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STRUCTURE OF A QUASI-PARALLEL,

QUASI-LAMINAR BOW SHOCK

ABSTRACT

I

A thick, quasi-parallel bow shock structure was observed, for 8NB

10 0 , ^i ^ .3, MA z 4, on 14 February 1969, with field and particle detec-

tors of both HEOS 1 and OGO 5. The typical magnetic pulsation structure

was at least 1 to 2 R E thick radially and was accompanied by irregular

but distinct (average) plasma distributions characteristic of neither the

solar wind nor the magnetosheath. Waves constituting the large pulsations

were polarized principally in the plane of the nominal shock, therefore

also in the plane perpendicular to the average interplanetary field. The

solar wind Was relatively unaffected in bulk velocity in the pulsation

structure but was moderately thermalized and its spectra showed a high

energy tail. There appeared to be a separate "interpulsation" regime oc-

curring between bursts of large amplitude oscillations. This regime was

similar to the upstream wave region magnetically, but was characterized

by disturbed plasma flux and enhanced noise around the ion plasma fre-

quency. The shock structure appeared to be largely of an oblique, whistler
l'

type, probably complicated by counterstreaming high energy protons.. Evi-

dence for firehose instability-based structure was weak at best and probably

negative.
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INTRODUCTION

.I

One of the fundamental structures of collisionless plasma shocks occurs

when the angle 6n6 between the magnetic field 
M
Bin the unshocked upstream

plasma and the direction 
n 
of shock propagation is zero, i.e., when 8n6

arcos (n -B/^BI) = 0. Such a shock is called a parallel shock and has been

studied theoretically and numerically by many authors, of whom a few are

Kellogg (1964), Kennel	Sagdeev (1967), Biskamp & Welter (1972), Auer &

V81k (1973), and Tidman	Kral] (1971).	In application to space plasmas, a

geometrical basis for variable, asymmetric, and parallel features-in the bow

shock was postulated very early by Kellogg (1962). Indeed, phenomena prob-

i

ably associated with parallel bow shock structure had been the longest re-

corded, if not the most familiar, shock characteristics since the first

penetration of the magnetosheath by Pioneer I in 1958 (Sonett et al., 1959;
t

— —	i
;i

fo'r a concise summary of the first decade of satellite measurements related
I

to parallel structure see Greenstadt et al, 1970a). Nevertheless, the impor-	}'	I

tance of field orientation to shock phenomenology was not verified observa-

tionally or really appreciated until analysis of multiple satellite data was	
j I

undertaken (Greenstadt et al., 1970a, b; Greenstadt, 1972a). The investigation	{

continues with this study.	
t

The principal advance in geometric studies since 1970 has been the

recognition that a distinct and unmistakable set of macrostructural character-

istics occur when 6n$	40-50°, quite unlike the variable, but relatively well-

ordered shock signatures that occur in both the laboratory and space when

45 0 : 8n 6 < 90° (Robson, 1969; Greenstadt et al,. 1975; Fairfield and Feldman,

1975)-• Shocks with 0.in the range > 0 to	45°, i.e., those having "pulsation"

d:



characteristics and upstream waves, have been designated quasi-parallel. This

appellation describes their approximate geometry, their unity of appear-

ance, and their separateness from "quasi-perpendicular" shocks_-(45 0 < en6 <

$$°) while carefully avoiding any implied conclusion that observed features

are necessarily identical to those that might be produced under the precise

condition enB = 0. Theoreticians have generally proposed that phenomena in-

ferred for the 6nB = 0 state could be extended to some 8nB # 0, but no firm

angular limits to such extrapolations have been determined. In the Discussion

section of this paper, we shall question the meaning of exact parallelism in

the bow shock, basing our views on the data presented in this communication.,

At the same time that geometrically dependent properties of the bow

shock have been uncovered, the effects of other parameters of the solar wind

plasma on shock structure have also been isolated and investigated. The

y 'i

	 result has been an empirically-derived scheme of shock classification using

'	ratio of thermal to field pressure b, Mach number M, and 6 n6 ,_ several versions

