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Abstract. The brain is one of the most complex systems in nature, with a

structured complex connectivity. Recently, large-scale corticocortical connectiv-

ities, both structural and functional, have received a great deal of research atten-

tion, especially using the approach of complex network analysis. Understanding

the relationship between structural and functional connectivity is of crucial im-

portance in neuroscience. Here we try to illuminate this relationship by studying

synchronization dynamics in a realistic anatomical network of cat cortical con-

nectivity. We model the nodes (cortical areas) by a neural mass model (population

model) or by a subnetwork of interacting excitable neurons (multilevel model).

We show that if the dynamics is characterized by well-defined oscillations (neu-

ral mass model and subnetworks with strong couplings), the synchronization

patterns are mainly determined by the node intensity (total input strengths of a

node) and the detailed network topology is rather irrelevant. On the other hand,

the multilevel model with weak couplings displays more irregular, biologically

plausible dynamics, and the synchronization patterns reveal a hierarchical cluster

organization in the network structure. The relationship between structural and

functional connectivity at different levels of synchronization is explored. Thus,

the study of synchronization in a multilevel complex network model of cortex can

provide insights into the relationship between network topology and functional

organization of complex brain networks.
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1. Introduction

Synchronization of distributed brain activity has been proposed as an important mechanism for

neural information processing [1]. The experimentally observed brain activity, characterized

by synchronization phenomena over a wide range of spatial and temporal scales, reflects

a hierarchical organization of the dynamics [2]. Structurally, the cortical networks display

a hierarchy of complex connectivity [3]: the microscopic level of interacting neurons, the

mesoscopic level of minicolumns and local neural circuits, and the macroscopic level of nerve

fibre projections between brain areas [4]. While details at the first two levels are still largely

missing, extensive information has been collected about the latter level in the brain of animals,

such as cats [4] and macaque monkeys [5]. The analysis of the anatomical connectivity of the

mammalian cortex (see a recent review [6]) has shown that large-scale cortical networks display

typical features of small-world networks, e.g. high clustering and short pathlength. This allows

the system to perform both specialized and integrated processes. Additionally, the robustness

of cortical networks against node lesion exhibits properties similar to those of scale-free

networks [7].

In parallel, during recent years, investigation of brain activity has also put significant

emphasis on the large-scale functional interactions between brain areas. Modern brain imaging

techniques, e.g. functional magnetic resonance imaging (fMRI), allow to follow, dynamically

and noninvasively, various markers of brain activity. Numerous linear or nonlinear time series

analysis methods have been applied to study the functional connectivity between brain areas, and

the complex network analysis approach has been employed to explore the structural organization

of large-scale functional brain networks [8]–[11]. Similar to anatomical networks, the functional

networks also display features of small-world and scale-free networks [8]. The functional

connectivity of brain networks based on fMRI is characterized by its dependence on frequency;

it is denser and stronger at slow timescales [11].

An important problem in cognitive neuroscience is the understanding of the relationship

between anatomical and functional connectivity. Due to the invasive nature of neuroanatomical

techniques (mainly by tracer injection), the most complete data about anatomical connectivity

are available only for animal brains, while the topological properties of the human connectome
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remain largely unclear [3]. For this reason, a direct comparison of the large-scale functional

networks from human fMRI with anatomical connectivity does not seem feasible within the

foreseeable future.

To better understand the principles underlying the dynamics of cortical systems, com-

putational neuroscience has for a long time focused on the dynamics of various models of neuronal

networks. The dynamical regimes, such as asynchronous on-going activity with balancing

between excitation and inhibition [12], have been investigated within globally or sparsely and

randomly connected architectures [12, 13]. Systematic exploration of the impact of connection

topology on the dynamical organization in neuronal networks (which is barely beginning) will be

an important direction in neuroscience. Recently, the extraction of connectivity patterns between

different types of neurons at the level of cellular circuits has been described [14]. Based on such

data an ambitious project, the Blue Brain Project [15], aims to build a detailed and large-scale

computer model of a mammalian brain. So far, such models could be built for local neuronal

circuits using realistic morphological properties of neurons and neuronal connectivity. However,

this ‘bottom-up’ approach faces a huge gap of information regarding the detailed neuronal

connectivity between distant cortical regions. Thus, the relationship between anatomical and

functional connectivity, especially over a range of scales, remains one of the major challenges

in neuroscience [1].

We focus on the systems level of the connectivity formed by long-range projections among

cortical areas as described in section 2. Our main goal is to investigate the synchronization

behaviour of a realistic network of corticocortical connections and study the relationship between

the global dynamical organization and the network connectivity at the systems level. We simulate

the dynamics of the nodes (cortical areas) in the networks with various models. The first

choice (intuitively) is to use a neural mass model (low dimensional dynamical model describing

the mean activity of neuronal populations [16, 17]). The results using this population model are

presented in section 3. We show that such a model, displaying dynamics with a well-defined

single timescale (alpha waves), generates dynamical patterns largely determined by the total

input strength (intensity) of nodes, but not by the detailed network topology. A more realistic

choice, presented in section 4, is to implement a ‘bottom-up’approach representing each network

node (cortical area) by a subnetwork of interacting excitable neurons. Different from the ‘Blue

Brain Project’, we use a recurrent network with typical small-world topology which accounts

for the basic features of realistic neuronal connectivity at the cellular level [18]. The simulated

system, a network of networks, represents a multilevel model and displays biologically plausible

dynamical regimes. Here the dynamics shows a hierarchical organization revealing different

levels of modular organization in the anatomical connectivity of the corticocortical networks.

