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I
n the past two decades, three zoonotic coronaviruses crossed 
the species barrier to cause severe pneumonia in humans:  
(1) severe acute respiratory syndrome coronavirus (SARS-CoV), 

which was associated with an epidemic in 2002–2003 and a few 
additional cases in 2004 (refs. 1,2); (2) Middle-East respiratory syn-
drome coronavirus (MERS-CoV), which is currently circulating in 
the Arabian peninsula3; and (3) SARS-CoV-2, the etiological agent 
of the ongoing COVID-19 pandemic4,5. SARS-CoV-2 was discov-
ered in December 2019 in Wuhan, Hubei Province of China, was 
sequenced and isolated by January 2020 (refs. 4,6) and has infected 
over 11 million people with more than 532,000 fatalities as of 5 July 
2020. No vaccines or specific therapeutics are licensed to treat or 
prevent infections from any of the seven human-infecting coro-
naviruses with the exception of remdesivir7,8, which was recently 
approved by the Food and Drug Administration for emergency use 
for COVID-19 treatment.

Coronaviruses gain access to host cells using the homotrimeric 
transmembrane S glycoprotein protruding from the viral surface9. 
S comprises two functional subunits: S1 (encompassing the A, B, C 
and D domains) and S2. These subunits are responsible for bind-
ing to the host cell receptor and fusion of the viral and cellular 
membranes, respectively10. For many coronaviruses, including the 
newly emerged SARS-CoV-2, S is cleaved at the boundary between 
the S1 and S2 subunits which remain noncovalently bound in the 
prefusion conformation10–18. The distal S1 subunit comprises the 
receptor-binding domain(s), and contributes to stabilization of the 
prefusion state of the membrane-anchored S2 subunit which con-
tains the fusion machinery10,17,19–25. Structural fluctuations of the 
receptor-binding SB domain (also known as RBD), from a closed to an 
open conformation, enable exposure of the receptor-binding motif 
(RBM) which mediates interaction with angiotensin-converting 
enzyme 2 (ACE2) for SARS-CoV-2 (refs. 6,18,26–31) and SARS-CoV32,33, 
or dipeptidyl-peptidase 4 for MERS-CoV34,35 (Fig. 1a,b). Receptor 
engagement or interaction with the Fab fragment of the S230 neu-
tralizing monoclonal antibody were previously shown to induce the 

SARS-CoV S cascade of conformational changes leading to mem-
brane fusion, which we proposed to proceed through a molecular 
ratcheting mechanism22,36. For all coronaviruses, upon receptor 
binding S is further cleaved by host proteases at the S2′ site located 
immediately upstream of the fusion peptide14,16,37. This cleavage 
has been proposed to activate the protein for membrane fusion via 
extensive irreversible conformational changes13–16,19,38,39. As a result, 
coronavirus entry into susceptible cells is a complex process that 
requires the concerted action of receptor binding and proteolytic 
processing of the S protein to promote virus–cell fusion.

Viral fusion proteins, including coronavirus S glycoproteins, 
fold in a high-energy, kinetically trapped prefusion conformation 
found at the viral surface before host cell invasion40. This metastable 
state is activated with exquisite spatial and temporal precision upon 
encounter of a target host cell by one or multiple stimuli such as 
pH change41,42, proteolytic activation13,15 or protein–protein interac-
tions43. The ensuing irreversible and large-scale structural changes 
of viral fusion proteins are coupled to fusion of the viral and host 
membrane to initiate infection. As a result, the postfusion state of 
a viral fusion protein is the lowest energy conformation (that is, 
ground state) observed throughout the reaction coordinates40. A 
notable exception to this general pathway is the vesicular stomatitis 
virus fusion glycoprotein G that can reversibly transition from the 
prefusion to the postfusion conformations and vice versa42,44,45.