I	of which have recently been published (Formisano	Hedgecock, 1973a; Dobrowolny

I

& Formisano, 1973; Formisano, 1974; Greenstadt, 1974). This report describes

in detail a quasi-parallel shock encounter lasting about two hours at HEOS 1,

somewhat less at OGO 5, on 14 February 1969. It is the first account of a

quasi-parallel (often to be abbreviated q-parallel) shock in the context of

the appropriate thermal and flow parameters of the solar wind, using simul-

taneous data from three statellites and an array of diagnostics including

magnetic and electrostatic plasma wave detectors. The report is one of a

'	series describing the structure of the earth's bow shock in detail for each	
^ R

of several identified combinations of	M and 8 nB, The objective of the	
9

tl

}

:i
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Y

series is to document shock structure from a descriptive point of view,

i
using multiple satellite observations and, insofar as possible a reasonably

i

uniform set of multiple diagnostics from case-to-case so that comparisons are

facilitated and a common foundation for future theoretical analysis and ex

perimental measurements is established. Other communications in the series

cover the turbulent shock (Formisano & Hedgecock, 1973b), the laminar, quasi-

perpendicular shock (Greenstadt et al., 1975), and the high	shock (Formisano

i
et al . , 1975a).

i
i

In the following sections we define the category of shock we observed

and the measurements from which the data were obtained. We then describe

the data in increasing detail and time resolution, alternating between

HEOS 1 and OGO 5, and finally discuss and summarize the results.

4

t	
^

f
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CATEGORIZATION

Although it is our intention to categorize each shock type with pre-

cision, there is a fundamental ambiguity in attempting to assign a region of

parameter space to a shock whose structure is highly irregular and noisy,

and this is the basic character of quasi-parallel configurations. Large-

amplitude fluctuations make q-parallel normals difficult to define locally,

so that 8 n6 may have meaning at best only with reference to a nominal shock

surface"  imagined to exist in place of the complicated wavetrains and

particle spectra actually observed. The difficulty may be partially offset

by the presence of a distant, unaffected monitor in the solar wind, but

even then, extensive upstream effect, of the structure may modify the on-

coming solar wind so much that velocities, temperatures, temperature ratios

and anisotropies, and densities at what we might prefer to call the actual

"shock" bear little resemblance to their distant upstream counterparts.
t'

In our case there were some short periods c'ose to or within the interval

of interest whose measurements by one or the other satellite we simply took to

be the best available representation of the background solar wind plasma.

From these measurements we obtained the estimates: ^ i = 87rNkTil6 2	0.3;

total = 
87TNk(T i + Te)/B2 z .6; MA	

USW cos 8Xn/CA z: 3.7 and 4.2; M MS =

2 z 1/2	 _	1/2VSW cos 0 /(CA+C S )	3.4 and 3.9, where C A - B /(47TNm i )	CS -

(kTe/m i )
1/2

and we have assumed T  = 1.5 x 10 50 K. The double estimates

'	of Alfven and magnetosonic mach numbers apply to the positions of HEOS and
f

^; f	OGO, which had slightly differing nominal angles 0
Xn
	32° and 42°, between

<.	solar wind flow and the local shock normals; the first of each pair refers

I^
to HEOS 1.

i
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The plasma regime represented here differed but not severely,P	9	P	 Y, from the

most common one brought to the earth by the solar wind: the Mach number and

thermal-to-field energy ratio were about 20-50 percent and 25-50 percent below

average, respectively; not enough to define laminar or cold plasma flow. We

deal therefore with a fairly typical, supercritical, warm solar wind. The

values estimated place the shock in a category between quasi-laminar and
_g

turbulent, according to the scheme of Formisano and Hedgecock (1973a; see

also Greenstadt,	1974),	because	it was	supercritical	(MA	3), with	
Si	

1,

on the basis of	imputed upstream plasma conditions.	We reiterate that within

the structure, conditions may have differed, probably raising b and-lowering

M moderately.	The mach number might conceivably have become subcritical	in

the shock structure, and the category have shifted to quasi-turbulent,	i.e.,
it

MA	Ni	1	(Formisano and Hedgecock,	1973a).

