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Abstract
Cyclic graphical models are unnecessary for accurate representation of joint probability

distributions, but are often indispensable when a causal representation of variable relationships
is desired. For variables with a cyclic causal dependence structure, DAGs are guaranteed not
to recover the correct causal structure, and therefore may yield false predictions about the out-
comes of perturbations (and even inference.) In this paper, we introduce an approach to gener-
alize Bayesian Network structure learning to structures with cyclic dependence. We introduce
a structure learning algorithm, prove its performance given reasonable assumptions, and use
simulated data to compare its results to the results of standard Bayesian network structure lear-
ning. We then propose a modified, heuristic algorithm with more modest data requirements,
and test its performance on a real-life dataset from molecular biology, containing causal, cyclic
dependencies.
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1. Introduction
Bayesian network models encode probabilistic relationships among random variables, provi-
ding a framework for tasks such as inference and decision making. In some settings, it is useful
for model edges to represent probabilistic dependence resulting from causal mechanisms. This
is the case when the goal is structure recovery for the sake of revealing causal interactions for
prediction of perturbation effects in some domain, for instance, when learning the structure of
molecular pathways from biological measurements.

Causal Bayesian network models have been described (Pearl, 2000), relying on the frame-
work of causation, which enables causal interpretation under proper assumptions (Spirtes et al.,
1993). These models may be learned from observational data, i.e. passive observations of the
domain. However, such methods yield entire equivalence classes, leaving the causal direction
of many edges unknown. A solution to this problem is offered by the framework of interven-
tion, where interventions effectively override variables, and halt the influence of the network on
them, enabling the use of interventional or experimental data (Pearl, 1995) and (Pearl, 2000).
In this framework, it is possible to ask: “how can the graphical structure of the causal model be
recovered from observational and experimental data?”

Research in Bayesian networks has predominantly focused on directed acyclic graphs
(DAGs), even when the acyclicity assumption is knowingly violated (Friedman et al., 2000).
Within that context, solutions to this question abound, e.g. (Cooper and Yoo, 1999). In cyclic
domains, DAGs represent an inaccurate causal structure, consequently, prediction of pertur-
bation effects will fail, as in Figure 1. To avoid these inaccuracies, a representation which
encompasses cycles must be employed.

Figure 1: Cyclic causal networks. A. Risk assessment network for predicting the effect of behavior interventions.
Smoking positively influences diagnosis of lung cancer, while eating healthy does so negatively. A cancer
diagnosis may influence eating and smoking choices, though cessation of smoking can deteriorate eating
habits. B. In protein networks, feedback loops are ubiquitous modes of positive and negative regulation
of biological processes. C. A DAG representation of the cyclic structure in B. The dotted line indicates
an incorrectly oriented edge: perturbing protein 3 would inaccurately be assessed as having no effect on
proteins 1 and 2.

BN models with directed cyclic graphs (DCGs), though inherently possible, (Pearl, 1988),
had unclear interpretation and applicability (Spirtes et al., 1993). Cycles also occur in an alter-
native modeling paradigm called structural equation models (SEMs), which model functional
dependence directly. Key developments (Spirtes, 1995) and (Koster, 1996), endowed DCGs
with some of the properties of their DAG counterparts, and it was also shown that some SEMs
are amenable to the same analysis (Spirtes, 1995; Pearl and Dechter, 1996). Based on these,
(Richardson, 1996) established an algorithm for discovering a partial structure on DCGs. Re-
cently, (Lacerda et al., 2008) provided an alternative algorithm. Both procedures lie in the
framework of causation, and use solely observational data to output equivalence classes, rather
than a single DCG.

In this paper, we are interested in modeling cycles, yet tapping into the power of experi-
mental data. At the extreme of exhaustive interventions, the problem appears trivial. However,
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discovering structure by such brute force is a daunting task, and in truth one is constrained by
the number and type of interventions at hand. We address the problem through the following
contributions:

- In Section 2, we give a novel formalization of cyclic networks by characterizing them
locally with stochastic kernels, which bridge the SEM context with that of BNs by replac-
ing deterministic equations with exogenous variables by a direct probabilistic description.
We call the resulting models generalized Bayesian networks (GBNs). The framework of
intervention extends directly to such a description, resulting in causal GBNs (CGBNs).

