STRUCTURE IN SIMPLEXES

BY

EDWARD G. EFFROS

University of Aarhus, Denmark, and University of Pennsylvania, Philadelphia, Penn., U.S.A.(")

1. Introduction

The Choquet theory of simplexes has provided an elegant approach to direct integral
decompositions in several areas of analysis. In the various contexts, one identifies ““irre-
ducible” elements with the extreme points of a simplex. The decomposition of a general
element into irreducibles then corresponds to the unique barycentric representation of a
point in the simplex as a probability measure “on” the extreme points. One has, for
example, that the invariant probability measures for a locally compact transformation
group on a compact space form a simplex, and the extreme points are then just the ergodic
measures [11] (see [23, §10]). Similarly the normalized traces on a C*-algebra form a
simplex, and the extreme points are the factor traces [26, p. 116]. It would seem likely
that a classification of simplexes will provide more information in these applications than
just an existence proof for the decompositions.

In this paper we shall introduce a “structure” topology on the extreme points E(K)
of a simplex K. A closed set in this topology is just the extreme points of a closed face
of K. That E(K) with the structure topology is analogous to Jacobson’s structure space
of a ring (see [12, Ch. 9]) is best seen by considering the “affine space” 4(K) of K. 4(K)
consists of the continuous affine functions on K. It is an ordered vector space with a dis-
tinguished “order unit”’, the constant function 1. Owing to studies of Kadison and Linden-
strauss (see § 2), the spaces that arise in this fashion have been completely characterized.
We prove that the closed faces in K are in one-to-one correspondence with the closed
“ideals” in 4(K), and that E(K) with the structure topology may be identified with the
maximal ideal space of 4(K), with the ‘“hull-kernel” topology.

(*) This research was supported in part by the Office of Naval Research (NONR 551(57)), and
was completed while the author held an NSF Postdoctoral Fellowship at the University of Aarhus.
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As ideals in 4(K) need not have an order unit, it has been necessary to enlarge the
category of ordered spaces under consideration. In § 2 a “simplex space” is defined to
be an ordered vector space A with complete norm and closed positive cone, for which
A* is an L-space in the sense of Kakutani [17; 18] (see below). A representation theorem
for such spaces is proved, and those of the form 4(K), K a simplex, are characterized as
those with an “order identity”.

In §3 the notion of ideal is introduced, and it is shown that the closed ideals are
just the annihilators of weakly* closed faces of the positive cone in A*. We prove that
proper closed ideals and the resulting quotients are simplex spaces.

The structure topology is introduced in § 4. The structure spaces of ideals and quo-
tients are seen to correspond to open and closed sets in the expected manner. The simplex
spaces 4 with order identity have a compact structure topology, and the topology is
Hausdorff if and only if 4 is a Kakutani M-space.

§ 5 is devoted to a brief discussion of open problems, and an example of a simplex K
such that the structure topology on E(K) is not of second category.

We are indebted to E. Alfsen for introducing us to the theory of simplexes, and
making available to us the manuscript of [1]. We also wish to thank D. A. Edwards and
J. Semadeni for explaining to us the role of Lindenstrauss’s work in the theory of simplexes
(see § 2). We are indebted to R. Phelps for the use of a preliminary version of [23]. The
reader will find in the latter an excellent exposition of the theory of simplexes, together
with a comprehensive bibliography (see also [6]). An introduction to L- and M-spaces
may be found in [197 (see also [7, Ch. VI}).

Throughout this paper, vector spaces will be assumed to have non-zero elements,
and cones are assumed proper, ie., not containing a non-zero element and its negative.
In normed spaces, the subscript « on a subset indicates the corresponding intersection
with the closed ball of radius «.

2. The affine space of a simplex
Let K be a compact convex subset of a locally convex space. A real function ¢ on
K is affine if
a(ap+ (1 ~a)g) = aa(p) + (1 ~a)alg)
for all p, ¢ in K and 0<«<1. The affine space A(K) of K is the vector space of all con-
tinuous affine functions on K, together with the ordering defined by the cone A4(K)* of
nonnegative continuous affine functions. The function e defined by ¢(p)=1 for all g in K
is an Archimedean order unit for 4(K), i.e., for each a in A4(K), there is a scalar o with

a<cwe, and if a <ae for all ¢>0, then a<0.
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Following Kadison [13; 14], we call a partially ordered vector space A together with
a distinguished Archimedean order unit e a function system. Kadison has proved a repre-
sentation theorem for function systems, which we shall outline. For each a in a function

system A, define

L(g) =sup {«: ze<a}, (2.1)

M(a) = inf {a: a <ae}, (2.2)

llall = max {|L(a)], | M(a)|}. 2.3)

We refer to | ||, which is a norm on 4, as the order norm. It coincides with the usual su-

premum norm if 4 = 4(K), and in that case it is complete. Letting P(4) be the positive
linear functions on 4, P(4) is contained in A* the bounded linear functions. We give
A* the weak* topology, and define the state space S(4) to be P(A4) N H(A) with the relative
topology, where H(A) is the set of f in A* with f(e)=1. If 4= 4(K), the map p—p, where
p(a)=a(p) for p in K, a€A, is an affine homeomorphism of K onto S(4). Thus rather
than study compact convex sets K, we may restrict our attention to the state spaces of

(norm) complete function systems 4. In [13], Kadison showed that

L{a) = inf {p(a): P GS(A)}, (2.4)
M(a) = sup {p(a): pES(4)}, (2.5)
llafl = sup {| p(a)|: pES(4)}. (2.6)

Define d(p) =p(a) for e in 4, p in S(A4). As a >0 if and only if L(a) >0, it follows that a—d
is an isometric order isomorphism of 4 into A4(S(4)). It has been known that this map is
onto. A proof readily follows from [16, Lemma 4.3].

