Structure of

(\pm)-6-Methyl-6,12-methano-6H,12H,13H-[1]benzopyran[4,3- d][1,3]benzodioxocin-13-one

Gerard Ruggiero
Edward J. Valente
University of Portland, valentee@up.edu
Drake S. Eggleston

Follow this and additional works at: http:/ / pilotscholars.up.edu/chm_facpubs
Part of the Medicinal-Pharmaceutical Chemistry Commons

Citation: Pilot Scholars Version (Modified MLA Style)

Ruggiero, Gerard; Valente, Edward J.; and Eggleston, Drake S., "Structure of (\pm)-6-Methyl-6,12-methano-6H,12H,13H-
[1]benzopyran[4,3- $d][1,3]$ benzodioxocin-13-one" (1981). Chemistry Faculty Publications and Presentations. 15.
http://pilotscholars.up.edu/chm_facpubs/15

Structure of (\pm)-6-Methyl-6,12-methano-6H,12H,13H-[1]benzopyran-[4,3- d][1,3]benzodioxocin-13-one

By Gerard Ruggiero and Edward J. Valente
Department of Chemistry, Mississippi College, Clinton, MS 39058, USA
and Drake S. Eggleston
Department of Physical and Structural Chemistry, Smith, Kline \& French Laboratories, King of Prussia, PA 19406, USA

(Received 21 July 1988; accepted 11 January 1989)

Abstract. A derivative of warfarin, racemic $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}$, $M_{r}=306.32$, monoclinic, $C c, \quad a=9.594$ (2), $b=$ 20.437 (4),$\quad c=7.793$ (2) $\AA, \quad \beta=109.94$ (3) $)^{\circ}, \quad V=$ 1436.4 (11) $\AA^{3}, Z=4, D_{x}=1.416 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})$ $=1.5418 \AA, \quad \mu=7.742 \mathrm{~cm}^{-1}, \quad F(000)=640, \quad T=$ 293 K , final $R=0.053$ for 1224 observations. The title molecule, formed by spontaneous dehydration of 2^{\prime} hydroxywarfarin, is a cyclic ketal in which the side-chain phenyl is disposed pseudoaxially and is linked through a 2 '-oxygen to the ketal carbon in a fixed cis 1,3-diaxial configuration. Two dihydropyran rings are formed; one fused with the benzopyran ring adopts an e,f-diplanar conformation, the other is a chroman and is in a similar conformation.

Introduction. As part of a continuing study of the structures of dihydropyran derivatives containing various 2 -oxygen substituents, the compound described here is one of a series of crystalline warfarin derivatives. Warfarins generally crystallize as hemiketal 2-hydroxy-2-methyl-3,4-dihydro-2H,5H-pyrano[3,2-c]-[1]benzopyran- 5 -ones with varying 4 -substituents; 4 phenyl is the parent in the series. A number of 2-hydroxy and 2-methoxy analogs have been made and studied crystallographically, revealing an operative anomeric effect in the uniform axial disposition of the 2 -oxygen substituents, local influences on $\mathrm{C}-\mathrm{O}$ bond lengths and conformational preferences associated with the exoanomeric effect (Valente, Eggleston \& Schomaker, 1986). This contribution describes the structure of a 2-aryloxy warfarin ketal.

Experimental. Warfarin derivatives are made by Michael-type addition of unsaturated ketones to 4hydroxycoumarin (Ikawa, Stahmann \& Link, 1944). Synthesis of 2^{\prime}-hydroxywarfarin (I) by this method leads instead to a higher melting compound (II) which is not soluble in dilute alkali. An initial assignment of the structure required revision in the light of spectroscopic evidence and knowledge of the tendency of
warfarins to form cyclic hemiketal structures (Porter \& Trager, 1977).

(I)
(II)

This material proves to be a conveniently prepared 2-aryloxy warfarin ketal, and colorless crystals were obtained from ethanol solutions as plates, m.p. 531534 K . A specimen, $0.2 \times 0.4 \times 0.4 \mathrm{~mm}$, was chosen for data collection on a CAD-4 diffractometer. Cell constants were determined from 25 accurately centered reflections with $60 \leq 2 \theta \leq 70^{\circ}$ and intensities were measured with variable speed $\theta-2 \theta$ scans to $2 \theta=136^{\circ}$ ($h:-11$ to $11, k: 0$ to $24, l: 0$ to 9). The data (1404 unique) were corrected for coincidence and polarization, and symmetry equivalent data were averaged (agreement 2.6% on I). Three intensities were periodically monitored over the 15 h data collection period; average change $-0.5(1.1) \%$, no correction for deterioration was made. An extinction coefficient of the type defined by Zachariasen (1963), $g=$ 7.03 (1) $\times 10^{-6}$ was later applied and refined. Through the systematic absences ($h k l: \quad h+k=2 n+1 ; h 0 l$: $l=2 n+1$), and the structure solution, the space group was confirmed. The structure was discovered with MULTAN (Germain, Main \& Woolfson, 1971). NonH -atom positions were refined with $U_{15 \mathrm{~s}}$'s by full-matrix least squares on F minimizing $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, then with $U_{i j}$'s. H-atom positions were fixed at $1.0 \AA$ from their adjacent atoms with B 's fixed at approximately