A detailed description of the multilevel model and analysis of the major dynamical regimes

are given in [19]. In [20], we briefly account for the main results of the multilevel model in

its biologically realistic regime. Here, we present an extensive description of our modelling

schemes, including the results of population model and a more detailed analysis of the multilevel

model, and also a comparison between both types of modelling.

2. Corticocortical network of cat

In this paper, we use the cat corticocortical network as an example for large-scale anatomical

connectivity. The cerebral cortex of a cat can be parcellated into 53 areas, linked by about
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Figure 1. (a) Connection matrix MA of the cortical network of the cat brain.

The different symbols represent different connection weights: 1 (◦ sparse),

2 (• intermediate) and 3 (∗ dense). The organization of the system into four

topological communities (functional sub-systems, V, A, SM, FL) is indicated by

the solid lines. (b) The density of connections between the four communities.

830 fibres of different densities [4] into a weighted complex network as shown in figure 1(a).

This network displays typical small-world properties, i.e. short average pathlength and high

clustering coefficient, indicating an optimal organization for effective inter-area communication

and for achieving high functional complexity [21, 22]. The degree of the nodes is heterogeneous,

several nodes have only 2–3 links while others have up to 35 connections. Due to the small

size of the network, it is difficult to claim that degree follows a scale-free distribution [23].

Nevertheless, the distribution is very close to that of networks of the same size and density

generated by scale-free models [23].

Different from random network models, the cortical network of the cat exhibits a hierar-

chically clustered organization [22, 24]. There exist a small number of topological clusters that

broadly agree with four functional cortical sub-divisions: visual cortex (V, 16 areas), auditory

(A, 7 areas), somato-motor (SM, 16 areas) and fronto-limbic (FL, 14 areas). To distinguish from

the dynamical clusters, we will refer to the topological clusters as communities [25]. Figure 1(b)

shows that community A is sparsely connected while communities V, SM and FL are densely

connected among each other.

3. Neural mass model (population model)

In this section, we study the dynamics of the cat cortical network representing each cortical

area by a neural mass model. Such a model describes the activities of a population of cortical

neurons.

The mean activity of a population of neurons in the brain often exhibits rhythmic oscillations

with well-defined frequency bands, as seen in EEG measurements [26]. Such oscillations can be

reproduced by realistic macroscopic models of EEG dynamics proposed since the early 1970s

[16, 17, 27]. We use the neural mass model and parameters presented in [17]. A population of

neurons contains two subpopulations: subset 1 consists of pyramidal cells receiving excitatory or

inhibitory feedback from subset 2. Subset 2 is composed of local interneurons receiving excitatory

inputs. This model describes the evolution of the macroscopic variables, i.e. average post-

synaptic membrane potentials vp for pyramidal cells, and ve, vi for the excitatory and inhibitory
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Figure 2. (a) Typical activity V = ve − vi of the uncoupled neural mass model.

(b) The average correlation coefficient 〈R〉 = 1

N(N−1)

∑

I �=J RIJ (N = 53) versus

the coupling strength g in equation (3).

interneurons, respectively. A static nonlinear sigmoid function f(v) = 2e0/(1 + er(v0−v)) converts

the average membrane potential into an average pulse density of action potentials. Here v0 is

the post-synaptic potential corresponding to a firing rate of e0, and r is the steepness of the

activation. The external input from other groups of neurons and noise are fed into the population

of interneurons. The dynamical equations for I = 1, . . . , N multiple coupled populations read

v̈
p

I = Aaf(ve
I − vi

I) − 2av̇
p

I − a2v
p

I, (1)

v̈i
I = BbC4f(C3v

p

I) − 2bv̇i
I − b2vi

I, (2)

v̈e
I = Aa

[

C2f(C1v
p

I) + pI(t) +
g

〈S〉

N
∑

J

MA
IJf(ve

J − vi
J)

]

− 2av̇e
I − a2ve

I, (3)

where v
p

I , vi
I and ve

I are the post-synaptic membrane potentials of the area I. The parameters

A and B represent the average synaptic gains, 1/a and 1/b the average dendritic-membrane time

constants. C1 and C2, C3 and C4 are the average number of synaptic contacts, for the excitatory

and inhibitory synapses, respectively. A more detailed interpretation and the standard parameter

values of this model can be found in [17]. To model the cat cortical network by such macroscopic

neural mass oscillators, we take the anatomical connectivity in figure 1(a) as the coupling matrix

MA
IJ in equation (3). We normalize coupling strength g by the mean intensity 〈S〉 where the

intensity SI =
∑N

J MA
IJ is the total input weight to node I.

As in [17], in our simulations we take pI(t) = p0 + ξI(t) where ξI(t) is Gaussian white

noise with standard deviation D = 2. The main results do not show a sensitive dependence

on D. We fix p0 = 180 so that the system is in the periodic regime corresponding to alpha

waves. A typical time series of the output, the average potential VI = ve
I − vi

I , is shown in

figure 2(a).

Synchronization between the areas is measured by the linear correlation coefficient RIJ

between the outputs VI and VJ . Other measures, such as phase synchronization, would provide

very similar information about the intercorrelation between the areas. The average correlation

〈R〉 among all pairs of areas is shown in figure 2(b) as a function of the coupling strength g.

