas others bind to different confor-
mations of Hsp90 (Karagoz et al. 2014; Lorenz
et al. 2014). Additionally, binding of cochaper-
ones and also PTMs of Hsp90 modulate client
binding. This inherently dynamic system has
rendered it difficult to capture defined Hsp90:
client complexes and define a client-binding site.
Initial mutational studies suggested the MD of
Hsp90 as the client-binding site (Bohen and Ya-
mamoto 1993; Nathan and Lindquist 1995;
Genest et al. 2013). By now, several models
and structures of Hsp90:client complexes are
available that confirmed the Hsp90 MD as the
primary client-binding site (Shiau et al. 2006;
Lorenz et al. 2014; Verba et al. 2016; Radli and
Rüdiger 2018). In addition, the NTD seems to
contribute, depending on the client used. In par-
ticular, hydrophobic residues that become bur-
ied between the monomers in the closed state of
Hsp90 seem to be important for client binding.

A combination of small-angle X-ray scatter-
ing (SAXS), NMR, EM, and biochemical studies
revealed a binding site for GR in the Hsp90MD,
with some additional contacts in the NTD and
CTD (Fig. 3) (Lorenz et al. 2014). In the model,
simultaneous binding of two GR molecules on
the opposing faces of the Hsp90 dimer is possi-
ble (Lorenz et al. 2014). The binding site is in
agreement with previous mutational studies and
overlaps with the Aha1-binding site suggesting
competitive binding (Lorenz et al. 2014). Of
note, binding of the GR–LBD was tightest
when Hsp90 was not entirely closed, suggesting
that access to the inner surface of the Hsp90
monomers is required for efficient client inter-
action (Lorenz et al. 2014).

The cryo-EM structure of the hHsp90:Cdk4:
Cdc37 complex recently provided a detailed pic-
ture of the kinase-binding site onhHsp90, which
significantly overlaps with the proposed binding
site for GR (Fig. 3) (Verba et al. 2016). Surpris-
ingly, in the structure, the β4–β5 strands of the
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kinase are ripped apart and threaded through
the orifice formed by the closed Hsp90 mono-
mers, leaving the kinase N- and C-lobe on op-
posite sides of the Hsp90 dimer (Verba et al.
2016). This complex resembles the model of
two GR molecules binding simultaneously to
Hsp90 (Lorenz et al. 2014; Verba et al. 2016).
This structure also revealed the significance of
Cdc37 in the complex, which forms contacts
with the kinase N-lobe that mimic interactions
normally occurring between the N- and C-lobes
(Verba et al. 2016). The open kinase conforma-
tion is in line with an NMR-based model, in
which Cdc37 challenges kinases by exerting un-
folding pressure on theN-lobe to select thermal-
ly instable kinases from the kinase pool (Kera-
misanou et al. 2016). How the open kinase
conformation benefits activation is not entirely
clear. One may speculate that the open confor-
mation bound to Hsp90 represents an interme-
diate state that is required for ATP binding (Eckl
et al. 2016; Verba et al. 2016). The Hsp90-de-
pendent stabilization of this state could in turn
be defined by the overall kinase stability and
cooperativity of folding (Taipale et al. 2012; Bo-
czek et al. 2015). Additionally, the conformation
of Cdc37 in the complex opposes previous find-
ings, which mapped the Cdc37-binding site also
to the Hsp90 NTD (Roe et al. 2004; Eckl et al.
2013, 2015). Hence, one could hypothesize that
Cdc37 can sample different binding modes on
Hsp90, yet how the transition between these
states could occur remains unknown.

Contacts of clients with Hsp90 are not lim-
ited to the MD, but also spread to the NTD and
CTD. An ensemble of structural models ob-
tained by NMR spectroscopy of the tau protein
suggested contacts of the client to the NTD and
MD (Karagoz et al. 2014).

Despite extensive studies with p53, the exact
binding site on Hsp90 is still elusive. NMR,
docking, and biochemical studies mapped the
interaction mainly to the Hsp90 MD and CTD
and suggested a dynamic interaction (Hagn et al.
2011; Park et al. 2011b). On the p53 side, the
DNA-binding domain (DBD) mediates interac-
tionwithHsp90 (Rudiger et al. 2002;Müller et al.
2004; Walerych et al. 2004). Although Hsp90
generally acts late in the folding process, it is,

however, an open question whether p53 binds
to Hsp90 in an unfolded state, a “molten glob-
ule” conformation or in a native state (Rudiger
et al. 2002; Hagn et al. 2011; Park et al. 2011a).

