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1. Introduction 

The Chequer theory of simplexes has provided an elegant approach to direct integral 

decompositions in several areas of analysis. In  the various contexts, one identifies "irre- 

ducible" elements with the extreme points o~ a simplex. The decomposition of a general 

element into irreducibles then corresponds to the unique barycentric representation of a 

point in the simplex as a probabili ty measure "on"  the extreme points. One has, for 

example, tha t  the invariant probabili ty measures for a locally compact transformation 

group on a compact space form a simplex, and the extreme points are then just the ergodie 

measures [11] (see [23, w 10]). Similarly the normalized traces on a C*-algebra form a 

simplex, and the extreme points are the factor traces [26, p. 116]. I t  would seem likely 

that  a classification of simplexes will provide more information in these applications than  

just an existence proof for the decompositions. 

In  this paper  we shall introduce a "structure" topology on the extreme points E(K) 

of a simplex K. A closed set in this topology is just the extreme points of a closed face 

of K. That  E(K) with the structure topology is analogous to Jacobson's structure space 

of a ring (see [12, Ch. 9]) is best seen by  considering the "affine space" A(K) of K. A(K) 

consists of the continuous affine functions on K. I t  is an ordered vector space with a dis- 

tinguished "order unit",  the constant function 1. Owing to studies of Kadison and Linden- 

strauss (see w 2), the spaces tha t  arise in this fashion have been completely characterized. 

We prove tha t  the closed faces in K are in one-to-one correspondence with the closed 

"ideals" in A(K), and tha t  E(K) with the structure topology may  be identified with the 

maximal ideal space of A(K), with the "hull-kernel" topology. 

(1) This research was supported in part by the Office of Naval Research (NONR 551(57)), and 
was completed while the author held an NSF Postdoctoral Fellowship at the University of Aarhus. 
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As ideals in A(K) need not have an order unit, it has been necessary to enlarge the 

category of ordered spaces under consideration. In  w 2 a "simplex space" is defined to 

be an ordered vector space A with complete norm and closed positive cone, for which 

A* is an E-space in the sense of Kakutani [17; 18] (see below). A representation theorem 

for such spaces is proved, and ~hose of the form •(K), K a simplex, are characterized as 

those with an "order identity". 

In  w 3 the notion of ideal is introduced, and it is shown that  the closed ideals are 

just the annihilators of weakly* closed faces of the positive cone in A*. We prove that  

proper closed ideals and the resulting quotients are simplex spaces. 

The structure topology is introduced in w 4. The structure spaces of ideals and quo- 

tients are seen to correspond to open and closed sets in the expected manner. The simplex 

spaces A with order identity have a compact structure topology, and the topology is 

Hausdorff if and only if A is a Kakutani M-space. 

w 5 is devoted to a brief discussion of open problems, and an example of a simplex K 

such that the structure topology on E(K) is not of second category. 

We are indebted to E. Alfsen for introducing us to the theory of simplexes, and 

making available to us the manuscript of [1]. We also wish to thank D. A. Edwards and 

J. Semadeni for explaining to us the role of Lindenstrauss's work in the theory of simplexes 

(see w 2). We are indebted to R. Phelps for the use of a preliminary version of [23]. The 

reader will find in the latter an excellent exposition of the theory of simplexes, together 

with a comprehensive bibliography (see also [6]). An introduction to L- and M-spaces 

may be found in [19] (see also [7, Ch. VI]). 

Throughout this paper, vector spaces will be assumed to have non-zero elements, 

and cones are assumed proper, i.e., not containing a non-zero element and its negative. 

In  normed spaces, the subscript a on a subset indicates the corresponding intersection 

with the dosed ball of radius at. 

2. The affine space Of a simplex 

Let K be a compact convex subset of a locally convex space. A real function a on 

K is a/line if 
a(~p + (1 - ~)q) = ~a(p) + (1 - ~) a(q) 

for all p, q in K and 0 ~< cr ~< 1. The a/fine space M(K) of K is the vector space of all con- 

tinuous affine functions on K, together with the ordering defined by the cone M(K) + of 

noimcgative continuous affine functions. The function e defined by e(p)= 1 for all p in K 

is an Archimedean order unit for M(K), i.e., for each a in M(K), there is a scalar a with 

a<~e, and if a<~e for all a > 0 ,  then a~<0. 
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Following Kadison [13; 14], we call a part ial ly ordered vector  space A together  with 

a distinguished Archimedean order uni t  e a /unc t ion  system. Kadison has proved a repre- 

sentat ion theorem for function systems, which we shall outline. For  each a in a funct ion 

system A, define 
L(a) = sup (a: ~e<~a), 

M(a) = inf {a: a ~< ~e}, 

]laH = max  { IL(a)[, [M(a)[ }. 

(2.1) 

(2.2) 

(2.3) 

We refer to II II, which is a norm on A, as the order norm. I t  coincides with the usual su- 

p remum norm if A = A ( K ) ,  and in t ha t  ease it is complete. Letting P(A) be the positive 

linear functions on A, P(A) is contained in A*, the bounded linear functions. We give 

A* the weak* topology, and define the  state space S(A) to  be P(A) N H(A) with the relative 

topology, where H(A) is the set of / in A* with/(e)  =1 .  I f  A = A ( K ) ,  the map  p->~, where 

p(a)=a(p) for p in K, aEA, is an affine homeomorphism of K onto S(A). Thus ra ther  

t han  s tudy  compact  convex sets K,  we m a y  restrict our a t tent ion to  the state spaces of 

(norm) complete funct ion systems A. I n  [13], Kadison showed t h a t  

L(a) = inf {p(a): p E S(A)}, (2.4) 

M(a) = sup {p(a): p E S(A)}, (2.5) 

Ilal[ = sup { [p(a)[: peS(A)). (2.6) 

Define d(p)=p(a) for a in A, p in S(A). As a>~0 if and only if L(a)>~0, it follows tha t  a--->d 

is an isometric order isomorphism of A into A(S(A)). I t  has been known t h a t  this map  is 

onto. A proof readily follows from [16, Lemma 4.3]. 

I f  C is a cone in a vector  space E, a base of C is an intersection of C with a hyper-  

plane H,  where H is a hyperplane in E not  containing 0 t h a t  meets all of the generators 

of C, i.e., for all x in C - { 0 } ,  there is an ~ > 0  with ~xEH. C is a lattice cone if it defines a 

lattice ordering on C - C .  I t  suffices to  show each pair  x, y in C has a min imum in C (see 

[23, w 9]). We say tha t  a convex set K in a vector  space is a simplex if it is affinely iso- 

morphic to  the base of some lattice cone. I t  will then follow tha t  any  cone with a base 

affinely isomorphic to  K is a lattice cone. 