If C is a cone in a vector space K, a base of C is an intersection of C with a hyper-
plane H, where H is a hyperplane in E not containing 0 that meets all of the generators
of 0, i.e., for all 2 in O — {0}, there is an «>0 with ax€H. C is a lattice cone if it defines a
lattice ordering on C'—C. It suffices to show each pair #, ¥ in € has a minimum in C (see
[23, § 9]). We say that a convex set K in a vector space is a simplex if it is affinely iso-
morphic to the base of some lattice cone. It will then follow that any cone with a base
affinely isomorphic to K is a lattice cone. |

An ordered vector space A satisfies the Riesz decomposition property if a, b;, by€A+
and a <b, +b, imply the existence of a,, a,€ A+ with a=a, +a, and a,;<b,. Equivalently,
if @;, €A+ with i=1,..., m; j=1,...,% and > a;=>b;, then there exist ¢;;,€ A+ with a,=
25€i;» by=2,;¢4; (see [4, Ch. II]). Another equivalent condition is that if a,;, b,€ 4 and a,<b,,
then there is an element ¢ with a,<c<b;, for all 4, j [21, Lemma 6.2]. Vector lattices satisfy
the Riesz decomposition property (see [4, Ch. IT]), but the converse is false (see Theorem
4.8).
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We recall that a vector lattice V together with a complete norm is an L-space if
|| <|y| implies [z]|<[ly|, and for x,y>0, |[z+y|=|z|+]y|. V is an M-space if
rather than the second equality, one has for x, y=>0, |[« V y|| =max{||z|, |#|}.

The following theorem is due to J. Lindenstrauss [21] (see [25, Theorem 5]). An
elegant proof by D. A. Edwards was presented in [8]. Earlier partial results oceur in [20]
(I am indebted to Z. Semadeni for this reference) and [24].

THEOREM 2.1. Let A be a complete function system. Then the following conditions on

A are equivalent:

(1) S(4) is a simplex,
(2) A has the Riesz decomposition property,
(8) A* with the ordering defined by P(A) and the uniform norm is an L-space.

In §3 we shall consider “ideals” in function systems satisfying the conditions of
Theorem 2.1. As these subspaces will in general not have order units, they will not be
function systems. Noting that the primary function of the distinguished order unit is to
define the order norm, we introduce a more inclusive category of ordered spaces with
norm.

An ordered vector space 4 together with a complete norm is a simplex space if A+
is closed, and the Banach space A* together with the order defined by the cone P(4) of
bounded positive linear functions is an L-space. The first condition is equivalent to the
assumption that if p(a)>>0 for all p in P(4), then a>0 (see [19, § 23.2]). Any M-space
is a simplex space.

If A4 is a simplex space, we define the state space S(4) to be {pEP(A): ||p|]|=1}. As
this is generally not compact with the weak* topology, it is useful to consider instead the
set Py(A)=P(A4) N Af with the weak* topology.

TurorEM 2.2, If 4 is a simplex space, then Pi(A) is a simplex, and A may be identified
with the ordered Banach space of continuous affine functions on Pi(A) vanishing at 0. In

particular, A satisfies the Riesz decomposition property.

Proof. Define d(p) =p(a) for a € A and pE€P,(4). a—>d is trivially an order isomorphism.
We have

llall =sup{|f@)|: f€AT}, ||l =sup{|p(a)|: pEP(A)},
hence ||d]| <[la]|. If f€A], then as A* is an L-space, f=f+—f, where f+, {-€P(A4), and

A= N7+t + DA
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Assuming f+, f-+0, let p=/*/||f*]l, ¢=F-/||/||- Then p, g€P;(4), and
[H@) | <[l e@] + - {a@ | <l +IF-Dllell < l4].-

If f+ or f~=0, the resulting inequality is trivial, and we conclude a—d is an isometry.
It follows from [16, Lemma 4.3] that all continuous affine functions on P;(A4) vanishing
at 0 are of the form 4.

As A* is an L-space, || || is positive and positive linear on P(4). As A*=P(A4)—~P(4),
it extends to a strictly positive linear function on A4* That P,(4) is a simplex follows
from the following (see [23, Prop. 11.3]):

Lemma 2.3. Suppose that P is a cone in a vector space B, ¢ is a strictly positive linear
function on B, and Py={x€P: p(x)<1}. If P is lattice ordered, P, is a simplex.

Proof. Let E'=E X R, R the reals, be ordered by the cone
P = {(x, o): 20, 2 =0}.
P’ is a lattice cone as (x, @) A (¥, B) = (x A y, min (e, B)).

The function y(x, «) =@(x) +« is linear, and as ¢ is strictly positive, the hyperplane
G = {(x, 0): p(x, @) = 1}
meets all generators of P’. It is readily verified that the map
0(@) = (x, 1 ~g(x))

is an affine isomorphism of P, onto the base P'n G.

Making the identification of Theorem 2.2, we will write a(p) =p(a) for a €4, pEP,(A4).

If K is a convex set in a vector space, a face (or “‘extremal subset”) of K is a convex
subset @ such that if ax+ (1 —a)y€Q, with z, y€K and 0<a<1, then x, y€Q. A face of
a face is again a face, and the set of extreme points E(K) consists of just the one-point
faces.

The following refinement of the Riesz decomposition property is central to our in-

vestigation. We first encountered the 2-" thechnique for forcing convergence in Edwards’
proof of Theorem 2.1 [8].