The important field-normal	angle 6 nB was the best-determined parameter

upstream (from independent observation by a third satellite)	but nonetheless
it	

-

poorly-determined	locally,	since the field,	and presumably the shock "surface,";

were highly variable.	Data could be cited which would reasonably have put

6nB	in the .range 0 to 20°.	Our best overall	estimate	is 6 nB	4 to	10°,	so

z'.

we have placed the shock in the quasi-parallel	category,	carefully avoiding i,

commitment to the virtually undocumentable term "parallel	shock."	We

emphasize, however, that 6 nB was close to zero and that we deal here with

borderline parallel	geometry.

a
We think	it worth noting that many macroscopic characteristics of q-

parallel structure seem,	in our experience,	to be common to a wide range of

M,	(	combinations,	but proof that specific features we describe and	inferences

we discuss apply to any plasma regime other than that	(or those) in which the

data were recorded remains to be assembled.
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MEASUREMENTS

The data to be discussed here were obtained by the triaxial'fluxgate

^^	 I
magnetometers of OGO 5 (UCLA) and HEOS 1 (Imperial College), the plasma ana-

lyzer of HEOS 1 . (Frascati), the JPL plasma analyzer, the TRW plasma wave

detector, Lockheed light ion spectrometer (LIS), and UCLA/JPL search coils

of OGO 5. The OGO 5 instruments provided high resolution records of the

shock at sampling intervals of 1.15 sec/sample, corresponding to a 1 kilo-

bit/sec telemetry rate.

The field and particle instrumentation of OGO 5 and HEOS 1 that provided

data for this .report are described by Bonetti et al. (1969), Hedgecock (1975),

Crook et al. (1969), Snare and Benjamin (1966), Harris and Sharp_ (1969)., and

Neugebauer (1970). In using data from the Lockheed spectrometer, we rely

here only on relative changes in the raw signature of its energy sweep.

Magnetic field measurements are direct vector recordings of ambient in-

>	duction, with the HEOS l data used to adjust the absolute bias levels of the

OGO 5 readings, the latter having been subject to intermittent spacecraft

interference.	Plasma wave measurements were represented by the field strength

in seven channels covering the range 1 to 70 kHz, with most of the shock noise

contributed by signals between a few hundred Hz and 2 kHz. Channel center

frequencies were at .56, 1.3, 3, 7.35, 14.5, 30, and 70 kHz. Electromagnetic

wave noise is represented by the equivalent level of white noise over the band
{

width of each of seven channels of the UCLA/JPL search coils, with center fre-

quencies at 10, 22, 47, 100, 220, 410, and 1000 Hz. The JPL plasma analyzer

provided plasma flux readings and upstream velocity and density parameters in

the solar wind. The plasma flux was measured by the JPL Faraday cup, which

maintained a fixed view toward the sun, with acceptance angle determined by	̀'
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50 percent transmission at 20 0 and zero near 40 0 ; absence or decrease of flux

usually signifies deflection of flow outside the acceptance angle of the instru-

ment. These quantities were therefore lost once OGO entered the normal sheath.

Proton thermaliza ion and diversion of solar wind protons in directions away

from that of normal flow were detected by the Lockheed LIS, after the shock

was entered, since this instrument looked only in a direction across the

solar wind stream. These last measurements are represented hereby relative

changes in uncalibrated telemetry units.

In addition to the data illustrated in this report, magnetic

field parameters for the unshocked solar wind were obtained from the magne-

tometer of Explorer 35 (NASA/ARC).

f

j

,	j
t
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GEOMETRIC CONFIGURATION

The geometric and physical contexts in which the observations of 14

February 1969 were made are described by Figure 1. The relationship of the
r

B-X plane containing the HEOS 1 position to the nominal bow shock appears

in Figure 1(a) in a conceptual perspective which shows part of the cross

section of the shock intersected by the plane. The relationship of the

HEOS position to the magnetic shock structure is shown on the B-X cross

section in Figure 1(b). for the purpose of illustration, the thickne--ss of

the structure is somewhat exaggerated in scale compared to thicknesses.

inferred directly in this report. The main point of Figure 1(b) is'that

the spacecraft was situated where B and n were nearly parallel. The field

varied during the observation interval and OGO was positioned closer to the

subsolar point of the shock cross section in its B-X plane than HEOS (see

below), but the figure gives a reasonable average view of the geometry that

prevailed at both satellites during the encounter with the pulsation structure

The relative positions of the two spacecraft and the shock are illus-

trated in Figure 2. Panel 2(a) displays the trajectory segments of HEOS 1

and OGO 5 appropriate to the shock observations, together with sections of

shock curves corresponding to the numbered events identified in the next
i^

figure. The satellite positions and shock curves are depicted in the
f

rotationally-symmetric X- frame where p 2	Y2 + Z 2p	 and shock sections	j

are drawn by simple scale multiplication of the surface p 2 = .331 [(X - 75.25) 2 -

