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Abstract

Reinforcement learning (RL) agents empowered by deep neu-
ral networks have been considered a feasible solution to au-
tomate control functions in a cyber-physical system. In this
work, we consider an RL-based agent and address the is-
sue of learning via continual interaction with a time-varying
dynamic system modeled as a non-stationary Markov deci-
sion process (MDP). We view such a non-stationary MDP
as a time series of conventional MDPs that can be param-
eterized by hidden variables. To infer the hidden parame-
ters, we present a task decomposition method that exploits
CycleGAN-based structure learning. This method enables the
separation of time-variant tasks from a non-stationary MDP,
establishing the task decomposition embedding specific to
time-varying information. To mitigate the adverse effect due
to inherent noises of task embedding, we also leverage con-
tinual learning on sequential tasks by adapting the orthogonal
gradient descent scheme with a sliding window. Through var-
ious experiments, we demonstrate that our approach renders
the RL agent adaptable to time-varying dynamic environment
conditions, outperforming other methods including state-of-
the-art non-stationary MDP algorithms.

Introduction
Reinforcement learning (RL) shows its applicability in au-
tonomous control systems where learning via continual in-
teraction can be formulated as solving a Markov decision
process (MDP). Although an MDP provides a strong math-
ematical model for RL, a learned agent on an MDP often
has limitations in ensuring optimal performance when the
agent is deployed in a real-world environment with time-
varying dynamic conditions. For instance, time-varying road
conditions are not fully observable for an autonomous vehi-
cle; the tire-road friction might vary continuously due to its
environment-dependent nature. This situation causes chal-
lenging problems modeled as a non-stationary MDP. Several
studies on non-stationary MDPs have been introduced, e.g.,
model-based environments (Jaksch, Ortner, and Auer 2010,
Gajane, Ortner, and Auer 2019) and context detection meth-
ods (Da Silva et al. 2006, Padakandla, Prabuchandran, and
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Bhatnagar 2020). Recently, the task embedding technique
using recurrent neural networks has been explored to infer
changes in a non-stationary environment (Lee et al. 2019).
That technique is notably effective, but often leads to subop-
timal convergence when its target environment is complex
(Igl et al. 2018).

In this paper, to address the learning difficulty issue
in non-stationary, complex environments, we take an inte-
grated approach of structural learning and continual learn-
ing. Specifically, we employ the task decomposition em-
bedding (TDE) that enables the high-quality inference on
hidden parameters by decomposing time-variant and time-
invariant tasks from a non-stationary environment. In TDE,
CycleGAN (Zhu et al. 2017) is used to represent common
time-invariant tasks of multiple MDPs, so it makes infer-
ences on time-variant tasks through the complements of the
common time-invariant tasks. Furthermore, to mitigate the
adverse effect caused by the inherent estimation errors on
hidden parameters, we adapt the orthogonal gradient descent
(OGD) (Farajtabar et al. 2020) with a sliding window. In
continual learning, this preserves prior learned knowledge
effectively by transforming the current gradient in a way of
minimizing the interference.

In simulation experiments, our model shows a higher per-
formance of up to 46.4% compared to a state-of-the-art non-
stationary MDP method. Furthermore, the model achieves
robust performance in complex non-stationary environments
similar to real-world situations, e.g., showing 67.4% im-
provement over compared methods in the Airsim-based
drone flying simulation where highly dynamic weather con-
ditions are configured.

The main contributions of this paper are as follows.

• We present a novel RL solution to non-stationary MDPs,
in which CycleGAN-based structural learning and OGD-
based continual learning are used together.

• We devise the task embedding scheme specific to the de-
composition of time-variant and time-invariant task in-
formation.

• We demonstrate the performance benefits of our ap-
proach in various non-stationary environment conditions,
and show a case study with Airsim-based drone flying
scenarios.
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Figure 1: Our proposed model is learned through (1) TDE
to decompose tasks into time-variant and time-invariant
and (2) OGD-based RL to learn a policy robust to non-
stationarity.

Overall Approach
In this section, we describe the problem of making optimal
decisions upon a non-stationary MDP that is used to model
real-world dynamic environments, and briefly present our
approach to the problem.

