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Abstract

We consider the problem of learning the
structure of a pairwise graphical model
over continuous and discrete variables. We
present a new pairwise model for graphical
models with both continuous and discrete
variables that is amenable to structure learn-
ing. In previous work, authors have consid-
ered structure learning of Gaussian graphi-
cal models and structure learning of discrete
models. Our approach is a natural general-
ization of these two lines of work to the mixed
case. The penalization scheme is new and fol-
lows naturally from a particular parametriza-
tion of the model.

1 Introduction

Many authors have considered the problem of learning
the edge structure and parameters of sparse undirected
graphical models. We will focus on using the l1 reg-
ularizer to promote sparsity. This line of work has
taken two separate paths: one for learning continuous
valued data and one for learning discrete valued data.
However, typical data sources contain both continu-
ous and discrete variables: population survey data,
genomics data, url-click pairs etc. In this work, we
consider learning mixed models with both continuous
variables and discrete variables.

For only continuous variables, previous work assumes
a multivariate Gaussian (Gaussian graphical) model
with mean 0 and inverse covariance Θ. Θ is then esti-
mated via the graphical lasso by minimizing the regu-
larized negative log-likelihood ℓ(Θ) + λ ‖Θ‖

1
. Several

efficient methods for solving this can be found in [9, 2].
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Because the graphical lasso problem is computation-
ally challenging, several authors considered methods
related to the pseudolikelihood (PL) and node-wise l1
least squares [20, 10, 21]. For discrete models, pre-
vious work focuses on estimating a pairwise Markov
random field of the form p(y) ∝ exp

∑
r≤j φrj(yr, yj).

The maximum likelihood problem is intractable for
models with a moderate to large number of variables
(high-dimensional) because it requires evaluating the
partition function and its derivatives. Again previ-
ous work has focused on the pseudolikelihood approach
[11, 23, 25, 12, 13, 17, 22].

Our main contribution here is to propose a model that
connects the discrete and continuous models. The
conditional distributions of this model are two widely
adopted and well understood models: multiclass lo-
gistic regression and Gaussian linear regression. In
addition, in the case of only discrete variables, our
model is a pairwise Markov random field; in the case
of only continuous variables, it is a Gaussian graphical
model. Our proposed model leads to a natural scheme
for structure learning that generalizes the graphical
Lasso. Since each parameter block is of different size,
we also derive a calibrated weighting scheme to penal-
ize each edge fairly.

In Section 2, we introduce our new mixed graphical
model and discuss previous approaches to modeling
mixed data. Section 3 discusses the pseudolikelihood
approach to parameter estimation and connections to
generalized linear models. Section 4 discusses a natu-
ral method to perform structure learning in the mixed
model. Section 5 presents the calibrated regulariza-
tion scheme and Section 6 discusses two methods for
solving the optimization problem. Finally, Section 7
discusses a conditional random field extension and Sec-
tion 8 presents empirical results on a census population
survey dataset and synthetic experiments.

2 Mixed Graphical Model

We propose a pairwise graphical model on continuous
and discrete variables. The model is a pairwise Markov
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random field with density

p(x, y; Θ) ∝ exp

(

p
∑

s=1

p
∑

t=1

−1

2
βstxsxt +

p
∑

s=1

αsxs (1)

+

p
∑

s=1

q
∑

j=1

ρsj(yj)xs +

q
∑

j=1

q
∑

r=1

φrj(yr, yj)



 .

Here xs denotes the sth of p continuous variables, and
yj the jth of q discrete variables. The joint model is
parametrized by Θ = [{βst}, {αs}, {ρsj}, {φrj}]1. The
discrete yr takes on Lr states. The model parame-
ters are βst continuous-continuous edge potential, αs

continuous node potential, ρsj(yj) continuous-discrete
edge potential, and φrj(yr, yj) discrete-discrete edge
potential.

The two most important features of this model are:

1. the conditional distributions are given by Gaus-
sian linear regression and multiclass logistic re-
gressions;

2. the model simplifies to a multivariate Gaussian in
the case of only continuous variables and simpli-
fies to the usual discrete pairwise Markov random
field in the case of only discrete variables.