The results indicate that no clear correlation is established for weak coupling g < 5, while some

nontrivial correlation seems to be expressed for larger coupling values. The dynamical pattern
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Figure 3. Correlation matrices RIJ of population model of the cat cortical

network at weak coupling g = 2 (a) and strong coupling g = 15 (b). (c) RIJ of a

randomized network with g = 15. Note the different grey-scales in the colourbars.

is not structured at very weak coupling, but at stronger couplings (g � 5), the system forms a

large synchronized cluster including most of the areas from V, SM and FL, while the auditory

system A remains relatively independent (figure 3). This is consistent with the inter-community

connectivity shown in figure 1(b).

According to our previous analysis of general random networks [28] of coupled oscillators

(xI), with a strong enough coupling the whole network achieves a high level of synchronization

expressed as a collective oscillation in the mean activity X = (1/N)
∑N

I xI . Although the cat

cortical network exhibits an organization of communities, it also possesses many random-

like connections between the communities. A mean field approximation might still provide a

meaningful understanding of the dynamical organization in the strong coupling regime. With

this approximation, the average input that a node I receives from its kI direct neighbours,

(1/kI)
∑N

J MA
IJf(VJ), can be replaced by the mean activity f(X), where X = (1/N)

∑N

J VJ .

The coupling term in equation (3) can be written as

g

〈S〉

N
∑

J

MA
IJf(ve

J − vi
J) ≈

gSI

〈S〉
f(X). (4)

In this first-order approximation, the nonlinearity of the sigmoid function f(v) is also neglected.

It means that nodes with large intensities S are more strongly coupled to the global mean field

X. These nodes synchronizing commonly with X form an effective cluster, while the nodes with

small intensities S are not significantly influenced by the activity of other nodes and preserve

their own, rather independent, dynamics.

The above analysis has been largely confirmed by our simulations. We calculate the

correlation coefficient RX between the activity VI of an area and the global mean field

X = (1/N)
∑N

I VI . In figure 4, RX is averaged for nodes with the same values of intensity

S and plotted for various coupling strengths. It is roughly an increasing function of S. We have

carried out simulations on randomized cat cortical networks, maintaining both the input degree

kI and intensity SI of all the nodes [29]. In this case results of RX shows again monotonous

increase with the intensity S (figure 4, solid line). The fluctuation of RX of the original cortical

network is mainly due to the clustered organization at various levels (figure 4, dashed line). For

a more detailed comparison, we also show a typical correlation pattern of these randomized

networks, figure 3(c). As we see, the major dynamical organization is very similar for both the

cat network and the randomized network. This similarity shows that dynamics using a neural
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cortical network, and solid line the randomized matrix.
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Figure 5. Distribution of the correlation R for P0 (solid line), P1 (dashed line)

and P2 (dotted line) pairs at various values of the coupling strength g, (a) g = 2,

(b) g = 5 and (c) g = 20. The dash-dotted lines in (a) and (b) indicate the

distribution between uncoupled areas (g = 0) and the different shapes of the

distributions in (a) and (b) are due to different bin sizes.

mass oscillator depend only little on the detailed network topology, but largely on the input

intensity of the nodes. A direct and strong relationship between the pair-wise coupling MA
IJ and

the strength of synchronization RIJ is not observed. To demonstrate this, we distinguish three

cases for any pair of nodes in the network: reciprocal projections (P2), uni-directional couplings

(P1) and non-connection (P0). We compute the distribution of the correlation RIJ for these cases

separately. As seen in figure 5, when the coupling is weak (e.g. g = 2), the distributions for P0,

P1 and P2 pairs coincide and display a Gaussian shape around zero. Compared to the distribution

obtained by computing the correlation for uncoupled nodes (g = 0) (figure 5, dash-dotted lines),

we can see that most of the correlations are insignificant. At a stronger coupling (e.g. g = 5), the

P2 pairs have slightly stronger correlation than P1, however, the distributions still significantly

overlap, as it is similar for strong couplings.
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In summary, our results using generic oscillators (in this case, neural mass oscillators) show

the dependence of the dynamics on the single node characteristics, but the network topology is not

very relevant. Such a feature comes from the well expressed, single-scale oscillation generated

by the model. When coupled with strong enough strength, such sustained oscillations represent

the fact that the neural activity propagates continuously from a node to its neighbours and next

neighbours in the network, and produces a collective oscillation of the whole system. In reality,

continuous and large-scale spreading of neural activity in a strongly synchronized manner occurs

only in pathological situations, such as epileptic seizure [13]; in a normal brain, the spontaneous

EEG contains a broad range of timescales [27] which is not accounted for by this model. Thus,

such a simplified model of EEG generation, when assuming a periodic oscillation, seems to be not

suitable to reflect the relationship between the intricate structural and functional connectivities

of cortical networks, especially in a normal rest state with a background spontaneous activity.

Note, however, coupling several neural mass oscillators in some particular ways representing

forward, backward and lateral processes has been proposed to model event-related responses in

the brain [30]. Estimation of the coupling parameters of such models using empirical data can

be used to assess causal (effective) connectivity between brain areas [31].

Another option is to use models of coupled excitable elements with structured connectivity,

as we will try in the next section.

4. Subnetworks of interacting neurons (multilevel model)

4.1. Description of the model

Now we model each cortical area with a subnetwork of Na interacting neurons. We consider

local neurons to be coupled with a small-world topology (SWN [32]) to reproduce basic

biological features: neurons are mainly connected to their spatial neighbours, but a few long-range

projections are also present [19]. The SWN topology has been shown to improve synchronization

of interacting neurons [33]–[35] and to maintain persistent activity [36]. In particular, a regular

array of Na neurons with a mean degree ka is rewired with a probability p. Our model also

includes other realistic, experimentally observed features: 25% of the Na neurons are inhibitory

and only a small number of neurons (about 5%) in one area receive excitatory synapses from

other areas [37]. We assume that cortical areas communicate with each other via their mean field

activity. Individual neurons are described by the FitzHugh–Nagumo (FHN) excitable model [38]

with non-identical excitability. A weak Gaussian white noise (with strength D = 0.03) is added

to each neuron so that isolated units exhibit sparse, Poisson-like irregular spiking patterns, as in

realistic neurons.