Non Stationary Environment Problem
In conventional RL formulation, a learning environment is
defined as an MDP of

(S,A,P, R) (1)

where S is a state space, A is an action space, P : S ×A×
S → [0, 1] is a transition probability, and R : S × A → R
is a reward function. In the case of dealing with a real-world
system, it is often required to formulate its non-stationary
environment in a sequence of MDPs {T t}t∈N sampled
from some distribution P(T ) (Bellman 1956, Chandak
et al. 2020). This formulation is considered a special type
of POMDPs (Choi, Yeung, and Zhang 2001).

In general, a recurrent policy, e.g., LSTM (Hochreiter
and Schmidhuber 1997), is effective for POMDP problems
where an action can be determined on the history of states
and actions, but its performance often becomes restrictive
in large-scale complex environments. It is because the re-
current policy remembers the history through deterministic
feature computation, and does not explicitly combine the
knowledge of the learned environment models and the his-
tory (Wang and Tan 2021).

In the following, we explain the issue of learning upon
such a POMDP derived from a non-stationary MDP. For
a non-stationary MDP that is formalized as a sequence of
MDPs,

T t = (S,A,Pt, Rt) where T t ∼ p(T t−1), (2)

we introduce a hidden latent variable vt which parame-
terizes T t. That is, we have R(st,vt, at) 7→ Rt(st, at)
and P(st+1,vt+1, at, st,vt) 7→ Pt(st+1, at, st) as shown
in (Doshi-Velez and Konidaris 2016). The actual state space
is extended to S ×V where V is the collection of latent vari-
ables vt. Then, the respective POMDP of {T t}t∈N is mod-
eled as

(S × V ,A,Ω = S,P, R,O) (3)

where the observation space Ω = S and observation func-
tion O((st,vt)) 7→ st are given.

To simplify the MDP parameterized by vt, we represent

T t = (S,A,P, R,vt), vt ∼ p(vt−1) (4)

where p(vt−1) is some conditional distribution given vt−1

(Doshi-Velez and Konidaris 2016).

Overall Approach for Non-Stationary MDPs
To address the difficulty of learning in a non-stationary
MDP, we take an integrated approach using structural learn-
ing and continual learning techniques. Figure 1 illustrates
the concept of our approach; The agent integrates knowl-
edge by continuously learning from multiple tasks and ad-
justing the gradient (knowledge update) in a way that in-
terference is minimized. In the figure, the basis vectors of
gradients are represented by colored cells and they are ad-
justed not to conflict each other; X-marked cells correspond
to the cancelled basis vectors via orthogonalization. Mean-
while, the agent acquires time-varying information through
task decomposition to conduct task-specific actions upon un-
certain environment conditions.

The structural learning is used to decompose a non-
stationary MDP into two distinct groups of tasks such as
time-invariant tasks and time-variant tasks, thereby allevi-
ating task uncertainty induced by a time-variant distribution
that the aforementioned hidden parameter v follows. Fur-
thermore, to mitigate the learning performance degradation
of an RL agent due to the estimation error on v, we employ
the OGD variant with a sliding window.

Specifically, we first figure out both stationary features
and time-variant features of a non-stationary environment.
Then, to extract a time-variant MDP using stationary fea-
tures from the environment, we employ task decomposi-
tion embedding (TDE), a surrogate mechanism that calcu-
lates decomposition between time-variant and time-invariant
tasks. TDE is intended to learn the soft-homomorphism
(Sorg and Singh 2009) of given sampled transitions of fixed
tasks by random policies. It enables the mapping of a non-
stationary MDP T t to a time-invariant stationary MDP Tu,
which identifies all time-variant parts. As a result, with TDE,
it is possible to obtain latent variables v. In terms of com-
putational complexity, TDE is more efficient than direct de-
composition of the whole model transition probability Pt
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and reward function Rt. Even if Pt andRt are known, it can
be computationally intractable to directly decompose them
for most cases unless S or A is small enough (Ravindran
and Barto 2004).