TEEOREM 2.4. Suppose that K is a compact simplex in a locally convex vector space,
and that Q is a closed face in K. If ay, ay, b are in A(K) with a,<b and a,|Q<a,|Q, then
there exists an element ¢ in A(K) for which a,<c<b, and ¢|Q=a,|Q.

Proof. Let a, V a, be the maximum of the functions a,, and (@, V @,)~ be the lower

envelope of the continuous affine functions on K majorizing a, V a;. We assert that

(@ V “2)_IQ=“2IQ-
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Given ¢€¢), let u be the maximal probability measure on K with resultant r(u)=gq.
The support S, of z must be contained in . For if p€S,, there is a net of positive contin-
uous functions f, with £, du probability measures converging weakly* to the point mass
d,. The resultants g, =r(f,du) lie in @ as 0<¢,<||f,||g, and converge to r(3,) =p, hence
PEQ. As p is maximal, the Borel set

B(a, V a,) = {pEP(A): (a; V a)~(p) = a1 V ax(p)}

has complement of measure zero. Thus for u almost all p, p€Q, (a, V a,)~(p) =a.(p), and

f(al V @)~ (p)du(p) = faz(p) du(p) = ay(9)-

(a; V @)~ is upper semi-continuous, and affine as K is a simplex (see [6, Theorem 11]),

hence
f(al Vag)=(p)du = (ay V a5)=(q)

(see [6, Lemma 10]), and (a, V a,)~|Q = a,|Q.

It follows from the Riesz decomposition property that the functions ¢, in 4(X) with
@y, @y <c, <b form a decreasing net. As they converge point-wise on @ to the continuous
function (a, V a,)~|@=a,|Q, the convergence is uniform on @ (see [22, § 16 A)). Thus we
may select ¢, in A4K) with a, a,<c¢; <b and ¢;|Q<a,|Q+271. Suppose that we have
defined c,, and that it satisfies a,, a,<c,<b, ¢,|Q<a,|Q+27". Then

Qg By, € — 277D, ¢,
and as (¢, —27")|Q <a,|Q, our previous argument implies
(@ VagV (e, —27")" lQ=a2 IQ

Examining the functions ¢, in 4(K) with

ay, G, €, —27" <0, <, €
uniformity of convergence on ¢ provides us with ¢, satisfying

Oy, By SCpyq b,
Cri1|Q@ <, |Q +2- D,

and llen—Cnpa] <27

The functions ¢, converge uniformly to a continuous affine function ¢. ¢ is the desired
element of A4(K).
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COROLLARY 2.5. If A is a simplex space, A =A+— A+,

Proof. As P(4) is a cone, 0 is an extreme point in P(A4), hence {0} is a face in P(4).
If a€A4, we have 0, a<|[a| 1, and a|{0}=0]|{0}. From Theorem 2.2, P,(4) is a simplex,
hence there is a continuous affine function ¢ on P,(4) with 0, a <¢, and ¢(0) =0. We have
¢€A4 (Theorem 2.2), and a =c— (¢ —a) with ¢, c—a >0.

Using an argument of Kaplansky (see [7, pp. 98-99]):

COROLLARY 2.6. Any positive function on a simplex space is bounded.

Proof. If p is positive but not bounded, choose a sequence @,€A4 with |la,| <1 and
pa,)=>4" As 0,a,<1 on P;(4), there is a continuous affine function ¢, on P,(4) with
0, a,<c,<1 and ¢,(0)=0, i.e., [[c,]| <1 and ¢, €A+ We have > 2 "c, converges to an ele-

ment c€A4. But ¢c>27"c, implies p(c) >2" for all n, a contradiction.

CorOLLARY 2.7. If A is a simplex space and € A*, then for a € A+,
fH{a) = sup {f(b): 0<b<a}.
Proof. As f+, f~=0, we have 0 <b<a implies
fO) <f+®) +[-(b) <fH(a) +{(a).

Thus we may define g(a) to be the indicated supremum. From Theorem 2.2, 4 satisfies
the Riesz decomposition property. It follows that g is positive-linear on A+ (see [7, p. 98]).
g has a unique extension to a positive, linear function g, on 4. From Corollary 2.6, g, € 4*.
It is clear that O, f<g, <f*, hence g, =f+.

We say that an element e in a simplex space 4 is an order identity if p(e)=1 for all
p€S(4). If ¢’ is another such element, p(e) =p(e’) for all p€P(A4), hence as A*=P(A) —P(4),
e=e'. The spaces described in Theorem 2.1 are just the simplex spaces with an order

identity. More precisely:

ProrositioN 2.8. If A is a complete function system satisfying the conditions of
Theorem 2.1, then with the order norm, A is a simplex space, and the distinguished order unit
is an order identity. Conversely, if A is a simplex space with an order identity e, then e is an

Archimedean order wnit, and the corresponding order norm coincides with the given norm.

Proof. If A is a complete function system, it follows from (2.4} that if p(a) =0 for all
pEP(A), then L(a) >0, i.e., 0. Thus we have the first assertion. In the second situation,
if a €4, then for all pE€P(4),

p@ <|pllla]l = »([la]e)-
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Tt follows that a < |ja||e. If a <ae for all «>0, p(a) <ap(e), hence p(a) <0 for all pEP(4),
and ¢ <0. If || ||, is the order norm defined by e, we have from (2.6),

ll@||. = sup {| p(a)|: PEP'(A), ple) =1},

where P’(A) consists of all positive functions on A. From Corollary 2.6, P'(4)=P(4),

hence
llall. = sup {| p(@)|: pEPy(4)} = ||a]],

the second equality following from Theorem 2.2.
If 4 is a simplex space, then S(d4) is a face in P,(4), as if ap+(1—a)g€S(4) with
P, ¢€P(4), 0<a<1, then afjp|| +(1—a)|g|| =1, and ||p| =||¢]| =1.