Thus our multilevel model of the neural network of a cat cortex consists of a network of

networks of noisy neurons. The dynamics of each neuron i in area I reads:

ǫẋI,i = f(xI,i) +
g

ka

Na
∑

j

ML
I (i, j)(xI,j − xI,i) +

g

〈w〉

N
∑

J

MA
IJLIJ(i)(VJ − xI,i), (5)

ẏI,i = xI,i + aI,i + DξI,i(t), (6)
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Figure 6. Typical mean activity VI of one area at various coupling strengths

(a) g = 0.07, (b) g = 0.082, (c) g = 0.09. The average correlation coefficient

〈R〉 = 1

N(N−1)

∑

I �=J RIJ (N = 53) versus g.

where

f(xI,i) = xI,i −
x3

I,i

3
− yI,i. (7)

Here the matrix MA represents the corticocortical connections in the cat network as in figure

1(a). ML
I denotes the local SWN of the Ith area (ML

I (i, j): i, j = 1, . . . , Na). If neuron j is

inhibitory then ML
I (i, j) = −1 for all of its connected neighbours. The label LIJ(i) = 1 if the

neuron i is among the 5% within the area I receiving the mean field signal VJ = (1/N)
∑Na

l xJ,l

from the area J , otherwise, LIJ(i) = 0. The diffusive coupling which represents the electrical

interaction between the neurons, is not the most typical case in the mammalian cortex, but is

mainly considered for the simplicity of simulation at this stage. The average coupling strength

between any pair of neurons g is the control parameter in our simulations. Note that we assume g

to be equal for couplings within and between subnetworks. We normalize it by the mean degree ka

of the SWNs within the areas and by the average weight 〈w〉 of inter-area connections. The system

is simulated with Na = 200, ka = 12 and p = 0.3 for the subnetworks. Our focus is to study the

synchronization behaviour at the systems level, i.e. the correlation between the mean activity

VI of the subnetworks and its relationship to the underlying cortical topology (figure 1(a)). The

synchronization behaviour between cortical areas, demonstrated in the following sections, does

not depend critically on the parameters of the subnetworks. However, detailed dynamics within

the subnetwork does depend on them [33]–[36].

4.2. General dynamics

The coupling strength g controls the mutual excitation among the neurons. At small g (e.g.

g = 0.07), a neuron is not often excited by the noise-induced spiking of its connected neighbours,

so the synchronization within and between the subnetworks is weak. This is shown by the small

fluctuations of the mean activity VI of each area (figure 6(a)) and a small average correlation

coefficient 〈R〉 between them (figure 6(d)). Weak synchronization in the subnetwork of an area is

manifested by a few peaks in VI (figure 6(a)). Increasing g, the synchronization becomes stronger
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Figure 7. Correlation matrices RIJ at weak coupling g = 0.07 (a) and strong

coupling g = 0.12 (b).

with more frequent and larger peaks in VI (figure 6(b)) and at large enough g, the neurons are

mutually excited achieving both strongly synchronized and regular spiking behaviour (figure

6(c)). In this case 〈R〉 approaches to 1 (figure 6(d)), indicating an almost global synchronization

of the network.

The correlation matrices RIJ for different g are shown in figure 7. At strong coupling

(figure 7(a)), the pattern of correlations is very similar to that of the neural mass model since

both models display well-defined oscillations. However, the weak coupling dynamics in this

multilevel model has a nontrivial organization and an intriguing relationship to the underlying

network topology, see figure 7(a). The distribution of R among all pairs of areas displays a

Gaussian peak around zero, but with a long-tail to large values (figure 8(a), solid line). Although

the correlations are relatively small, we find that the large values are significant when compared

to the distribution of R of surrogate data by random shuffling of the time series VI (figure 8(a),

dash-dotted line). The weak coupling regime is biologically more realistic, since here the neurons

only have a low frequency of irregular spiking and irregular mean activities (figure 6(a)), similar

to those observed experimentally (e.g. EEG data [27]). The propagation of a signal between

connected areas is mediated by synchronized activities (peaks in V ) and a temporal correlation

is most likely established when the receivers produce similar synchronized activities by this

input, or when two areas are excited by correlated signals from common neighbours. Due to

the weak coupling and the existence of subnetworks, such a synchronized response does not

always occur and a local signal (excitation) does not propagate through the whole network. As

a result, the correlation patterns are closely related to the network topology, although the values

are relatively small due to infrequent signal propagation. With strong couplings, the signal can

propagate through the whole network, corresponding to pathological situations, such as epileptic

seizure [13].

Let us now characterize the dynamical organization and its relationship with the network

topology. Based on the argument of signal propagation, we expect the correlations for the P2,

P1 and P0 areas to be significantly different. Indeed, the distributions of R for these three cases

display well-separated peaks in the weak coupling regime (figure 8(a)). Especially, all the P2 pairs

have significant correlations compared to the surrogate data. At strong coupling (e.g. g > 0.09),

where the excitation propagates through the whole network, the distribution is very similar to

the neural mass model in figure 5(c), and the separation is no longer pronounced (figure 8(b)).
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Figure 8. Distribution of the correlation R (g = 0.07) for all nodes (solid line),

P2 (dotted line), P1 (dashed line) and P0 (blue solid line). The dash-dotted line

denotes the results for the surrogate data.