The intrinsic metastability of viral fusion proteins—which is 
oftentimes magnified by working with ectodomain constructs 
lacking the transmembrane and cytoplasmic segments—has posed 
challenges for studying the structure and function of these gly-
coproteins as well as for vaccine design. As a result, a variety of 
approaches have been implemented to stabilize these fragile glyco-
proteins. Proline substitutions preventing refolding to an elongated 
α-helical structure observed in postfusion influenza virus hemag-
glutinin were reported as a promising strategy to stabilize the pre-
fusion state of this widely studied viral glycoprotein46. Engineering 
approaches based on this concept along with introduction of 
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designed disulfide bonds and other mutations have subsequently 
been used for stabilizing the prefusion conformation of other class I  
fusion proteins, such as the SOSIP mutations in the HIV-1 enve-
lope glycoprotein47–50. Structure-guided prefusion stabilization via 
introduction of disulfide bonds and cavity-filling mutations was 
successfully implemented for the respiratory syncytial virus fusion 
glycoprotein51 (DS-Cav1) and parainfluenza virus 1–4 fusion gly-
coproteins52. Designed disulfide bonds have also proven useful to 
enhance the prefusion stability of the Hendra virus fusion glyco-
protein53, mutations which were later applied to the Nipah virus 
fusion protein54. Finally, the introduction of double proline substi-
tutions, herein 2P, to prevent fusogenic conformational changes of 
MERS-CoV S (ref. 20) and SARS-CoV S (ref. 55) was shown to sta-
bilize the prefusion states of these glycoproteins. These results pro-
vided proof of concept of the broad applicability of this approach 
to coronavirus S glycoproteins, which was subsequently confirmed 
by its successful use for SARS-CoV-2 S structural studies18,56,57. In 
spite of these advances, the conformational dynamics and limited 
stability of the SARS-CoV-2, SARS-CoV and MERS-CoV S glyco-
proteins remain a challenge that needs to be overcome to accelerate 
structural studies of the immune response elicited by coronavirus 
infections and vaccine design. Recent reports of the observation of 
postfusion trimers at the surface of purified authentic SARS-CoV-2 
(refs. 58–60) and of spontaneous refolding of a fraction of S trimers 
upon detergent-solubilization61 showcase these limitations.

We report here the design of a prefusion-stabilized SARS-CoV-2 S  
ectodomain trimer construct engineered to remain in the closed 
conformation through introduction of an intermolecular disulfide 
bond. Single-particle cryo-EM analysis of this glycoprotein coupled 

with ELISA assays unambiguously demonstrated that our strat-
egy successfully shut S in the closed state without otherwise alter-
ing its architecture, as evaluated by binding to a panel of human 
monoclonal neutralizing antibodies and a COVID-19 convalescent 
serum. We show that this covalent stabilization strategy enhances 
the SARS-CoV-2 S resistance to proteolysis and that it is applicable 
to other β-coronavirus S glycoproteins. We envisage that it might 
become an important tool for vaccine design, structural biology, 
serology and immunology studies.

results
Stabilizing SARS-CoV-2 S in the closed conformation. We rea-
soned that arresting the first step of SARS-CoV-2 S refolding—the 
SB transition from a closed to an open conformation (Fig. 1a,b)—
might enhance the stability of the prefusion state and yield a useful 
molecular tool. We therefore set out to engineer SARS-CoV-2 S  
stalled in the closed conformation through introduction of disul-
fide bonds into the ectodomain construct we previously used to 
determine structures of the closed and open conformations18,57. 
Specifically, our construct harbored an abrogated furin S1/S2 
cleavage site (R682S, R683G and R685G)10,24,36,62, two consecu-
tive proline stabilizing mutations (K986P and V987P, so called 
2P)20,55 and a C-terminal foldon trimerization domain63. We  
designed the following pairs of cysteine substitutions aimed at 
introducing three intermolecular disulfide bonds per trimer: 
S383C/D985C, G413C/P987C and T385C/T415C (Fig. 1c). 
S383C/D985C was identified using the Disulphide by Design 
web-server64, while G413C/P987C and T385C/T415C were 
selected manually.
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Fig. 1 | Structure-based engineering of a SArS-CoV-2 S trimer in the closed conformation. a,b, cryo-eM structures of SArS-coV-2 S with one SB 

receptor-binding domain open (a, PDB 6VYB) and one in the closed state (b, PDB 6VXX), used as a basis for the design of intermolecular disulfide 

bonds18. c, Pairs of residues mutated to create potential disulfide bonds are shown with dashed black lines between the cα In panels a–c, each  

S protomer is colored distinctly. d, SDS–PAGe analysis in reducing and nonreducing conditions showing formation of an intermolecular disulfide bond. 

