

STRUCTURE OF A OAE-COMPONENT PLASMA IN AN EXTERNAL FIELD: A MOLECULAR

DYAAMXCS STUDY OF PARTICLE ARRANGEMENT IN A HEAYY-ION STORAGE RING

A. Rahman
Supercomputer Inseltute and Sehool of Phyoles \& Astronomy, UnIverally of Hinmeaora. Hinmeapolla, HN 55455
and
3。PoSehiffer
Argoman Natlomal Laboratory. Argomac. IL 60439 and Wriveralty of Chrcaga。 Chreago. IL 60637

Abstract

R A ameocomponenc planay has been studiled by molecular dymanics calculation to sfaulate the behavior of charged particles in heavy-ion atorage rimge. The Hanllcomar used conflame the plarmo im the directiong laceral co the directlom of travel ia the riag la the frame of referame which is moving vith the beam. The reswlis show an unexpected arratificarion of dearity in the laceral dircertom, and o ceadency cach atull ne observe a ertamgular parcerm of parctele arrangement.

INTRODUCTION

In hearyolan arorage ringa a plame of bare or heavily fomized
 ulth manerlc (or electric) focusslat arranged so os co conflae the plame to a marron region aroumd the equilibrium arbit in the rimgo The plabms way be cooled by several methods: among them eleetrom coollag and the mewly ausecsed method of leser coollag, auth that the relative thermal wotiow of the particles ulth respect co each orther lo lowered. although the whole plomen lo moring around the rimg olth velocitleo of 10^{10} cafoec or mare. The mumber demaltiea fa auch a plasua can be becueen 10^{5} and 10^{8} foms/em and remperatures of relocrve notron of 1 degor hare beea reported, remperaruras down to the mK range are amelclpated with laoer coollag. The poorlbillicy of observiag condemonelion phomomana sa buch ayorems has been mored [i].

Te have mode am arteapt co alaulate theoe condiciens by comprer

equations of motion may be uaed to determine the dynamica of the fons. In addition, as will be seen in the next section, there are simplifylng assumptions about the confining potential, which imply idealizations of the magnetic fields that contain the plasma in a real storage ring. The results obtained are rather unexpected and hence are being reported even though the more reallatic aspects of the conditions prevalling in atorage rings have not yer been incorporated.

THE HAMILTONIAN AND BOUNDARY CONDITIONS
He ube here a periodically repearing cublc box of length L (expressed in rerms of some unlt of lengit $a \xi \mathrm{~cm}$) in which chere are N lons alth porenclal emergy Y (the summation over all perfodic boxes being 1aplicit),

$$
V=\sum_{\mathbb{1}} \sum_{\beta>\mathbb{1}} 1 / \Sigma_{\mathbb{Q}}+\Sigma_{\mathbb{1}} 1 / 2 \mathbb{K}\left(y_{\mathbb{1}}{ }^{2} \nmid \varepsilon_{\mathbb{1}}\right)_{\rho}
$$

 bor. $r_{i f}$ lo the diatance between the parelcies 1 and f (all in units of ξ) and ∇ ta the energy in unite of $2^{2} e^{2} / \xi_{0}$, (In a cypical atorage ring for loma with charge Z the values of $K Z^{2} e^{2} / \xi^{3}$ range between 10^{-6} and $10^{-12} \mathrm{erg} / \mathrm{ca}^{2}$)) if the value of k is large, the coordinates y_{i} and z_{i} will be conflaed to a narrow region around the x axis and the plasma will be spread in a eyllmder along this aris, continulag to the edges of the bor and jolalmg onto the cyllader of plama la the adjolming boxes.

In che uaval maner of crearing a oneacomponent plasma with periodic boundary comdicions the double summetion in y la evaluared ualng the arandard Ewald sumartan aethod first used fa chis concext by Brush, Sahila and Teller [3], then by Hasem and collaboracora [4] in an extensive study of the one-compomemt plasma, and then by Slattery etal. [5] 1a a particularly decalled arudy of such syatems.

Te more here that if the errermal fileld porentlal emergy is modified to laclude the π coordinate, $\mathfrak{l o n}_{0}$ if it is $1 / 2 \mathbb{K}\left(x_{1}{ }^{2}+y_{1}{ }^{2}+z_{1}{ }^{2}\right)$, one can diopense tith the perlodic bourdary comdrlon altogether. He shall mention thla polat agalm belom.

The ouly paranerets in our hamlromian are the dimensloas of the box $\mathbb{L}_{\text {, }}$ the number of particles $\mathrm{N}_{\text {, }}$ the conflulug poremtial K and the temperature T ar mhich the aysten ls mantained ualag atandard methods of rolecular dynanice [2].

For auch a calcularion to be meaniagful as an approximate sinulation of condletoms in a arorage rimg. the paramaters used must be appropriare, in other worda the value of k should be aufflefently large to confine the parifeles in a pencllolike marrow region around the x atio with a dianerer much leas than the cell blze io te may then expect that the dymantes of che orructure in the pencll will be onty olighty perturbed by the perdodic boundary condlelons.