An  ordered vector  space A satisfies the Riesz decomposition property if a, bl, b2EA+ 

and a ~<b I §  s imply  the existence of al, a s E A + with a =a I § 2 and a~ ~<b~. Equivalent ly ,  

if a~, bjeA+ with i = l  ..... m; j = l  .... , n and ~a~=~bj, then  there exist %CA+ with a~-- 

~j  c~j, bj = ~ c~j (see [4, Ch. II]) .  Another  equivalent  condition is t ha t  if ai, bj e A and ai ~< b j, 

then there is an element c with a~ ~<c ~< bj for all i, j [21, Lemma 6.2]. Vector lattices satisfy 

the Riesz decomposit ion proper ty  (see [4, Ch. II]) ,  bu t  the converse is false (see Theorem 

4.8). 
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We recall t ha t  a vector lattice V together with a complete norm is an L-space if 

I x l < l y l  implies IIxlI<IlYlI, and for x,y>~O, I lx+yll=l lxl l+l lyl l .  v is an M-space if 

ra ther  than the second equality, one has for x, y>~O, IIx V Yll =max{llxll, IlYlI}" 

The following theorem is due to J.  Lindenstrauss [21] (see [25, Theorem 5]). An 

elegant proof by D. A. Edwards was presented in [8]. Earlier partial results occur in [20] 

(I am indebted to Z. Semadeni for this reference) and [24]. 

THEOREM 2.1. Let A be a complete function system. Then the following conditions on 

A are equivalent: 

(1) S(A) is a simplex, 

(2) A has the Riesz decomposition property, 

(3) A* with the ordering defined by P(A) and the uni]orm norm is an L.space. 

In  w 3 we shall consider "ideals" in function systems satisfying the conditions of 

Theorem 2.1. As these subspaces will in general not have order units, they will not be 

function systems. Noting tha t  the pr imary function of the distinguished order unit is to 

define the order norm, we introduce a more inclusive category of ordered spaces with 

norm. 

An ordered vector space A together with a complete norm is a simplex space if A + 

is closed, and the Banach space A* together with the order defined by  the cone P(A) of 

bounded positive linear functions is an L-space. The first condition is equivalent to the 

assumption tha t  if p(a)>~0 for all p in P(A), then a>~0 (see [19, w 23.2]). Any M-space 

is a simplex space. 

I f  A is a simplex space, we define the state space S(A) to be {peP(A): IIpll =1}. As 

this is generally not compact with the weak* topology, it is useful to consider instead the 

set PI(A) =P(A) ~ A* with the weak* topology. 

T ~ E  O• E M 2.2. I f  A is a simplex space, then PI(A) is a simplex, and A may be identified 

with the ordered Banach space of continuous a/fine functions on PI(A) vanishing at O. In 

particular, A satisfies the Riesz decomposition property. 

Proo/. Define d(p) =p(a) for a EA and p EPI(A ). a-->d is trivially an order isomorphism. 

We have 

IJall=suP{I/Ca)l'feA;}, Ildll=sup(Jp(a)l:PePl(A)}, 

hence Ildll <llall. I f  /CA*, then as A* is an L-space, / = / + - / - ,  where f+, f 'EP(A),  and 

iltll = lit+ll + I It- I I .  
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Assuming 1+, l - # 0 ,  let p=/+llll+ll, q =/-III/-II. Then p, qEP~(A), and 

I/(a) l < II/+ll Ip(a) l + II]-II Iq(a) l  (nl]+ll § II]-II)llall < Ilall, 
If  ]+ or ] - = 0 ,  the resulting inequality is trivial, and we conclude a--->d is an isometry. 

I t  follows from [16, Lemma 4.3] tha t  all continuous affine functions on PI(A) vanishing 

at  O are of the form d. 

As A* is an L-space, II II is positive and positive linear on P(A). As A* = P ( A ) - P ( A ) ,  

it extends to a strictly positive linear function on A*. That  PI(A) is a simplex follows 

from the following (see [23, Prop. 11.3]): 

L E M ~ x  2.3. Suppose that P is a cone in a vector space E, cf is a strictly positive linear 

]unction on E, and t)1 = {xeP: ~(x) < 1}. 1] P is lattice ordered, Pa is a simplex. 

Proo/. Let E '  = E • R, R the reals, be ordered by  the cone 

/ "  = {(x, ~): x~>O, ~ > 0 } .  

P '  is a lattice cone as (x, ~) A (y,/~) = (x A y, rain (~, fi)). 

The function ~(x, g ) = F ( x ) +  ~ is linear, and as ~ is strictly positive, the hyperplane 

G = {(x, ~): ~(x,  ~) = 1} 

meets all generators of P ' .  I t  is readily verified tha t  the map 

O(x) = (z, 1 - ~ ( x ) )  

is an affine isomorphism of P1 onto the base P '  N G. 

Making the identification of Theorem 2.2, we will write a(p)=p(a) for a EA, p EPI(A). 

If  K is a convex set in a vector space, a / ace  (or "extremal  subset") of K is a convex 

subset Q such tha t  if ~x+(1  - g ) y E Q ,  with x, y E K  and 0 < ~ < 1 ,  then x, yEQ. A face of 

a face is again a face, and the set of extreme points E(K) consists of just the one-point 

f a c e s .  

The following refinement of the Riesz decomposition property is central to our in- 

vestigation. We first encountered the 2 -~ thechnique for forcing convergence in Edwards '  

proof of Theorem 2.1 [8]. 

T~EOR]~M 2.4. Suppose that K is a compact simplex in a locally convex vector space, 

and that Q is a closed ]ace in K. I] al, as, b are in A(K) with a~<b and allQ<~a21Q, then 

there exists an element c in A(K) ]or which a~<c<b, and c[Q=a~l Q. 

Proo/. Let  a 1 V a S be the max imum of the functions at, and (a 1 V as)- be the lower 

envelope of the continuous affine functions on K majorizing al V as. We assert tha t  

(a I V a2)-iQ=a~[Q. 
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Given qEQ, let # be the maximal probabili ty measure on K with resultant r (#)=q.  