Furthermore, to mitigate the performance degradation
caused by inherent estimation errors on latent variables v,
we explore the sliding windowed OGD scheme in sequen-
tial multi-task learning. Such estimation errors lead to incor-
rect gradients in sequential multi-task learning, which can
adversely affect learning, i.e., previous gradients are unin-
tentionally cancelled by current gradients. In our approach,
OGD is adapted to preserve the previous gradient direction-
ality. Specifically, we exploit the sliding window mechanism
for OGD, as exact time points at which tasks change are
rarely detected.

Structure Learning for Task Decomposition
In this chapter, to extract time-variant features from a non-
stationary MDP, we examine its simplified expression which
identifies all time-variant part. Note that the complements
of the reconstructed samples with only time-variant part in
the authentic samples of a non-stationary environment repre-
sent the desired time-variant parameter of the non-stationary
MDP.

To train a model for extracting time-variant latent vari-
ables v, we need to map the transitions to the time-invariant
part u. In doing so, we sample a set of tasks in which v
is fixed. Then, using a random policy, the transitions are
collected from the fixed tasks. Using CycleGAN, we cre-
ate paired transitions: ((s,v), a, R(s,v, a),P(s,v, a)) and
((s,v′), a, R(s,v′, a),P(s,v′, a)), i.e., same transitions but
time-variant latent variables v and v′ are different. By train-
ing an encoder on paired transitions, we obtain such a map-
ping of transitions to time-invariant latent variables u. By
complementing the reconstruction from u, we obtain v. This
TDE procedure is described in Algorithm 1 and the structure
of auto-encoder and CycleGAN in TDE is illustrated in Fig-
ure 2.

To examine stationary features and time-variant fea-
tures of a non-stationary environment, we introduce soft-
homomorphism between MDPs. Consider a time-invariant
MDP Tu such as

Tu = (U ,A, R̂,Pu), (5)

and a map such as

d∗ : S × V × U → [0, 1] (6)

which together satisfy the followings.

I. d∗(s,v,u) = Pr[s,v|u]
II.

∑
s,v∈S×V R(s,v, a) Pr[s,v|u] = R̂(u, a)

III.
∑

s,v∈S×V P(s,v, a, s′) Pr(v′|v) Pr[s,v|u] =∑
u′∈U Pu(u, a,u

′) Pr[s′,v′|u′]

The map d∗ is an MDP soft-homomorphism between T t and
Tu (Sorg and Singh 2009). Tu is simplified representation
about T t, meaning that it is also an MDP that identifies all
time-variant parts.

Here, we explain the procedure for adapting Cycle-
GAN (Zhu et al. 2017) and auto-encoder to obtain soft-
homomorphism d∗. The auto-encoder dec ◦ enc is trained
and then its decoder dec is used to learn soft-homomorphism
d∗. Since d∗ is a probability of s and v given u, dec should
be able to reconstruct transitions without v. Accordingly, the
reconstruction loss below is used to train dec ◦ enc.

Lrecon(enc, dec) = ∥τ − dec(u,0)∥2 (7)

The encoder enc should map paired transitions to
the same point on time-invariant latent space U .
That is, E[R(dec(u,v), a)|u] = E[R(s,v, a)|u] and
E[P(dec(u,v), a)|u] = E[P(s,v, a)|u]. Then, the loss
in (7) enforces the decoder dec to keep soft-homomorphism
properties I and II. For soft-homomorphism properties I, II,
and III, the similarity loss below is additionally used.

Lsim(enc) = ||u− u′||2 = ||enc(τ )|U − enc ◦G(τ)|U ||2
(8)

Note that ·|U is a projection to the U , i.e., (u,v)|U 7→ u.
These transitions can be generated by the generator G of
CycleGAN which will be explained below. According to the
basic reconstruction loss of the auto-encoder such as

Lae(enc, dec) = ∥τ − dec ◦ enc(τ)∥2, (9)

the decoder can learn Pr[s,v|u,v] = Pr[s|u] for homomor-
phism properties.

To keep the probabilistic property of u for the encoder
and given sampled fixed tasks, we adopt CycleGAN, where
the cycle consistency loss is given by

Lcon(G
(1), G(2)) = Ex∼DT(2)

[||G(2) ◦G(1)(x)− x||1]

+ Ey∼DT(1)
[||G(1) ◦G(2)(y)− y||1].