ProrosiTioN 2.9. If A is a simplex space, then A has an order identity if and only
if S(A4) is closed in Py(A4).

Proof. If e is an order identity for A, then S(4)=P;(4) N H(A4), where
H(4) = {fe4* f(e) =1}

is weak* closed. Conversely, suppose that S(4) is closed. The Hahn-Banach Theorem and
a simple compactness argument provide us with an element a €4 such that a|S(4)>1.
From Corollary 2.5, we may choose b€ A+ with ¢ <b. We have 0<1, b and b|8(4) >1|8(4),
hence applying Theorem 2.4, there exists a continuous affine function e with 0<e< 1, b,
and e|S(4)=1|8(4). As b(0)=0, e€ A4, and e is an order identity.

3. Ideal theory

In order to make further applications of Theorem 2.4, we must describe the faces of
P,(A) for a simplex space A. In the broader context of Lemma 2.3, let H = {x: p(x) =1},
and § =H n P. The following facts are known and readily verified. A subset @ of the cone
P is a face in P if and only if it is itself a cone, and 0 <y <z with x€¢ implies ¥ €Q. The
map @—>@Q N § is a one-to-one correspondence between the faces @ +{0} of P and the faces
of 8. The map @—@ N P, is a one-to-one correspondence between the faces of P and those
in P; containing 0. The other faces in P, are just the faces of S.

As an illustration of the arguments used to prove these facts, we show that any face
Q, of P; with @, & S has the form Q N P,, @ a face in P, Say that €@, — 8, and 2+0. Then
0 <g(x)<1, and

X
x=¢(w)m+ (1 —g(x)) -0,
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ie., as @ is a face, 0, z/p(x)€Q,. In any event, 0€Q;, and if 0=F2€¢),;, then x/p(x)€Q;.
If 0<y<z and z€Q,, then y€Q);. For assuming y+0 and v =x—y 0,

=y, u
7@ %o P oy

where a=g(y)/p(), f=¢)/px), and a+f=1. As z/p(x)€Q,, we have y/g(y)€Qs. As
@, is convex,

- Y -
Yy w(y)(p(y)ﬂl p))0 € Q.

Let @ be the non-negative scalar multiples of elements in Q. If #€¢ and x =0, then
Z[p(x)€Qy, as if x=oax, ,€Q, then x/p(r)=x,/p(x,)€Q,. Given z, y€Q with x, y+0,
x/p(x), y/p(y) €y, hence

ety _ e z W) Y eq
pla+y) ety p) e@ty)ely)

and z+ty€Q. If 0<y<azx with €, then assuming x=0, 0<y/p(x)<z/p(r)€Q,, hence
ylop(x) €@, and y€Q. It follows that @ is a face of P. Trivially, @, SQNP,. If z€Q NP,
x/p(x) €Q,, and ¢(x) <1. Thus 0 <z <z/p(x), v€Q,, and @, =Q N P;.

If A4 is a simplex space with order identity, then the map @—@ N .S(4) is a one-to-one
correspondence between the closed faces Q={0} of P(4) and the closed faces of S(4).
For if Q is a face in P(A4) with @ N S(A) closed, then the latter is compact, and

QN A; = {Bp: pEQ N S(A), 0<p<a}

is closed for all «. It follows that @ is closed (see [5, Ch. IV, § 2, Theorem 5]). Similarly
in any simplex space, @—@Q N P,(4) is a one-to-one correspondence between the closed
faces of P(A4) and the closed faces of P,(A4) containing 0.

Say that ¥V is an ordered vector space. Following Kadison [13], we say that a linear
subspace J of 4 is an order ideal if J*=J N A+ is a face of A+. J is an ideal if in addition
it is positively generated, i.e., J =J+—J+.

If 4 is a simplex space, and J and @ are subsets of 4 and P,(4), respectively, define

Ji= {p€P;(A): p|J =0},
Q= {a€Ad:a|Q =0}
THEOREM 3.1. Let A be a simplex space. If J is an ideal in 4, J+ is a closed face in

P,(A) containing 0, and J= is the closure of J. If @ is a closed face in Py(A) containing O,
@+ is an ideal in A, and Qs =Q.
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Proof. We have Ja=J°N P,(4), where J?is the polar, i.e., annihilator of J. J° N P(4)
is a face in P(4) as if 0<g<p€J°, then p|J+=0 implies ¢|J*+=0, hence as J =J+—J+,
g|J =0. Thus Ja is a closed face in P;(4) containing 0.

@+ is clearly a closed linear subspace of A. If 0<y<z and x€Q., then y€Q-, hence
@+ N A+is afacein 4+ and @ is a closed order ideal. @ is positively generated, for suppose
that @ €Qs. Then 0, a<||a| and a|Q=0. Applying Theorem 2.4, there exists a continuous
affine function ¢ on P;(4) with 0, a<c and ¢|@=0. As ¢(0)=0, c€A4 (Theorem 2.2). We
have a=¢—(c—a), where ¢, c—a €(Qs)*.

Let J be the closure of J. Trivially, J S Jus. If @, ¢J, the Hahn-Banach Theorem enab-
les us to select f€A* with f|J =0 and f(a,) +0. If a €J+, 0<b<a implies b €J+ and f(b) =0.
From Corollary 2.7 it follows that f+(a)=0, f+|J*+=0, and as J=J+—J*, f+|J=0. Since
f~=(—f)t, this afgument shows that f~|J =0. As f=f+—f-, either f*(a,)==0 or f~(a,)+0.
Thus we obtain p€J+ with p(a,) +0, i.e., ag §Jrs.