The support  S~ of # must  be contained in Q. For if p 6S~, there is a net of positive contin- 

uous functions /~ w i t h / v d #  probabili ty measures converging weakly* to the point mass 

~ .  The resultants % =r(/Tdke ) lie in Q as 0~<qv ~< ]{/~]{q, and converge to r ( ~ ) = p ,  hence 

pEQ. As/~ is maximal, the Borel set 

B(a 1 V a2) = {pEPI(A): (a 1 V as)-(p ) = a 1 V as(p)} 

has complement of measure zero. Thus for/~ almost all p, pEQ, (a 1 v a2)-(p)=a2(p), and 

f (al V a2)-(p)d#(p) = f as(p)d/~(p) = as(q). 

(a 1 V as)- is upper semi-continuous, and affine as K is a simplex (see [6, Theorem 11]), 

hence 

f (a V a2)-(p)d # (a 1 a2)-(q) V 

(see [6, Lemma 10]), and (a 1 V a2)-{Q = a2 {Q. 

I t  follows from the Riesz decomposition property tha t  the functions c v in j4(K) with 

al, as<--.c v <~b form a decreasing net. As they converge point-wise on Q to the continuous 

function (a 1 v a2)-{Q=a~IQ, the convergence is uniform on Q (see [22, w 16A]). Thus we 

may  select c 1 in A(K) with al, a2<~cl<~b and cl{Q<~a~{Q+2 -1. Suppose tha t  we have 

defined cn, and tha t  it satisfies al, a2 ~< c~ ~< b, c~ { Q ~< a 2 { Q + 2 -n. Then 

al, a2, c n - 2  - n ~ b ,  c n 

and as (cn - 2- n) ] Q <~ a21 Q, our previous argument implies 

(al V a S V ( c ~ - 2 - ~ ) )  - {Q=%IQ" 

Examining the functions c v in .4(K) with 

al, a2, Cn--2-n~c?  ~b ,  Cn, 

uniformity of convergence on Q provides us with cn+l satisfying 

a~, a s ~Cn+ 1 ~ b ,  

Cn+l[Q<a~IQ+ 2-(n+a) , 

and IIc.- .+111 <2-".  

The functions c~ converge uniformly to a continuous affine function c. c is the desired 

element of A(K).  
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COROLLARY 2.5. I] A is a simplex space, A &A + - A  +. 

Proof. As P(A) is a cone, 0 is an extreme point in P(A), hence {0} is a face in PI(A). 

I f  aeA ,  we have 0, a~< Ilalll, and a I {0}=01 {0}. From Theorem 2.2, PI(A) is a simplex, 

hence there is a continuous affine function c on PI(A) with 0, a<~c, and c(0)=0. We have 

cCA (Theorem 2.2), and a = c - ( c - a )  with c, c-a>~O. 

Using an argument  of Kaplansky (see [7, pp. 98-99]): 

COROLLARY 2.6. Any positive function on a simplex space is bounded. 

Proof. I f  p is positive but not bounded, choose a sequence aneA with Ilanll <1  and 

p(a~)~>4 n. As 0, an~<l on PI(A), there is a continuous affine function c~ on PI(A) with 

0, a~<~c~<~l and c~(0)=0, i.e., IIc~ll ~<1 and c~eA+. We have ~2-~c~ converges to an ele- 

ment  cEA. But  c>~2-~c~ implies p(c)>~2 ~ for all n, a contradiction. 

COROLLARr 2.7. 1] A is a simplex space and lEA*, then for aEA: ~, 

f+(a) = sup {f(b): 0 <b <a} .  

Proof. As [+ , / -  >~ 0, we have 0 ~< b < a implies 

/(b) </+(b) + /-(b) </+(a) + /-(a). 

Thus we may  define g(a) to be the indicated supremum. From Theorem 2.2, A satisfies 

the Riesz decomposition property. I t  follows tha t  g is positive-linear on A+ (see [7, p. 98]). 

g has a unique extension to a positive, linear function gl on A. From Corollary 2.6, gl EA*. 

I t  is clear tha t  0, /~< gl ~</+, hence gl =/+. 

We say tha t  an element e in a simplex space A is an order identity if p(e)= 1 for all 

p E S(A). I f  e' is another such element, p(e) =p(e') for all p eP(A), hence as A* =P(A)  - P ( A ) ,  

e=e ' .  The spaces described in Theorem 2.1 are just the simplex spaces with an order 

identity. More precisely: 

PROPOSITION 2.8. I f  A is a complete function system satisfying the conditions o/ 

Theorem 2.1, then with the order norm, A is a simplex space, and the distinguished order unit 

is an order identity. Conversely, if A is a simplex space with an order identity e, then e is an 

Archimedean order unit, and the corresponding order norm coincides with the given norm. 

Proof. If A is a complete function system, it follows from (2.4) tha t  if p(a) >~ 0 for all 

p E P(A), then L(a)>~ 0, i.e., a >~ 0. Thus we have the first assertion. In  the second situation, 

if aEA, then for all pEP(A), 

p(a) Ilpll Ilall = P(llalle). 
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I t  follows that  a ~< I lalle. If  a ~< ~e for all a > 0, p(a)<~ ap(e), hence p(a)<<.0 for all p E P(A), 

and a~<0. If  ][ lie is the order norm defined by e, we have from (2.6), 

[[a[[e = sup {[p(a) l: p EP'(A), p(e) = 1}, 

where P'(A) consists of all positive functions on A. From Corollary 2.6, P'(A)=P(A), 

hence 

Ilalle = s u p  { I p ( a )  l : p EADI(A)} = Ilal[, 

the second equality following from Theorem 2.2. 

If  A is a simplex space, then S(A) is a face in PI(A), as if ~p+(1-e)qES(A)  with 

p, qEPI(A ), 0 < ~ < I ,  then  llpll +(l- )liqll =1, and Ilpll = Ilqll =1, 

PROPOSITION 2.9. I /  A is a simplex space, then A has an order identity i/ and only 

i/ S(A) is closed in PI(A). 

Pro@ If  e is an order identity for A, then S(A) =PI(A) N H(A), where 

H(A) = {/EA*: / (e)=l}  

is weak* closed. Conversely, suppose that  S(A) is closed. The Hahn-Banach Theorem and 

a simple compactness argument provide us with an element a EA such that  a IS(A)>~1. 