3686)]. This surface is a symmetrized version of the average shock described

by Fairfield (1971). Both spacecraft were moving outward along their respective

orbits during the data interval. The heavy portions of the segments represent

the pulsation observations, shortly to be shown.
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Panel 2(b) displays the pulsation segments of the two trajectories

projected on the Y-Z plane. Dashed and straight lines represent edge-on

views of X-p and B-X planes through the respective satellite loci. The

figure demonstrates that the spacecraft were very close to occupying common

X-p or B-X planes.
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MAGNETIC PROFILE

i

i

	

An overall view of the phenomena	described in this report

is furnished by Figure 3. The two major panels show the field magnitudes mea-

sured by HEOS 1 and OGO 5 magnetometers; one-minute averages in the case of

OGO and 48-second samples in the case of HEOS. The three narrow panels at the

top show the magnitude and two angles of the interplanetary field B SW recorded

concurrently near the moon by Explorer 35; these are 82-second averages. Note

the steadiness of BSW in contrast with the violent swings in B at the two earth

satellites. Indeed, even the direction of B SW was less variable for this study

interval than it usually is.

The two inserts labelled I  show the behavior of the "binary index"

(Greenstadt, 1972b) at the positions of OGO and HEOS, calculated from the field

directions measured by Explorer. Values 1 and 0, respectively, are supposed

to correpond to q-parallel an q-perpendicular field orientations. We see

that shifts between the two levels correspond to changes in orientation of BSW

and that the obvious,encou'nters with pulsation shock conditions at both space-

craft occurred while I p `= 1. There was a delay for travel time between Explorer

and the,other vehicles which may have varied during the day; at 0630 it seems

to have been about 15 minutes, for the switch from I  = 1 to I  = O matched

a brief disappearance of upstream waves at OGO and HEOS a short time later.

The index is presumably applicable at a given instant only strictly at the

"shock," the location of which is unknown almost all of the time, and which

appears to be altogether fictitious when the field is locally-quasi-parallel.
i
i

Figures 2 and 3

The numbered times of -	call attention to specific events:	1.,

f
`	

the first, q-perpendicular crossing by OGO 5; 2. the sudden onset of large

i

i
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amplitude fluctuations at HEOS 1, obviously a downstream pulsation limit at that

instant; 3., the sudden onset of large amplitude fluctuations at OGO, clearly

an upstream pulsation limit at that instant, since OGO had already been in the

solar wind; 4., the cessation of pulsations and second appearance of solar

l	
^i

wind at OGO; 5.., the first appearance of solar wind at HEOS.
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SHOCK THICKNESS

Figures 2(a)	and 4 show the limits on shock location	implied by the data

of Figure 3:	at time 1,	the shock was actually at OGO 5, after which	it con-

tracted, but moved no closer to the earth than the location of HEOS 1, which

was clearly	in the magnetosheath at	least until	time 2, when large amplitude

F
pulsations were first recorded.	The brief, unnumbered rise in B at OGO just

Fafter 0300 (Filw--:.--3) was a shock encounter which ended at 0314, just five

minutes before pulsations began at HEOS	(time 2), so the shock was definitely

at OGO at that time.	At time 2,	the shock, or,	preferably,	the innermost

unshocked solar wind was somewhere outside HEOS and inside OGO, the former

being	in the pulsation region, and the latter	in the upstream wave region.

At time 3, the outer boundary of the pulsation region moved outward beyond

' OGO.	After time 4,	OGO was again	in the solar wind, but the shock was still

I outside of HEOS until	time 5, when the shock finally moved	inside of HEOS,

leaving both satellites	in the upstream wave region	in the solar wind.

r

It is	immediately apparent from Figure 2(a)	that during the simultaneous

observations of the	large amplitude pulsations,	between times 3 and 4,	the

two satellites did not occupy the same nominal	symmetric shock surface.