- In Section 3, we prove that interventions allow us to discover descendants and children.
Such discovery is robust, in that in general it does not result in false discovery and, given
natural properties, it always succeeds as the size of the data grows to infinity. Inter-
ventions can affect either the abundance or the activity of variables (corresponding to
ingoing or outgoing edges, respectively). However, in this work, we assume the activity
of a perturbed variable is affected. We elaborate in Section 2.3.

- In Section 4, we cast these results into an algorithm for structure learning. Rather than
searching over all causal interactions by brute force, we first discover cycle breakers.
Upon intervention on these quantities, we reduce the task into an acyclic problem which
can be learned generically. Finally we close cycles to recover the cyclic structure. We
illustrate these results on synthetic data with 14 nodes, 2 cycles and 3 interventions.

- In Section 5, we develop a modified heuristic algorithm for the structure learning from
more limited data, containing only one perturbation per sample. This algorithm is in-
spired by our previous one, and is motivated by limitations on experiment technologies.
We illustrate the usefulness of this algorithm by studying a biological dataset of 11 varia-
bles from the MAPK/AKT pathway (CYTO) (Sachs et al., 2005).

Finally, a related research area is that concerned with structure learning with time course
data. In this case, alternative representations exist in the form of dynamic Bayesian networks
(DBNs) (Friedman et al., 1999) and continuous-time Bayesian networks (CTBNs) (Nodelman
et al., 2002, 2003). These models represent cycles by ‘unrolling’ them in time. As with other
efforts to learn static representations of underlying dynamic systems (Friedman et al., 2000;
Sachs et al., 2005), what we propose here can be interpreted as learning a DBN or CTBN in
the absence of time-course data, or from single time-point data (constituting a snapshot of a
dynamic system).

2. Problem formulation
2.1 Generalized Bayesian networks

Definition 1 (Generalized Bayesian network) We define a generalized Bayesian network
(GBN) as a pair (G,F), where G is a directed graph G = (V,E) and F is a set of stochas-
tic kernels (conditional probability tables) fi : X ×X |πi| �� R+ indexed by all nodes i ∈V , for
a finite set X . Here, πi is the set of parents of i in G. With each node i of the GBN we associate
a random variable Xi. In this paper, we restrict ourselves to discrete random variables taking
values in a common alphabet X . 1 The GBN then induces a joint distribution on X1, · · · ,XN
satisfying the following characterizations:

1. Although we restrict ourselves to discrete variables, this is in general not restrictive since any continuous variable
can approximated arbitrarily well by a discrete variable.
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(i). Local characterization:

P(Xi = xi,Xπi = xπi) = P(Xπi = xπi) fi(xi;xπi), ∀i ∈V. (1)

(ii). Independence under d-separation: Given any two nodes i and j in G, if i and j are
d-separated (Pearl, 1988) by a set Z ⊂V , then Xi and Xj given {Xk,k ∈ Z}.

We make the following assumption:
Assumption [Existence and Uniqueness] For every F that we consider, there exists a unique

induced (global) joint distribution that satisfies all the local characterizations in Equation (1).
Since GBN’s are generalizations of BN’s to the cyclic case, the previous assumption doesn’t

hold for any graph G and stochastic kernels { fi}. This is just like the fact that a dynamic system
with feedback (cycle) is not necessarily causal even if all of the subsystems are causal. Of
course, it is expected that in the applications of interest, the variables measured do come from
a unique underlying joint distribution.. Another view of this assumption is that it is the same as
the one in the case of the Gibb’s sampler: for the sampling to guarantee convergence, a unique
joint that is compatible with the given conditionals must exist.