From Corollary 2.5, we may choose b EA + with a ~<b. We have 0 ~< 1, b and b]S(A) ~> 1 ] S(A), 

hence applying Theorem 2.4, there exists a continuous affine function e with 0~<e~ < 1, b, 

and e IS(A)= 1 IS(A). As b(0)= 0, e E A, and e is an order identity. 

3. Ideal theory 

In  order to make further applications of Theorem 2.4, we must describe the faces of 

PI(A) for a simplex space A. In  the broader context of Lemma 2.3, let H= {x: ~,v(x)= 1}, 

and S = H N P. The following facts are known and readily verified. A subset Q of the cone 

P is a face in P if and only if it is itself a cone, and O~y<<.x with xEQ implies yEQ. The 

map Q->Q N S is a one-to-one correspondence between the faces Q # {0} of P and the faces 

of S. The map Q--->Q N P1 is a one-to-one correspondence between the faces of P and those 

in P1 containing 0. The other faces in P1 are just the faces of S. 

As an illustration of the arguments used to prove these facts, we show that  any face 

Q1 of P1 with Qx~S has the form Q N P1, Q a face in P. Say that xEQ1-S,  and x # 0 .  Then 

0 <q(x) <1,  and 

x 1 x = + ( - �9 0 ,  
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i.e., as Qi is a face, 0, x/~v(x)EQ r In  any event, 0EQi , and if 0~:xEQi, then x/q~(x)EQr 

I f  O<~y<~x and xEQ1 , then yEQi. For assuming y~:0 and u=x-y:4:O, 

~v(x) = ~ + 

where ~=~v(y)/~(x), t=q~(u)/~(x), and ~ + t = l .  As x/q(x)EQi, we have y/~(y)EQ 1. As 

Qi is convex, 

y = ~v(y) ~ + (1 - ~v(y)) 0 E QI. 
7~(y ) 

Let  Q be the non-negative scalar multiples of elements in Qi. I f  xEQ and x 4 0 ,  then 

x/q)(x)EQi, as if x=~xo, xoEQ i, then x/q:(x)=xo/qJ(xo)eQ 1. Given x, yEQ with x, y4=0, 

x/q~(x), y/q~(y) EQi, hence 

x + y qJ(x) x ~v(y) y 
~v(x + y) " ~v(x + y) ~v(x--) § --~v(x + y) ~v(y) E Qi 

and x+yEQ. I f  O<~y<~x with xEQ, then assuming x 4 0 ,  O<~y/q~(x)<~x/qJ(x)EQi, hence 

y[cf(x)EQi and yEQ. I t  follows tha t  Q is a face of P.  Trivially, QiEQ NPr  I f  xEQfiPi ,  

x/qD(x) E Qi, and ~(x) ~< 1. Thus 0 <~ x ~ x/q?(x), x EQi, and Qi = Q N P1. 

I f  A is a simplex space with order identity, then the map Q---~Q N S(A) is a one-to-one 

correspondence between the closed faces Q~={0} of P(A) and the closed faces of S(A). 

For if Q is a face in P(A) with Q N S(A) closed, then the lat ter  is compact,  and 

Q N A* = (tip: pEQ N S(A), O<~t<<.~) 

is closed for all ~. I t  follows that  Q is closed (see [5, Ch, IV, w 2, Theorem 5]). Similarly 

in any simplex space, Q->Q N Pi(A) is a one-to-one correspondence between the closed 

faces of P(A) and the closed faces of Pi(A) containing 0. 

Say tha t  V is an ordered vector space. Following Kadison [13], we say tha t  a linear 

subspace J of A is an order ideal if J+ = J  N A + is a face of A +. J is an ideal if in addition 

it is positively generated, i.e., J = J + - J + .  

I f  A is a simplex space, and J and Q are subsets of A and Pi(A), respectively, define 

J~ = {pEPI(A): pi g = 0}, 

Q~-- {aEA: a[Q =0}.  

THEOREM 3.1. Let A be a simplex space. I / J  is an ideal in A, J~ is a closed ]ace in 

Pi(A) containing O, and J , ,  is the closure o] J. I / Q  is a closed/ace in Pi(A) containing 0, 

Q, is an ideal in A, and Q~, = Q. 
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Proo/. We have J -  = j o  N PI(A), where jo  is the polar, i.e., annihilator of J. jo N P(A) 

is a face in P(A) as if O ~ q ~ p E J  ~ then p I J + = 0  implies q I J + = 0 ,  hence as J = J + - J + ,  

q[J =0.  Thus J -  is a closed face in PI(A) containing 0. 

Q- is clearly a closed linear subspace of A. I f  O<~y~x and xEQ,, then yEQ,, hence 

Q~ N A+ is a face in A + and Q- is a closed order ideal. Q- is positively generated, for suppose 

tha t  aEQ,. Then 0, a~< I]a]] and a ]Q=0 .  Applying Theorem 2.4, there exists a continuous 

affine function c on PI(A) with 0, a<~c and c[Q=0.  As c(0)=0, cEA (Theorem 2.2). We 

have a = c - ( c - a ) ,  where c, c - -aE  (Q~)+. 

Let  ] be the closure of J .  Trivially, ]_~ J , . .  I f  a 0 ~ ] ,  the Hahn-Banach Theorem enab- 

les us to select / E A* with ] ] J = 0 and/(ao) =4=0. If a E J+, 0 ~< b ~< a implies b E J+ and ](b) = O. 

From Corollary 2.7 it follows tha t  ]+(a)=0, ]+]J+=O, and as J = J §  ] + ] J = 0 .  Since 

/ - =  ( - / )+ ,  this argument shows t h a t / - I  J =0.  As / = / + - / - ,  either ]+(ao)~=0 or/ - (ao)  =4=0. 

Thus we obtain pEJ ,  with p(ao)=~0, i.e., a 0 ~J . , .  

Q_~ Q,, is again trivial. Say tha t  P0 r As Q is closed, convex, and contains 0, Q00 

coincides with Q (see [5, Ch. IV, w 1, Prop. 3]). Thus there is an element aEA with a(po) > 1, 

a(q)~<l for all qEQ. ~rom Theorem 2.4, there is a continuous affine function c on PI(K) 

such that  O,a-l<~c and ciQ=O. We have ceA, eeQ., but c(po)>~(a-1)(po)>O, i.e., 

p0 CQ'-. 

COROLLARY 3.2. J-->J, de/ines a one-to-one order inverting correspondence between 

the closed ideals in A and the closed/aces containing 0 in PI(A). 