The conditional distributions of a graphical model are
of critical importance. The absence of an edge cor-
responds to two variables being conditionally inde-
pendent. The conditional independence can be read
off from the conditional distribution of a variable on
all others. For example in the multivariate Gaussian
model, xs is conditionally independent of xt iff the
partial correlation coefficient is 0. Our mixed model
has the desirable property that the two type of condi-
tional distributions are simple Gaussian linear regres-
sions and multiclass logistic regressions. This follows
from the pairwise property in the joint distribution.
In more detail:

1. The conditional distribution of yr given the rest is
multinomial, with probabilities defined by a mul-
ticlass logistic regression where the covariates are
the other variables xs and y\r (denoted collec-

1ρsj(yj) is a function taking Lj values
ρsj(1), . . . , ρsj(Lj). Similarly, φrj(yr, yj) is a bivari-
ate function taking on Lr ×Lj values. Later, we will think
of ρsj(yj) as a vector of length Lj and φrj(yr, yj) as a
matrix of size Lr × Lj .

tively by z in the right-hand side):

p(yr = k|y\r, x; Θ) =
exp

(

ωT
k z
)

∑Lr

l=1
exp

(

ωT
l z
)

(2)

=
exp

(

ω0k +
∑

j ωkjzj

)

∑Lr

l=1
exp

(

ω0l +
∑

j ωljzj

)

Here we use a simplified notation, which we make
explicit in Section 3.1. The discrete variables are
represented as dummy variables for each state,
e.g. zj = 1[yu = k], and for continuous variables
zs = xs.

2. The conditional distribution of xs given the rest
is Gaussian, with a mean function defined by a
linear regression with predictors x\s and yr.

E(xs|x\s, yr; Θ) = ωT z = ω0 +
∑

j

zjωj (3)

p(xs|x\s, yr; Θ) =
1√
2πσs

exp

(

− 1

2σ2
s

(xs − ωT z)2
)

.

As before, the discrete variables are represented
as dummy variables for each state zj = 1[yu = k]
and for continuous variables zs = xs.

The exact form of the conditional distributions (2) and
(3) are given in (9) and (8) in Section 3.1, where the
regression parameters ωj are defined in terms of the
parameters Θ.

The second important aspect of the mixed model is the
two special cases of only continuous and only discrete
variables.

1. Continuous variables only. The pairwise mixed
model reduces to the familiar multivariate Gaus-
sian parametrized by the symmetric positive-
definite inverse covariance matrix B = {βst} and
mean µ = B−1α,

p(x) ∝ exp

(

−1

2
(x−B−1α)TB(x−B−1α)

)

.

2. Discrete variables only. The pairwise mixed
model reduces to a pairwise discrete (second-order
interaction) Markov random field,

p(y) ∝ exp





q
∑

j=1

q
∑

r=1

φrj(yr, yj)



.

Although these are the most important aspects, we can
characterize the joint distribution further. The condi-
tional distribution of the continuous variables given
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the discrete follow a multivariate Gaussian distribu-
tion, p(x|y) = N (µ(y), B−1). Each of these Gaussian
distributions share the same inverse covariance matrix
B, since all the parameters are pairwise. The mean pa-
rameter depends additively on the value of the discrete
variables. By standard multivariate Gaussian calcula-
tions,

p(x|y) = N (B−1γ(y), B−1) (4)

{γ(y)}s = αs +
∑

j

ρsj(yj) (5)

p(y) ∝ exp





q
∑

j=1

j
∑

r=1

φrj(yr, yj) +
1

2
γ(y)TB−1γ(y)





(6)