(10)
Note that DT(1)

and DT(2)
denote sampled transitions in

fixed tasks T(1) and T(2), respectively. This loss drives a
model to find out common time-invariant latent variables
u and discriminate distinct time-variant latent variables v.
That is, it identifies all transitions with a the same common
feature {(u, ·)} (Gavranović 2020). The loss also drives G
to learn rewards for the same transitions with different time-
variant parts, and hence the encoder can learn proper repre-
sentation of u, thereby allowing the decoder to learn soft-
homomorphic properties at the same time.

The adversarial loss is given by

Lgan(G,D) = Ey∼DT(1)
[log(D(y)]

+Ex∼DT(2)
[log(1−D(G(x))].

(11)

With the adversarial loss, discriminator D finds out the dis-
tribution of transitions by maximizing the loss. Furthermore,
the adversarial loss regularizes generator G to map its do-
main T1 to plausible transitions in task T2. (e.g., it gives
penalties to out of distribution transitions), and enforces a
model to keep soft-homomorphism properties II and III (Zhu
et al. 2017).
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Figure 2: The overall structure of TDE

Algorithm 1: Task decomposition embedding
Task Set Set(T ), paired transition buffer D
transitions buffer DT(i)

, the number of sampled environment N
for i from 0 to N do

Get task T(i) by random sampling in Set(T )
Sample transitions τ = (s, a, r, s′) from T(i) by random policy
DT(i)

= DT(i)
∪ {(s, a, r, s′)}

end for
loop

// (1) Train CycleGAN
Choose i, j in 0, 1,..., N
Initialize Generators G(1), G(2), Discriminators D(1), D(2)

loop
loss = Lgan(G(1), D(2),DT(i)

,DT(j)
)

+Lgan(G(2), D(1),DT(j)
,DT(i)

) + Lcon(G(1), G(2))

optimize((G(1), G(2), D(1), D(2)), loss)

end loop
// (2) Generate paired transitions
for τ = (s, a, r, s′) in DT(i)

, τ ′ in DT(j)
do

D = D ∪ {(τ,G(1)(τ)} ∪ {(τ ′, G(2)(τ ′)}
end for

end loop
Initialize Encoder enc, Decoder dec
// (3) Train auto-encoder
for τ,G(τ) in D do

loss = Lae(enc, dec) + Lsim(enc) + Lrecon(enc, dec)
optimize((enc, dec), loss)

end for
return enc

Continual Learning with Orthogonal Gradient
Descent

Estimation errors in task embedding can cause incorrect gra-
dients in RL. Specifically, if the gradients generated by such
errors are in the same direction as the previous gradients, and
the previous gradients are cancelled, the previously learned
knowledge can be adversely affected. (Farajtabar et al. 2020,

Yu et al. 2020) To mitigate those erroneous situations, we
adapt OGD (Farajtabar et al. 2020) so that gradient noise
caused by task embedding does not affect the gradient pre-
viously generated. In general, OGD is known to converge
on each task when exact time points of task changes are
known. Unlike this assumption, non-stationary MDPs have
limitations such as unknown time points of task changes.
Thus, we adapt OGD with sliding window so that contin-
ual gradient update is enabled. To preserve the directionality
of gradient ∇θL generated upon specific task learning, the
gradient ∇θL′ by learning a newly encountered task is or-
thogonalized based on the former gradient ∇θL. Given the
loss Lt(θ) generated at time-mstep t, we have

∇θLt(θ) ⊥ λt−i(θ) for i = 1, 2, 3, ..., N (12)

where λt−i is a gradient applied at timestep t− 1.
Therefore, to be orthogonal to previous losses,∇θLt(θ) is

modified using the Gram-Schmidt method (Leon, de Pillis,
and De Pillis 2015), i.e.,

λ(θ)← ∇θL(θ)−
∑
λ′∈Λ

proj(∇θL(θ), λ′) (13)

where proj(∇θL(θ), λ) is a projection ∇θLt(θ) onto λ
and Λ is gradients buffer for previous gradients. That is,
proj(x, λ) = xTλ

λTλ
λ. As a result, the previous gradients are

set to be orthogonal each other. Then, model parameters θ
are updated with learning rate α,

θ ← θ − αλ(θ). (14)

This sliding windowed OGD procedure is described in Al-
gorithm 2.