Theorem 3.1 is false for non-commutative C*-algebras, as the null space of a pure 

(i.e., extremal) state tha t  is not a character is not positively generated. For arbi trary 

function systems it is not clear tha t  there are any non-zero positive elements in the null- 

space of a pure state. Note that  such an element will exist if and only if the state is 

"supported".  For further information on the null-spaces of faces, see [3; 10; 15; 9]. 

I f  J is a proper subspace of an ordered vector space V, we give J the relative ordering, 

i.e., tha t  defined by  the cone J N V +, and V/J the quotient ordering, tha t  defined by the 

image of V + under the canonical linear map of V onto V/J. In  general the quotient ordering 

~ l l  not be "proper"  as the image of V + need not be a cone. I f  J is a closed subspace of 

a Banach space V, we give J and V/J the relative and quotient norms. The following 

is well-known. 

Lv~MMA 3.3. I /  J is a proper ideal in an ordered vector space V, then J and V/J are 

ordered vector spaces. I / J  is closed and V is an L-space, then J and V/J are L-spaces. 

Proo]. Suppose V is an ordered vector space. I f  0 is the quotient map, we must  show 
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O(V +) is a cone. I f  X l + J = x ~ + J  with  xl>~0 , x ~ 0 ,  choose r E J  with  x l + r = x  ~. Then  as 

J is an ideal, r = r l - r ~ ,  r~EJ +. We have  

x 1 + ( - x~) + r 1 = r~, 

hence 0 ~ x 1 ~< r e. As J is an order ideal, x 1 E J ,  and x 1 + J = x~ + J = J .  

Say t h a t  V is an  L-space, J a closed ideal. To prove  J is an L-space, i t  suffices to  

show t h a t  J is closed under  the la t t ice  operat ions of V. I f  r E J ,  say t h a t  r =r 1 -r~, r~ E J+. 

Then  as 0, r ~< rl, we have  0 ~ r+ ~< r 1 and r+ E J .  I f  r, 8 E J ,  then  r V 8 = r + (s - r)+ E J .  

I f  x E V, we claim t h a t  x + + J = m a x  (x + J ,  J ) .  As x + >~ x, 0, we have  x + + J >~ x + J ,  J .  

Suppose t h a t  y + J >~ x + J, J.  Choose r, s E J with  y + r >~ x and y + 8 >~ O. Then  r+, 8+ E J and 

y+r++s+>~x, O, 

y + r+ + s+ >~ x +, 

and y + J  >~x+ + J .  I t  readi ly  follows t h a t  V/J  is a vec tor  latt ice.  

We have  for any  x, y E V, 

Ilx+y+gll < IIx +JII + Ily+g[ I. 
I f  x, y E A  + and e > 0 ,  choose r E J  with  

Ilx+y+rll < II~ +y+JII + ~  

As r+EJ, we have  ( x + r + ) + J = x + J ,  hence changing no ta t ion  we m a y  assume r + = 0 .  

We have  

II(x +y-r-)+l[  < IIx +Y-r-II.  (3.1) 
s = (x+y)  A r -  = x + y - ( x + y - r - )  +, Let t ing  

we have  s E J  and f rom (3.1) 

H x §  ~ I I x+y-r - I I .  

As O<~s<~x+y, we have  from the  Riesz decomposi t ion p roper ty  t h a t  s = t + u  where 

O<~t~x and O<~u<~y. As O~<t, u<~s, and x-t>~O, y-u>~O, i t  follows t h a t  t, u E J  and 

I[x +Jll + ily +JII ~< Itx-tll + ]ly-u]l = iix +y- s I i  ~< I]x+y+Jii  +e.  

Thus we have  x + J ,  y + J >t 0 implies 

Hx+y+ gll = Hx+ JH + Hy+ JI[. (3.2) 
I n  part icular ,  

IIx+all ~< Ilx++gil + IJx- +i l l  = II ]xl +gii- 

Conversely, given ~>0, choose x with Ilgl ~< II~+Yll +~. 

Then 11 Ixl +YJl < I1 Ixl II = Ilgl ~< ]lx+YJl +~. 

i t  fonows that II I~+JI II = II~+JII 
Finally, if O~x+J<~.y+J ,  t hen  O<~(y -x )+J ,  and f rom (3.2), 

I[~+JII ~< Ilx+Jll + II(y-~)+all  = Ily+JIl. 
8 -- 662903. Acta mathematica. 117. I m p r i m ~  le 7 f6vrier 1967 
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THEOREM 3.4. I /  J is a proper closed ideal in a simplex space A, then J and A / J  

are simplex spaces. 

Proof. The restriction map  ~: A*-->J* is onto, norm-decreasing, and order-preserving. 

I f  j0  is the polar of J ,  the  induced map  ~1 of A*/J ~ onto J* is an isometry (see [7, p. 26]). 

To show tha t  ffl is an order-isomorphism, it suffices to prove tha t  each bounded positive 

linear funct ion p on J extends to a positive function on A. 

F rom the Hahn-Banach  Theorem there exists a f u n c t i o n / E A *  extending p. I f  rE J+, 

O<~s~r implies s e J ,  hence  ](s) ~</(r), and from Corollary 2.7, /+(r)=f(r). As J = J + - J + ,  

f+lJ ~ p . / §  is the desired extension. 

j o  is a norm-closed subspace of the L-space A*. If 0 <~ q <~ p E jo, then q/J+ = 0 implies 

q l J = 0, hence j0  is an order ideal. I f  ] E j0, / I J+  = 0 impl ies /+  I J+  = 0 h e n c e / +  E y0. Simi- 

l a r l y / - E J  ~ hence j0  is an ideal. F rom Lemma 3.3, A*/J ~ is an L-space, hence we conclude 

J* is an L-space, and J is a simplex space. 

F rom Lemma 3.3, the quotient  ordering on A / J  is proper. The map yJ of j0  into 

(A/J)* defined by  ~f(/)(a+J)=/(a) is an order preserving isometry onto (see [7, p. 25]). 

I t  is an order isomorphism, as if pEP(A/J)  and h is the canonical map of A onto A/J,  

then pohE(J~ + and y~(poh)=p. From Lemma 3.3, j o  is an L-space. All t ha t  remains is 

to  show tha t  if p(a§ for all pEP(A/J) ,  then a§ The hypothesis  implies t ha t  

q(a) >~ 0 for all q E J , .  F rom Theorem 2.4 there exists a continuous affine function c on PI(A) 

with 0, a<~c and cIJ~=a]J, .  As c(O)~a(O)=O, cEA (Theorem 2.2), and c - a E J , , = J  

(Theorem 3.1). Thus a + J = c § J >/0. 