2.1 Related work on mixed graphical models

Lauritzen [15] proposed a type of mixed graphical
model, with the property that conditioned on discrete
variables, p(x|y) = N (µ(y),Σ(y)). The homogeneous
mixed graphical model enforces common covariance,
Σ(y) ≡ Σ. Thus our proposed model is a special case
of Lauritzen’s mixed model with the following assump-
tions: common covariance, additive mean assumptions
and the marginal p(y) factorizes as a pairwise discrete
Markov random field. With these three assumptions,
the full model simplifies to the mixed pairwise model
presented. Although the full model is more general,
the number of parameters scales exponentially with
the number of discrete variables, and the conditional
distributions are not as convenient. For each state of
the discrete variables there is a mean and covariance.
Consider an example with q binary variables and p

continuous variables; the full model requires estimates
of 2q mean vectors and covariance matrices in p dimen-
sions. Even if the homogeneous constraint is imposed
on Lauritzen’s model, there are still 2q mean vectors
for the case of binary discrete variables. The full mixed
model is very complex and cannot be easily estimated
from data without some additional assumptions. In
comparison, the mixed pairwise model has number of
parameters O((p+ q)2) and allows for a natural regu-
larization scheme which makes it appropriate for high
dimensional data.

There is a line of work regarding parameter estima-
tion in undirected mixed models that are decompos-
able: any path between two discrete variables cannot
contain only continuous variables. These models allow
for fast exact maximum likelihood estimation through
node-wise regressions, but are only applicable when
the structure is known and n > p [7]. There is also
related work on parameter learning in directed mixed
graphical models. Since our primary goal is to learn
the graph structure, we forgo exact parameter esti-

mation and use the pseudolikelihood. Similar to the
exact maximum likelihood in decomposable models,
the pseudolikelihood can be interpreted as node-wise
regressions that enforce symmetry.

To our knowledge, this work is the first to consider
convex optimization procedures for learning the edge
structure in mixed graphical models.

3 Parameter Estimation: Maximum

Likelihood and Pseudolikelihood

Given samples (xi, yi)
n
i=1

, we want to find the maxi-
mum likelihood estimate of Θ. This can be done by
minimizing the negative log-likelihood of the samples:

ℓ(Θ) = −
n
∑

i=1

log p(xi, yi; Θ) where

log p(x, y; Θ) =

p
∑

s=1

p
∑

t=1

−
1

2
βstxsxt +

p
∑

s=1

αsxs

+

p
∑

s=1

q
∑

j=1

ρsj(yj)xs +

q
∑

j=1

j
∑

r=1

φrj(yr, yj)− logZ(Θ)

The negative log-likelihood is convex, so standard
gradient-descent algorithms can be used for computing
the maximum likelihood estimates. The major obsta-
cle here is Z(Θ), which involves a high-dimensional in-
tegral. Since the pairwise mixed model includes both
the discrete and continuous models as special cases,
maximum likelihood estimation is at least as difficult
as the two special cases, the first of which is a well-
known computationally intractable problem. We de-
fer the discussion of maximum likelihood estimation
to Supplementary Material.

3.1 Pseudolikelihood

The pseudolikelihood method [5] is a computationally
efficient and consistent estimator formed by products
of all the conditional distributions:

ℓ̃(Θ|x, y) = −

p
∑

s=1

log p(xs|x\s, y; Θ)−

q
∑

r=1

log p(yr|x, y\r; Θ)

(7)

The conditional distributions p(xs|x\s, y; θ) and
p(yr = k|y\r,, x; θ) take on the familiar form of lin-
ear Gaussian and (multiclass) logistic regression, as
we pointed out in (2) and (3). Here are the details:

• The conditional distribution of a continuous vari-
able xs is Gaussian with a linear regression model
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for the mean, and unknown variance.

p(xs|x\s, y; Θ) =

√
βss√
2π

exp(a) (8)

a =
−βss

2

(

αs +
∑

j ρsj(yj)−
∑

t 6=s βstxt

βss

− xs

)2

• The conditional distribution of a discrete variable
yr with Lr states is a multinomial distribution, as
used in (multiclass) logistic regression. Whenever
a discrete variable is a predictor, each of its levels
contribute an additive effect; continuous variables
contribute linear effects.

p(yr|y\r,, x; Θ) =
exp(byr

)
∑Lr

l=1
exp(bl)

(9)

bl =





∑

s

ρsr(l)xs + φrr(l, l) +
∑

j 6=r

φrj(l, yj)





A generic parameter block, θuv, corresponding to an
edge (u, v) appears twice in the pseudolikelihood, once
for each of the conditional distributions p(zu|zv) and
p(zv|zu).
Proposition 1. The negative log pseudolikelihood

in (7) is jointly convex in all the parameters

{βss, βst, αs, φrj , ρsj} over the region βss > 0.