To verify the convergence by sliding widowed OGD,
we show that the loss function L(θ) is strictly decreasing
when model parameters update. Suppose that ∇θL is an L-
Lipschitz continuous function, and L is convex and differ-
entiable. Let θ be a model parameter and θ′ be the model
parameter after one update. By mean value theorem, given
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L(θ′) around L(θ), we have the following inequality,

L(θ′) ≤ L(θ) +∇θLT (θ)(θ′ − θ) +
1

2
∆L(θ)||θ′ − θ||2

where ∆L(θ) =
∑
i

∂2L(θ)
∂θ2i

.

(15)
By L-Lipschitz condition, 1

2∆L(θ) ≤
1
2L holds. As a

result, we obtain that

L(θ′) ≤ L(θ) +∇θLT (θ)(θ′ − θ) +
1

2
L||θ′ − θ||2. (16)

Let Σ(θ) =
∑

λ′∈Λ proj(∇θL(θ), λ′) in (13). Note that θ′ =
θ − αλ(θ) holds by definition of θ′. Hence, the following
inequality holds.

L(θ′) ≤ L(θ)− α∇θL(θ)Tλ(θ) +
1

2
L||αλ(θ)||2. (17)

Since∇L(θ) = λ(θ) + Σ(θ), it holds that

∇θL(θ)Tλ(θ) = (λ(θ) + Σ(θ))Tλ(θ)

= λ(θ)Tλ(θ).
(18)

It is because Σ(θ)Tλ(θ) = 0 by orthogonalization. There-
fore, ∇θL(θ)Tλ(θ) = ||λ(θ)||2. From (17), we have

L(θ′) ≤ L(θ)− α||λ(θ)||2 + 1

2
Lα2||λ(θ)||2

≤ L(θ)− α(1− 1

2
Lα)||λ(θ)||2.

(19)

For α < 2/L, the loss L(θ) strictly decreases when gradi-
ent updates. When ||λ(θ)|| ̸= 0 and learning rate α is suffi-
ciently small, the loss strictly decreases. Note ||λ(θ)|| = 0
occurs only when a model converges to its optimal param-
eter or ∇θL(θ) = Σ(θ) holds. Let θ ∈ Rnθ and nθ be the
number of parameters of θ. Then, there are nθ orthogonal
basis of∇θL(θ). Thus,∇θL(θ) = Σ(θ) rarely occurs when
the number of parameters nθ is much larger than the gradient
buffer size (Farajtabar et al. 2020).

Experiments
In this section, we describe the implementation of our pro-
posed method and evaluate its performance under various
simulation conditions.
Experimental settings Our model is implemented using
Python v3.7, Pytorch v1.8, and Tensorflow v1.14, and is
trained on a system of an Intel(R) Core(TM) i9-10940X pro-
cessor and an NVIDIA RTX 3090 GPU. Detailed experi-
mental settings including hyperparameter settings and envi-
ronment conditions can be found in the Appendix.
Comparative methods

For comparison, we implement and test several algo-
rithms such as SLAC (Lee et al. 2019), and LILAC (Xie,
Harrison, and Finn 2020) in addition to our proposed model.

• SLAC conducts variational inference to learn latent rep-
resentation in POMDPs. By using the history of obser-
vations and actions, it infers latent representation of an

Algorithm 2: Sliding windowed OGD
replay buffer D, policy πθ , environment env, learning rate α

done← False

enc← TDE(Set(T )) // Algorithm 1.
gradient buffer Λ = Queue(max_len = N), D = [ ]

loop
vt ← 0, st ← reset(env)
while not done do

at ← πθ(st,vt)

st+1, rt, done← step(env, at)
vt+1,ut+1 ← enc(st, at, rt, st+1) // Ignore ut+1

D ← D ∪ {τt = ((st,vt), , at, rt, (st+1,vt+1))}
// RL-Update
Fetch minibatch from D and calculate∇θL(πθ; θ)

// Gram Schmidt Procedure
λt(θ)← ∇θL(πθ; θ)−

∑
λ′∈Λ proj(∇θL(πθ; θ), λ

′)
θ ← θ − αλt(θ)

enqueue(Λ, λt(θ))

end while
end loop
return θ, enc

MDP explicitly. SLAC is used as an indicator show-
ing the environment complexity, considering that general
POMDP solvers (e.g., SLAC) are difficult to learn a non-
stationary MDP without specific properties.