P R o P o s I T I O ~  3.5. The map J--~ J + is a one-to-one correspondence between the ideals 

(closed ideals) in A, and the faces (closed/aces) in A +. 

Proof. I f  F is a face in A +, let J = F -  F .  Then  trivially J fi A + ~_ E. I f  a, b E F,  and 

a - b C A+, then 0 ~< a 7 b ~< a implies a - b E F,  hence J N A + = F.  The assertion regarding 

ideals and  faces is thus  clear. To prove the remainder  of the theorem, it suffices to show 

tha t  F - -  is a closed ideal in A with F , ,  0 A+ = F .  

We have F~ = Q  fi PI(A),  where Q is the positive annihilator of F .  Q is a closed face 

in P(A),  as if pIF=O, and O<q<~p, then  qIF=O. Thus F* is a closed face of PI(A) con- 

raining 0, and /~,, is an ideal in A (Theorem 3.1). Trivially, _~ ~ F , -  ~ A +. Suppose tha t  

a~/V. As _ ~ = F  ~176 there exists a function lEA* with f]F<~I a n d / ( a ) > l .  As F is a cone, 

/ ]F~<0.  I f  04s<~rEF, then s e F  and /(s)<~O. From Corollary 2.7 / + I F = 0 ,  i . e . , / + e F - .  

As/+(a)  >~ /(a) > 1, a ~. F.~,. 

If F v is a family of faces in A +, it is clear t ha t  [ ' ) F  v is again such a face. I t  follows 

tha t  if Jv  is a collection of ideals, then ( f ' ) J r )  + is a face in A +, i.e., [7 J7  is an order ideal. 
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We have been unable to determine if [7 J~ is necessarily an ideal, i.e., whether  or not  [1Jv  

coincides with ( N J r )  + - ( A J~)+. I t  follows from Proposi t ion 3.5 tha t  the lat ter  is an ideal, 

wh ich  is closed if the Jv  are closed. We shM1 denote this ideal by  A J r .  I f  A Jv  is an ideal, 

then N J~ = A J7.  

We note  t ha t  the intersection J of finitely m a n y  ideals J1 ..... Jn is an  ideal. For  if 

x 6 J ,  we m a y  choose y~ E J i  with 0, x ~< y~. F r o m  the Riesz decomposit ion property,  there is 

an element u E A with 0, x ~ u ~ Yi. Our assertion follows as x = u - (u - x) where u, u - x 6 J+.  

I f  F v are faces in A +, then the collection ~ Fv of finite sums is a face in A+. I t  is 

trivial t ha t  ~ F ~  is a cone. If  O<~y<~x~ with x~EF~(~), then choose y~ with y=~y~ and 

O<yi<~x~. We have y~eF~(~), hence y E h F  v. I f  Jv  are ideals in A,  then (hJv)+=hJ~.  

For  if ~.x~>0 with x~EJv(~) choose y~, z~EJ~( o with x~=y~-z~. Then 

O ~ y , - ~ z ~ < ~ y ~ 6 ~ J + ,  

implies t h a t  5y~- -hz~EhJ  ~. The converse inclusion is trivial. Thus 5 J 7  is an order 

ideal, and as it is posit ively generated, it is an ideal. 

Alfsen has shown tha t  the closure of a face in PI(A) need no t  be a face [1, Theorem 1]. 

This fact  is relevant  to the intersection problem. Given ideals J r ,  it is readily proved tha t  

the convex span Q of the faces J~ is a face in PI(A) containing 0. I f  the weak* closure of 

Q were a face, one could use Theorem 2.4 to  show tha t  N J~ is an ideal. 

4. The structure space 

Let  A be a simplex space. An  ideal M in A is maximal if it is a proper  subset of A, 

and coincides with any  proper  ideal containing it. As the closure of an ideal is again an  

ideal (Theorem 3.1), if M is maximal  either 2]I = A  or M is closed. I f  A has an order iden- 

t i ty  e, then  M must  be closed. I t  suffices to show t h a t  He+M H =1,  as then Ile+J]~ll =1 .  

I f  there were an element uEM with [le-u n =1-~,  s > 0 ,  we would have from Proposi t ion 

2.8, and (2.3) 
1 - L ( u )  = M ( e - u )  <~ 1 - s ,  

hence u >~L(u) e where L(u) >~ ~. I t  would follow t h a t  e E M, and as e is an order unit, M = A, 

a contradiction. 

Suppose tha t  M is a closed maximM ideal in a simplex space A. F r o m  Corollary 3.2, 

M -  is minimal among the closed faces of PI(A) containing bu t  no t  equal to {0}. As M~ 

is compact  and convex, it mus t  have an extreme point pM~:O. M~- is a face in PI(A), hence 

PM is an extreme point  of S(A). The ray  passing th rough  PM is a closed face in P(A), and  

{o~pM: 0 ~ a ~ < l }  is a closed face in PI(A)  containing 0. I t  mus t  coincide with M -  as the  

la t ter  is minimal, hence M ---- {pM}-.  This determines a one-to-one correspondence between 
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the set of maximal closed ideals maxA, and the extreme states ES(A)=EPI(A  ) -  {0}. 

In  the proof of Theorem 3.4 we showed that PI(A/M) may be identified with M-. In  

particular, a + M >~ 0 if and only if PM(a) >~ O, and I la + M II = I P (a) I" Thus p~ determines 

an order isomorphism and isometry of AIM onto the reals, the latter given its natural 

ordering and norm. 

Let maxA be the set of closed maximal ideals in A. If  J is a subset of A, the hull 

of J is the set 
h(J) = {MEmaxA: J ~  M}. 

If  S is a subset of maxA, the kernel of S is the closed ideal 

k(S) =A{M: MESU {A}}. 
Note that if S=O,/c(S)  =A.  

T ~ o R E ~  4.1. IJ J is an ideal in a simplex space A, then ]ch(J) is the closure j o] J. 

Proo/. From Theorem 3.1 and the Krein-Milman theorem, we have 0~=J-- = [E(J-)],.  