It would follow that the thin shock had been replaced by a "thick pulsation

region," for aberrational asymmetry of the shock caused by nonradial solar

ii
t wind flow cannot	lace the vehicles on the same nominal	shock surface:P 

Figure 4(a)	shows two curves representing the nominal	shock symmetric about

an axis,	but tipped away from the X-axis as	if	in a common plane containing
=F

both spacecraft.	The 15 0 tilt of the shock brings the two satellite
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14
^{positions closer to lying on the same shock surface than does any other

tilt angle,	but the vehicles are still	separated radially by about	.5-1	RE'

These data confirm the earlier observations and support the postulate of a

thick pulsation	region developing underparal lei , or quasi-paral lei , conditions

(Greenstadt et al.,	1970a).

I
The thickness 0.5-1.0 R E in Figure 4(a)	represents an extreme in the

least thickness attributable to the shock.	A more probable estimate is ob-

tained from Figure 4(b),	using the unaberrated, nominal	shock profile.	The

two curve segments marked 3 correspond to the beginning of the common part
z

of the pulsation	interval	at the respective vehicles;	the segments 4 corres-

pond to the end of the common	interval.	The minimal probable-thickness of

it
the quasi-parallel	structure, as provided	in this configuration by distances

it

}! 3-3 or 4-4 along the local nominal	sho k normal, are tistimated to have been

r

{ 2 to 2.5 RE , depending on how far from the subsolar point the thickness is

ii

^f

taken.

t

It

Ir

^f

i

1
I

S
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}
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PLASMA PROFILE

HEOS 1

The HSOS plasma data afford a view of the general effect of the quasi-

parallel shock structure on the solar wind. Figure 5; compares the magnetic

profile of the 14 February shock with the plasma parameters derived from the

processing scheme of the HEOS 1 plasma analyzer (Bonetti et al., 1969;.

Formisano et al., 1973)• Estimated plasma quantities are, from the top,

thermal velocity w, distribution skewness-measure K, density N, and velocity

V. Infinite K means a Maxwellian energy distribution; lower K indicates a

high-energy tail, at least for a smooth and regular, but skewed, distribution

function (Fo.rmisano et al., 1973). Each (vertical) set of plasma quantities

represents the ensemble of values computed from a single, complete, 384-sec

cycle of the analyzer spanning the corresponding time segment.

The most notable property of the plasma during the interval of very

disturbed magnetic field was the negligible or at most moderate variation

of solar wind velocity. Scanning from right to left, in the direction

traveled by the solar wind to the magnetosphere, we see that the outer

part of the quasi-parallel "shock” is virtually indistinguishable in the

velocity graph. The circled prints represent a few velocities observed

concurrently by OGO 5, showing the relative constancy of V during the interval

and the excellent agreement between the instruments. Only after appreciable

penetration of the "shock," at about 0440, did V decrease for more than one

cycle at a time, and only after magnetosheath conditions were clearly established
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0

magnetically, at about 0315, did V experience a sharp "permanent" decrease.

Moreover, inspection of the individual cycles in the structure (described in a

later paragraph) reveals no simple downward shifts In bulk velocity between

0400-0500, but irregular, multimodal spectral distributions whose highest

peaks were near the solar wind bulk velocity.

The ambiguity in V at 0529, which corresponded to a sudden spike in B.,

is probably attributable to a brief encounter with the shock in quasi-perpendi-

4	cuear form. The OGO field data show simultaneously some average direction

J
changes and some brief disappearances of upstream waves suggestive of local.

a	changes in obliquity. Unfortunately, the Explorer 35 record suffered a data
4

t'	qap at that time (Figure 3).

l̀	In contrast to the velocity, the remaining plasma parameters displaN

clear differences between pulsation and upstream values. The principal
i

j^
properties of these parameters to which we call attention are variability

of values accompanying the magnetic pulsations and their clear distinction
F
zi	

from those in the solar wind after '0530. We cannot depend on the absolute
f

values between 0310 and 0530 because accurate parameters cannot be obtained,

I

it
or are not defined, for irregular, multimodal spectra. The plots of these

quantities suggest, on balance, a rise in w (temperature) and N and a non-

t	Maxwellian skewing of the ion distribution toward higher energies in the

1s

<<	quasi-parallel structure, compared to the solar wind. The suggested effects

'j
will be seconded by the descriptions of the next figure. Meanwhile, we re--

{

_quire some estimates of absolute values in order to classify the q,-parallel

!	observation.
i
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—:,,,, The dashed vertical line marks what appears to have been a density dis-

continuity in the solar wind. This decrease in N occurred a few minutes

after the last large field gradient, so it was probably separate from the

pulsation shook structure. The four circled points earlier in the graph,

just after 0300, are densities measured in undisturbed solar wind by OGO 5.