βMe, β-mercaptoethanol. the uncropped image is shown in Supplementary Data 1. e,f, electron micrograph of negatively stained SArS-coV-2 2P DS S 

confirming proper folding of the designed protein construct (e) and representative two-dimensional class averages (f).
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Of the three pairs of substitutions tested, only the S383C/D985C 
(termed SARS-CoV-2 2P DS S; DS, disulfide) could be recombinantly 
expressed using HEK293 Freestyle cells and purified. The yield is 
about tenfold reduced compared with SARS-CoV-2 2P S, presumably 
due to introduction of an intermolecular disulfide bond. SDS–PAGE 
analysis of SARS-CoV-2 2P DS S in reducing and nonreducing con-
ditions demonstrated that the engineered disulfide bond was indeed 
correctly introduced (Fig. 1d). Further characterization of purified 
SARS-CoV-2 2P DS S using negative-staining electron microscopy 
indicated proper homotrimer folding and assembly (Fig. 1e,f).

Structure of SARS-CoV-2 S stabilized in the closed conformation. 
Since the DS substitutions connect regions of the S glycoprotein that 

are far apart upon SB receptor-binding domain opening and transi-
tion to the postfusion S state19,36, we expected this protein construct 
to be trapped in the closed S state via molecular stapling. To vali-
date our design strategy, we used single-particle cryo-EM to analyze 
the conformational landscape of SARS-CoV-2 2P DS S (Table 1 and 
Extended Data Fig. 1). Three-dimensional (3D) classification of the 
cryo-EM dataset demonstrated that all particle images clustered in 
3D reconstructions of the closed S trimer (Extended Data Fig. 2). 
In contrast, about half of the particle images selected from our pre-
vious SARS-CoV-2 2P S apo dataset corresponded to the closed S 
trimer, whereas the other half was accounted for by a partially open 
S trimer18. These results therefore indicate that we successfully engi-
neered a shut closed S trimer.

We subsequently determined a 3D reconstruction of SARS-CoV-2 
2P DS S at 2.9-Å resolution (applying threefold symmetry) (Fig. 2a,b). 
The cryo-EM map shows a good agreement with our previously deter-
mined structure in the closed conformation18; their respective mod-
els could be superimposed with a Cα r.m.s. deviation of 1.37 Å over 
946 aligned residues (Fig. 2c). The cryo-EM density also resolves the 
disulfide bond between an SB receptor-binding domain residue fac-
ing towards the fusion machinery (S383C) and the hairpin preced-
ing the S2 subunit central helix (D985C) from a neighboring protomer 
(Fig. 2d and Extended Data Fig. 3), the latter residue being located 

Table 1 | Cryo-EM data collection, refinement and validation 
statistics

SArS-CoV-2 DS S  
(EMD-22083, PDB 6X79)

Data collection and processing

 Magnification (nominal) 36,000

 Voltage (kV) 200

 electron exposure (e– Å−2) 60

 Defocus range (μm) 0.8–3.0

 Pixel size (Å) 1.16

 Symmetry imposed C3

 Initial particle images (no.) 100,295

 Final particle images (no.) 46,181

 Map resolution (Å) 2.9

  FSc threshold 0.143

 Map resolution range (Å) 2.6–5

refinement

 Initial model used PDB 6VXX

 Model resolution (Å) 3.2

  FSc threshold 0.5

 Map sharpening B factor (Å2) −74

 Model composition

 Nonhydrogen atoms 45,816

 Protein residues 2,850

 Ligands 51

 B factors (Å2)

 Protein 27.67

 Ligand 26.9

 r.m.s. deviations

 Bond lengths (Å) 0.013

 Bond angles (°) 1.210

Validation

 MolProbity score 0.67

 clashscore 0.18

 Poor rotamers (%) 0.26

 ramachandran plot

 Favored (%) 97.54

 Allowed (%) 2.46

 Disallowed (%) 0

 eMringer score 3.18

S383C
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c d
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SARS-CoV-2 2P DS S