As J .  is a face in PI(A), E(J,)  = J ,  N EPI(A ). Thus 

] = f'l {p E EP~(A): p IJ = 0}- = ~1 {M EmaxA U {A}: i _~ J} = kh(J). 

I t  follows that  the subsets of A invariant under the "operation" kh are just the 

closed ideals. As hkh(J)=h(J) for any subset J of A, the hulls are those subsets of maxA 

invariant under h/c, and each is the hull of a closed ideal. 

T~I~OR~M 4.2. I /  A is a simplex space, the hulls are the closed sets o / a  topology on 

m a x A .  

Pro@ Due to Proposition 3.5, we may regard maxA as the closed maximal faces 

N of A+, and a hull as the closed maximal faces containing a given closed face. If  F~ 

are closed faces, it follows from the discussion after Proposition 3.5 that  ~ F~ is a face. 

The closure-F 0 of ~. F7 is again a face (Proposition 3.5) and it is clear that  f'l h(F~)= h(Fo). 

Thus an intersection of hulls is a hull. 

If  F 1 and F~ are closed faces, F 1 fl F 2 is a closed face. Trivially h(F1)U h(F2)~_ 

h(F 1 fl F2). Conversely, suppose that N is a closed maximal face in A + with F~ fl F 2 c N, 

but  that  F ~  N, i = 1 ,  2. Then as F i + N  are faces, F I + N = F ~ + N = A + .  Choose uEA + 

with pM(U)=1 where M = N - N ,  and r~EF~, s iEN with 

u = r 1 - ~ 8 1  = r 2 - [ - 8  2. 

As a consequence of the Riesz decomposition property there exist t~jEA + with 

r 1 = t l l  + t12, r2 = tll § t21, 

S 1 = t21 -~ t22 , 82 = t12 + t22. 
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As tll<~r~EF~, tllEF1NF~ ~_N, and as t1~<~%, tl~EN. Thus rIEN, u=r~+s~EN, and  

pM(U) =0,  a contradiction. We must  either have F 1 ~ N or F 2 _~ N, i.e., h(F 1N F2) 

h(F1) U h(F~). The union of two hulls is a hull, and not ing tha t  m a x A  = h({0}) and ~l =h(A), 

we are done. 

We call the above topology on m a x A  the structure topology, and m a x A  with this 

topology the structure space. This topology is weaker t han  the  weak* topology, obtained 

from the identification of m a x A  and ES(A). 

L ~ M ~  4.3 (see Lemma 3.3). Suppose that J is a proper closed ideal in an L-space V. 

The canonical homomorphism 0 o/ V onto V[J restricts to an injection of E ( V ~ ) - J  into 

E((V/J)~). 

Proo/. As the norm restricted to  V + extends to  a strictly positive linear funct ion on V, 

the discussion at the beginning of the previous section is applicable. I n  particular,  a point  

p ~=0 in V~ is extremal if and only if Ilpll = 1, and 0 ~< q < p  implies q = ~p for some scalar g. 

If p e E ( V { ) - J ,  we assert t h a t  Hp+J]]=l. I f  rE J, then  0~<pA Irl <~ Irl and ]r I E J ,  

hence pA [r I EJ.  As p is extreme, pA  Irl = ~ p  for some scalar ~. I f  ~ = 0 ,  we have pEJ, 

a contradict ion.  Thus  p fl I r] = 0, and 

IIP+rll = Hpll + lirll 

I t  follows from the proof of L e m m a  3.3 t h a t  0 is a lattice homomorphism.  Thus  if 

pEE(V~) - J ,  q>~O, and O(q) ~<0(p), then  letting q A p =  ~p, 

O(q) = O(q) A O(p) = O(q A p)  = ~O(p), 

i.e., O(p) ~ E((V/J)~). I f  in addition, q E E(V~) - J with q ~=p, then  g A p = 0, hence 0(q) A O(p) = 

0, and O(q) #O(p). 

TH~OR~,~ 4.4. I / J  is a proper closed ideal in a simplex space A, then there are natural 

homeomorphisms o/ maxA/J  onto h(J), and m a x J  onto m a x A - h ( J )  /or the structure 

topologies. 

Proo]. Let  0 be the  canonical linear map  of A onto A/J, and say t h a t  I is an ideal in 

A/J. 0-1(1) is an order ideM, as if 0 <~ b <~ a E 0-1( I), then  0 ~ O(b ) <~ O(a), O(b ) E I, and b E 0-1(I). 

I f  a E O-I(I), there is an element O(b)E I+ with O(a)<<. O(b). We m a y  assume tha t  b >~ 0. Then  

a<~b+u, for some element uEJ. Choosing vEJ + with u<~v, we have a<~b+v, where 

b+vEO-l(I) +. Thus 0-1(1) is posit ively generated.  The map I--->0-1(I) is clearly a one-to- 

one inclusion preserving map of the ideals in A/J  onto the ideals in A containing J .  I t  

follows tha t  the map q (M)= O- I (M)  is a one-to-one map  of maxA/J  onto h(J). I f  I is a 

closed ideal in A/J, then  qD(h(I)) =h(O-l(I)). I f  H is a closed ideal in A with h(H) ~ h(J), 

then H ~ J ,  and ~(h(O(H))) =h(H) .  Thus  ~v is a homeomorphism.  
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We saw in the proof of Theorem 3.4 tha t  the restriction map ~: A*-->J* induced an 

isometric order isomorphism of A*/J ~ onto J*. From Lemma 4.3 it follows tha t  ~ is an 

injection of EPI(A ) _ j o  into EPI(J ). 0 maps PI(A) onto PI(J) as any positive function 

on J extends to a positive function on A of the same norm (again, see the proof of Theorem 

3.4). Letting ~1 =~ [PI(A), if F is a closed face in PI(J) ,  then ~1-1(F) is a non-empty closed 

face in PI(A). In  particular, if qEEPI(J ) -{0} ,  then Q;l({q}) is a closed non-empty face 

in PI(A) and must  contain an extreme point p qjO. We have pEEPI(A ) and 0(p)=q,  

i.e., 0 maps EPI(A ) _ j o  onto EPI(J ) -{0} .  

For each M E max A - h ( J )  we have PM E EPI(A ) _ jo ,  Q(PM)E EPI(J) -  {0), and 

i N g = {O(p~)}" EmaxJ .  