4.3. Functional connectivity

In the following section, we want to study more closely the relationship between the anatomical

topology and functional connectivity. We extract functional networks MF from the dynamics of

the multilevel model by applying a threshold Rth to the correlation matrix RIJ so that a pair of

areas is considered to be functionally connected if the correlation between them is larger than

the threshold [9]–[11]:

MF
IJ =

{

1 if RIJ � Rth

0 otherwise

We compare these functional networks MF at different Rth to the topological features of the

anatomical network MA and examine how the various levels of synchronization reveal different

scales in the topology. We focus on the biologically meaningful weak coupling regime and take

g = 0.07 as the typical case.

In order to characterize the functional relevance of anatomical features, we use several

graph theoretical measures. Our results in figure 8(a) show dependence of the correlation on the

link reciprocity. Furthermore, it is expected to depend on the connection weights. To account

for both the topology and strength of connections, we define the reciprocal weight, wIJ , as the

normalized sum of the links between I and J :

wIJ ≡ (MA
IJ + MA

JI)/6,

(where 6 is the maximal bidirectional weight). In figure 9(a) the pair-wise wIJ are shown for the

anatomical connectivity matrix MA.

However, pair-wise connection weight alone does not completely explain the strength of

correlation between two areas, the common environment of areas might also play an important

role. The matching index between two nodes, MI(i, j), is the number of their common neighbours,

thus, it can be regarded as a measure for pair-wise functional similarity [39]. It is quantified as:

MI(i, j) =

N
∑

l=1

AilAjl

where Aij is the adjacency matrix of a network. A proper normalization is obtained by dividing

each element of the MI matrix by (ki + kj − MI(i, j)) that is the total number of distinct nodes to
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Figure 9. Pair-wise properties of the anatomical network MA: (a) reciprocal

weight of the anatomical links and (b) matching index of input neighbours.

Figure 10. Properties of functional networks at various correlation thresholds.

(a) Anatomical matching index of functional networks. Solid line, average of

intracommunity links; dashed line, average MI of inter-community links; and

horizontal line, global average ofMI matrix (in figure 9(b)). (b)Average reciprocal

weight of links expressed in MF. (c) Number of connected components of MF.

(d) Hamming distance H (red line) between MA and MF, and modularity QF

(black line) of MF considering the four sub-divisions (V, A, SM, FL) versus

Rth. Vertical lines correspond to the four snapshots in figure 11: (1) Rth = 0.070,

(2) Rth = 0.065, (3) Rth = 0.055 and (4) Rth = 0.019.

which i and j connect (k stands for the degree of a node). With such a normalization MI(I, J) = 1

only if I and J receive input entirely from the same cortical areas, and MI(I, J) = 0 if all

inputs to I and J come from completely different areas. The MI matrix from the anatomical

connectivity is presented in figure 9(b). As can be seen, MI values of the areas within the

anatomical communities V, A, SM and FL are high (internal MI). However, MI of areas in

different communities (external) is heterogeneous, i.e. only some areas share many common

neighbours with areas in other communities. To account for the functional implications of this

anatomical feature, we average the MI of functional connections, provided areas belong to the

same community (figure 10(a), bold line) or to different communities (dashed line).

Our goal is to study how much the pair-wise correlation between cortical areas depends on

these two measures. Starting with a threshold Rth equal to the highest value in RIJ , we proceed
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Figure 11. The functional networks (◦) at various thresholds: Rth = 0.070

(a), Rth = 0.065 (b), Rth = 0.055 (c) and Rth = 0.019 (d). The small dots indicate

the anatomical connections.

to extract functional networks MF as Rth is lowered. For each MF, considering only expressed

areas and links, we calculate their average 〈wIJ〉 and average 〈MI〉 values (figures 10(a) and (b)).

Additionally, due to sparseness of functional links at highRth thresholds, functional networks

are separated into several connected components, i.e. areas form groups that are internally

connected but disconnected from each other. In figure 10(c) the number of connected components

within each MF is presented.

Now we proceed to discuss in detail the organization properties of functional networks

at different levels of synchronization. Typical patterns of functional connectivity are shown in

figure 11.

1. When Rth is very close to the maximal value of R, only few areas within the auditory

system A are functionally connected, because of their strong anatomical links and sharing

of many common neighbours. Note that in figure 10(b) 〈wIJ〉 = 1 for the highest thresholds

meaning that these nodes are anatomically connected by strong bidirectional links. With

lower values, e.g. Rth = 0.07 (figure 11(a)), about 2/3 of the areas are present but only

10% of the P2 links and none of the P1 links are present. This is manifested by high values

of 〈wIJ〉. Interestingly, all functional links correspond to anatomical connections within

the communities V, A, SM, and FL, forming ‘core’ functional subnetworks. However, MF

is distributed into several components (figure 10(c)).

2. At lower values, e.g. Rth = 0.065 (figure 11(b)) the small components grow and merge.

There are only five components closely following the anatomical communities. The small

decrease of 〈wIJ〉 shows that the new functional links correspond to strong and bidirectional

anatomical connections. Internal 〈MI〉 remains high (figure 10(a), solid line), denoting that
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anatomical communities are densely connected. Notice that the first inter-community func-

tional links are also expressed. Precisely these links functionally connect the cortical areas

that have many neighbours in common (although they belong to different communities).

This is accounted for by the peak in the external 〈MI〉 (figure 10(a), dashed line).

