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Structure of a large social network
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We study a social network consisting of over*liidividuals, with a degree distribution exhibiting two
power scaling regimes separated by a critical de@gge and a power law relation between degree and local
clustering. We introduce a growing random model based on a local interaction mechanism that reproduces the
observed scaling features and their exponents. We suggest that the double power law originates from two very
different kinds of networks that are simultaneously present in the human social network.

DOI: 10.1103/PhysRevE.69.036131 PACS nunier89.75.Da, 89.75.Hc, 89.75.Fb, 89.65.Ef

INTRODUCTION 18 months of existence, it has grown into a well-known so-
cial phenomenon among Hungarian-speaking Internet users,

The ubiquity of networks has long been appreciated: ComE;urrently(October 2008including about 35000 members.

plex systems in the social and physical sciences can often bg The basic rules of the website are very simple. Member-
modeled on a graph of nodes connected by edge_s. Recentlyslﬁip is strictly invitation only; existing members can invite
has alsq been realized that many networks arising in NatUIg, "unlimited number of friends to the network via email
and society, such as neural netwoflts fooq web§[2], cel- who, if they choose to do so, join the network by an initial
lular ne_tworks[3], netw_orks of sexual relatlorjshl_;ﬁé], col- link connecting to the person who invited them. The list of
laborations between film actofd,5] and scientist{6,7], usernames is fully searchable by all members. Additional

power grids[1,8], Internet routerd9], and links between i : )
. : . links can be recorded among members, representing a single
pages of the World Wide Wef1.0-13 all share certain uni- type of “acquaintance,” initiated by one member and agreed

\éienzs?l; f;r?égﬁge”r?cr?g\éf rtyhepog:lghznﬁ:je(lﬁgstge;e‘%%?" Or(reciprocateiul by the other. The use of real names is encour-
Worlpds" [1,14,13] W?th srﬁall gveragegpgth length between aged, and users regist_ering unde_r pseudonyms_ are unrecog-
nodes, and they have many highly connected nodes with n!z_able by other, genine users; mdegd, there 'S stror)g em-
degreé distribution often following a power 4®,10]. The Smcal evidence for the_ lack of.prollfer_a}tmn of m_uItlpIe
network of humans with links given by acquain’tan;:e ties ispseudonyms. Th.e web'sne contains additional services such
one of the most intriguing of such networks4—17, but its as messaging, discussion forums, etc.

. . Because of the relatively short age of the network, links
study has been hindered by the absence of large reliable daf%‘rmed between people neywly acqu%inted through the web-
sets.

The aim of the present work is to introduce a data seﬁ'te have a minimal structural effect; in addition, less than

describing a large web-based social network, to study it 0% of users make active use of the message board and

9 9 o ' Y "elated services. Thus the majority of the links represent
aggregated I(_)cal and global_ characteristics, and to deduc enuine preexisting social acquaintance. Hence the WIW de-
some essential features of its structure through modelin '

L -Jelops as a growing subgraph of the underlying social ac-
The network _exh|b|t§ a.novel feature, a doubl_e power law Inquaintance network. Indeed, the growth process of the WIW
the degree distribution; we will argue that this results fromnetwork is essentially equivalent to the “snowball sampling”
the existence of two underlying networks which compete in ethod well known to sociologisfd7], and to the crawling
the formation of the actual observed contact graph. As usu%ethools used to investigate the Wo,rld Wide Web and other
in network science, the range of the observed power laws iéomputer networks
limited by system size; however, in case of the model, choos- '

ing a sufficiently large system size leads to power laws of
arbitrary length. DEGREE DISTRIBUTIONS

Basic network measures of the WIW network, as an
NEW DATA anonymous snapshot taken in October 2002, are listed in
Table I. Note that by virtue of the invitation mechanism ex-
plained above, the WIW network is necessarily connected.
The degree distribution of the network is plotted in Fig. 1.
e graph shows two power law regimes

The WIW project was started in Budapest, Hungary in
April 2002 on the website www.wiw.hu with the general aim
of recording social acquaintance among friends. During it:;l.h

) ) k=10 if k< K it
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TABLE I. Number of nodes, edges, and the average degree. 1¢°
clustering, and path length for the WIW network, and a random
network[13] of the same size and edge density.