When the graph of a GBN is acyclic, the product of all the stochastic kernels gives a valid
joint distribution satisfying (1). Thus, by uniqueness, an acyclic GBN reduces to a BN:

P(X1 = x1, · · · ,XN = xN) = ∏
i∈V

fi(xi;xπi). (2)

2.2 Causal generalized Bayesian networks

Let an intervention (I,ξ ) be a pair, where I ⊂ V is a subset of the nodes of a graph G, and
ξ ∈ X |I| is a tuple of values in an alphabet X .

Definition 2 (Causal generalized Bayesian network) We define a causal generalized Baye-
sian network (CGBN) as a GBN with which we associate a collection of joint distributions
P(I,ξ ) indexed by all interventions (I,ξ ), for each of which it satisfies:

P(I,ξ )(Xi = xi,Xπi\I = xπi\I) = P(I,ξ )(Xπi\I = xπi\I) fi(xi;xπi\I ,ξπi∩I), ∀i ∈V. (3)

When ξ is implicit we only use I as subscript, and when I = ∅ we drop the subscript
altogether. Below, we provide more intuition about this definition. Meanwhile, we extend the
assumption of existence and uniqueness to CGBNs by taking it to hold for every intervention
(I,ξ ). With this, an acyclic CGBN reduces to a causal BN, in the sense of interventions (Pearl,
2000):

P(I,ξ )(X1 = x1, · · · ,XN = xN) = ∏
i∈V

fi(xi;xπi\I ,ξπi∩I). (4)

2.3 σ -µ characterization

By carefully examining Equation (3), we can see how interventions effectively decouple nodes
into seen and measured values. Just as in the do-calculus of Pearl, the intervention value su-
persedes the node variable itself as far as its influence on the network goes, and can thus be
interpreted as what is (internally) seen by all descendants. The value of the seen variable is
determined solely by the intervention. However, and this is in contrast to traditional interven-
tion models, we (externally) measure or observe the value (i.e. abundance) of the intervention
variables. These can be thought of as shadow copies, which are still influenced by the network
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but no longer influence it, because its activity is externally set by the intervention. This for-
mulation is motivated by some inhibition models in molecular biology, where the inhibitors do
not change the amount of a given protein but rather halt its activity. Thus the correct modeling
of this situation is to separate the inhibited node from its children. The σ -µ characterization
simply does that while staying in the framework of probability theory. All of our results extend
to the case when measured values are lost, by eliminating the variables intervened at.

We can capture this decoupling via an explicit characterization which reduces a CGBN with
an intervention to a GBN. In particular, given a CGBN (G,F) describing N variables and an
intervention (I,ξ ), one can construct a GBN (G�,F �) which describes N + |I| variables, such
that the restriction to the first N of the variables has a joint distribution evaluating to P(I,ξ ). We
call this construction the σ -µ characterization of a CGBN. We do not elaborate on this further,
and leave its illustration to the second example below.

2.4 Examples

2.4.1 CYCLE WITH 2 NODES

Consider the GBN with binary-valued variables X1 and X2 described in Figure 2. The local
characterizations of the joint distribution P induced by the GBN are as follows: P(X1 = x1,X2 =
x2) = P(X2 = x2) f1(x1;x2), and P(X1 = x1,X2 = x2) = P(X1 = x1) f2(x2;x1), for all binary con-
figurations of x1 and x2. Under the proper choice of f1 and f2, these yield linearly independent
equations, in which case a distribution satisfying the local characterizations exists and is unique.

Figure 2: A GBN with two nodes. Figure 3: A CGBN with an intervention at node 2.

2.4.2 BREAKING CYCLES

Consider the CGBN described in Figure 3a. In Figure 3b, we illustrate what happens when
node 2 is intervened at. We use the σ -µ characterization, and represent the seen node with a σ
subscript and the measured node with a a µ subscript. Note how node 2µ is effectively a leaf
under intervention. As such, the resulting graph is a DAG. It follows that, the product of all the
fi’s is a valid characterization, and by uniqueness it is the distribution induced by the CGBN
under the intervention. The resulting network is thus exactly equivalent to a BN. We say that the
cycle has been broken. This notion, in more generality, will be used throughout our algorithm
(Section 4).