3. Moving to slightly lower thresholds, e.g. Rth = 0.055 (figure 11(c)) a transition occurs in

the organization of MF. While more links are included within the anatomical communities,

a few inter-community connections lead to the merging of all components into a big single

one (figure 10(c)). This permits the communication between all cortical areas. At this stage

only about 1/3 of the anatomical P2 links and very few P1 links are expressed. With such

low connection density MF already resembles the main properties of MA: high clustering

and community structure. The anatomical connectivity is much denser. This suggests high

robustness and the existence of many parallel paths of information processing.

4. With further decreasing of the threshold, e.g. at Rth = 0.019 (figure 11(d)), all P2 links are

just fully expressed and about 70% of P1 links too. Meanwhile, about 4% of non-connected

pairs (P0) establish significant functional connections (significance level ≈ 0.004), since

they have many common neighbours. The functional network reveals rather faithfully the

anatomical network (figure 11(d)).

Summarizing, we have observed that nodes connected by strong bidirectional links and

possessing many common neighbours are highly correlated, and thus, they are the first ones to

be expressed as functionally connected. The strongest correlation occurs between nodes within

the same anatomical community. Besides, internal 〈MI〉 (figure 10(a), solid line) remains stable

over all Rth, and is much higher than the global 〈MI〉 between all areas (figure 10(a), horizontal

line). This confirms high functional similarity between areas within the same community

(even though they are not necessarily anatomically connected) and illustrates the capability

of different communities (V, A, SM and FL) to perform specialized information processing.

Cortical areas belonging to different communities have, in general, few neighbours in common

as seen in figure 9(b). This is also exposed by the fast decrease of external 〈MI〉 as the number

of functional links increases with decreasing Rth (figure 10(a), dashed line). However, the

peak at Rth ∼ 0.06−0.07 shows that the expression of few inter-community functional links

between certain cortical areas in different communities (with high functional similarity) triggers

a transition where all areas merge into a single connected component. This potentially allows

the integration of the specialized information.

To further compare the matrices MF and MA in a more quantitative manner, we take the

binary matrix of MA and symmetrize all P1 links and compute the Hamming distance H , i.e.

the percentage of elements between MF and the binary MA that are different. The closeness

is minimal between them at Rth ≈ 0.019, with a very small Hamming distance H = 0.074

(figure 10(d), red line). It is interesting to note that this threshold is exactly where the full

distribution of R starts to deviate from the Gaussian and the distribution of P2 links separates

from that of the surrogate data (figure 8(a), vertical solid line). We find that such a natural choice

of Rth always reproduces well the network topology with minimal H for all coupling strengths

0.04 � g � 0.08.

The formation of communities can be quantified by modularity Q [26],

Q =
∑

k

ekk − a2
k, (8)
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dashed line denotes Q4.

with ekk being the fraction of all links in the network that connect the nodes within community

k, and ak =
∑

l ekl is the fraction of edges from the whole network that connect to nodes in the

community k. Figure 10(d), solid line, shows the modularity (QF) of the functional networks

MF at different thresholds considering the original anatomical communities V, A, SM and FL.

For comparison, the modularity Q4 calculated the four communities V, A, SM and FL, but with

the anatomical connectivity MA is shown: Q4 = 0.284, horizontal dashed line in figure 10(d). In

a broad range of Rth, QF is much larger than Q4, and they coincide at the natural threshold

Rth = 0.019 (figure 10(d)). This provides meaningful insights into how densely connected

cortical subsystems (e.g. communities V, A, SM, FL) can perform highly specialized functions

(the strongest synchronization) by a subset of areas and connections.

The above analysis based on functional networks suggests that the dynamics of the network

is hierarchically clustered and that the most prominent clusters are consistent with the four known

anatomical communities. A typical hierarchical tree in the weak coupling regime is shown in

figure 10(a).At each level of the tree, a set of Nc clusters is detected (see section 4.4). What are the

underlying topological links within and across these dynamical clusters? We calculate both the

anatomical modularity QA (using the anatomical matrix MA) and the functional modularity QC

(using the correlation matrix RIJ ). The difference of QC and QA from QF and Q4 (figure 10(c))

is that QF and Q4 are obtained for the 4 cortical subsystems V, A, SM, FL using MF and MA.

respectively. Now, we define QC as an extension of Q in equation (8) to use the values of the

correlation matrix (without threshold) instead of the connectivity matrix:

ekl =
∑

I �=J

RIJ , where I ∈ k, J ∈ l. k, l = 1, . . . , Nc. (9)

So ekl is the fraction of the total strength of correlation between communities k and l. Strikingly,

at different levels of the hierarchy (varying Nc), QC and QA follow each other closely

(figure 12). This provides strong evidence that the dynamical organization reveals hierarchical

scales in the network topology. At Nc = 4, both QC and QA are maximal, approaching Q4 of

the four communities in the anatomical network. Thus the dynamical clusters agree well with

the anatomical communities.

4.4. Transition of cluster formation

We have analysed the most prominent dynamical clusters using an algorithm for hierarchical

clustering in Matlab with the dissimilarity matrix d = [d(I, J) = 1 − RIJ ]. Typical hierarchical

trees (dendrograms) for three different synchronization regimes are shown in figure 13.
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Figure 13. Typical hierarchical tree of the dynamical clusters in the weak

coupling regime (a) g = 0.07, transient regime (b) g = 0.082 and strong coupling

regime (c) g = 0.12.