Fig. 2 | Cryo-EM structure of the closed SArS-CoV-2 2P DS S 

glycoprotein. a, cryo-eM map of the SArS-coV-2 2P DS S trimer in 

the closed conformation at 2.9-Å resolution. b, ribbon diagram of the 

SArS-coV-2 2P DS S trimer atomic model in the same orientation as in 

panel a. In panels a and b, each S protomer is colored distinctly. Asterisks 

show the locations of the introduced disulfide bonds. c, Superimposition 

of the SArS-coV-2 2P DS S trimer (green) to the coordinates from the 

2.8-Å SArS-coV-2 2P S structure in the closed conformation, PDB 6VXX 

(ref. 18) (black). d, enlarged view of the designed disulfide bond with the 

corresponding region of cryo-eM density shown as a blue mesh.
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directly upstream from the K986P and V987P prefusion-stabilizing 
mutations. These findings not only validate the structure-based design 
strategy but also show that it did not induce distortions of the S trimer. 
We note that density at the C-terminal stem helix was not resolved 
in SARS-CoV-2 2P DS S—accounting for six amino acid residues—
whereas this region was visible in previously reported apo S maps18,56. 
This region was also absent from the SARS-CoV-2 S/S309 neutraliz-
ing antibody complex map57.

Evaluation of SARS-CoV-2 2P DS S antigenicity. The high 
structural similarity between the SARS-CoV-2 2P DS S structure 
presented here and our previously reported SARS-CoV-2 2P S 
structure (in the closed conformation)18 led us to hypothesize that 
they would have similar antigenicity profiles. To probe the influence 
of the introduced disulfide bond on antigenicity, we evaluated bind-
ing of SARS-CoV-2 2P DS S and SARS-CoV-2 2P S, side-by-side, 
to a panel of human neutralizing antibodies by ELISA. Binding to 
S309 was indistinguishable between the two constructs (Fig. 3a), 

in agreement with the fact that this antibody recognizes an epitope 
within the SB receptor-binding domain that remains accessible in 
both the open and closed states57.

Given that the RBM is concealed in the closed conformation, 
we hypothesized that SARS-CoV-2 2P DS S binding to ACE2 and 
RBM-targeted antibodies would be hindered. As expected, ELISA 
experiments showed that SARS-CoV-2 2P DS S recognized ACE2 
with two-orders-of-magnitude-reduced binding response compared 
with SARS-CoV-2 2P S (Fig. 3b). Furthermore, the binding response 
of the RBM-targeted S2H14 antibody to SARS-CoV-2 2P DS S was 
also dampened by two orders of magnitude relative to SARS-CoV-2 
2P S, due to conformational masking of the RBM in the closed con-
formation18 (Fig. 3c). Although the S304 antibody interacted with 
SARS-CoV-2 2P S in a concentration-dependent manner, it did not 
bind to SARS-CoV-2 2P DS S (Fig. 3d). Since we previously demon-
strated that S304 recognizes an epitope distinct from both the RBM 
and the S309 epitope, it is expected that this antibody binds to a cryp-
tic epitope that is only accessible upon SB opening, as is the case for 
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Fig. 3 | Evaluation of SArS-CoV-2 2P DS S antigenicity. a–d, Binding to immobilized SArS-coV-2 2P DS S (green) or SArS-coV-2 2P S (black) of serially 

diluted concentrations of the human neutralizing antibodies S309 (a), S2H14 (c) and S304 (d) and the human Ace2 receptor fused to human Fc (b).  

e, Neutralization of SArS-coV-2 S pseudovirus with human serum obtained from a patient with cOVID-19. f, Binding of a serial dilution of the neutralizing 

convalescent serum shown in panel e to immobilized SArS-coV-2 2P DS S (green) or SArS-coV-2 2P S (black). Data are shown as mean and s.d. of 

n = 2 technical replicates; data are representative of two independent experiments. Data behind all graphs are available in Supplementary Data 1. A450, 

absorbance at 450 nm; ND, not determined.
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the CR3022 antibody65–68. Collectively, these findings validate that 
SARS-CoV-2 2P DS S is in a native closed conformation and illustrate 
the usefulness of this protein construct to investigate epitopes recog-
nized by neutralizing antibodies.

We subsequently assessed binding of the serum from a patient 
convalescing from COVID-19 to SARS-CoV-2 2P DS S and 
SARS-CoV-2 2P S by ELISA. The sample was obtained from a 
Washington State donor who had a high serum antibody neutral-
ization titer (Fig. 3e). Comparison of half-maximal binding titers 
showed that recognition of SARS-CoV-2 2P DS S was ~40-fold 
weaker than that of SARS-CoV-2 2P S (Fig. 3f). This difference likely 
reflects the proportion of antibodies directed to the RBM or cryptic 
epitopes similar to the one recognized by S304 in this serum sample. 
As SARS-CoV-2 2P DS S only displays closed SB receptor-binding 
domains within the context of a folded trimer, we suggest it will 
be a useful tool for serology studies aiming at evaluating antibody 

responses in patients with COVID-19, and could complement tests 
using ACE2 inhibition as a proxy for evaluating the presence of neu-
tralizing antibody titers in the human population.