These values support the inference that the background density had been higher

before 0550. However, we note that the second pair of densities from OGO are

lower than the first pair, and the time separating them corresponds to a gap

during which a magnetic discontinuity occurred, according to Explorer 35

(Figure 3).	We think this was a density discontinuity, and we think it

X41

reasonable to	infer that a band of distinct solar wind plasma,	containing

the field orientation responsible for the	locally q-parallel shock,	coin-

cided more or less with the appearance of this structure.	The last OGO den-

sity,	4 cm- 3 ,	is about the same as the low values	recorded by HEOS through {

0550 and we adopt this as the probable solar wind density during the pulsation

interval.

There were fewer data on solar wind temperature than density from OGO,

but	the three circled points	in the topmost panel	of Figure 5	indicate a

level of T i comparable to that seen in the ensuing minima and just before
{

0550 at HEOS`.	We adopt the last OGO value,	14.4 x 104a  as a	likely proton

temperature in the unaffected solar wind.	There is a suggestion that 	Ti,

like N, dropped at the 0550 discontinuity.	The estimates of (3 and M given earlier

in the Categorization section were based on the density and temperature figures

just discussed. l

'f

3

i



s= .

Page 16

The apparent net change in the solar wind plasma corresponding to pas-

sage through the quasi-parallel structure is supported by examination of

averaged spectra, which appear smooth. Figure 6(a) is a graph of three energy

distributions superimposed on a common horizontal scale. The ones marke

"magnetosheath" and "solar wind" are each averages of several full-cy:le

spectra obtained by HEOS 1 respectively before 0315 an^, after 05W(only when

upstream waves were absent in this case). By "average" i ,r is meant that the

counts in each energy channel were averaged among the several cycles. Indi-

vidual spectra contributing to either magnetosheath.or solar wind averages

were comparatively repetitive and differed little from their corresponding

means. The distribution marked "pulsation region" is the average, in the

foregoing sense, of all cycles obtained during the two hours or so of pul-

sation field profile at HEOS. This spectrum clearly shows the plasma energy

peak at, or slightly below, the bulk energy of the solar wind but with a lower

maximum and a broadened, hotter, more skewed ion distribution. It appears

that the ions were severely scattered but the flow was not appreciably re-

tarded by the large amplitude magnetic waves of the parallel structure. This

is the same story told by w, K, and V in Figure 5.
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Figure 6(b) displays two extremes of the individual pulsation distri-

butions shouting two traits typical of all of them: the irregularity below

the bulk velocity and the filling-in of the dip between proton and alpha
, i	1

rt	
peaks of the solar wind distributions. Most individual distributions

resembled either of these or a composite of them.	 j

OGO 5

The upper panels of Figure 7(a) compare the time history of the solar wind

flux, when measured by the JPL Faraday cup, with the field magnitude recorded by

the UCLA fluxgates. The plotted points are l-minute averages. Gaps in the

flux represent alternate modes of instrument operation. The graphs show the

extremely erratic nature of the flux, along with the field, in the quasi-parallel

structure between 0350 and 0510. The vertical bars call attention to the ap-

parent inverse relation of F and B: when one is high, the other is corres

P v1 1 U I "yy J Y	Uw •

The lower box, Figure 7(b), is a scatter plot of F against B for the

interval 0355-0512. The bars define the high, low, and midrange values of F

for each ly interval of B. The approximately inverse relationship between "the
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quantities is clear for values of B ranging between solar wind and magneto-

sheath levels. The curve in Figure 7(b) is a visual fit of the simple inverse

expression F = 925 x 10 6 /B, inserted to show how comfortably such a relation-

ship fits the means of the range-bars. Since the response of the cup was

substantially linear with respect to off-axis deflections of the solar wind

particles, we believe the apparently nonlinear relationship of Figure 7(b)

represents a physical characteristic of field and flux behavior, whose true

quantitative description will have to be defined in the future by more

suitable instrumentation.