In dendrograms the height of each line connecting two objects (areas or clusters) represents

their distance. The higher the lines, the more distant the objects are, and so they are less likely to

belong to the same group. At weak coupling, the nodes preserve their own dynamics, correlation

is low and thus the distance between individual areas is relatively high. Looking at the highest

levels of the hierarchical tree, one can see how the brain areas form the four main dynamical

clusters (figure 13(a)). By increasing the coupling strength, the areas exhibit higher correlation

of the activity, leading to the formation of one dominant and two small additional clusters (figure

13(b)). In the next step, due to the strong coupling, the mean activity of the majority of areas is

strongly synchronized; this is also expressed by the short distance between the individual objects.

Most of the areas merge into two major clusters, but a few areas still preserve their own dynamics

(figure 13(c)). Here the distance between the clusters is large, because of different dynamics.

The details of the major clusters in all these three cases of coupling strength are presented in

figures 14–16.

Figure 14 displays the most prominent functional clusters for the weak coupling regime.

They follow closely the four anatomical communities – C1 (V), C2 (A), C3 (SM), C4 (FL).

However, there are a few nodes which belong to one anatomical community but join another

dynamical cluster. For example, the area I = 49 (anatomically named ‘area 36’) of the fronto-

limbic system appears in the dynamical cluster C2 mainly composed of areas from the auditory

system (figure 14(C2)). A closer inspection shows that these nodes bridging different anatomical

communities and dynamical clusters are exactly the areas sitting in one anatomical community

but in close connectional association with the areas in other communities [4]. More detailed

analysis of these bridging areas can be found in [20].

The transient regime between the weak and strong couplings is characterized by the

formation of one major cluster and two small clusters (figure 15). This major cluster C1 consists

of the somato-motor system and absorbs most of the visual areas and about half of the FL system

and one area from the auditory system (figure 15(C1)). The cluster C2 corresponding to the

auditory system A remains relatively independent, connected only through area 22 to the central

cluster C1 (figure 15(C2)).

In the strong synchronization regime, V, SM and FL join to form a major cluster

(figure 16(C1)). The auditory system A is still independent (figure 16(C2)). The formation of

an independent cluster from the community A both in the weak and the strong synchronization

regimes is due to almost global connections within A and few intercommunity connections to

others. The cluster formation behaviour in the strong coupling regime is also in good accordance
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Figure 14. Four major dynamical clusters (◦) with weak coupling strength

g = 0.07, compared to the underlying anatomical connections (·).

0 10 20 30 40 50
0

10

20

30

40

50

C1

Area J

A
re

a
 I

0 10 20 30 40 50

C2

Area J

0 10 20 30 40 50

C3

Area J

Figure 15. Three major dynamical clusters (◦) with intermediated coupling

strength g = 0.82, compared to the underlying anatomical connections (·).

with the inter-community connectivity shown in figure 1(b). There are also two single areas

showing rather independent dynamics. It turns out that these are the nodes with the minimal

intensities in the network (S53 = 8 and S8 = 11). In [20] we have shown that the clustering

patterns remain almost the same in randomized networks that preserve the sequence of the

intensities SI as in the cat cortical network; the auditory system A no longer forms a distinct

cluster when the pronounced intra-community connections are destroyed by randomization. This

demonstrates that our understanding of synchronization based on mean field approximation in

section 3 can be applied when the node dynamics (mean activity of the subnetwork in this case)

displays a well-defined oscillatory behaviour.
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Figure 16. Two major dynamical clusters (◦) with strong coupling strength g =

0.12, compared to the underlying anatomical connections (·).

The comparison between the multilevel model and the population model indicates that self-

sustained oscillator models may not be as appropriate for the understanding of the interplay

between dynamics and structure in the brain as a hierarchical network of excitable elements.

5. Conclusion and outlook

We have studied synchronization in a realistic network of cat cortical connectivity. We have

demonstrated that if well-defined oscillatory dynamics are assumed for the nodes (cortical areas

composed of large ensembles of neurons), the synchronization patterns are mainly controlled

by the global structural statistics of the nodes (input intensities). This happens, for example,

by representing the areas through a neural mass model, or by a subnetwork of rather strongly

coupled neurons. However, a multilevel model with weak coupling displays biologically plausible

dynamics, and the synchronization patterns exhibit a close relationship to the hierarchically

clustered organization of the anatomical topology. The dynamics are mainly controlled by

the detailed organization of the network connectivity, such as the reciprocity of the directed

connections and the common environment of a pair of areas. The activity of the subnetwork in

the weak coupling regime displays a broad frequency spectrum, however, it does not reproduce

pronounced rhythmic oscillations as observed in EEG of real brain activity. An improved model

capturing both properties would bring a deeper understanding of the structure–function relation,

which is reasonably speculated to lie between the above two cases.

Here we have only focused on the highest structural level and modelled each large cortical

area with one sublevel of neurons with simple dynamics. In a biologically plausible regime (weak

coupling regime), the maximal correlation values are low (0.1−0.2). In the strong coupling

regime the dynamics display a large region of frequent and regular spiking of the neurons and

strong synchronization even without external influence. The maximum correlation values for

actual functional connectivity can be considerably higher [9]. The strong correlation between

spatially close brain regions obtained from high spatial resolution fMRI data is mainly due to

dense connectivity within local neuronal ensembles [9], while the relatively strong correlation

between distant functional areas, especially in the low frequency bands, may have a close

relation to the underlying long-range projections [11]. The difference between our model and
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experimental observation could be mainly due to the one-level connectivity in the subnetwork,

which does not allow strong activation within a subnetwork without propagating to excite the

whole network.