Evaluation of SARS-CoV-2 2P DS S stability. To understand the 
impact of the introduced disulfide bond on S resistance to physical 
and chemical stress, we compared the architecture and antigenicity of 
SARS-CoV-2 2P DS S and SARS-CoV-2 2P S in various conditions. 
We first assessed the thermostability of the SARS-CoV-2 2P DS S and 
SARS-CoV-2 2P S using electron microscopy analysis of negatively 
stained samples incubated for 20 min at three temperatures. Both 
constructs were monodisperse and well folded at 25 °C (Fig. 4a,b). 
Although SARS-CoV-2 2P DS S and SARS-CoV-2 2P S exhibited 
approximately the same proportions of properly folded and unfolded 
protein after incubation at 55 °C, rod-shaped postfusion trimers were 
only observed for SARS-CoV-2 2P S (Fig. 4a,b). After incubation 
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Fig. 4 | Evaluation of SArS-CoV-2 2P DS S thermal stability and protease resistance. a,b, electron microscopy analysis of negatively stained SArS-coV-2 

2P S (a) and SArS-coV-2 2P DS S (b) incubated for 20 min at 25, 55 and 85 °c. Black arrows highlight particles that appear to be misfolded. red arrows 

highlight particles that appear to be in the postfusion conformation. c–e, Binding of human neutralizing antibody S309 to immobilized SArS-coV-2 

2P DS S (green) or SArS-coV-2 2P S (black) preincubated for 20 min at 25, 55 and 85 °c (c), or for 16 h at 4 °c with 1, 10 or 100 µg ml−1 trypsin (d) or 

chymotrypsin (e). Graphs show the area under the curve of binding of serially diluted concentrations of the human neutralizing antibody S309; data are 

shown as mean and s.d. of n = 2 technical replicates, and are representative of one (d and e) or two (c) independent experiments. Data behind graphs are 

available in Supplementary Data 1.
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at 85 °C, an even larger number of particles corresponded to dena-
tured protein (Fig. 4a,b). We subsequently used binding to the S309 
monoclonal antibody to estimate retention of epitope integrity after 
preincubation at several temperatures. We observed decreased S309 
binding as a function of temperature for both SARS-CoV-2 2P DS S 
and SARS-CoV-2 2P S, consistent with the electron microscopy data 
(Fig. 4c). Overall, these data indicate that both samples had compa-

rable resistance to thermal denaturation but only SARS-CoV-2 2P DS 
S was entirely unable to transition from the prefusion to the postfusion 
state as a result of covalent stapling.

Based on our previous observation that SARS-CoV 2P S is sen-
sitive to proteolysis by trypsin and chymotrypsin69, we set out to 
compare the proteolytic resistance of SARS-CoV-2 2P DS S and 
SARS-CoV-2 2P S side-by-side by ELISA. Using retention of S309 
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binding, we found that SARS-CoV-2 2P DS S was less sensitive than 
SARS-CoV-2 2P S to enzymatic digestion by either protease at a 
range of concentrations between 1 and 100 µg ml−1 (Fig. 4d,e). We 
speculate that the more rigid architecture of SARS-CoV-2 2P DS 
S correlates with its enhanced protease resistance compared with 
SARS-CoV-2 2P S, due to reduced conformational freedom.

Disulfide stapling is broadly applicable to β-coronaviruses. Next, 
we set out to test the general applicability of the DS stabilizing strat-
egy identified for SARS-CoV-2 S to other coronavirus S glycopro-
teins. Based on the high sequence and structural conservation of 
the residues involved in—and adjacent to—the engineered disulfide 
bond (Fig. 5a), we hypothesized that the DS mutation might be 
transferable to SARS-CoV S and MERS-CoV S, which share ~80% 
and ~30% sequence identity with SARS-CoV-2 S, respectively.