• LILAC is a state-of-the-art method for solving non-
stationary MDPs, which performs variational inference
based transitions for task embedding. To predict the cur-
rent task from previous task information, it is learned on
task information predicted from the history of transitions.
Though LILAC aims at handling episodic changes, it can
achieve compatible results in non-episodic experiments.

Learning Environments We build a 2-dimensional naviga-
tion environment using pyBox2D (Catto 2012), where an
agent avoids moving obstacles to reach its goal position.
The agent uses lidar-like observations including obstacle po-
sition, obstacle speed, and remain timesteps, and gets re-
wards according to the distance change between consecutive
timesteps. We also evaluate our approach with the minitaur
environment (Tan et al. 2018). In the minitaur, an agent ob-
serves 8 joints information and conducts actions to control
the joint angle. The agent receives rewards for moving for-
ward at a specific speed. We set the weight of minitaur base
to continuously vary, simulating non-stationary environment
conditions.
Performance Figure 3 shows the performance in rewards
achieved by the proposed model (TDE+OGD) and other
methods (SLAC, LILAC) in the 2-dimensional naviga-
tion and minitaur environments. As observed, TDE+OGD
achieves better performance in terms of both learning speed
and achieved rewards than the others, e.g., showing 46.4%
improvement on average over LILAC. We notice that SLAC
shows unstable performance; SLAC is known to be effective
for conventional POMDPs, but it rarely considers the prop-
erties of non-stationary MDPs. Although LILAC achieves
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Figure 4: Various condition tests in 2-d navigation

relatively stable learning in both environments, it does not
show competitive performance. It is because, in contrast to
the given environment that changes rapidly even within a
single episode, LILAC learns a policy under the assumption
that tasks change episodically. Unlike LILAC, TDE+OGD
exploits task embedding per timestep, so it can adapt itself
to rapid environment changes.

Figure 4 shows the performance in achieved rewards by
several methods with respect to task dynamics and uncer-
tainty. Here, the task uncertainty is determined by auto-
correlation of tasks, and the task dynamics is determined
by the probability that a task changes at each timestep. For
task dynamics, both TDE+OGD and LILAC achieve stable
performance, showing no significant performance degrada-
tion between low dynamics environments and high dynam-
ics environments. For task uncertainty, TDE+OGD shows a
performance drop of 17.3% on average for high uncertainty
compared to low uncertainty, whereas LILAC shows a per-
formance drop of 62.1%.

Figure 5 shows the effects of TDE and OGD techniques in
our model; TE+OGD denotes a model variant learned with-
out CycleGAN through the auto-encoder, sample transitions,
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Figure 5: Effects of TDE and OGD
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Figure 6: Airsim-based drone flying environments

and OGD. TDE denotes a model variant learned only with
TDE. TDE+OGD is our proposed model.

For low uncertainty, the performance gain of TDE+OGD
over the others is about 6.2% (low), but for high uncertainty,
it increases to about 14.4% (mid) and 18.6% (high) between
TDE+OGD and TE+OGD. and about 8.3% (mid) and 10.1%
(high) between TDE+OGD and TDE. This clarifies the ben-
efits of TDE and OGD particularly for environments with
high task uncertainty. In TDE, CycleGAN provides high-
quality estimation on hidden parameters v while OGD pre-
vents incorrect gradients by task uncertainty.
Case Study To verify the applicability of our model in com-
plex problem settings, we conduct a case study with au-
tonomous quad-copter drones in the Airsim simulator (Shi-
tal Shah and Kapoor 2017). We configure wind velocity to
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Figure 7: Performance in Airsim-based drone flying envi-
ronments
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Figure 8: Various condition tests in Airsim-based drone fly-
ing environments

simulate non-stationary drone flying environments. In RL
formulation, the drone agent observes its lidar data, position,
speed, and angle of rotation, while it is set not to observe
any data about wind that is used to intentionally influence
environment dynamics. Figure 6 shows our implementation
of Airsim-based environment. The drone agent continuously
conducts control actions by manipulating the 3-dimensional
acceleration for each timesteps, and receives rewards based
on the goal distance.