Table 1. Positions and $\boldsymbol{B}_{\text {eq }}$ for (II) with e.s.d.'s in parentheses

Table 2. Principal bond distances (\AA) and angles $\left(^{\circ}\right)$ with e.s.d.'s in parentheses

O1-C2	I. 383 (4)	C7-C8	1.392 (6)
O1-C9	1.395 (4)	C8-C9	1.380 (5)
O2-C2	1.223 (4)	C9-C10	1.368 (4)
O3-C4	1.338 (4)	C11-C12	1.517 (5)
O3-Cl3	1.448 (4)	C11-C15	1.517 (6)
O4-C13	1.426 (5)	C12-C13	1.514 (5)
O4-C20	1.388 (4)	C13-C14	1.487 (5)
C2-C3	1.408 (4)	C15-C16	1.391 (5)
C3-C4	1.370 (4)	C15-C20	1.388 (5)
C3-C11	1.514 (5)	C16-C17	1.383 (8)
C4--C10	1.438 (4)	C17-C18	1.381 (7)
C5-C6	1.374 (5)	C18-C19	1.377 (6)
C5-C10	1.417 (5)	C19-C20	1.383 (7)
C6-C7	1.365 (5)		
C2-O1-C9	120.6 (2)	C5-C10-C9	118.7 (3)
C4-O3-C13	120.3 (2)	C3-C11-C12	107.7 (3)
C13-O4-C20	119.4 (3)	C3-C11-C15	110.6 (3)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$	115.2 (3)	C12-C11-C15	107.7 (3)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	118.5 (3)	$\mathrm{C} 11-\mathrm{C12-C13}$	108.3 (3)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	126.3 (3)	O3-C13-O4	107.1 (3)
C2-C3-C4	121.1 (3)	O3-C13-C12	110.6 (3)
C2-C3-C1t	$120 \cdot 6$ (3)	O3-C13-C14	104.7 (3)
C4-C3-C11	118.3 (3)	O4-C13-C12	110.9 (3)
O3-C4-C3	123.9 (3)	O4-C13-C14	105.9 (3)
O3-C4-C10	116.0 (3)	C12-C13-C14	117.0 (3)
C3-C4-C10	120.1 (3)	C11-C15-C16	123.5 (3)
C6-C5-C10	118.8 (3)	C11-C15-C20	118.2 (3)
C5-C6-C7	121.2 (3)	C16-C15-C20	118.2 (4)
C6-C7-C8	121.1 (4)	C15-C16-C17	121.3 (4)
C7-C8-C9	117-6 (3)	C16-C17-C18	119.1 (4)
O1-C9-C8	115.7 (3)	C17-C18-C19	120.9 (5)
O1-C9-C10	121.6 (3)	C18-C19-C20	119.5 (4)
C8-C9-C10	122.7 (3)	O4-C20-C15	123.0 (4)
C4-C10-C5	123.3 (3)	O4-C20-C19	116.0 (3)
C4-C10-C9	118.0 (3)	C15-C20-C19	121.0 (3)

Fig. 1. An ORTEP (Johnson, 1976) drawing of (II) showing 50\% probability vibrational ellipsoids for the non-H atoms.
methyl ketals and hemiketals (Valente, Eggleston \& Schomaker, 1986) in which comparable lengths are 1.40 and $1.47 \AA$, respectively. Both the dihydropyran ring conformation and the better charge-accepting character of the 2 -phenoxy group in (II), relative to warfarin or its methyl ketals, tend increasingly to populate double bond-no bond resonance structures

[^0]shortening C13-O3 and lengthening $\mathrm{C} 13-\mathrm{O} 4$. The ring formed by the dehydration of (I), C15/C20/ O4/C13/C12/C11, is a chroman dihydropyran, which also has a half-chair conformation distorted towards the $e_{f} f$-diplanar form. The displacement asymmetry parameter $\Delta C_{2}=0.155$ (2).

This work was sponsored in part by a grant from the American Heart Association, No. MS-86-G-4.

References

Enraf-Nonius (1987). Structure Determination Package. EnrafNonius, Delft, The Netherlands.

Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Ikawa, M., Stahmann, M. \& Link, K. P. (1944). J. Am. Chem. Soc. 66, 902-906.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Acta Cryst. C 39, 1141-1142.
Porter, W. R. \& Trager, W. F. (1977). J. Heterocycl. Chem. 14, 319-320.
Stewart, R. F., Davidion, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Valente, E. J., Eggleston, D. S. \& Schomaker, V. (1986). Acta Cryst. C42, 1809-1813.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

[^0]: *Lists of H -atom positions, anisotropic vibrational amplitudes and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51799 (11 pp.). Copies may be obtained through The Executive Socretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