In summary, the evidence for the Hsp90 cli-
ent-binding site converges to the Hsp90 MD.
Although the general binding site seems to be
conserved between different clients, additional
client-specific contacts with the Hsp90 NTD
and CTD are possible. Also, cochaperones con-
tribute to the overall binding as seen in the case
of Cdc37. The effect Hsp90 has on a client de-
pends on the nature of the client and according-
ly at which point in the folding pathway a client
binds Hsp90 may vary greatly.

Contrary to a unidirectional model in which
Hsp90 regulates its clients, also regulation of
Hsp90 by clients has been shown (Rutz et al.
2018). The solvent-exposed W300 residue in
yeast Hsp82, which is located at the rim of the
client-binding site, has previously been shown
to affect the maturation of different Hsp90 cli-
ents (Hawle et al. 2006; Flom et al. 2012). This
residue acts as a long-range molecular switch,
which transduces information about the binding
of a client to the Hsp90 ATPase and thus, pro-
motes progression of the cycle (Rutz et al. 2018).
Additionally, clients can affect the Hsp90
ATPase rate to optimize the dwell time in differ-
ent states for their specific requirements (Kir-
schke et al. 2014; Lorenz et al. 2014).

Hsp90—DISEASES

As one of themost abundant proteins in the cell,
Hsp90 is known to counter different types of
stresses (Borkovich et al. 1989; Taipale et al.
2010; Schopf et al. 2017). Accordingly, a variety
of diseases that cause or are the result of proteo-
toxic stress are associated with Hsp90. Among
others, Hsp90 modulates viral and protozoan
infections, neurodegenerative diseases, and is
implicated in cancer.

Hsp90 and Cancer

Transformed cells are usually characterized by
dramatic changes in cellular metabolism and
increased growth rate. Besides elevated protein
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biosynthesis, which is required for cell growth,
cancer cells express mutated oncoproteins,
which may rely on chaperones to remain active.
Hsp90 regulates several oncoproteins such as v-
Src, human epidermal growth factor receptor 2
(ErbB2), telomerase, and hypoxia-inducible fac-
tor 1 (HIF1) and thus controls several hubs that
are misregulated in cancer (Miyata et al. 2013).
Hence, Hsp90 is involved in every hallmark of
cancer (Hanahan andWeinberg 2011). Accord-
ingly, cancer cells become not only oncogene-
addicted but also addicted to Hsp90. Indeed,
elevated levels of chaperones including Hsp90
are found in many cancer cells (Calderwood
et al. 2006; Calderwood and Gong 2016) and
are generally associated with a negative progno-
sis (Pick et al. 2007; Dimas et al. 2018). Themost
prominent and particularly well-studied Hsp90
client that is associatedwith cancer is the tumor-
suppressor gene p53, which is mutated in >50%
of human cancer patients. Importantly,∼75% of
allmutations occur within theDBD that is chap-
eroned by Hsp90 in the wild-type and mutated
variant (Whitesell et al. 1998; Whitesell and
Lindquist 2005; Schulz-Heddergott and Moll
2018). Owing to the central role of p53 in tumor
progression, cancer cells quickly become addict-
ed to mutated p53. It was recently shown that
pharmacological inhibition of Hsp90 that led to
p53 degradation significantly extended survival
in mice harboring mutated p53 (Alexandrova
et al. 2015).

By buffering the effect of destabilizing mu-
tations, Hsp90 may promote genetic variation
attributable to the accumulation of mutations,
thus contributing to cancer progression andpos-
sibly counteracting the efficiency of compounds
(Rutherford and Lindquist 1998). Together,
these results suggestHsp90 inhibition as aprom-
ising therapeutic option in cancer treatment. In
addition, the rewiring of the chaperone network
in 50% of human cancers leading to the forma-
tion of the so-called epichaperomewas reported.
In these cancers, a highly connected network
comprised of Hsp90, Hsp70, and various cochap-
erones exists, which expands the functions of
the chaperones (Rodina et al. 2016). Of note,
Hsp90 in these complexes bound inhibitors
more strongly (Rodina et al. 2016).