WIW Random ¢

v 12388 . O
E 74495 ]
(k) 12.0 g 00

(C) 0.2 0.001 o %0 s,
(O 45 3.8 Ry, >

The two regimes are separated by a critical degkgg o o
~25. The exponeny,~ —2 of the largek power law falls
in a range that has often been observed before in a variety 0 ;4 :
contexts[3—12]. The valuey;~—1 of the smallk power 10° LU 10
law exponent is much less common, observed before only in
some scientific collaboration networ[ﬁ] and food W8b$2] FIG. 2. The degree distribution of the invitation tree of the WIW
The possibility of a double power law was discussed in Refsgraph, compatible with a large-power lawP (k) ~k~ 3+
[7,18], but the WIW network is to our knowledge the first
data set which demonstrates the existence of double poweavith an exponent of—3 and that changing the adjustable
law behavior. A second snapshot taken in January 2003 comparameter in our model away from a critical value simulta-
firms these observations, yielding a degree distribution witmeously destroys the power law in the invitation tree and the
the same features. Since the network grew by about 50%mallk power law of the full degree distribution. Therefore,
during this period, the described distribution can be regardede argue that the power law in the distribution of the invi-
as essentially stationary in time. tation network is directly linked with the smatlpower law
The operational rules of the network imply that it containsof the total degree distribution.
a distinguished subgraph, the invitation tree, along which Since the invite network degree distribution is qualita-
membership spreads. The degree distribution of the invitatively different from the total degree distribution, it is rea-
tion tree graph is shown in Fig. 2. While for large degreessonable to conclude that there are at least two different types
this curve is compatible with a power law with an exponentof social linking at play: the network of friends defined by
y~—3, the available data are not large enough to warrant &es strong enough to warrant an invitation is different from
definite conclusion in this regard. Rather, the significance ofthe network of acquaintances that drives the mutual recogni-
the invitation network becomes clear below, after we intro-tion, once both parties are registered. We suggest that it is the
duce the random growing model. We will show that thepresence of the two graph processes, the invitation of new
model that reproduces the degree distribution of the fullmembers and the recording of acquaintance between already
WIW network does have a power law in its invitation tree registered members, that is responsible for the two scaling
regimes in the degree distribution of the WIW graph.
10° : : Note that from the point of view of the node in the net-
& work, the two different linking mechanisms can be in play at
- different times. It is possible that when the node has few
Teal links, its link count is mostly affected by the invitation
© \~:10 1 mechanism, but once it acquired many links, the triangle
¢ Qo0 o~ mechanism becomes dominant. Unfortunately time-resolved
O N data for individual nodes were not made available to us, and
therefore we could not investigate this issue any further.

107"}

_2_

P(k)

‘o 20 CLUSTERING
N ]
The density of edges among neighbors of a fixed node

&
® KR is measured by the local clustering coefficient. For a node
%)‘o of degreek, the local clustering coefficier@@(v) is the num-
. OO 1 ber of acquaintance triangles of whichis a vertex, divided
10 by k(k—1)/2, the number of all possible triangles. Figure 3
k plots C(k), the average ofc(v) over nodes of degrek,
against the degree, showing the existence of a power law

10° 10"

FIG. 1. The degree distribution of the WIW network, with a
smallk power law P(k)~k™ 1° and a largek power law P(k)
~k =20 separated by a critical degrég;~25. C(k)~k= 03
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FIG. 3. The correlation between the local clustering coefficient ~FIG. 4. The time development of the number of nodes and edges
C(k) and the node degrdefor the WIW graph, showing a power 0f the WIW network. Note that the number of nodes is multiplied
law C(k)~k™033 by 3 for better visibility.