@ = Q=+ is again trivial. Say that p, ¢@Q+s. As @ is closed, convex, and contains 0, %
coincides with @ (see [5, Ch. IV, § 1, Prop. 3]). Thus there is an element a € 4 with a(p,) >1,
a{g) <1 for all ¢€Q. From Theorem 2.4, there is a continuous affine function ¢ on P,{K)
such that 0,a—1<c and ¢|@=0. We have c€4, c€Q:, but c(py)=(a—1)(p,) >0, ie.,

Do § Q=

COoROLLARY 3.2. J—>J. defines a one-to-one order inverting correspondence befween

the closed ideals in A and the closed faces containing O in Py(4).

Theorem 3.1 is false for non-commutative O*-algebras, as the null space of a pure
(i.e., extremal) state that is not a character is not positively generated. For arbitrary
function systems it is not clear that there are any non-zero positive elements in the null-
space of a pure state. Note that such an element will exist if and only if the state is
“supported”. For further information on the null-spaces of faces, see [3; 10; 15; 9].

If J is a proper subspace of an ordered vector space V, we give J the relative ordering,
i.e., that defined by the cone J N ¥+, and V/J the quotient ordering, that defined by the
image of V* under the canonical linear map of ¥V onto V/J. In general the quotient ordering
will not be “proper” as the image of V+ need not be a cone. If J is a closed subspace of
a Banach space V, we give J and V/J the relative and quotient norms. The following

is well-known.

Lemma 3.3. If J is a proper ideal in an ordered vector space V, then J and V|J are
ordered vector spaces. If J is closed and V is an L-space, then J and V/J are L-spaces.

Proof. Suppose V is an ordered vector space. If § is the quotient map, we must show
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0(V+) is a cone. If #; +J =x,+J with 2, >0, £,<0, choose r€J with x; +r=x,. Then as
J is an ideal, r =r; —r,, r,€J+. We have

@yt (=) Ty =1,
hence 0 <x, <r,. As J is an order ideal, x,;€J, and z; +J =z, +J =J.

Say that V is an L-space, J a closed ideal. To prove J is an L-space, it suffices to
show that J is closed under the lattice operations of V. If r€J, say that r=r, —r,, r;€J+.
Then as 0, r <r;, we have 0<rt<r; and r+€J. If r, s€J, then r Vs=r+(s—r)T€J.

If z€V, we claim that «+-+J=max(x+J, J). As z+>=, 0, we have at+J =z +J, J.
Suppose that y+J zx+J, J. Choose r, s€J with y +7 >z and y +s>0. Then r*, st €J and
y+rt+st=z, 0,
y+rt+st=at,

and y+J >t +J. It readily follows that V/J is a vector lattice.
We have for any z, y€V,
ety +J| <l+T] + [y + .
If 2, y€EA* and £>0, choose r€J with
let+y+r|<|le+y+T| te.
As rt€J, we have (x+r+)+J=x+J, hence changing notation we may assume 7+=0.

We have
l@+y—r )t <|le+y—r|. 3.1

Letting s=@+y) Ar-=z+y—(z+y—r)*

we have s€J and from (3.1)
oty —s|<fzty—r.

As 0<s<z+y, we have from the Riesz decomposition property that s=i¢-+u where

0<i<z and 0<u<y. As 0<t, u<s, and x—£>0, y—u >0, it follows that ¢, u€J and
-+ +lly+ ) <llz—t] +lly—ull = e+y—s]| <]z +y+J]| +e.

Thus we have z-+J, y +J =0 implies

le+y+Jf| = le+J| +|ly+I]. (3.2)
In particular,
e+ ]| <[lz++ T+ |lo~+J|| = |[{=] +7]-

Conversely, given ¢ >0, choose z with ||z| <||z+J| +e.
Then (el +Il <|[{2|]| = [l=]| <jz+T]| +e.
It follows that |||z +J ||| = [jx+J|.
Finally, if 0<a+J <y+J, then 0<(y—«)+J, and from (3.2),

la+J71 <llz+ 1 +liy—=) +7]| = gy +I].
8 — 662903. Acta mathematica. 117. Imprimé le 7 février 1967
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TEEOREM 3.4. If J is a proper closed ideal in a simplex space A, then J and AJJ

are simplex spaces.

Proof. The restriction map p: A*—>J* is onto, norm-decreasing, and order-preserving.
If J0is the polar of J, the induced map p, of 4*/J® onto J* is an isometry (see [7, p. 26]).
To show that g, is an order-isomorphism, it suffices to prove that each bounded positive
linear function p on J extends to a positive function on 4.

From the Hahn-Banach Theorem there exists a function f€4* extending p. If r€J+,
0<s<r implies s€J, hence- f(s) <f(r), and from Corollary 2.7, f+(r)=f(r). As J=J+t—J+,
f¥|J =p. f* is the desired extension.

J® is a norm-closed subspace of the L-space 4* If 0<g<p€J, then ¢q|J+=0 implies
¢|J =0, hence J° is an order ideal. If f€J°, f|J+=0 implies f+|J+=0 hence f+€.J°. Simi-
larly f-€J°, hence J° is an ideal. From Lemma 3.3, 4*/J0 is an L-space, hence we conclude
J* is an L-space, and J is a simplex space.