We prove Proposition 1 in the Supplementary Mate-
rial.

3.2 Separate node-wise regression

A simple approach to parameter estimation is via sep-
arate node-wise regressions; a generalized linear model
is used to estimate p(zs|z\s) for each s. Separate re-
gressions were used in [20] for the Gaussian graphical
model and [22] for the Ising model. The method can
be thought of as an asymmetric form of the pseudo-
likelihood since the pseudolikelihood enforces that the
parameters are shared across the conditionals. Thus
the number of parameters estimated in the separate
regression is approximately double that of the pseu-
dolikelihood, so we expect that the pseudolikelihood
outperforms at low sample sizes and low regulariza-
tion regimes. The node-wise regression was used as our
baseline method since it is straightforward to extend
it to the mixed model. As we predicted, the pseudo-
likelihood or joint procedure outperforms separate re-
gressions; see top left box of Figures 4 and 5. [19, 18]
confirm that the separate regressions are outperformed
by pseudolikelihood in numerous synthetic settings.

Recent work2 [26, 27] extend the separate node-wise
regression model from the special cases of Gaussian

2The current paper was submitted to arXiv.org on

and categorical regressions to generalized linear mod-
els, where the univariate conditional distribution of
each node p(xs|x\s) is specified by a generalized lin-
ear model (e.g. Poisson, categorical, Gaussian). By
specifying the conditional distributions, [4] show that
the joint distribution is also specified. Thus an-
other way to justify our mixed model is to define
the conditionals of a continuous variable as Gaussian
linear regression and the conditionals of a categor-
ical variable as multiple logistic regression and use
the results in [4] to arrive at the joint distribution
in (1). However, the neighborhood selection algo-
rithm in [26, 27] is restricted to models of the form

p(x) ∝ exp
(

∑

s θsxs +
∑

s,t θstxsxt +
∑

s C(xs)
)

. In

particular, this procedure cannot be applied to edge
selection in our pairwise mixed model in (1) or the
categorical model in (2) with greater than 2 states.
Our baseline method of separate regressions is closely
related to the neighborhood selection algorithm they
proposed; the baseline can be considered as a gener-
alization of [26, 27] to allow for more general pairwise
interactions with the appropriate regularization to se-
lect edges. Unfortunately, the theoretical results in
[26, 27] do not apply to the baseline method, nor the
joint pseudolikelihood.

4 Conditional Independence and

Penalty Terms

In this section, we show how to incorporate edge selec-
tion into the maximum likelihood or pseudolikelihood
procedures. In the graphical representation of proba-
bility distributions, the absence of an edge e = (u, v)
corresponds to a conditional independency statement
that variables xu and xv are conditionally independent
given all other variables [14]. We would like to max-
imize the likelihood subject to a penalization on the
number of edges since this results in a sparse graphical
model. In the pairwise mixed model, there are 3 type
of edges

1. βst is a scalar that corresponds to an edge from
xs to xt. βst = 0 implies xs and xt are condition-
ally independent given all other variables. This
parameter is in two conditional distributions, cor-
responding to either xs or xt is the response vari-
able, p(xs|x\s, y; Θ) and p(xt|x\t, y; Θ).