A relationship C(k)~k~® was observed before in Refs. edge creation activity of members necessarily decreased with

[19,20, but with significantly larger exponents. Such powertime.

laws hint at the presence of hierarchical architec{@@: The fact that the edge/node ratio changes little over time

when small groups organize into increasingly larger groupé;s consistent with the observed stationary nature of the de-

in a hierarchical manner, the local clustering decreases o@ree distribution. To see this, consider a growing network

different scales according to such a power law. with V(t) nodes at timet and a time-independent degree
The average clustering coefficient and average diametefistribution P(k) with =,P(k)=1 and finite first moment

of the WIW network are listed in Table I. The data show that=¢kP(k). At time t, there are

it is a “small-world” network in the sense of Refl]: the

average path length is almost as short as in a random net- n(k,H)=V(t)P(k)

work [13] of the same size, but the clustering coefficient is

two orders of magnitude larger nodes of degrek, and hence the number of edges is

1 V(t)
TIME DEVELOPMENT E(t)= > Zk kn(k,t)= e Zk kP(k).

As Fig. 4 shows, the number of nodes of the WIW net- ) )
work grew approximately linearly with time. This appears to Consequently the edge/node ratgt)/V(t) is essentially
be related to the fact that the WIW network develops as &onstant, and it only changes because the maximal degree
subgraph of the underlying social network, and thus thdncreases. This argument applies to the WIW network with
availability of new members is constrained by high cluster-Stationary distribution
ing of the existing social links: a substantial proportion of the

acquaintances of a newly invited member will have been C1 it k<k..
invited already. This conclusion is supported by noting that k71 erit
the average number of successful invitations is very close to P(k)=

one(except for the very first nodes, and the latest ones whose Cx .

L — if I<>kcrit
invitations presumably have not yet all been sent out or acted k72

upon. The average number of invitations sent out is about

two. Similar observations are noted in REZ1] for systems  ith y1~—1, y,~—2. This distribution is on the boundary
growing on a background network. . _of distributions with finite first moment: the first moment

_ Furthermore, the number of nges also grew linearly withexists fory,< —2 but not otherwise.

time, and thus the edge/node ratio only grew moderately dur-

ing 'Fhe_ exis?ence of the network._ Thi§ observation is in con- NETWORK MODELING

tradiction with any purely local time-independent edge cre-

ation mechanism. If every member of the network actively A random graph process based on linear preferential at-
participates in edge creation independently of its age in théachment for the creation of new edges was proposed in Ref.
network, the edge/node ratio would also increase linearly5] to account for the observed power laws in natural net-
with time. This linear growth of the edge/node ratio was notworks. Such a process leads indeed to a graph with a power
observed in the network, and hence we conclude that thiaw degree distributior}5,22]. However, this model is by
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FIG. 5. The dependence of the degree distribution of our model FIG. 6. The degree distribution of the invitation tree in the
graph on the parameteg with m=15 andvV=2x10° (q=0.5,1) model, for various values af.
andV=5x10* (q=0), averaged over 50 graphg;; is ~0.5.

definition “macroscopic,” requiring global information the edge/node ratio without significantly affecting any other
about the entire network in every step. This assumption i®roperty of the graph. -

realistic for the World Wide Web or some collaboration net- ~ 1he precise description of our process is as follows.
works, where all nodes are “visible” from all others. For (1) We begin with a small sparse graph.

human social networks however, it is reasonable to assume (2) New nodes arrive at a rate of one per unit time and are
some degree of locality in the interactions. Also, the originalattached to an earlier node chosen with a probability distri-
scale-free models are not applicable to networks with highbution giving weightk to a node of degrels whereq=0 is
degree-dependent clustering coefficients. These problenfsParameter.

motivated the introduction of models which use local tri- (3) Internal edges are created as follows: we select two
angle creation mechanisrfiss,23—28, which increase clus- random neighbors of a randomly chosen nodend if they
tering in the network. These models have degree-dependeffe unconnected, we create an edge between them. Other-
local clustering, and can also lead to power law degree diswise, we select two new neighbors of the same noded
tributions, though no existing model of this kind shows atry again. If all neighbors of are already connected to each
double power law. other, we pick a new.