3. Interventions and Descendent Detection
We now introduce analytical results which we subsequently use to justify the correctness of
our algorithm for structure learning. For conciseness, we state and prove only the forward
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direction of the results. The converses hold under some natural properties of the network and
interventions. Please see supporting materials for additional proofs and associated assumptions.

Theorem 3 Consider a CGBN, and let the existence and uniqueness assumption hold. Inter-
vene at a single node i, that is let (I,ξ ) = (i,ξi) and consider a node j. If j is not a descendant
of i then P(Xj = x j) = P(i,ξ i)(Xj = x j) for all x j ∈ X .

Proof Partition V into two: Vi (nodes that are descendants of i, including i) and Vi (nodes that
are not descendants of i). Consider the network restricted to Vi, by restricting the graph. Since
there are no incoming edges from Vi to Vi, we can also restrict F to contain only f j, j ∈ Vi.
Since none of the local characterizations of the distribution induced by the restricted network
depend on the intervention, and by the uniqueness of the solution, the restricted distribution is
unchanged. Thus the marginal distributions of all j ∈Vi is unchanged.

In other words, Theorem 3 states that if a node j experiences a change in marginal distri-
bution when i is intervened at, then it is a descendant of i. As mentioned, the converse also
holds under proper assumptions, detailed in the supporting materials. One of these assumptions
states that a child variable must be sensitive to perturbations imposed upon its parent variables,
an assumption which may in general be violated, particularly if the network compensates in
the face of perturbations. Such insensitive descendants may still be detectable with the use of
multiple perturbations.

Theorem 4 Consider a CGBN, an intervention (I1,ξ 1), and an incremental intervention
(I2,ξ 2) by a single node i, as in I2 \ I1 = {i}. Let the existence and uniqueness assumption
hold. Define P := P(I1,ξ 1) and Q := P(I2,ξ 2). Consider a node j and let π̃ j = π j \ I2. If j is not
a child of i then P(Xj = x j|Xπ̃ j = xπ̃ j) =Q(Xj = x j|Xπ̃ j = xπ̃ j) for all x j ∈ X and xπ̃ j ∈ X |π̃ j |.

Proof We shall split the parents of j into three groups: i itself if it is a parent, the never-
intervened-at parents π̃ j, and the always-intervened-at parents π̂ j. When j is not a child of i the
inclusion pattern for the parents of j in the local characterization is unchanged. Hence:

P(Xj = x j|Xπ̃ j = xπ̃ j) =
P(Xj = x j,Xπ̃ j = xπ̃ j)

P(Xπ̃ j = xπ̃ j)
= f j(x j;xπ̃ j ,ξ

1
π̂ j
),

Q(Xj = x j|Xπ̃ j = xπ̃ j) =
Q(Xj = x j,Xπ̃ j = xπ̃ j)

Q(Xπ̃ j = xπ̃ j)
= f j(x j;xπ̃ j ,ξ

2
π̂ j
).

But since ξ 1 and ξ 2 agree on π̂ j, the claim follows.

In other words, Theorem 4 states that if a node j experiences a change in marginal condi-
tional distribution given the never-intervened-at parents π̃ j when i is intervened at, then it is a
child of i. Again, the converse also holds under proper assumptions.

4. Algorithm for structure learning
Consider a CGBN from which we can sample both observational and experimental data, from
an intervention set I and its subsets. Assume that I is ‘rich’, in the sense that it has at least
one representative node from every cycle in the underlying graph. The following algorithm
effectively guides the experimental procedure (or uses previously collected data) and recovers
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the CGBN’s structure. In what follows, we elaborate the subroutines that are used, and show
correctness.
Algorithm: Learn CGBN structure

0: Start with a CGBN and an intervention set I.