Hsp90 and Neurodegenerative Diseases

Toxic protein aggregation is a common hall-
mark of many neuropathies like Huntington’s,
Alzheimer’s, amyotrophic lateral sclerosis, and
Parkinson’s. In each case, a specific protein
prone to misfolding is causative of neuronal
cell death and thus, development of symptoms.
Many of these proteins are regulated by chaper-
ones and Hsp90 has been associated with all
mentioned neuropathies (Brehme et al. 2014;
Lackie et al. 2017). However, the precise role
Hsp90 plays in the maturation process of these
clients and howHsp90 inhibition can be exploit-
ed therapeutically is unclear. Although Hsp90
inhibition may be detrimental to folding and
actually exacerbate aggregate formation, the
pathogenic species could also be preferentially
targeted for the carboxyl terminus of Hsc70-in-
teracting protein (CHIP)-mediated degradation
after Hsp90 inhibition (Connell et al. 2001; Luo
et al. 2010).

Aggregation of aberrant amyloid β (Aβ) and
tau protein, which causes Alzheimer’s disease
was found to be inhibited by Hsp90 in vitro
(Evans et al. 2006). Inhibition of Hsp90 de-
creased the levels of phosphorylated tau protein,
possibly attributable to inhibition of Hsp90-de-
pendent kinases that phosphorylate tau (Dickey
et al. 2006, 2007). Inmice, treatment withHsp90
inhibitors attenuated Aβ toxicity (Chen et al.
2014). Aggregation of α-synuclein in Parkin-
son’s is also modulated by Hsp90 and both pro-
tective and aggregation-promoting roles have
been reported (Falsone et al. 2009; Putcha
et al. 2010; Daturpalli et al. 2013). In a current
model, the protective mechanism of Hsp90 in-
hibition is attributed to increasing Hsp70 levels
after Hsp90 inhibition, portraying the complex-
ity of intervening with the chaperone system
(Sittler et al. 2001; Daturpalli et al. 2013; Lackie
et al. 2017).

Hsp90 and Psychiatric Diseases

Mood affective disorders have experienced in-
creasing attention and prevalence in recent
years. Intriguingly, because Hsp90 regulates the
GR and the mineralocorticoid receptor, it regu-
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lates the major effectors of the hypothalamic–
pituitary–adrenal axis, our central psychological
stress-response system.Of note, both hyper- and
hyposensitivity to glucocorticoids have been as-
sociated with mood disorders. In this system,
especially the action of Hsp90 and its cochaper-
one FKBP51 onGR seem toplaya pivotal role. In
agreement with this notion, the FKBP51-encod-
ing gene has been associated with anxiety, de-
pression, and schizophrenia (Menke et al. 2013;
Fujii et al. 2014; Szczepankiewicz et al. 2014;
Stamm et al. 2016). FKBP51 levels increase
with age and are additionally affected by single-
nucleotide polymorphisms (SNPs) (Fujii et al.
2014; Sabbagh et al. 2014). FKBP51 provides a
negative feedback loop: It attenuates hormone
affinity in the Hsp90:GR:FKBP51 complex
and GR signaling induces FKBP51 expression
(Scammell et al. 2001; Sanchez 2012; Criado-
Marrero et al. 2018). In conjunction with an en-
vironmental trigger, these factors can contribute
to the onset of affective mood diseases and have
further pleiotropic effects because FKBP51 com-
petes with other cochaperones for Hsp90 bind-
ing (Pirkl and Buchner 2001; Schulke et al.
2010).

Hsp90 Cochaperones and Disease

The pivotal function of FKBP51 in psychiatric
diseases indicates that in addition to Hsp90 it-
self, cochaperones may also play an important
role in this context. Indeed, several lines of evi-
dence support this hypothesis. As mentioned,
studies in yeast showed that different clients
were modulated by remarkably different subsets
of cochaperones. Importantly, this even held
true for mutants of the same client protein (Sa-
hasrabudhe et al. 2017).

Mutations in the CFTR channel are causa-
tive for cystic fibrosis. Our current understand-
ing suggests that mutated CFTR is bound and
trapped in the Hsp90 cycle, which eventually
leads to its degradation (Loo et al. 1998; Koulov
et al. 2010). Intriguingly, wild-type and ΔF508
CFTR bind distinct subsets of cochaperones and
knockdown of Aha1 by small interfering RNA
(siRNA) could partially rescue ΔF508 CFTR
function (Wang et al. 2006).