From Lemma 3.3, the quotient ordering on A4/J is proper. The map ¢ of J° into
(A]J)* defined by w(f)(a+J)=f(a) is an order preserving isometry onto (see [7, p. 25]).
It is an order isomorphism, as if p€P(A/J) and % is the canonical map of 4 onto A/J,
then poh€(J%+ and p(poh)=p. From Lemma 3.3, J° is an L-space. All that remains is
to show that if p(a +J)>0 for all p€P(4/J), then ¢ +J >0. The hypothesis implies that
g(a) =0 for all g€J+. From Theorem 2.4 there exists a continuous affine function ¢ on P;(4)
with 0,a<c¢ and c¢|Ji=a|Js. As ¢(0)=a(0)=0, c€A (Theorem 2.2), and ¢c—a€Jus=J
(Theorem 3.1). Thus a+J =¢+J =0.

ProrosiTioN 3.5. The map J—J* is a one-fo-one correspondence between the tdeals
(closed ideals) in A, and the faces (closed faces) in A+.

Proof. If F is a face in 4+, let J=F—F. Then trivially JN A+> F. If a, b€ F, and
a—b€A*, then 0<eg—b<a implies a—~bEF, hence J N A+=F. The assertion regarding
ideals and faces is thus clear. To prove the remainder of the theorem, it suffices to show
that Fus is a closed ideal in 4 with Fas ) A+=F.

We have Fa=QNP,(4), where Q is the positive annihilator of F. @ is a closed face
in P(4), as if p| F=0, and 0<g<p, then ¢| F=0. Thus Fs is a closed face of P;(4) con-
taining 0, and Fuu is an ideal in A (Theorem 3.1). Trivially, F < Fss N A*. Suppose that
a¢F. As F = F%, there exists a function f€A* with fIF<1 and f(a)>1. As F is a cone,
fIF<0. If 0<s<r€F, then s€F and f(s)<0. From Corollary 2.7 f+|F=0, i.e., ft€F.
As fHa)=f(a)>1, a ¢ Fuu.

If Fy is a family of faces in A, it is clear that Fy is again such a face. It follows

that if J, is a collection of ideals, then (1J,)* is a face in 4%, i.e.,, 1J, is an order ideal.
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We have been unable to determine if 1., is necessarily an ideal, i.e., whether or not NJ y
coincides with (MNJ,)*—(NJ,)*. It follows from Proposition 3.5 that the latter is an ideal,
which is closed if the J,, are closed. We shall denote this ideal by A J,.If NJ,, is an ideal,
then NJ,=AJ,.

We note that the intersection J of finitely many ideals Jis ooy J, 18 an ideal. For if
x€J, we may choose y;€J; with 0, z<y,. From the Riesz decomposition property, there is
an element 4 € 4 with 0, x <u <y,. Our assertion follows as z =u — (4 —x) where u, u —x€J ",

If F, are faces in A+, then the collection 3 F, of finite sums is a face in A+. It is
trivial that > F., is a cone. If 0<y<J> x; with x,€ F,, then choose y; with y =23y, and
0<y;<z;. We have y,€F,y, hence y€>F,. If J, are ideals in 4, then (3 J, )r=2J,.
For if Dx,>0 with z,€J,, choose y;, z,€J,4, With z; =y, —2z,. Then

0<2m—2u<2y€2J;,
implies that > y;,—>2,€>J;. The converse inclusion is trivial. Thus > J, is an order
ideal, and as it is positively generated, it is an ideal.
Alfsen has shown that the closure of a face in P;(4) need not be a face [1, Theorem 1].
This fact is relevant to the intersection problem. Given ideals J., it is readily proved that
the convex span @ of the faces J; is'a face in P;(A4) containing 0. If the weak* closure of

@ were a face, one could use Theorem 2.4 to show that [1J,, is an ideal.

4. The structure space

Let A be a simplex space. An ideal M in A is maximal if it is a proper subset of 4,
and coincides with any proper ideal containing it. As the closure of an ideal is again an
ideal (Theorem 3.1), if M is maximal either M =A or M is closed. If A has an order iden-
tity e, then M must be closed. It suffices to show that |le+M||=1, as then |e-+M | =1.
If there were an element u € M with ||e —u|| =1—¢, ¢>0, we would have from Proposition
2.8, and (2.3)

1—Lu)=Me—u)<l—s,
hence # > L(u)e where L(u) = ¢. It would follow that ¢ € M, and as ¢ is an order unit, M =4,
a contradiction.

Suppose that M is a closed maximal ideal in a simplex space 4. From Corollary 3.2,
M- is minimal among the closed faces of P,(4) containing but not equal to {0}. As M.
is compact and convex, it must have an extreme point p, 0. M+ is a face in P,(A4), hence
Py is an extreme point of 8(4). The ray passing through p,, is a closed face in P(4), and
{opy: 0< <1} is a closed face in Py(A4) containing 0. It must coincide with M.+ as the

latter is minimal, hence M = {p,/}+. This determines a one-to-one correspondence between



116 EDWARD G. EFFROS

the set of maximal closed ideals maxA, and the extreme states ES(4)=EP(4)— {0}.
In the proof of Theorem 3.4 we showed that P;(4/M) may be identified with M+. In
particular, « + M >0 if and only if py(a)>0, and |ja+M||=|py(a)|. Thus p, determines
an order isomorphism and isometry of A/M onto the reals, the latter given its natural

ordering and norm.
Let max A4 be the set of closed maximal ideals in 4. If J is a subset of 4, the Aull

of J is the set
h(J)={MemaxA: J< M}.
If § is a subset of max 4, the kernel of S is the closed ideal
E(S)=A{M: MeSU {4}}.
Note that if S=0, &(S)=4.

TaroREM 4.1. If J is an ideal in a simplex space A, then kh(J) is the closure J of J.