The direction of the solar wind flow at OGO was, like the flux itself,
i

_highly erratic between 0355 and 0512, and we know from the HEOS data (pre-	1
I

ceding description) and from occasional measurements of V SW at OGO, that the

magnitude of the velocity was not radically altered in the 'q-parallel strut-	{

Lure. We also know that density often rose in the structure at HEOS. The

irregular flux profile, especially the minima in flux, were therefore not

produced by variations in speed or N but by deflections of the solar wind

flow and possibly also by scattering of some of the particle distribution

outside the acceptance angles of the instrument (partial transverse therm-

alization). Such scattering would be consistent with the observed average

distributions at HEOS already described. Some, but not all, of the flux

decreases were accompanied by the detection of protons by the Lockheed instru-

ment. This will be shown in detail in a later figure.

1

1
S
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HIGH RESOLUTION DATA

HEOS 1

The averaged plasma distributions already illustrated serve to demonstrate !

the existence of a separate category of ion spectra associated with the bow

shock's quasi-parallel magnetic profile. They are poor guides., however, to

the instantaneous appearance of the plasma over time intervals less than or

on the order of a single sampling cycle. The typical period, i.e., peak-to-

peak time-interval, of the most conspicuous field fluctuations was near ten

seconds, appreciably less than the total HEOS plasma probe cycling-time of

384 seconds. Thus, in many cases, individual spectra could not have repre-

sented stationary plasma properties.

^I

This aliasing of plasma spectra was anticipated in design of the HEOS 1

analyzer, so that each energy cycle was divided into four 96- second s,ubcycles,

each of which covered a wide energy range by sampling every fourth channel.

The subcycle feature of the instrument has already been described and used to

advantage in an earlier paper (Formisano and Hedgecock, 1973b). In the present

report, the subcycle representation of the ion distributions is the only ac-

ceptable way of portraying the plasma behavior at high resolution within the

pulsation structure at HEOS. It must be remembered, however, that the 96-

second subcycle period was also too long to allow accurate depiction of the

transient ion distributions in most cases.

The record of field magnitud e at HEOS l between 0300 and 0600 is shown

i

	at the top of Figure 8. Segments of the interval corresponding to repre-

sentative ion spectral sampling cycles are marked by the lettered and numbered

v.i
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boxes. The energy distributions of the selected cycles are shown below, with

the four component subcycles of each cycle displayed approximately in the

actual time sequence in which they were acquired. The two spectra inserted
	

tI

at lower right are average solar wind and magnetosheath distributions. These

are repeated in each cycle for comparison with the data actually obtained dur-

ing the selected cycle. Points at the sampled energies within each subcycle

are joined by straight lines.

Cycle Al occurred entirely in the magnetosheath, apparently when I  =

0 (Figure 3). The distribution is virtually indistinguishable from that of

the average magnetosheath. This example illustrates how steady and reprodu-

cible the magnetosheath ion spectrum can be under I  - 0 (quasi-perpendicular)

conditions. Cycle A2 spanned a change in plasma regime. The first two sub-

cycles were close to the magnetosheath pattern, while the last two subcycles

were a mixture of modified solar wind and magnetosheath patterns. There is.

no way of knowing in this case whether the sudden transition and drop in field

was attributable to crossing of a stationary, or semistationary, boundary be-

tween steady magnetosheath and pulsation shock structure or to an encounter

with newly-excited pulsation, i.e., quasi-parallel, structure propagating

back through-the sheath.. We	favor the latter explanatlon be-

cause of the change of I  from 0 to 1 at about that time. Cycle A3 was

clearly neither magnetosheath nor solar wind, although there was a strong

solar wind contribution_ during the third subcycle. This feature is particu-

larly noteworthy since the high field magnitudes simultaneous with the last

half of cycle A3 would seem to have made the presence of solar wind character-

istics least probable at that time.

I

k

t
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Cycle B, in the midst of the quasi-parallel shock, began during low field

readings and ended during high field readings. The distribution, however, was

clearly not a simple composite of sheath and wind subcycles. The spectrum

was characteristic of neither of these two relatively stationary regimes.

Cycles Cl and 2, also in the midst of the quasi-parallel shock, were

likewise neither sheath nor wind. Careful examination of cycles B, Cl, and

C2 will show that these three distributions were generally similar to each

other, despite the rather extreme variations of the field that took place dur

1`hg their acquisition.

Cycle D, still in the pulsation structure, demonstrates the variability

of the spectra found there. Again, the distribution was neither sheath nor

wind.

