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Structure of a large social network
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We study a social network consisting of over 104 individuals, with a degree distribution exhibiting two
power scaling regimes separated by a critical degreekcrit , and a power law relation between degree and local
clustering. We introduce a growing random model based on a local interaction mechanism that reproduces the
observed scaling features and their exponents. We suggest that the double power law originates from two very
different kinds of networks that are simultaneously present in the human social network.
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INTRODUCTION

The ubiquity of networks has long been appreciated: co
plex systems in the social and physical sciences can ofte
modeled on a graph of nodes connected by edges. Recen
has also been realized that many networks arising in na
and society, such as neural networks@1#, food webs@2#, cel-
lular networks@3#, networks of sexual relationships@4#, col-
laborations between film actors@1,5# and scientists@6,7#,
power grids@1,8#, Internet routers@9#, and links between
pages of the World Wide Web@10–12# all share certain uni-
versal characteristics very poorly modeled by regular
simple random graphs@13#: they are highly clustered ‘‘smal
worlds’’ @1,14,15# with small average path length betwee
nodes, and they have many highly connected nodes wi
degree distribution often following a power law@5,10#. The
network of humans with links given by acquaintance ties
one of the most intriguing of such networks@14–17#, but its
study has been hindered by the absence of large reliable
sets.

The aim of the present work is to introduce a data
describing a large web-based social network, to study
aggregated local and global characteristics, and to ded
some essential features of its structure through model
The network exhibits a novel feature, a double power law
the degree distribution; we will argue that this results fro
the existence of two underlying networks which compete
the formation of the actual observed contact graph. As us
in network science, the range of the observed power law
limited by system size; however, in case of the model, cho
ing a sufficiently large system size leads to power laws
arbitrary length.

NEW DATA

The WIW project was started in Budapest, Hungary
April 2002 on the website www.wiw.hu with the general ai
of recording social acquaintance among friends. During
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18 months of existence, it has grown into a well-known s
cial phenomenon among Hungarian-speaking Internet us
currently ~October 2003! including about 35 000 members.

The basic rules of the website are very simple. Memb
ship is strictly invitation only; existing members can invi
an unlimited number of friends to the network via ema
who, if they choose to do so, join the network by an init
link connecting to the person who invited them. The list
usernames is fully searchable by all members. Additio
links can be recorded among members, representing a s
type of ‘‘acquaintance,’’ initiated by one member and agre
~reciprocated! by the other. The use of real names is enco
aged, and users registering under pseudonyms are unre
nizable by other, genuine users; indeed, there is strong
pirical evidence for the lack of proliferation of multipl
pseudonyms. The website contains additional services s
as messaging, discussion forums, etc.

Because of the relatively short age of the network, lin
formed between people newly acquainted through the w
site have a minimal structural effect; in addition, less th
10% of users make active use of the message board
related services. Thus the majority of the links repres
genuine preexisting social acquaintance. Hence the WIW
velops as a growing subgraph of the underlying social
quaintance network. Indeed, the growth process of the W
network is essentially equivalent to the ‘‘snowball samplin
method well known to sociologists@17#, and to the crawling
methods used to investigate the World Wide Web and ot
computer networks.

DEGREE DISTRIBUTIONS

Basic network measures of the WIW network, as
anonymous snapshot taken in October 2002, are listed
Table I. Note that by virtue of the invitation mechanism e
plained above, the WIW network is necessarily connecte

The degree distribution of the network is plotted in Fig.
The graph shows two power law regimes

P~k!;H k21.0 if k,kcrit

k22.0 if k.kcrit.
©2004 The American Physical Society31-1
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The two regimes are separated by a critical degreekcrit
'25. The exponentg2'22 of the large-k power law falls
in a range that has often been observed before in a varie
contexts@3–12#. The valueg1'21 of the small-k power
law exponent is much less common, observed before onl
some scientific collaboration networks@6# and food webs@2#.
The possibility of a double power law was discussed in Re
@7,18#, but the WIW network is to our knowledge the fir
data set which demonstrates the existence of double po
law behavior. A second snapshot taken in January 2003
firms these observations, yielding a degree distribution w
the same features. Since the network grew by about 5
during this period, the described distribution can be regar
as essentially stationary in time.

The operational rules of the network imply that it contai
a distinguished subgraph, the invitation tree, along wh
membership spreads. The degree distribution of the inv
tion tree graph is shown in Fig. 2. While for large degre
this curve is compatible with a power law with an expone
g'23, the available data are not large enough to warra
definite conclusion in this regard. Rather, the significance
the invitation network becomes clear below, after we int
duce the random growing model. We will show that t
model that reproduces the degree distribution of the
WIW network does have a power law in its invitation tre

TABLE I. Number of nodes, edges, and the average deg
clustering, and path length for the WIW network, and a rand
network @13# of the same size and edge density.