Proof. From Theorem 3.1 and the Krein-Milman theorem, we have J =Jxs =[E(Js)]s.
As J. is a face in Py(4), B(J+)=J+n EP,(4). Thus

J =N {pEEP,(A): p|J =0}+ =N {M Emax AU {4}: M 2 J} = kh(J).

It follows that the subsets of 4 invariant under the “operation’ kk are just the
closed ideals. As hkh({J)=h(J) for any subset J of A4, the hulls are those subsets of maxA

invariant under 2k, and each is the hull of a closed ideal.

TureoREM 4.2. If A is a simplex space, the hulls are the closed sets of a topology on

maxd4.

Proof. Due to Proposition 3.5, we may regard max4 as the closed maximal faces
N of A+, and a hull as the closed maximal faces containing a given closed face. If F,
are closed faces, it follows from the discussion after Proposition 3.5 that > F, is a face.
The closure F,, of > F., is again a face (Proposition 3.5) and it is clear that NA(F,)=h(F,).
Thus an intersection of hulls is a hull.

If F, and F, are closed faces, F; N F, is a closed face. Trivially A(F,)UA(F,) <
h(F, N0 F,). Conversely, suppose that N is a closed maximal face in 4+ with F, N Fy, C N,
but that F;E N, ¢=1, 2. Then as F,+N are faces, F;+N=F,+N=A+ Choose u€A4+
with py,(u)=1 where M =N -~N, and r,€F;, s,€N with

U =718 =1y+8,.
As a consequence of the Riesz decomposition property there exist ¢;;€ 4+ with
7y =ty thy, re =ty Ty,

8 =ty s, Sg = b5t
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As b <r€F, t,€F NF, N, and as #,<s,, t;,EN. Thus €N, u=r,+5€EN, and
Py(u) =0, a contradiction. We must either have F, < N or F, = N, ie., H(F N F,) <
R(F) U A(F,). The union of two hulls is a bull, and noting that max 4 =2({0}) and O =h(4),
we are done.

We call the above topology on maxA4 the structure topology, and max4 with this
topology the structure space. This topology is weaker than the weak* topology, obtained
from the identification of max4 and ES(4).

Lemma 4.3 (see Lemma 3.3). Suppose that J is a proper closed ideal in an L-space V.
The canonical homomorphism 0 of V onto V[J restricts to an injection of E(V{)—J into
E{V]Ih).

Proof. As the norm restricted to V+ extends to a strictly positive linear functionon V,
the discussion at the beginning of the previous section is applicable. In particular, a point
p=0in V7 is extremal if and only if ||p|| =1, and 0<¢<p implies ¢ = ap for some scalar «.

If p€ E(V{)—~J, we assert that ||p+J||=1.Tf r€J, then 0O<pA |r| <|r| and |r|€J,
hence p A |r| €J. As p is extreme, p A |r| =op for some scalar . If o0, we have p€J,
a contradiction. Thus p A || =0, and

Ip+r] =2l + 7| >1.

It follows from the proof of Lemma 3.3 that § is a lattice homomorphism. Thus if
pEHB(V{)—J, ¢=0, and 6(q) <6(p), then letting g A p=ap,

6(q) = 6(q) Ab6(p) = b(q A p) = «0(p),

i.e.,8(p) € E((V[J){).If in addition, g € B(V{) —J with g p, then g A p=0,hence 6(g) A 0{p) =
0, and 0(q) +=0(p).

TrEOREM 4.4. If J is a proper closed ideal in a simplex space A, then there are natural
homeomorphisms of maxAlJ onto h(J), and maxJ onto maxA —h(J) for the structure
topologies.

Proof. Let 0 be the canonical linear map of 4 onto 4/J, and say that I is an ideal in
AfJ.6-(]) is an order ideal, as if 0 <b<a €6-1(1), then 0<0(b) <0O(a), (b) €I, and bEGYI).
If a €6-(I), there is an element 0(b) € I+ with 0(a) <0(b). We may assume that b=>0. Then
a<b-+u, for some element w€J. Choosing v€J* with u<v, we have a<b-+wv, where
b+ve0-1(I)*. Thus 6-*(I) is positively generated. The map I—6-1(I) is clearly a one-to-
one inclusion preserving map of the ideals in A/J onto the ideals in A containing J. It
follows that the map @(M)=0-(M) is a one-to-one map of maxA/J onto A(J). If I is a
closed ideal in 4/J, then p(k(I))=hr(6-2(1)). If H is a closed ideal in 4 with A(H)< h(J),
then H 2 J, and @(h(0(H))) =h(H). Thus ¢ is a homeomorphism.
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We saw in the proof of Theorem 3.4 that the restriction map g: A*—J* induced an
isometric order isomorphism of 4*/J° onto J*. From Lemma 4.3 it follows that ¢ is an
injection of EP;(4)~J® into EP,(J). p maps Py(4) onto P,(J) as any positive function
on J extends to a positive function on A4 of the same norm (again, see the proof of Theorem
3.4). Letting o, =o|Py(4), if F is a closed face in P,(J), then p,~}(F) is a non-empty closed
face in P,(4). In particular, if g€ EP,(J)— {0}, then o;'({g}) is a closed non-empty face
in P;(4) and must contain an extreme point p ¢.J°. We have p€EP,(4) and o(p)=g¢,
i.e., o maps EP,(4)—J° onto EP,(J)—{0}.

For each M Emax 4 —h(J) we have py € EP,(A)—J°, o(py) € EPy(J)— {0}, and

M nJ = {o(py)} €Emaxd.

It follows from the above discussion that the map n(M)=M NJ is a one-to-one map of
maxA —h(J) onto maxJ. If I is a closed ideal in 4, I'NJ is an ideal in A4 (see § 3), and
thus in J. Denoting a hull taken in maxJ by &, it is clear that

k(1) N [maxd —k(J)]) S b (INJ).