Another study showed that Aha1 promotes
fibril formation of recombinant tau in an
Hsp90-dependent manner, whereas Cdc37,
p23, FKBP51, and FKBP52 had no effect (Shel-
ton et al. 2017a). Importantly, Aha1 overexpres-
sion also led to enhanced tau aggregation in a
transgenic mouse model and in vitro, chemical
disruption of the Aha1:Hsp90 complex could
reverse the Aha1-mediated effect (Shelton
et al. 2017a). In contrast, PP5 is known to de-
phosphorylate tau and restore the microtubule-
binding ability and the PPIase Cyp40 prevented
tau-induced toxicity in vivo (Gong et al. 2004;
Baker et al. 2017). Additionally, depletion of
Hop or CHIP entailed accumulation of tau pro-
teins, indicating that these chaperones are nec-
essary for tau clearance (Dickey et al. 2008;
Jinwal et al. 2013).

In cancer, several cochaperones have been
associated with cell proliferation, migration,
and drug resistance. Sti1/Hop was found to be
overexpressed in certain cancers (Chao et al.
2013; Carvalho da Fonseca et al. 2014) and to
promote invasion when present in the extracel-
lular space (Walsh et al. 2011). Interestingly,
mutated p53 seems to induce the expression of
Sti1/Hop (Mattison et al. 2017) and p23 was
shown to directly bind and modulate p53 in a
Hsp90-independent manner (Wu et al. 2018).
Silencing of Cdc37 destabilized kinases and
thus, sensitized cancer cells to Hsp90 inhibition
(Smith et al. 2009). A similar effect was observed
when Aha1 expression was reduced (Holmes
et al. 2008).

In summary, these recent findings revealed
that besides the obvious regulation of clients by
Hsp70 and Hsp90, the complex network of co-
chaperones significantly affects client activation.
This urges a shifting of attention from solely
targeting the chaperones to also address cochap-
erone interactions for therapeutic intervention.

Hsp90—INHIBITORS

Amino-Terminal Inhibitors

Amino-terminal inhibitors bind selectively to
the Hsp90 nucleotide-binding pocket mimick-
ing the rare, kinked conformation of boundATP
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(Prodromou et al. 1997). The most prominent
examples of amino-terminal inhibitors are RD
and the ansamycin GA (Whitesell et al. 1994;
Roe et al. 1999). Notably, derivatives of RD and
GA have been explored in phase II and phase III
clinical trials, but they were discontinued owing
to lack of efficacy at the tolerated doses (Sidera
and Patsavoudi 2014; Khandelwal et al. 2016).
Despite the unsuccessful trials with RD and GA
derivatives, synthetic amino-terminal inhibitors
(Chiosis et al. 2002) are currently undergoing
clinical trials (Zuehlke et al. 2018). Additionally,
the homing of amino-terminal inhibitors to
cancer cells is exploited by inhibitors conjugated
to cytotoxins. This promising concept has
shown favorable effects in preclinical studies
and is currently being tested in clinical trials
(Heske et al. 2016).

Carboxy-Terminal Inhibitors

Induction of the HSR after Hsp90 inhibition
and the increasing resistance to inhibition is
one of the major problems amino-terminal in-
hibitors face (Whitesell and Lindquist 2005;
Neckers and Workman 2012). Novobiocin is
the best-known carboxy-terminal Hsp90 inhib-
itor, which selectively binds to a site near the
carboxy-terminal dimerization site (Marcu et
al. 2000; Matts et al. 2011). Although novobi-
ocin binds with low affinity, derivatives display
more favorable properties (Yin et al. 2009; Es-
kew et al. 2011). Silibinin, another carboxy-ter-
minal Hsp90 inhibitor has been found to allevi-
ate symptoms in an allograft model of Cushing’s
disease (Riebold et al. 2015). Despite promising
preclinical data until now, no carboxy-terminal
inhibitor has reached clinical trials.

Disruption of Cochaperone Binding

As illustrated before, the influence of cochaper-
ones on disease progression has lately found in-
creased attention. Inhibition of Hsp90 is linked
to severe side effects, owing to the central posi-
tion of Hsp90 in the broad spectrum of biolog-
ical functions. Thus, disrupting the effect of
individual cochaperones may reduce the side
effects of interfering with the Hsp90 system

and allow more focused therapeutic use. Several
compounds have been described that lead to the
modulation of cochaperone binding (Brandt
and Blagg 2009).

Different inhibitors that disturb the Hsp90:
Cdc37 complex, such as withaferin A (Yu et al.
2010), celastrol (Zhang et al. 2008b), derrubone
(Hadden et al. 2007), or kongensin A (Li et al.
2016) have been studied. Most of them rely on
blocking key interactions between Hsp90 and
Cdc37 (Li et al. 2018). On the other hand, the
derrubone inhibitory mechanism seems to rely
on the detrimental stabilization of a Hsp90:
Cdc37:kinase complex (Hadden et al. 2007). It
should be mentioned that in many cases these
inhibitors also have additional effects on Hsp90
function and induce an HSR (Garg et al. 2016).