SDS–PAGE analysis of recombinantly expressed MERS-CoV 
2P DS S (S429C/D1059C mutant) confirmed that it formed a 
high-molecular-weight species in nonreducing conditions, consis-
tent with covalent formation of S homotrimers (Fig. 5b). Likewise, 
the electrophoretic mobility corresponded to individual S pro-
tomers in presence of β-mercaptoethanol. Electron microscopy 
analysis of negatively stained MERS-CoV 2P DS S demonstrated the 
engineered mutant folds as a globular closed homotrimer (Fig. 5c).

Similarly, SDS–PAGE analysis of recombinantly expressed 
SARS-CoV 2P DS S (S370C/D969C mutant) also confirmed that 
it formed a high-molecular-weight species in nonreducing condi-
tions, consistent with covalent formation of S homotrimers (Fig. 5d).  
Homodimers were also observed for SARS-CoV 2P DS S. Electron 
microscopy analysis of negatively stained SARS-CoV 2P DS S dem-
onstrated that it folds as a globular closed homotrimer (Fig. 5e).

Finally, we observed comparable dose-dependent binding of the 
S309 neutralizing antibody to SARS-CoV 2P DS S and SARS-CoV 
2P S, validating retention of antigenicity of the designed construct 
(Fig. 5f). Similar to our findings with SARS-CoV-2 2P DS S, we 
observed a five-orders-of-magnitude-decreased binding of the S304 
antibody to SARS-CoV 2P DS S compared with SARS-CoV 2P S 
(Fig. 5g), consistent with covalent SB domain closure.

Discussion
Viral glycoprotein engineering is an active field of research fueling 
vaccine design strategies to elicit potent and/or broad protection 
against a range of emerging or endemic pathogens. Stabilization of 
the respiratory syncytial virus fusion glycoprotein in its prefusion 
conformation (DS-Cav1)51 and subsequent fusion to a computation-
ally designed trimeric protein (I53-50A)70 are recent breakthroughs 
illustrating the power of structure-based vaccine design. Ds-Cav1 
is currently evaluated in a phase I randomized, open-label clinical 
trial to assess its safety, tolerability and immunogenicity in healthy 
adults (NCT03049488). Furthermore, multivalently displayed 
Ds-Cav1 genetically fused to the I53-50 nanoparticle has been 
shown to further improve elicitation of high titers of neutralizing 
antibodies70. Similarly, the development of HIV-1 SOSIP constructs 
has revolutionized the field of HIV-1 structural vaccinology and 
immunology47.

The recent emergence of SARS-CoV-2, the virus responsible for 
the ongoing COVID-19 pandemic, showcases the urgent need to 
explore strategies to expedite coronavirus vaccines and therapeutics 
design initiatives as well as structural and serology studies. Prefusion 
stabilization of MERS-CoV S through the aforementioned intro-
duction of two proline substitutions was previously shown to elicit 
enhanced neutralizing antibody titers against multiple MERS-CoV 
isolates in mice20. However, the limited stability and conformational 
dynamics of the SARS-CoV-2 2P S, SARS-CoV 2P S and MERS-CoV 
2P S ectodomain trimers indicate that further improvements are 
needed to increase their shelf life and/or to manipulate their con-
formational states.

We report here a strategy to produce prefusion-stabilized, closed 
coronavirus ectodomain trimers and show that it is broadly applica-
ble to at least the most-pathogenic members; that is, SARS-CoV-2, 
SARS-CoV and MERS-CoV. By symmetrizing and stabilizing S pro-
teins, we expect the DS mutation to be a useful tool for the research 
community, enabling high-resolution structural studies of antibody 
complexes, and for characterizing the humoral immune response in 
infected or vaccinated individuals and animals.

We hypothesize that the design strategy described here might 
improve the breadth of neutralizing antibodies elicited via mask-
ing of the highly immunogenic RBM, which is poorly conserved 
across distinct coronaviruses. The tradeoff, however, will be damp-
ening of antibody titers targeting the RBM that is typically recog-
nized by potent neutralizing antibodies but with narrow breadth 
between coronaviruses. For the same reasons, we also envisage that 
S glycoprotein constructs shut in the closed conformation could 
assist in isolating broadly neutralizing antibodies effective against 
multiple viruses belonging to distinct (sub)genera.