I MemaxA—nh(J) and M2In J, then M 2 I (see the proof of Theorem 4.2) hence we
have the converse inclusion. Thus 7 is a homeomorphism, as an ideal in J is an ideal in 4.
As one might expect from C*-algebra theory, the elements of 4 “vanish at infinity”

on max 4, i.e., letting a(M) = py(a) for M Emax 4,

Prorosition 4.5. If 4 is a simplex space, a€A, and o>0, then the set
' C = {MeEmaxA: |a(M)| >}
18 compact. ,

Proof. Suppose that F,, is a decreasing net of closed sets in max4 with ON F,+0.
Let J,=k(F,), Jy=UJ,, and J=dJ,. Then J, is an ideal, hence J; is an ideal (Theorem
3.1). As F,+0, we have J,+4, and identifying P,(4/J,) with J3,

lla+J,| =sup {|p(a)|: p€J;} =sup {|p(a)|: pEE(J;)} =sup {|a(M)|: MEF,} >0
We used the fact that the sets of points on J; at which @ assumes its maximal and minimal
values, respectively, are closed faces in'J, and thus contain extreme points. It follows
that ||@ +J,)| >, hence J; + 4, and again, there is an M €h(J,) with |a(M)| =||a+J4|| >
As A(Jy) = NA(J,), we have N (F, N C)+9.

CoROLLARY 4.6. If A has an order identity, then max 4 is compact.

If one had that M—|a(M)| was lower semi-continuous, ie., {M: |a(M)| <a} was
closed for all «, one could prove that max 4 is always locally compact. Unfortunately, in

contrast with C*.algebras, these functions are generally not semi-continuous (see Theorem
4.8). We do have:
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.Prorosition 4.7. If A is a simplex space, and a€A+, then the set {M: a(M)=0}

18 closed.

Proof. As {a}« is obviously a closed face in P,(4) containing 0, J = {a}«+ is an ideal.
We have
{p€EP,(A): p(a) = 0} = E(J4),
hence {Memax 4: a(M) =0} = h(J).

If X is a compact Hausdorff space, the ordered Banach space C(X) of continuous
functions on X is an M-space, and thus a simplex space, and the constant function e is

an order identity. Such spaces are readily characterized:

TuarorEM 4.8. If A is a simplex space with order identity, then the following are equi-
valent: '

(1) max 4 is Hausdorff.

(2) A is a lattice.

(3) A is an M-space.

(4) ES(4) is closed in S(A).

(8) There is a natural isometric order isomorphism of A onto C(ES(A)).

(6) The functions M—>|a(M)| with a in A are upper (lower) semi-continuous.

Proof. If max A is Hausdorff, then for each a €A+, and «>0, {M: a(M)>a} is com-
pact (Proposition 4.5), hence closed. Trivially {M: a(M)>0} is closed, and @ is upper
semi-continuous. If a € 4 is arbitrary, a+ ||a||e is positive, hence a +||a|le and @ are upper
semi-continuous. Taking negatives, we conclude that ¢ is continuous. This would also
have followed if |a| were known to be lower semi-continuous. As the functions M—>a(M)
define the weak™* topology on max .4, and that topology contains the hull-kernel topology,
the two topologies coincide. ES(A) is thus weak* compact (Corollary 4.6), and closed in
S(A).

The implication (4)=(5) is due to Bauer [2]. In any C*-algebra 2, the closed faces
of A+ are just the positive parts of the closed left ideals [9, Theorem 2.4] hence letting
A=C(ES(4)), of the closed two-sided ideals. As the latter are positively generated, the
algebraic and order notions of closed ideal coincide. The closed maximal ideals in the
order sense are the closed ideals of co-dimension one (see above). As U has an identity,
the latter coincide with the maximal ideals in the algebraic sense. Thus we are considering
the usual structure space of a commutative Banach algebra, and (5)= (1) is a well-known
result (see [22, p. 571).

(8) = (3) = (2) are trivial. (2)= (4) follows readily from [19, § 24.2].
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5. Problems and an example

It should be possible to give a definition of simplex space that is analogous to that
for M-spaces. Presumably it may be defined as an ordered Banach space satisfying the
Riesz decomposition property and certain other, as yet undetermined, conditions. Is the
structure space of a simplex space always locally compact? How may Theorem 4.8 be
generalized to simplex spaces without order identity? If 4 is a separable simplex space,
when do the hull-kernel and weak* topologies generate the same Borel structure on max
A? This question is of importance in the applications to C*-algebras. It would suffice to
show the first structure is countably separated. ‘

In attempting to find analogies with the theory of (*-algebras, one is confronted with
numerous problems. Can one develop the notion of the spectrum of an element? Is there
a class of simplex spaces with almost Hausdorff structure spaces, analogous to GCR alge-
bras?

In order to obtain a more detailed theory, it may be necessary to restrict the spaces
under consideration. Counter to the situation for C*-algebras, the structure space of a
simplex space need not be second category. To see this, consider Alfsen’s construction of
a simplex in the proof of [1, Theorem 1] (see also [21, p. 78]). Letting o, =27" for 1 <n < o,
and o= —1, one obtains a simplex K for which E(K) is countable, and the only closed
faces of K are K itself, and the faces spanned by finitely many points in E(K). It follows
that if 4= A4(K), maxA4 has only countably many points, and the only hulls are the
finite sets and max4 (the “Zariski topology”). Each point comprises a closed set without
interior, and max 4 is a countable union of such sets.

We note that Alfsen’s original example has a non-Hausdorif, but almost Hausdorff

structure space.
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