2. ρsj is a vector of length Lj . If ρsj(yj) = 0 for

May 22nd, 2012 (http://arxiv.org/abs/1205.5012). [26]
appeared on the homepage of the authors in Novem-
ber 2012 (http://www.stat.rice.edu/~gallen/eyang_
glmgm_nips2012.pdf) and was published on December
2012 at NIPS 2012. The long version [27] was submitted
to arXiv.org on January 17th, 2013 (http://arxiv.org/
abs/1301.4183).
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Figure 1: Symmetric matrix represents the parameters
Θ of the model. This example has p = 3, q = 2,
L1 = 2 and L2 = 3. The red square corresponds to
the continuous graphical model coefficients B and the
solid red square is the scalar βst. The blue square
corresponds to the coefficients ρsj and the solid blue
square is a vector of parameters ρsj(·). The orange
square corresponds to the coefficients φrj and the solid
orange square is a matrix of parameters φrj(·, ·). The
matrix is symmetric, so each parameter block appears
in two of the conditional probability regressions.

all values of yj , then yj and xs are conditionally
independent given all other variables. This pa-
rameter is in two conditional distributions, cor-
responding to either xs or yj being the response
variable: p(xs|x\s, y; Θ) and p(yj |x, y\j ; Θ).

3. φrj is a matrix of size Lr × Lj . If φrj(yr, yj) = 0
for all values of yr and yj , then yr and yj are con-
ditionally independent given all other variables.
This parameter is in two conditional distributions,
corresponding to either yr or yj being the response
variable, p(yr|x, y\r; Θ) and p(yj |x, y\j ; Θ).

For edges that involve discrete variables, the absence
of that edge requires that the entire matrix φrj or vec-
tor ρsj is 0. The form of the pairwise mixed model
motivates the following regularized optimization prob-
lem

minimizeΘ ℓλ(Θ) = ℓ(Θ) (10)

+ λ





p
∑

s=1

s−1
∑

t=1

|βst|+

p
∑

s=1

q
∑

j=1

‖ρsj‖2 +

q
∑

j=1

j−1
∑

r=1

‖φrj‖F



 .

For scalars, we use the absolute value (l1 norm), for
vectors we use the l2 norm, and for matrices we use the
Frobenius norm. This choice corresponds to the stan-
dard relaxation from group l0 to group l1/l2 (group
lasso) norm [1, 28].

5 Calibrated regularizers

In (10) each of the group penalties are treated as
equals, irrespective of the size of the group. We sug-
gest a calibration or weighting scheme to balance the
load in a more equitable way. We introduce weights for
each group of parameters and show how to choose the
weights such that each parameter set is treated equally
under pF , the fully-factorized independence model 3

minimizeΘℓλ(Θ) = ℓ(Θ)+ (11)

λ





∑

t<s

wst|βst|+
∑

s,j

wsj ‖ρsj‖2 +
∑

r<j

wrj ‖φrj‖F





Based on the KKT conditions [8], the parameter group
θg is non-zero if

∥

∥

∥

∥

∂ℓ

∂θg

∥

∥

∥

∥

> λwg

where θg and wg represents one of the parame-
ter groups and its corresponding weight. Now ∂ℓ

∂θg

can be viewed as a generalized residual, and for
different groups these are different dimensions—e.g.
scalar/vector/matrix. So even under the independence
model (when all terms should be zero), one might ex-

pect some terms
∥

∥

∥

∂ℓ
∂θg

∥

∥

∥ to have a better random chance

of being non-zero (for example, those of bigger dimen-
sions). Thus for all parameters to be on equal footing,
we would like to choose the weights w such that

EpF

∥

∥

∥

∥

∂ℓ

∂θg

∥

∥

∥

∥

= constant× wg

However, it is simpler to compute in closed form

EpF

∥

∥

∥

∂ℓ
∂θg

∥

∥

∥

2

, so we choose

wg ∝

√

EpF

∥

∥

∥

∥

∂ℓ

∂θg

∥

∥

∥

∥

2

where pF is the fully factorized (independence) model.
In the Supplementary Material, we show that the
weights can be chosen as

wst = σsσt

wsj = σs

√

∑

a

pa(1− pa)

wrj =

√

∑

a

pa(1− pa)
∑

b

qb(1− qb)

3Under the independence model pF is fully-factorized
p(x, y) =

∏p

s=1
p(xs)

∏q

r=1
p(yr)
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σs is the standard deviation of the continuous variable
xs. pa = Pr(yr = a) and qb = Pr(yj = b) . For
all 3 types of parameters, the weight has the form of
wuv = tr(cov(zu))tr(cov(zv)), where z represents a
generic variable and cov(z) is the variance-covariance
matrix of z.