WIW Random

V 12388
E 74495
^k& 12.0
^C& 0.2 0.001
^ l & 4.5 3.8

FIG. 1. The degree distribution of the WIW network, with
small-k power law P(k);k21.0 and a large-k power law P(k)
;k22.0 separated by a critical degreekcrit'25.
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with an exponent of23 and that changing the adjustab
parameter in our model away from a critical value simul
neously destroys the power law in the invitation tree and
small-k power law of the full degree distribution. Therefor
we argue that the power law in the distribution of the inv
tation network is directly linked with the small-k power law
of the total degree distribution.

Since the invite network degree distribution is qualit
tively different from the total degree distribution, it is rea
sonable to conclude that there are at least two different ty
of social linking at play: the network of friends defined b
ties strong enough to warrant an invitation is different fro
the network of acquaintances that drives the mutual reco
tion, once both parties are registered. We suggest that it is
presence of the two graph processes, the invitation of n
members and the recording of acquaintance between alr
registered members, that is responsible for the two sca
regimes in the degree distribution of the WIW graph.

Note that from the point of view of the node in the ne
work, the two different linking mechanisms can be in play
different times. It is possible that when the node has f
links, its link count is mostly affected by the invitatio
mechanism, but once it acquired many links, the trian
mechanism becomes dominant. Unfortunately time-resol
data for individual nodes were not made available to us,
therefore we could not investigate this issue any further.

CLUSTERING

The density of edges among neighbors of a fixed nodv
is measured by the local clustering coefficient. For a nodv
of degreek, the local clustering coefficientC(v) is the num-
ber of acquaintance triangles of whichv is a vertex, divided
by k(k21)/2, the number of all possible triangles. Figure
plots C(k), the average ofC(v) over nodes of degreek,
against the degree, showing the existence of a power la

C~k!;k20.33.

e,

FIG. 2. The degree distribution of the invitation tree of the WI
graph, compatible with a large-k power lawP(k);k23.16.
1-2
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A relationship C(k);k2a was observed before in Refs
@19,20#, but with significantly larger exponents. Such pow
laws hint at the presence of hierarchical architecture@20#:
when small groups organize into increasingly larger gro
in a hierarchical manner, the local clustering decreases
different scales according to such a power law.

The average clustering coefficient and average diam
of the WIW network are listed in Table I. The data show th
it is a ‘‘small-world’’ network in the sense of Ref.@1#: the
average path length is almost as short as in a random
work @13# of the same size, but the clustering coefficient
two orders of magnitude larger.

TIME DEVELOPMENT

As Fig. 4 shows, the number of nodes of the WIW n
work grew approximately linearly with time. This appears
be related to the fact that the WIW network develops a
subgraph of the underlying social network, and thus
availability of new members is constrained by high clust
ing of the existing social links: a substantial proportion of t
acquaintances of a newly invited member will have be
invited already. This conclusion is supported by noting t
the average number of successful invitations is very clos
one~except for the very first nodes, and the latest ones wh
invitations presumably have not yet all been sent out or ac
upon!. The average number of invitations sent out is ab
two. Similar observations are noted in Ref.@21# for systems
growing on a background network.

Furthermore, the number of edges also grew linearly w
time, and thus the edge/node ratio only grew moderately
ing the existence of the network. This observation is in c
tradiction with any purely local time-independent edge c
ation mechanism. If every member of the network activ
participates in edge creation independently of its age in
network, the edge/node ratio would also increase linea
with time. This linear growth of the edge/node ratio was n
observed in the network, and hence we conclude that

FIG. 3. The correlation between the local clustering coeffici
C(k) and the node degreek for the WIW graph, showing a powe
law C(k);k20.33.
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edge creation activity of members necessarily decreased
time.

The fact that the edge/node ratio changes little over ti
is consistent with the observed stationary nature of the
gree distribution. To see this, consider a growing netw
with V(t) nodes at timet and a time-independent degre
distribution P(k) with (kP(k)51 and finite first moment
(kkP(k). At time t, there are

n~k,t !5V~ t !P~k!

nodes of degreek, and hence the number of edges is

E~ t !5
1

2 (
k

kn~k,t !5
V~ t !

2 (
k

kP~k!.

Consequently the edge/node ratioE(t)/V(t) is essentially
constant, and it only changes because the maximal de
increases. This argument applies to the WIW network w
stationary distribution

P~k!55
c1

kg1
if k,kcrit

c2

kg2
if k.kcrit

with g1'21, g2'22. This distribution is on the boundar
of distributions with finite first moment: the first momen
exists forg2,22 but not otherwise.

NETWORK MODELING

A random graph process based on linear preferential
tachment for the creation of new edges was proposed in
@5# to account for the observed power laws in natural n
works. Such a process leads indeed to a graph with a po
law degree distribution@5,22#. However, this model is by

FIG. 4. The time development of the number of nodes and ed
of the WIW network. Note that the number of nodes is multipli
by 3 for better visibility.
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definition ‘‘macroscopic,’’ requiring global information
about the entire network in every step. This assumption
realistic for the World Wide Web or some collaboration n
works, where all nodes are ‘‘visible’’ from all others. Fo
human social networks however, it is reasonable to ass
some degree of locality in the interactions. Also, the origi
scale-free models are not applicable to networks with hi
degree-dependent clustering coefficients. These probl
motivated the introduction of models which use local t
angle creation mechanisms@15,23–26#, which increase clus-
tering in the network. These models have degree-depen
local clustering, and can also lead to power law degree
tributions, though no existing model of this kind shows
double power law.