Ir showld be nored thar the present calculactons only roughly approsimate condiclome in the arorage riage that are under conseruction ar aeveral laboracortes. The ilune average of the focurimg forces thar contala parileles in a rimg io proportional to the diaplacement from a meam equillbrlum orbit. Alcinough moat ororage riaga have periodic serongofocualag elemente, it fa poosible, or leour faprinciple, to have a weat focuring riag where the restoriag foreso are comstane in time. In
 clooed orbito lo proportiomal to $r^{-1 / 2}$, where i ta the bendiag radive,
and the Kocusing Eorce 1 a equal In the horizoncal (bending plane) and the vercical (perpendlcular to the bending plane) direcclona. This ideallzed reacoring Eorce corresponds to the assumpeloms in the present calcularlana, with the circular mocion neglecred.[l]
$N=2000, ~ L a 40 R=10,000$, $T=1 / 9$
Under these condition the dlameter of the pencll of plasma 18 found ro be less than 0.6. Before presenteng the deralled reaults let us conalder whar phyaical condirlona auch a calcularion would represent.

Suppose that the unit leagth $\xi 80.18 \mathrm{~cm}$. The beam diameter will
 Za90; while temperacurea. The mumber demalty $\sim \xi^{-2}$ for this pencillalth Na2000, 0.06
 fraclude che parameter range of atorage ringe amylaloned ar preseat.

Flgure 1 ohowa the projectlom or the 2000 porticlea oato the y-z plome. The orratiflcatlon la the direction perpendicular to the beam 18

Flgure 1 Upper paris Projecelom of 2000 parileled in a molecular dymamer calcolatlon onto the pleme perpendiculer co the beam (s50aslo) for ralbo. Romer pares diatributlon of pertleles im the outer ohell olth the ohell unfolded into oplome All Ber the Inmermoor ohell ahow a almilar porcerno
quite dramatic, and Immedlately leads to the conclualon that there mutt be many more 1 nirlgulng propercies to be analyzed. Here we shall present a few arructural propertles of chita aystem; dynamical properties will be presented elserhere. The $3-d$ menalonal palt correletion $g(r)$ in the日yarem as a whole shows a sharp peak at ra0.092 and clear but broader pesks ar mo. 17 and 0.245 . Elnce, as seen in flgure $\mathbb{1}_{0}$ a large number of the parcteles are $\mathbb{I n}$ the ourer ahell, the overall pair correlation is distorted by the fact that particles in this shell haye no neighbors on the ourer alde. He have therefore analyzed the 3 -dinemsilonal $g(r)$ separately for aech shell. Moreover, lnaread of the arandard procedure of preacnelng $g(r)$ as a funcefon of r, we plof ir ingtead in figure 2 , as a fumerfon of the coordinetion number $n(r)$ 。 Ir la elear ehat, except for the outermoge shellg the Girar pabk $\ln g(r)$ has a coordiantion of 14.

In the lofer part of figure 2 we also ohow the eroodimensioal pair correlation betanen parefeles in the same shello It la clear thet for
 peak ar ra0.092 and 22 wore neighbors under the broader second peak. In a projection of particle coordinares, thich corresponds to uarolling the cylladrical shella onto plane the erlangular patcern of particle

Figure 2 Upper parts Three-dimenalonal pait correlarloa funetion $g(r)$ computed aeporacely with reapect co parciclea wilhitm the four ohello ahown la figur: 1 . It 10 plocted aganar the coordimatioms the aumber of parcicles facluded up co a given redins. lower partis The "evoodmenolomal palr corrolation fumetiom reocrlated to porticlen withlm oue ohello for the chree outct ohelia.
positions is clearly aeen. The radil of the shells are $0.052,0.13$, 0.20 , and 0.28 in the reduced untre, and their population $128,370,616$, and 886. Asauming each of these sutfaces to form perfect cylinders (an assumpition that becomes less valld as the radius gets amaller) and using constant surface densities for the particles with nearest neighbor distancea an0.092 and alx firse neighbors in a perfect riangular arrangement, one would esimare $177,443.682$ and 955 particles.

The 1 nnermost shell has a simpler structure. There the particles form a helical partera axound the x axis, rotating about 120 degrees abour that axls betacen succesalve parifcles. There is a cendency for the sense of rocarion to maintain icself fot a number of particles; it does nor appear ro be randomly diseributed.

A calcularion with only 100 particles (soneghat less than the number In the inner shell) ahoms a clearly defined single shell of radius 0.04 (somewhar amaller than the o58 for the inner shell seen with 128 parcicies) and afailar orderimg. then the number of particles ls reduced to 40 , the $10 n a$ get diacributed aloag the axis alth only chermal deviationa.