Finally, as demonstrated here, comparing the reactivity of DS 
constructs with protein constructs exhibiting the full range of SB 
receptor-binding domain conformations will allow evaluation of 
the fraction of antibodies recognizing the RBM and/or cryptic epit-
opes in serology studies, to provide a detailed understanding of the 
humoral immune response elicited upon infection or vaccination. 
Given that RBM-targeting antibodies are typically neutralizing, this 
comparison may serve as a proxy for estimating whether or not a 
patient has neutralizing antibodies.
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Methods
Design of disul�de mutants. Disul�de mutants were designed visually or using 
the Disul�de by Design 2 so�ware64 and synthetic genes ordered from GenScript.

Recombinant S ectodomains production. All ectodomains were produced in 500-ml 
cultures of HEK293F cells grown in suspension using FreeStyle 293 expression 
medium (Life technologies) at 37°C in a humidified 8% CO2 incubator rotating 
at 130 r.p.m., as previously reported18. The culture was transfected using 293fectin 
(ThermoFisher) with cells grown to a density of 106 cells per ml and cultivated for 3 d. 
The supernatant was collected and cells were resuspended for another 3 d, yielding 
two collections. Clarified supernatants were purified using a 5-ml Cobalt affinity 
column (Takara). Purified protein was concentrated, and flash frozen in a buffer 
containing 50 mM Tris pH 8.0 and 150 mM NaCl before cryo-EM analysis.

Antibody expression. Recombinant antibodies were expressed in ExpiCHO cells 
transiently cotransfected with plasmids expressing the heavy and light chains, as 
previously described57.

Serum preparation. A de-identified serum sample from a patient with COVID-
19 was collected and heat-inactivated at 56 °C for 1 h. The patient tested positive 
for SARS-CoV-2 5 d before the serum sample was taken. The sample collection 
and this study were approved by the Institutional Review Boards of the University 
of Washington. This study was granted a waiver of consent since it used residual 
clinical samples and existing clinical data.

ELISA. First, 20 µl of ectodomains (stabilized prefusion trimer) of S from 
SARS-CoV-2 or SARS-CoV, or the disulfide-stabilized SARS-CoV-2 or SARS-CoV, 
were coated on 384-well ELISA plates at 1 ng µl−1 for 16 h at 4 °C. For thermal 
denaturation experiments, the S ectodomains were preincubated at 25, 55 or 85 °C 
for 20 min before coating the ELISA plates for 16 h at 4 °C. For protease sensitivity 
experiments, the S ectodomains were preincubated with 1, 10 or 100 µg ml−1 
trypsin or chymotrypsin for 30 min at 25 °C before coating the ELISA plates, where 
the proteolysis reaction continued for 16 h at 4 °C. Plates were washed with a 405 
TS Microplate Washer (BioTek Instruments) then blocked with 80 µl of SuperBlock 
(PBS) Blocking Buffer (Thermo Scientific) for 1 h at 37 °C. Plates were then washed 
and 30 µl of antibodies or human ACE2-Fc protein (Sino Biological) was added to 
the plates at concentrations between 0.001 and 100,000 ng ml−1 and incubated for 
1 h at 37 °C. Plates were washed and then incubated with 30 µl of 1:5,000 diluted 
goat anti-human Fc IgG-HRP (Invitrogen, A18817). Plates were washed and then 
30 µl of Substrate TMB Microwell Peroxidase (Seracare 5120-0083) was added for 
5 min at room temperature. The colorimetric reaction was stopped by addition of 
30 µl of 1 M HCl. A450 was read on a Varioskan Lux plate reader (Thermo Scientific) 
and plotted with a nonlinear regression curve fit using Prism 8.

Pseudovirus neutralization assays. Murine leukemia virus (MLV)-based 
SARS-CoV-2 S-pseudotyped viruses were prepared as previously described18. 
HEK293T cells were cotransfected with a SARS-CoV-2 S encoding-plasmid, 
an MLV Gag-Pol packaging construct and the MLV transfer vector encoding 
a luciferase reporter using the Lipofectamine 2000 transfection reagent (Life 
Technologies) according to the manufacturer’s instructions. Cells were incubated 
for 5 h at 37 °C with 8% CO2 with OPTIMEM transfection medium. DMEM 
containing 10% FBS was added for 72 h.

BHK cells transiently transfected with human ACE2 were cultured in 
DMEM containing 10% FBS and 1% PenStrep, and plated into 96-well plates for 
16–24 h. Concentrated pseudovirus with or without serial dilution of COVID-
19 convalescent plasma was incubated for 1 h and then added to the wells after 
washing three times with DMEM. After 2–3 h, DMEM containing 20% FBS and 2% 
PenStrep was added to the cells for 48 h. Following 48 h of infection, One-Glo-EX 
(Promega) was added to the cells and incubated in the dark for 5–10 min before 
reading on a Varioskan LUX plate reader (ThermoFisher). Measurements were 
done in duplicate, and relative luciferase units were converted to percentage 
neutralization and plotted with a nonlinear regression curve fit in Prism 8.