6 Optimization Algorithms

In this section, we discuss two algorithms for solving
(10): the proximal gradient and the proximal new-
ton methods. This is a convex optimization prob-
lem that decomposes into the form f(x)+ g(x), where
f is smooth and convex and g is convex but possi-
bly non-smooth. In our case f is the negative log-
pseudolikelihood and g are the group sparsity penal-
ties.

6.1 Proximal Gradient

Problems of this form are well-suited for the proximal
gradient and accelerated proximal gradient algorithms
[6, 3] as long as the proximal operator of g can be
computed. The proximal gradient iteration is given
by

xk+1 = proxt (xk − t∇f(xk))

where t is determined by line search and proxt(x) =

argminu
1

2t
‖x− u‖

2
+ g(u). The theoretical conver-

gence rates and properties of the proximal gradi-
ent algorithm and its accelerated variants are well-
established [3]. The proximal gradient method
achieves linear convergence rate of O(ck) when the
objective is strongly convex and the sublinear rate
O(1/k) for non-strongly convex problems.

6.2 Proximal Newton Algorithms

This section borrows heavily from [23], [24] and [16].
The class of proximal Newton algorithms is a 2nd or-
der analog of the proximal gradient algorithms with a
quadratic convergence rate [16]. It attempts to incor-
porate 2nd order information about the smooth func-
tion f into the model function. At each iteration, it
minimizes a quadratic model centered at xk

∇f(xk)
T (u− xk) +

1

2t
(u− xk)

TH(u− xk) + g(u)

:= Hproxt

(

xk − tH−1∇f(xk)
)

where H = ∇2f(xk). The Hprox operator is analo-
gous to the proximal operator, but in the ‖·‖H -norm.
It simplifies to the proximal operator if H = I, but
in the general case of positive definite H there is no
closed-form solution for many common non-smooth

Algorithm 1 Proximal Newton

repeat

Solve subproblem

pk = Hproxt

(

xk − tH−1

k ∇f(xk)
)

− xk.

Find t to satisfy Armijo line search condition

f(xk+ tpk)+g(xk+ tpk) ≤ f(xk)+g(xk)−
tα

2
‖pk‖

2

Set xk+1 = xk + tpk
k = k + 1

until
‖xk−xk+1‖

‖xk‖
< tol

g(x) (including l1 and group l1). However if the prox-
imal operator of g is available, each of these sub-
problems can be solved efficiently with proximal gra-
dient.

Theoretical analysis in [16] suggests that proximal
Newton methods generally require fewer outer itera-
tions (evaluations of Hprox) than first-order methods
while providing higher accuracy because they incor-
porate 2nd order information. We have confirmed
empirically that the proximal Newton methods are
faster when n is very large or the gradient is expensive
to compute. The hessian matrix H can be replaced
by a quasi-newton approximation such as BFGS/L-
BFGS/SR1. In our implementation, we use the PNOPT
implementation [16].

7 Conditional Model

We can generalize our mixed model to include a con-
ditional model by incorporating features; this is a type
of conditional random field. Conditional models only
model the conditional distribution p(z|f), as opposed
to the joint distribution p(z, f), where z are the vari-
ables of interest to the prediction task and f are fea-
tures.