For the 2000 particle system the poramerer Γ_{0} which plays a central role in determinimg the propertiea of a unform one-component plasma, can be worked our for ovr aystern. Uaing the woluan per particle to define a radius r for chia polume, fal/($r_{a} T$). Subactrurlag the data deduced from this cabe we get 「al80。

Ia this calculatlon with higher cemperature and leas aefere confining ferce, the ahell atructure in the laceral direction \mathbb{l} a leas well defined; frere are two reasonably fell deflmed ourer ohells with the outer one belag ar a discance 0.4 from the ra arig. The value of C for this calculation is ~ 40 and the presence of a tan dimemelonal triangular arrangement on the ourface of the last outer shell la still quite clearly seen. Thus "ordering": the preaance of shells and a crlangular twoodmensional arrangement of loas within the ohella, cam ocur ar racher low values of $\Gamma_{\text {o }}$

This case was studied la order to aocertala qhether the shell structure observed might have been induced by che preseace of che periodic boundary condiriome that had to be ascumed for the eyliadrical cases in order to allow the Ewald suma to be evaluared. Hith the confining potential opherfcally symaertic ($1 / 2 \mathrm{~K}\left(\mathrm{x}^{2}+y^{2}+z^{2}\right)$) one may remove the boundary conditilons and compare the results with aad without them. He find pery clear apherical ahell arructure lu boch easea, with radil ar 0.58 , $0.48,0.4100 .34,0.27,0.21$. On the onter shell the two-dimenalional palt correlacions show peak at ra0.080 and 0.151 itu both coaes, with coordimation 6 and 18. Figure 3 showa the ohell atructure in the case where periodic boundary condlelons were not used. The ifgure caption explaing the maner in which the reaults are presented. Figure 4 is the usual Mercaror projectiom of partcle poaltions on the ourermose ahell.

The close glailarlty of the resulito with and wlthout the perlodis boumdary comditiond leads us to the conclusion that In the isorropic case the boundary conditions are not reapomabie for the orderimg and thus ft seema reasomable to oabme that the ordar aeen in the eylimdrical case le litemsac ineemaltive to the perionic boumdary condition.

 the apherieal distribuction obralaed with 3 dimeasional comilmemeat and wo perioric boundary condicions. The ordiante io the diatamee of the particle from this liae

 profection in dioplayed for the positions of particles fa the outcrast ahell.

CONCLUDING REMARES

The calculations reparted here fadrate clearly that under the comiltams thar beea co be withia reach of currearly plamaed atorage ringa ordered abructures can oceur which are aore comples and richer than the 1fquse-kite and figmer-bolid atructurea that are colculored la ualform omecomponear plooma. To what ertery. tha orderimg fato ohello mat the comecquem trlomgular orderlag withln the well defimed ourfoces will peralar vhen the kanlicomloa lo wade wose reallaric cham the ome used here la men belae daveatigaced.

The oosumpilons made here canot be satiafled precisely in e real storage ring．Firat of all，the horizontall focusing must be exerted on pareleles eraveling in circulat orbita．It ia obvious，that if a beam is cooled ouch thar all particles are rravelling at accurarely the aame Ifnear velocity，the order cannor be sustained if they are to each malntain their velocity and ravel in citculat orbita of differing radil．In other words，the horizontal focuaing force has a shearing component in the direction of travel．The elasifc limits agalat shear of a condensed array of charged parefcles may be sufficient ro resise silppage of rown of particlea within the beam but these limita will depend on the magritude of the focusing forces．If sllppage does occur， the beam may become heared from the fricitional forcea．

Another complicarion is the affect of restoring force that in perladic lir rime and thar mare nearly approximares the desiga of the actual focualag elements in arorage rings under comerveriono the so called beta fuaction．The deralled anture of the coollag process will also have to be considered．These aspects of real storage riags will need 1略esigarloa before one cam predice with any reasonable comfidence whether thite form of order might acrually be achievable in currently envialcaed facilitiea．
piaelly，a theoretical besia co accoume for the calculational consequences of the Kanilconilan used here would be a very valuable addiclon to our umderarandiag of ordering lu omecomponent plasmas．

Work aupported by the E_{o} S．Department of Emergy．Huclear Physics Division，vader Contract H－31－109－ENG－38．Some of che calculations reported were done on ERCRAY．The lalelal erploratory calculations were made or the Cray 2 at the Supercompurer Institure of the Oalveraity of Minaesotu．

References

［1］Jo Po Schiffer and Pokleale，Z。Physo Ao 321。181（1985）：Jo P。 Sehiffer and O．Poulsom，Europhya．Leto $\mathbb{Z}_{0} 55$（1986）．
［2］A。 Rakmas＂Correlation Fumetions and Quasiparticle Interactions in
 Plemum，NY，po 4i7；A．Rahman and Po Vashibea，＂Phybice of Superionic
 RYY．po 93．
［3］S．G．Bruah，H．L．Sahlin，and E．Teller，Jo Chem。Phys．45， 2102 （1966）．
［4］E．L．Pollock and Jo Po Hanceng Phya．Rev．A8，3110（1973）．
 （1980）．

$\operatorname{DISCLALMER}$

This report was prepared as an account of work sponsored by an agency of the U'nited States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