I t  follows from the above discussion tha t  the map ~ ( M ) = M  N J is a one-to-one map of 

m a x A - h ( J )  onto m a x J .  I f  I is a closed ideal in A, I N  J is an ideal in A (see w 3), and 

thus in J .  Denoting a hull taken in m a x J  by  hj, it is clear that  

~(h(I) N [maxA -h(g) ] )  ___ hj(I N J). 

I f  M E m a x A - h ( J )  and M ~_I N J ,  then M ~_ I (see the proof of Theorem 4.2) hence we 

have the converse inclusion. Thus ~ is a homeomorphism, as an ideal in J is an ideal in A. 

As one might expect from C*-algebra theory, the elements of A "vanish at  infinity" 

on maxA,  i.e., letting a(M)=pM(a) for M E m a x A ,  

PROPOSITION 4.5. I/  A is a simplex space, aEA, and ~ > 0 ,  then the set 

C = { / E m a x A :  l a ( / ) [  >~} 
is compact. 

Proo/. Suppose tha t  ~v is a decreasing net of closed sets in maxA with C N Fv4:O. 

Let  Jv=/c(Fv),  Jo = [.J J r ,  and J l = ] 0 .  Then J0 is an ideal, hence J1 is an ideal (Theorem 

3.1). As F v 4:O, we have Jv  4:A, and identifying PI(A/Jv) with J~, 

[la + J~ II = sup { [p(a) I : p E J~} = sup { I p(a) [ : p E E(J~)} = sup { [a(M) ] : M E F~} ~> ~. 

We used the fact tha t  the sets of points on J~ at  which a assumes its maximal and minimal 

values, respectively, are closed faces in J~ and thus contain extreme points. I t  follows 

that  ]]a + 4]] ~> a, hence 4 4:A, and again, there is an M E h (4 )  with ]a(M) ] = ]]a + J1]] ~> a- 

As h(J1) = lTh(Jv), we have [7 (Fr  N C) 4:O. 

COROLLARY 4.6. I / A  has an order identity, then m a x A  is compact. 

I f  one had tha t  i--~]a(M)] was lower semi-continuous, i.e., {M: ] a ( / ) ]  ~<a} was 

closed for all a, one could prove tha t  m a x A  is always locally compact. Unfortunately, in 

contrast with C*-algebras, these functions are generally not semi-continuous (see Theorem 

4.8). We do have: 
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PI~OrOSlTION 4.7. I] A is a simplex space, and aEA +, then the set {M: a(M)=O} 

is closed. 

Proo/. As {a}- is obviously a closed face in PI(A) containing 0, J = {a}-~ is an ideal. 

We have 
(p E EPI(A): p(a) = O} = E(],) ,  

hence (M E max A: a(M) = O} = h(J). 

I f  X is a compact Hausdorff space, the ordered Banach space C(X) of continuous 

functions on X is an M-space, and thus a simplex space, and the constant function e is 

an order identity. Such spaces are readily characterized: 

T ~ o ~ M  4.8. I] A is a simplex space with order identity, then the ]ollowing are equi- 

valent: 

(1) m a x A  is Hausdor]]. 

(2) A is a lattice. 

(3) A is an M-space. 

(4) ES(A) is closed in S(A). 

(5) There is a natural isometric order isomorphism o / A  onto C(ES(A)). 

(6) The ]unctions M---> Ia(M) I with a in A are upper (lower) semi-continuous. 

Proo]. I f  maxA is Hausdorff, then for each aEA +, and a > 0 ,  (M: a(M)>~o:~ is com- 

pact  (Proposition 4.5), hence closed. Trivially (M: a(M)>~O) is closed, and a is upper 

semi-continuous. I f  aEA is arbitrary,  a §  Ilalle is positive, hence a+ Halle and a are upper 

semi-continuous. Taking negatives, we conclude tha t  a is continuous. This would also 

have followed if l al were known to be lower semi-continuous. As the functions M--~a(M) 

define the weak* topology on maxA,  and tha t  topology contains the hull-kernel topology, 

the two topologies coincide. ES(A) is thus weak* compact (Corollary 4.6), and closed in 

S(A). 

The implication (4)~ (5) is due to Bauer [2]. In  any C*-algebra 9~, the closed faces 

of 9~+ are just the positive parts of the closed left ideals [9, Theorem 2.4] hence letting 

9~=C(ES(A)), of the closed two-sided ideals. As the lat ter  are positively generated, the 

algebraic and order notions of closed ideal coincide. The closed maximal ideals in the 

order sense are the closed ideals of co-dimension one (see above). As 9~ has an identity, 

the latter coincide with the maximal ideals in the algebraic sense. Thus we are considering 

the usual structure space of a commutative Banach algebra, and (5) ~ (1) is a well-known 

result (see [22, p. 57]). 

(5) ~ (3) ~ (2) are trivial. (2) ~ (4) follows readily from [19, w 24.2]. 
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5. Problems and an example 

I t  should be possible to give a definition of simplex space that  is analogous to that  

for M-spaces. Presumably it may be defined as an ordered Banach space satisfying the 

Riesz decomposition property and certain other, as yet undetermined, conditions. Is the 

structure space of a simplex space always locally compact? How may Theorem 4.8 be 

generalized to simplex spaces without order identity ? If  A is a separable simplex space, 

when do the hull-kernel and weak* topologies generate the same Borel structure on max 

A ? This question is of importance in the applications to C*-algebras. I t  would suffice to 

show the first structure is countably separated. 

In  attempting to find analogies with the theory of C*-algebras, one is confronted with 

numerous problems. Can one develop the notion of the spectrum of an element ? Is there 

a class of simplex spaces with almost Hausdorff structure spaces, analogous to GCR alge- 

bras ? 

In  order to obtain a more detailed theory, it may be necessary to restrict the spaces 

under consideration. Counter to the situation for C*-algcbras, the structure space of a 

simplex space need not be second category. To see this, consider Alfsen's construction of 

a simplex in the proof of [1, Theorem 1] (see also [21, p. 78]). Letting ~n =2-n  for 1 ~ n  < oo, 

and ~oo = - 1 ,  one obtains a simplex K for which E(K) is countable, and the only closed 

faces of K are K itself, and the faces spanned by finitely many points in E(K). I t  follows 

that  if A = A ( K ) ,  maxA has only countably many points, and the only hulls are the 

finite sets and maxA (the "Zariski topology"). Each point comprises a closed set without 

interior, and maxA is a countable union of such sets. 

We note that  Alfsen's original example has a non-Hausdorff, but  almost ttausdorff 

structure space. 
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