In addition to observing x and y, we observe features
f and we build a graphical model for the conditional
distribution p(x, y|f). Consider a full pairwise model
p(x, y, f) of the form (1). We then choose to only
model the joint distribution over only the variables x
and y to give us p(x, y|f) which is of the form

exp





∑

s,t

−
1

2
βstxsxt +

∑

s

αsxs +
∑

s,j

ρsj(yj)xs

+
∑

r<j

φrj(yr, yj) +
∑

s,l

γlsxsfl +
∑

l,r

ηlr(yr)fl
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(a) True Graph Structure
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Figure 2: Figure 2a shows a smaller version of the
graph used in the synthetic experiments. The graph
used in the experiment has 10 continuous and 10 dis-
crete variables. Blue nodes are continuous variables,
red nodes are binary variables and the orange, green
and dark blue lines represent the 3 types of edges. Fig-
ure 2b is a plot of the probability of correct edge re-
covery at a given sample size. Results are averaged
over 100 trials.

8 Experimental Results

We present experimental results on synthetic data,
survey data and on a conditional model.

8.1 Synthetic Experiments

In the synthetic experiment, the training points are
sampled from a true model with 10 continuous vari-
ables and 10 binary variables. The edge structure is

shown in Figure 2a. λ is chosen as 5
√

log p+q

n
as sug-

gested in several theoretical studies [22, 13]. We see
from the experimental results that recovery of the cor-
rect edge set undergoes a sharp phase transition, as
expected. With n = 1000 samples, we are recovering
the correct edge set with probability nearly 1.

8.2 Survey Experiments

The survey dataset we consider consists of 11 variables,
of which 2 are continuous and 9 are discrete: age (con-
tinuous), log-wage (continuous), year(7 states), sex(2
states),marital status (5 states), race(4 states), edu-
cation level (5 states), geographic region(9 states), job
class (2 states), health (2 states), and health insurance
(2 states). The dataset was assembled by Steve Miller

of OpenBI.com from the March 2011 Supplement to
Current Population Survey data. All the evaluations
are done using a holdout test set of size 100, 000 for
the survey experiments. The regularization parameter
λ is varied over the interval [5× 10−5, .7] at 50 points
equispaced on log-scale for all experiments.

8.2.1 Model Selection
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Figure 3: Model selection under different training set
sizes. Circle denotes the lowest test set negative log
pseudolikelihood and the number in parentheses is the
number of edges in that model at the lowest test neg-
ative log pseudolikelihood. The saturated model has
55 edges.

In Figure 3, we study the model selection performance
of learning a graphical model over the 11 variables un-
der different training samples sizes. We see that as the
sample size increases, the optimal model is increasingly
dense, and less regularization is needed.

8.2.2 Comparing against Separate

Regressions

A sensible baseline method to compare against is a
separate regression algorithm. This algorithm fits
a linear Gaussian or (multiclass) logistic regression
of each variable conditioned on the rest. We can
evaluate the performance of the pseudolikelihood by
evaluating − log p(xs|x\s, y) for linear regression and
− log p(yr|y\r, x) for (multiclass) logistic regression.
Since regression is directly optimizing this loss func-
tion, it is expected to do better. The pseudolikelihood
objective is similar, but has half the number of param-
eters as the separate regressions since the coefficients
are shared between two of the conditional likelihoods.
From Figures 4 and 5, we can see that the pseudo-
likelihood performs very similarly to the separate re-
gressions and sometimes even outperforms regression.
The benefit of the pseudolikelihood is that we have
learned parameters of the joint distribution p(x, y) and
not just of the conditionals p(xs|y, x\s). On the test
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dataset, we can compute quantities such as condition-
als over arbitrary sets of variables p(yA, xB |yAC , xBC )
and marginals p(xA, yB) [14]. This would not be pos-
sible using the separate regressions.
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Figure 4: Separate Regression vs Pseudolikelihood n =
100. y-axis is the appropriate regression loss for the
response variable. For low levels of regularization and
at small training sizes, the pseudolikelihood seems to
overfit less; this may be due to a global regularization
effect from fitting the joint distribution as opposed to
separate regressions.

8.2.3 Conditional Model

Using the conditional model, we model only the 3 vari-
ables logwage, education(5) and jobclass(2). The other
8 variables are only used as features. The conditional
model is then trained using the pseudolikelihood. We
compare against the generative model that learns a
joint distribution on all 11 variables. From Figure 6,
we see that the conditional model outperforms the gen-
erative model, except at small sample sizes.
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