We now present a model to account for the obser
properties of the WIW network. As mentioned above, t
WIW can be viewed as a growing subgraph of the underly
social acquaintance graph. This suggests a model obta
by a two-step process, first modeling the underlying gra
and then implementing a growth process. The lack of av
able data on the underlying graph, however, prevents us f
following this program directly. We build instead a growin
graph in a single process, choosing the local triangle mec
nism as our basic edge creation method. This models
social introduction of two members of the WIW network b
a common friend some time in the past, such edges b
recorded in the WIW network itself gradually over time. Th
invitation of new members is modeled by sublinear pref
ential attachment@5#, motivated by experimental results o
scientific collaboration networks@7,27#, where the data per
mit the analysis of initial edge formation. We also impose
constant edge/node ratio to be consistent with the obse
stationary degree distribution. Note that this constant ha
be tuned from the shape of observed distributions, and c
not be inferred from the WIW data directly. The reason
this is that the WIW network has a disproportionate num
of nodes of degree 1~Fig. 1!, representing people who onc
responded to the invitation but never returned, which disto

FIG. 5. The dependence of the degree distribution of our mo
graph on the parameterq, with m515 andV523105 (q50.5,1)
andV553104 (q50), averaged over 50 graphs;qcrit is '0.5.
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the edge/node ratio without significantly affecting any oth
property of the graph.

The precise description of our process is as follows.
~1! We begin with a small sparse graph.
~2! New nodes arrive at a rate of one per unit time and

attached to an earlier node chosen with a probability dis
bution giving weightkq to a node of degreek, whereq>0 is
a parameter.

~3! Internal edges are created as follows: we select
random neighbors of a randomly chosen nodev, and if they
are unconnected, we create an edge between them. O
wise, we select two new neighbors of the same nodev and
try again. If all neighbors ofv are already connected to eac
other, we pick a newv.

~4! A constant number of internal edges is created per u
time, so that the edge/node ratio equals a constantm after
each time step.

The degree distribution of graphs generated by our p
cess is shown in Fig. 5. We found a very robust largek
power law of exponentg2'22, essentially independentl
of the invitation mechanism. We measured the joint proba
ity distribution of the degreesk,k8 of nodes connected by
new internal edges, and found that for large values, it w
proportional tokk8. This directly leads to a power law ex
ponent of22 via standard mean-field arguments@7#. On the
other hand, the small-k behavior was found to be sensitive
the invitation mechanism; Fig. 5 shows that a second po
law only appears at a criticalq5qcrit . The value ofqcrit
depends on the edge/node ratio.

To explore the hypothesis that the low degree power
is indeed related to the invitation mechanism, we plot in F
6 the degree distribution of the invitation tree of the mod
network for various values of the parameterq. For q
5qcrit , we obtain a scale-free distribution with expone
23, similar to what was observed for the real network. D
creasingq leads to a much sharper drop in the curve, with
exponential tail forq50, whereas increasingq above the
critical value leads to a gelation-type behavior: new nod

el FIG. 6. The degree distribution of the invitation tree in th
model, for various values ofq.
1-4
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STRUCTURE OF A LARGE SOCIAL NETWORK PHYSICAL REVIEW E69, 036131 ~2004!
connect only to very large degree nodes.
The small-world property in a random graph process

characterized by logarithmic growth in the average p
length ^ l & as a function of system sizeV. As Fig. 7 shows,
the average path length indeed scales logarithmically in
process.

CONCLUSION

We have presented and analyzed a large data set
human acquaintance network with a stable degree distr

FIG. 7. The average path length as a function of the numbe
nodes for the graphs created by our process.
y,

,
o

,
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tion which exhibits an interesting feature: two power la
regimes with different exponents. The observed appro
mately constant edge/node ratio is a consequence of the
bility of the degree distribution, and implies that the avera
activity of members is time dependent, whereas the gro
of the number of nodes is constrained by the underly
social network. We introduced a random growing mod
which reproduces the observed degree distribution extrem
well, and concluded that the small-k power law is related to
the scale-free nature of the invitation tree, whereas the la
k power law is a result of the triangle mechanism of soc
introductions. Our results show that human social netwo
are likely to be composed of several networks with differe
characteristics, and directly observable processes will exh
a mixture of features resulting from distinct underlyin
mechanisms. Multiple layers of networks are indeed likely
exist outside of the context of social networks as well;
example, technological networks might contain evidence
development at different times, transport networks obviou
decompose into networks defined by range and trans
type, collaboration networks have links of different streng
and the list could be continued. In our view, the interacti
between layers in different classes of networks deserves
ther investigation.
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