In Figure 7, we observe that TDE+OGD performs bet-
ter than the other methods, e.g., showing 67.4% improve-
ment on average over LILAC, in terms of achieved aver-
age rewards in an episode. In Figure 8, we compare the
performance with respect to task dynamics and uncertainty.
For task dynamics, both TDE+OGD and LILAC show sta-
bility in performance, showing no significant degradation
in low and high dynamics settings. For task uncertainty,
TDE+OGD shows a performance drop of 8.6% on average
for high uncertainty compared to low uncertainty, whereas
LILAC shows a slightly more drop of 12.28%.

Related Work
The problem of non-stationary environments has been stud-
ied in several research works. Jaksch, Ortner, and Auer
(2010) and Gajane, Ortner, and Auer (2019) presented the
regret minimization algorithm that extends value iteration
methods to deal with task uncertainty, proving its efficiency
for simple non-stationary MDPs. Hallak, Di Castro, and
Mannor (2015) attempted learning in a non-stationary envi-
ronment by clustering transitions to identify tasks and clas-
sifying the tasks. Da Silva et al. (2006) proposed RLCD
that measures the confidence value for a partial model,
called a quality signal, which can be used to select a suit-
able model from a pool of models at each time. A new
model is added into the pool after learning, when the qual-

ity signal value is less than some threshold. Similarly,
Padakandla, Prabuchandran, and Bhatnagar (2020) intro-
duced the context Q-learning method in which the online
parameter Dirichlet checkpoint is used to detect points of
task changes over time. Recently, Xie, Harrison, and Finn
(2020) and Zintgraf et al. (2020) proposed task embedding
methods by predicting the next state and reward value and
finding the representation of a task.

Transfer learning and meta learning are relevant to non-
stationary environment problems in that those are focused
on the benefits of exploiting a set of heterogeneous tasks
to build such a model that can be robust in adaptation to a
specific target task (Abhishek Gupta and Levine 2017; Tan
et al. 2018, Parisotto, Ba, and Salakhutdinov 2015, Laroche
and Barlier 2017) (i.e., transfer learning) or new tasks (Finn,
Abbeel, and Levine 2017, Humplik et al. 2019, Rakelly
et al. 2019) (i.e., meta learning).

Abhishek Gupta and Levine (2017) proposed a knowl-
edge transfer method between different environments in the
presence of morphological differences. If two environments
share similar representations in the latent space of states and
actions, their method extracts invariant features from the en-
vironments by using autoencoders.

In the same vein of Abhishek Gupta and Levine, we
find out invariant features from environments. While Ab-
hishek Gupta and Levine focused on extracting common
knowledge from different environments which have same
structure, our method is intended to estimate the time-variant
hidden parameters by inspecting the difference of time-
variant tasks between two environments.

The structure learning (or functorial property of gradient
descent) has been studied in the area of the applied category
theory. Gavranović (2020) explained that gradient descent
conducts the structure learning especially in CycleGAN. He
claims that CycleGAN learns to decompose the tasks in im-
ages, maps them into each task space, and transforms the
images to the specific task part. While his work provides the-
oretical foundation about structural learning of CycleGAN,
our work focuses on implementing and evaluating the struc-
tural learning for non-stationary environments.

Conclusion
In this work, we presented a novel RL model to address the
problem of learning a non-stationary MDP, which combines
CycleGAN-based structural learning for task decomposi-
tion and continual learning for rapid adaptation. Our model
demonstrates robust performance in non-stationary environ-
ments with various dynamics and task uncertainty settings,
compared to other algorithms, and verifies its applicability
to RL-based control scenarios.

The direction of our future works is to adapt our method
with safe constraints for a mission-critical cyber-physical
application in which the environment dynamics level in-
creases over time, as multiple agents make continual control
decisions independently without coordinating each other.
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