1: [Probing experiments] Collect sets of i.i.d. samples under no-intervention and single-intervention data, i.e. when

node i is intervened at, for each i in I.

2: Call subroutine ‘detect descendants’ to recover descendant information for all nodes in I.

3: Identify the minimal subset of nodes in I which are sufficient to break all cycles, and denote it by IC .

4: [Cycle-breaking experiment] Collect i.i.d. samples when all nodes in IC are intervened at.

5: Recover an embedded DAG.

6: [Leave-one-out experiments] Collect sets of i.i.d. samples when nodes in IC \ {i} are intervened at, for each

i ∈ IC .

7: Call subroutine ‘detect children’ to recover child information for all nodes in IC .

8: Recover all missing edges in the DAG, and complete the DCG structure of the CGBN.

The following is the subroutine that obtains descendant information based on no-
intervention and single-intervention i.i.d. data. The correctness of the subroutine follows from
Theorem 3 and the convergence of empirical distributions, since non-descendants will exhibit
no change of marginal, whereas descendants will. The choice of distance is not critical, and
thresholding can be automated.
Subroutine: Detect descendants

0: Start with sets of n i.i.d. samples generated by a CGBN, under no interventions as well as single-interventions

at each i in I. Initialize a binary |V |× |I| descendant information matrix.

1: For each j ∈V :

2: Compute P̂n(Xj), the empirical marginal of Xj under no interventions.

3: For each i ∈ I:

4: Compute P̂n
i (Xj), the empirical marginal of Xj under the single-intervention i.

5: Evaluate some distance between P̂n(Xj) and P̂n
i (Xj).

6: If the distance exceeds a threshold, mark j as a descendant of i.
7: Next i.
8: Next j.
9: Compute the transitive closure of the descendant information matrix, and return it.

IC can then be identified as the set of all self-descendants. Since the intervention set I
has at least one node from each cycle in the underlying graph, IC constitutes a cycle-breaking
intervention set, meaning that if all nodes in IC are intervened at, the CGBN behaves like a
BN. Thus with i.i.d. data obtained as such, we can recover the corresponding embedded DAG
using generic BN structure learning, which we do not elaborate further on. Note that I itself is
a cycle-breaking intervention set, the merit here being that IC can be much smaller.

Note that the only edges that are in the underlying graph but are missing from the embed-
ded DAG are those from cycle breakers to their children. The following subroutine obtains a
child information matrix, based on IC-intervention and leave-one-out from IC intervention i.i.d.
data. Once this information is obtained, all cycles can be closed in a straightforward fashion,
recovering the underlying structure. Once again, the correctness of the subroutine follows from
Theorem 4 and the convergence of empirical distributions, since only children will exhibit a
change in marginal conditional.
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Subroutine: Detect children

0: Start with the recovered DAG, and sets of n i.i.d. samples generated by the CGBN, under IC -intervention as

well as leave-one-out interventions, i.e. on IC \{i} for each i in IC . Initialize a binary |V |× |IC | child information

matrix. Denote by π̃ j the parents of node j according to the recovered DAG.

1: For each j ∈V :

2: For each α ∈X |π̃ j |:

3: Compute the empirical marginal conditional P̂n
IC (Xj|Xπ̃ j = α), call it Q1.

4: For each i ∈ IC :

5: Compute the empirical marginal conditional P̂n
IC\{i}(Xj|Xπ̃ j = α), call it Q2.

6: Evaluate some distance between Q1 and Q2.

7: If the distance exceeds a threshold, mark j as a child of i.
8: Next i.
9: Next α .

10: Next j.
11: Return the completed child information matrix.

To illustrate the algorithm, we simulated a GBN that has fourteen variables,shown in Figure
4, each with three states X = {0,1,2}, two cycles 5 → 6 → 7 → 5 and 8 → 9 → 10 → 11 → 8,
and nodes 7, 8 and 10 available for intervention. The stochastic kernels were sampled contin-
uously from the 3-simplex. The simulation was performed using Gibbs-like sampling (Chou
et al., 1991; Sharma et al., 1989), and up to 4000 data points were sampled for every required
intervention.