Negative-stain EM sample preparation. All constructs in this study were 
negatively stained at a final concentration of 0.06 mg ml−1 using Gilder Grids 
overlaid with a thin layer of carbon and 2% uranyl formate. For thermal 
denaturation experiments, 0.06 mg ml−1 S ectodomains were preincubated at 25, 
55 or 85 °C for 20 min before being added to grids. Data were acquired using the 
Leginon software71 to control a Tecnai T12 transmission electron microscope 
operated at 120 kV and equipped with a Gatan 4K Ultrascan CCD detector. The 
dose rate was adjusted to 50 electrons per Å2 and each micrograph was acquired 
in 1 s. In a single session, ~100 micrographs were collected with a defocus range 
between −1.0 and −2.5 μm. Data were subsequently processed using cryoSPARC72.

Cryo-EM sample preparation and data collection. First, 3 µl of SARS-CoV-2 2P 
DS S at 0.5 mg ml−1 was applied onto a freshly glow-discharged 2.0/2.0 UltraFoil 
grid (200 mesh). Plunge freezing used a Vitrobot Mark IV (ThermoFisher) using a 
blot force of 0 and 6.5-s blot time, at 100% humidity and 23 °C. Data were acquired 
using the Leginon software71 to control a Glacios transmission electron microscope 

operated at 200 kV and equipped with a Gatan K2 Summit direct detector. The 
dose rate was adjusted to 8 counts per pixel per second, and each movie was 
acquired in 50 frames of 200 ms with a pixel size of 1.16 Å at the specimen level. In 
a single session, ~600 micrographs were collected with a defocus range between 
−0.8 and −3.0 μm.

Cryo-EM data processing. Movie frame alignment, estimation of the microscope 
contrast transfer function parameters, particle picking and extraction (with a box 
size of 352 pixels2) were carried out using Warp73. Reference-free two-dimensional 
classification was performed using cryoSPARC72 to select well-defined particle 
images. 3D classifications with 50 iterations each (angular sampling 7.5° for 
25 iterations and 1.8° with local search for 25 iterations) were carried out 
using Relion74 without imposing symmetry to separate distinct SARS-CoV-2 S 
conformations. 3D refinements were carried out using nonuniform refinement 
along with per-particle defocus refinement in cryoSPARC72. Particle images were 
subjected to Bayesian polishing75 before performing another round of nonuniform 
refinement in cryoSPARC72 followed by per-particle defocus refinement and, again, 
nonuniform refinement. Reported resolutions are based on the gold-standard 
Fourier shell correlation (FSC) of 0.143 criterion and FSC curves were corrected 
for the effects of soft masking by high-resolution noise substitution76.

Cryo-EM model building and analysis. UCSF Chimera77 and Coot were used 
to fit an atomic model (PDB 6VXX) into the cryo-EM map. The model was 
then refined into the map using Rosetta78–80 and analyzed using MolProbity81, 
EMringer82 and Phenix83. Figures were generated using UCSF ChimeraX84 and 
UCSF Chimera77.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The cryo-EM map and atomic model have been deposited to the EMDB and 
wwPDB with accession codes EMD-22083 and PDB 6X79, respectively.
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Extended Data Fig. 1 | CryoEM data processing and validation. a. Local resolution map calculated using cryoSPArc. b-c. representative electron 

micrograph (c) and class averages (b) of SArS-coV-2 2P DS S embedded in vitreous ice. Scale bar: 100 nm. d. Gold-standard Fourier shell correlation 

curves. the 0.143 cutoff is indicated by an horizontal blue line. e. Particle orientation distribution plot.
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Extended Data Fig. 2 | orthogonal views of the classes obtained by 3D classification. Percentages reflect the proportion of particles that classified with 

each map.
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Extended Data Fig. 3 | Cryo-EM structure of the closed SArS-CoV-2 DS S glycoprotein. Zoomed-in view of the designed disulfide bond with the 

corresponding region of cryo-eM density shown as a blue mesh.
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