Although still rather simplified, the present multilevel model already displays plausible

clustering dynamics, and the most prominent clusters are consistent with the underlying network

communities and the functional subdivision of the cortical systems.While prediction at the level

of individual connections may not be justified from the model at this stage, the results at the level

of prominent clusters are already quite suggestive. It is meaningful to examine the relationship

between the functional clusters and the functional subdivisions of the human cortex from data.

The information for both is available: the functional clusters can be obtained from brain imaging

data and the organization of functional areas into sub-cortical systems (visual, auditory etc) is

already known [11].

The model can be extended and improved in several ways, in order to capture more realistic

information processing in the brain. (i) Biologically, a system in the order of 105 neurons,

corresponding to a cubic millimetre of cortex, is the minimal system size at which the complexity

of the cortex can be represented (where the number of synapses a neuron receives is around 104)

[40, 41]. Thus, large subnetworks with other biologically realistic features, e.g. organization of

neurons into layers and columns, and more detailed spatial structure of neural circuits should be

considered. Such an extension is important for the modelling and simulation of experimentally

observed hierarchical activity characterized by synchronization phenomena over a wide range of

spatial and temporal scales. (ii) Cortical and subcortical neurons exhibit rich dynamics [42], for

example, tonic spiking and burst firing modes which are related to wakefulness and sleep [43].

These different firing modes have significant effects on the synchronization of coupled neurons

[44], which may affect global functional connectivity. More subtle neural models are required

to account for richer neuronal dynamics. (iii) Biologically more realistic coupling by chemical

synapses should be used and synaptic plasticity considered.

These more realistic implementations might allow significant improvement in the modelling

of EEG by generating both rhythmic oscillations and a broad-band background activity. The

hierarchical network architectures would also allow localized and strong synchronization in

some low-level clusters and naturally organized dynamics at higher levels. The biologically

plausible regimes may be significantly broaden, with stronger correlations similar to that observed

experimentally [11].

In future the proposed framework will be used to investigate the relative contributions of

network topology and task-related network activations to specific functional brain connectivity

and information processing. The study is very relevant to the analysis of the event-related brain

potential (ERP) in cognitive studies. Classical ERP analysis assumes that the stimulus-evoked

response is independent of the on-going spontaneous activity, so that EEG measurements can

be averaged over many trials to look for the offset to the reference state [45]. However, the on-

going spontaneous activity between different brain areas in a no-task state is not independent, but

displays sophisticated connectivity [8]–[11]. Here we demonstrated with the multilevel model

that the functional connectivity is governed by the underlying complex network topology. Since

both the stimulus-evoked response and the background activity occur on the same underlying

neuronal network, such an assumption of independence between them is challenged. In fact,

simulations of neurons on a simple array demonstrate that the response of the system to external

stimuli can be significantly modified, especially enhanced in the presence of background activity

and coupling [46]. This suggests that there exist nontrivial, nonlinear interactions between the
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stimulus-evoked response and the on-going background activity, and the interplay could be much

more complicated in hierarchical network architectures and may have significant contributions

to the ERP components. Thus, the analysis of ERP generation with the model proposed here can

aid our understanding of the neurobiological foundation of cognition and provide guidance for

improved ERP analysis in cognitive studies.

Furthermore, the model dynamics could be compared to the observed activity spread in the

cortex [47] and to the functional connectivity [9]–[11] at suitable spatio-temporal scales. With

recently developed approaches for dynamic causal modelling of evoked responses in the brain

using functional imaging and coupled neural mass models, the effective functional connectivity

at the highest scale, i.e. between functional areas involved in the processing, can be explored [31].

The multilevel, hierarchical cluster model proposed here would allow the investigation of the

structure–function relationship over a range of scales. This should shed light on understanding

how the hierarchical synchronization dynamics [2] is raised from the underlying hierarchy of

structural connectivity [3] in the brain. This achievement would require further developments in

neurophysics, in the theory of dynamical complex networks, in algorithms of parallel computing

[41] as well as in experimental approaches for high-resolution functional recordings.
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Arenas A, Dı́az-Guilera A and Pérez-Vicente C J 2006 Phys. Rev. Lett. 96 114102

[26] Niedermeyer E and Lopes da Silva F H 1993 Electroencephalography: Basic Principles, Clinical Applications,

and Related Fields (Baltimore: Williams and Wilkins)

Kandel E R, Schwartz J H and Jessell T M 2000 Principles of Neural Science, 4th edn (NewYork: McGraw-Hill)

[27] David O and Friston K J 2003 NeuroImage 20 1743–55

[28] Motter A E, Zhou C S and Kurths J 2005 Phys. Rev. E 71 016116

Zhou C S, Motter A E and Kurths J 2006 Phys. Rev. Lett. 96 034101

Zhou C S and Kurths J 2006 Phys. Rev. Lett. 96 164102

[29] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chlkovskii D and Alon U 2002 Science 298 824–7

[30] David O, Harrison L and Friston K J 2005 NeuroImage 25 756–70

[31] David O, Kiebel S, Harrison L, Mattout J, Kilner J M and Friston K J 2006 NeuroImage 30 1255–72

[32] Watts D J and Strogatz S H 1998 Nature 393 440–2

[33] Lago-Fernández L F, Huerta R, Corbacho F and Sigüenza J A 2000 Phys. Rev. Lett. 84 2758–61

[34] Masuda N and Aihara K 2004 Biol. Cybern. 90 302–9

[35] Guardiola X, Dı́az-Guilera A, Llas M and Pérez C J 2000 Phys. Rev. E 62 5565–70
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