Figure 4: Test network,
recovered ex-
actly by GBN
learning algo-
rithm

Figure 5: Best network
recovered by
BN structure
learning

GBN algorithm
Data Correct Inverted Added
1000 14 0 0
2000 15 0 0
4000 16 0 0

BN structure learning
Data Correct Inverted Added
1000 9 3 0
2000 9 7 0
4000 12 4 2

Figure 6: Performance ta-
bles

In the tables of Figure 6, we compare the performance of our algorithm to a plain BN
structure learning algorithm for the various data sizes. In particular, the tables document the
number of true edges that the algorithms uncover, the number of reversed edges that they give,
and the number of edges that they add but which are absent in the original graph. Observe
that the GBN algorithm recovers the network exactly with 4000 data points. The comparison
is inherently unfair, because BN structure learning does not handle cycles, but the emphasis
here is on illustrating the type of pitfalls in using BNs to capture data that is generated by a
GBN. Using the best recovered DAG in Figure 5, for instance, will mistakenly predict that an
intervention at node 9 will not affect node 8.

5. Single Perturbations
In this section we introduce an algorithm that is inspired by our previous one but doesn’t require
data with multiple simultaneous perturbations. Due to practical considerations, sometimes mul-
tiple inhibition data-sets are not available. This is why we are interested in an algorithm that can
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recover the causal structure (even when it’s cyclic) without the need for multiple simultaneous
perturbations. We assume that the interventions that are available are activity interventions, and
so the amount of the variable x can be measured when x is intervened at. The algorithm we have
when such perturbations are available is as follows:
Algorithm: Learn CGBN structure without multiple simultaneous perturbations

0: Start with a CGBN and an intervention set I.

1: [Probing experiments] Collect sets of i.i.d. samples under no-intervention and single-intervention data, i.e. when

node i is intervened at, for each i in I.

2: Call subroutine ‘detect descendants’ to recover descendant information for all nodes in I.

3: Identify the subset of all nodes in I which are in cycles, and denote it by IC .

4: Use a regular CBN learning algorithm to recover an approximation of the structure of the causal relations. This

is done with the standard structure learning algorithm using the complete dataset, as in Sachs et al. (2005).

5: For every variable i in IC :

a- Recover the paths from i’s descendants in the cycle back to it using BN learning on the data where i was

perturbed. As in the original algorithm, this recovers the linearized structure with the perturbed node as a

leaf.

b- Overwrite the paths from i’s descendants in the BN approximate graph. This step may alter the parent set

of i as well as the direction of edges among i’s ancestors. Because the approximate graph is expected

to have incorrect edge directionality imposed by the cycles, the graph under perturbations is considered

more accurate.

6: Call subroutine ‘detect children’ to recover child information for all nodes in IC . Use the data with no perturbations

and the data with i inhibited for all i ∈ IC .

7: Recover all missing edges in the DAG, and complete the DCG structure of the CGBN. This proceeds as in the

original algorithm, using only the observational data to detect direct edges and indirect paths from each variable

in IC to its descendants.

This algorithm is a heuristic, although it inherits some of the intuition and reasoning of our
previous algorithm: It recovers the structure of every cycle by first breaking it and finding its
partial structure. To illustrate the performance of this algorithm, we applied it to a real data set
from the MAPK/AKT pathway (Sachs et al., 2005).