We now present a model to account for the observed (4) A constant number of internal edges is created per unit
properties of the WIW network. As mentioned above, thetime, so that the edge/node ratio equals a constaafter
WIW can be viewed as a growing subgraph of the underlyinggach time step.
social acquaintance graph. This suggests a model obtained The degree distribution of graphs generated by our pro-
by a two-step process, first modeling the underlying graph¢ess is shown in Fig. 5. We found a very robust lakge-
and then implementing a growth process. The lack of availpower law of exponenty,~—2, essentially independently
able data on the underlying graph, however, prevents us froff the invitation mechanism. We measured the joint probabil-
following this program directly. We build instead a growing ity distribution of the degreekk’ of nodes connected by
graph in a single process, choosing the local triangle mechadew internal edges, and found that for large values, it was
nism as our basic edge creation method. This models theroportional tokk’. This directly leads to a power law ex-
social introduction of two members of the WIW network by ponent of—2 via standard mean-field argumefity. On the
a common friend some time in the past, such edges beingther hand, the smak-behavior was found to be sensitive to
recorded in the WIW network itself gradually over time. The the invitation mechanism; Fig. 5 shows that a second power
invitation of new members is modeled by sublinear preferdaw only appears at a critical=0;. The value ofqg;
ential attachmenf5], motivated by experimental results on depends on the edge/node ratio.
scientific collaboration networks,27], where the data per- To explore the hypothesis that the low degree power law
mit the analysis of initial edge formation. We also impose theis indeed related to the invitation mechanism, we plot in Fig.
constant edge/node ratio to be consistent with the observel the degree distribution of the invitation tree of the model
stationary degree distribution. Note that this constant has toetwork for various values of the parametgr For ¢
be tuned from the shape of observed distributions, and car=0.i, We obtain a scale-free distribution with exponent
not be inferred from the WIW data directly. The reason for —3, similar to what was observed for the real network. De-
this is that the WIW network has a disproportionate numbercreasingg leads to a much sharper drop in the curve, with an
of nodes of degree (Fig. 1), representing people who once exponential tail forq=0, whereas increasing above the
responded to the invitation but never returned, which distortgritical value leads to a gelation-type behavior: new nodes
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8.2 . T tion which exhibits an interesting feature: two power law
regimes with different exponents. The observed approxi-
St 1 mately constant edge/node ratio is a consequence of the sta-

bility of the degree distribution, and implies that the average
activity of members is time dependent, whereas the growth
of the number of nodes is constrained by the underlying
social network. We introduced a random growing model
which reproduces the observed degree distribution extremely
well, and concluded that the sm&llpower law is related to

» b
=) =)
v T

Average path length <I>
s
'

4.2r the scale-free nature of the invitation tree, whereas the large-
k power law is a result of the triangle mechanism of social

4r 1 introductions. Our results show that human social networks
are likely to be composed of several networks with different

38r 1 characteristics, and directly observable processes will exhibit
. . . a mixture of features resulting from distinct underlying

36 10° 10* 10° mechanisms. Multiple layers of networks are indeed likely to
Number of vertices, V exist outside of the context of social networks as well; for

gxample, technological networks might contain evidence of

development at different times, transport networks obviously

decompose into networks defined by range and transport

connect only to very large degree nodes. type, collaboration networks have links of different strengths
The small-world property in a random graph process |Sand the list could be continued. In our view, the interaction

characterized by logarithmic growth in the average pat}penNQen Iayer_s in different classes of networks deserves fur-

length (1) as a function of system si2é As Fig. 7 shows, ther investigation.

the average path length indeed scales logarithmically in our

process.

FIG. 7. The average path length as a function of the number o
nodes for the graphs created by our process.
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