Besides several Cdc37 inhibitors, a smaller,
but growing number of inhibitors for other co-
chaperones have been identified. Gedunin was
found to induce apoptosis by binding p23 and
inhibiting its association with Hsp90, although
only moderately inducing Hsp70 expression
(Patwardhan et al. 2013). Intriguingly, treatment
of human cells led to a selective destabilization
of SHRs, making it an interesting candidate for
diseases caused by misregulated GR activity
(Patwardhan et al. 2013). Most recently, a sub-
stance specifically disrupting the Hsp90:GR:
FKBP51 complex was found, which did not im-
pede the binding of FKPB52 to Hsp90 (Sabbagh
et al. 2018). This is of significant interest, given
the described association of FKBP51 with mood
affective disorders.

Recently, a small molecule was identified
that could inhibit the ATPase-activating func-
tion of Aha1 without disrupting the Hsp90:
Aha1 complex (Stiegler et al. 2017). This opens
the possibility to selectively affect Aha1 in the
context of cancers, neuropathies, and cystic fi-
brosis.

Selective activators of PP5 have been devel-
oped that release the autoinhibition and might
find an application in Alzheimer’s disease be-
cause tau is dephosphorylated by PP5 (Liu
et al. 2005; Haslbeck et al. 2015).

In summary, a variety of Hsp90 and cochap-
erone inhibitors have been identified that mod-
ulate their activities by different mechanisms.
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The way of inhibitors into therapeutics has not
been achieved so far because of lacking efficacy
in clinical studies. The reason is not entirely
clear, but may be rooted in the differential re-
wiring of the chaperome in cancers and insuffi-
ciently matching the use of Hsp90 inhibitors to
the genetic profile of the patient (Hong et al.
2013; Rodina et al. 2016).

Simultaneously, research of the recent past
brought forth improved candidates that are now
tested in clinical trials and promising new con-
cepts of howHsp90 can be exploited for therapy.
Combination approaches with Hsp90 and ki-
nase inhibitors have been proven beneficial
(Chiosis and Neckers 2006; Proia and Kauf-
mann 2015). Additionally, the aforementioned
conjugation drugs that exploit the tumor selec-
tivity of Hsp90 inhibitors to target a cytotoxin,
represent a promising strategy to use Hsp90 in-
hibitors in therapy (Proia et al. 2015; Heske et al.
2016). Concluding, inhibitors that specifically
target Hsp90:cochaperone complexes propose
an exciting new field wherein we can interfere
with the Hsp90 system while reducing unspecif-
ic side effects.

CONCLUSION AND OUTLOOK

In the past years, the combined use of cell biolog-
ical, biochemical, and biophysical approaches
shed lightonkeyaspectsof theHsp90machinery.
We now have structural data for all known
Hsp90 paralogs defining the conservation and
variation in structural elements. Several studies
have been able to map the elusive client-binding
site onHsp90, a central first step for understand-
ing how the Hsp90 chaperone machinery pro-
motes the folding of its clients. Additionally,
we are beginning to understand the wealth of
regulatory mechanisms governing and fine-
tuning the Hsp90 machinery, including PTMs,
transcriptional regulation, and cochaperones.
Although we have information on the binding
modes of most cochaperones, how complexes
of Hsp90 with different cochaperones or Hsp90:
cochaperone:client complexes are formed is
largely unknown. The hHsp90:Cdk4:Cdc37 EM
structure suggests a bindingmode forCdc37 and
the kinase that could not be anticipated from

previous studies. In the context of therapeutic
approaches, different Hsp90 inhibitors have
been tested in clinical trials. But the outcome
concerning therapeutic effect did not meet the
expectation. New concepts have been developed
and are on their way to clinical trials. Here, the
Achilles heel is that whatmakesHsp90 attractive
as a target in the first place causes problems in
treatment:Hsp90 is deeply involved inmany cel-
lularpathwaysasacentralhubof thehomeostasis
network (Taipale et al. 2012, 2014;Costanzo et al.
2016; Kuzmin et al. 2018; Savitski et al. 2018).
Thus, the systems perspective of Hsp90 has to
be considered as a central component allowing
altering of the cellular protein homeostasis net-
work.
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