6. Results from the CYTO dataset
The heuristic algorithm from Section 5 was applied to the CYTO dataset (Sachs et al., 2005), a
real-life dataset of eleven protein measurements, which employs single perturbations (per sam-
ple), including three activity inhibitors and one abundance inhibitor. Model results (figure 6)
show the edges from regular BN structure learning in blue (solid lines), novel edges resulting
from the GBN approach in purple (broken lines). To assess this model’s accuracy in represen-
ting the true underlying causal structure, as compared to the original model, we turned to the
biological literature. There are seven edges unique to the GBN model, of which three repre-
sent canonical, well established causal connections that were completely missed by standard
BN structure learning efforts. One of these, the connection between PIP2 and Akt, our model
represents somewhat inaccurately, shifting the canonical edge (PIP3 → Akt). PIP2 and PIP3
are precursors of each other, so this edge incorrectly assigns the parent of Akt as the precursor
of the actual parent, perhaps due to confounding effects of the dynamics of the system (i.e.
PIP2 abundance may more accurately represent the quantity of PIP3 that influenced the current
level of Akt, see Itani et al. (2009). An additional perturbation, or a more idealized one, may
have helped resolved this inaccuracy. It can be argued that the GBN model with the shifted
edge comes closer to representing the true structure than the BN model that fails to represent
this interaction all together. Another canonical edge present only in the GBN model is PKC →
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Figure 7: Application of the heuristic algorithm to real-life protein dataset. Application of the heuris-
tic structure learning algorithm to this dataset from Sachs et al. (2005) yields this cyclic struc-
ture. Edges found in the original graph, resulting from standard Bayesian network structure
learning, are in blue (solid lines), edges unique to the GBN result are in purple (broken lines).
Several of the cycles in this result structure are supported by literature findings (see text).

Plcγ , known in the classic literature, but in the reverse orientation. While this may be an inaccu-
racy in direction of the edge, the data clearly support this connection (with the Plcγ distribution
strongly affected by PKC perturbation), and it has been reported by previous studies (Xu et al.,
2001; Quinlan et al., 2003), leading us to believe it is a correct edge. Like its BN counterpart, the
GBN model misses the edge in the Plcγ → PKC direction, but unlike the BN model, it success-
fully represents the dependence between these two proteins. Finally, the canonical edge (PIP2
→ PKC) is missed by the BN model but correctly represented in the GBN model. For these
canonical edges, the GBN model is somewhat imperfect but nevertheless strongly outperforms
the BN model.

Of the remaining four edges, both p38 → PKC and PKA → PIP3 are supported by previous
literature findings (Shimizu et al., 1999; Deming et al., 2008). We did not find specific evidence
for the edges from Erk to PKC and PKA, though several studies report feedback on PKA and
PKC, with potential roles for Erk (Geritsa et al., 2008). Although confirmation of all model
results requires experimental validation, comparison to literature studies indicates a clear im-
provement in accuracy for the GBN model. Additionally, the GBN model improves on the BN
result by accurately representing all causal connections and conditional independencies found
in the data, something the standard BN model is unable to achieve.

7. Conclusion and future work
In this paper we reviewed previous work in incorporating both causality and cyclic structure
within the context of Bayesian networks. We then presented the formalism of generalized BNs,
which preserves only the local characterizations with stochastic kernels, applying it equally well
to the cyclic case, under an existence and uniqueness assumption for the joint distribution. In the
acyclic case, this reduces to BNs. The framework of interventions easily extends to this formal-
ism, resulting in causal GBNs. We present an algorithm that uses no-intervention and single-
intervention data to detect cycle breakers, then uses multiple simultaneous interventions to learn
an embedded DAG, close cycles, and recover the underlying DCG. This algorithm relies on a
minimal set of perturbations. We illustrate the procedure via a numerical example. Finally, we
present a modified algorithm with more modest, one-intervention-at-a-time data requirements
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and demonstrate its performance on a real-life biological dataset, successfully recovering many
known connections, and strongly outperforming standard structure learning with respect to re-
covery of the known causal structure. This work can be extended in several directions. We are
currently expanding its application to biological data by extending the algorithm to one which
explicitly handles the imperfect specificity and efficacy of biological inhibitors. A more theo-
retical direction is that of relating snapshot structure embodied in GBNs to that of underlying
time-dynamics. For that, one needs to start with a dynamic hypothesis of data generation, e.g.
CTBNs, stochastic differential equations, etc. Conditions under which the static and dynamic
structures coincide would further motivate the current paradigm.
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