I
Cycle E spanned the change from shock to solar wind. The first two sub-

}	 {

cycles were very irregular, the third was almost exactly like the customary

solar wind, and the last was evidently representative of the shock structure,'

as in Cycles B and D, despite low concurrent field magnitudes,	 {f

:(	 li

The last illustrated distribution, Cycle F, exhibited the type of modi-

fication common to solar wind spectra in the presence of upstream waves.- The

j	distribution was basically that of the solar wind, with some deviations, par-

ticularly in the second subcycle. Recall that the average solar wind spectrum

i

was derived from intervals in which upstream waves were absent.

To summarize the behavior of the plasma ions (protons), on the finest

time scale available to the HEOS l detector, the particle energy distributions
{
1

i
{

i
{

E
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were irregular and variable within -t!-__:, quasi-parallel shock structure. Never-

,

theless, a certain similarity among proton spectra was apparent, even`.when

separated from each other in time. These pulsation-associated spectra were

definitely not mere rme-aliased composites of regular magnetosheath and solar

wind distributions.

OGO 5

Wave Polarization. The OGO fluxgate data were transformed into a frame

XSH' Y
SH' z  in which the Zn -axis contained the least jump during the inter -

val surrounding the abrupt, q-perpendicular shock crossing of 0251 (Figures

3, 10(a)). Thus, the Z
n
-component should be aligned approximately with the

nominal local shock normal. The XS H-axis was then selected to coincide as

closely as possible with the B-vector component in the shock (X-Y) SH plane.

Figure 9 illustrates two sections of field-component data, one in the sheath

behind the Q-perpendicular shock, the other in the midst of the Q-parallel

structure. The general context of these sections can''be seen by reference	if

to Figure 7. We see that most of the small amplitude fluctuation in the

sheath r was in the Y SH Zn plane, and that most of the large amplitude flue-+

tuation' of the shock was in the (X-Y)	plane. Both sets of oscillations
S H 

were therefore composed of transverse waves propagating more or less parallel

fi

to B, for in the q-parallel structure B had rotated so as to be nearly	}

parallel to the nominal normal, i.e., the 2n-axis. We think it likely that	i-

Y4

the sheath fluctuations are the ion cyclotron waves identified by Fairfield	;$

& Behannon (1976) at Mercury. The amplitude of the Z n -component in the shock

+!

is by no means negligible, a circumstance compatible with poorly-defined B
a :F

and n when AB/B is so barge.

Multiple Diagnostics. Figures 10(a) thru (e) display a number of sections

of data as viewed simultaneously by both particle and field_ instruments of
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OGO 5. The sections were chosen to illustrate the full range of forms visible

in the OGO record. These are: r'igure 10(a), the abrupt, quasi-perpendicular
i

crossing of 0251; Figure 10(b), a gradual transition from high to low average

(apparently solar wind) field readings; Figure 10(c), two examples, (i), (iv),

of upstream waves directly connected to definite, undisturbed solar wind and

two examples, (ii), (iii), of similar waves occurring between sections of pul-

sations; Figure 10(d), two relatively brief bursts of large amplitude pulsations;

and Figure 10(e), two prolonged sojourns in the pulsation structure. In Figures

10(b)-(e), the magnetic XSH-axis is included to represent typical component

behavior of the field in the nominal "shock plane."

The abrupt jump from "quiet" magnetosheath to "quiet" solar wind is shown

in Figure 10(a) as a reference with which to compare the less familiar quasi-

parallel forms of subsequent figures. With the exception of 
BXSH, 

omitted in (a),

the panels are the same for the other figures, (b)-(e). These are, bottom

to top: magnitude of B; plasma wave electric noise as sampled sequentially

in seven passband channels; proton appearance (in telemetry units), as seen

in a direction across the nominal solar wind flow, hence indicating a combi-

nation of deflection and thermalization; solar wind proton flux as seen

looking toward the sun into the nominal, undeflected solar wind; VLF magnetic

noise as sampled by seven channels along one axis of the OGO search coil mag-

netometer. At the left of the plasma wave panel a typical solar wind spectral

signature has been superposed (dotted lines) to mark the contrast between quiet

upstream and downstream spectra surrounding a familiar quasi-perpendicular

shock crossing; note that the three lowest frequency channels register en-

hanced noise in the sheath. In the uppermost panel, the measurements of selected

-iR
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ELF channels have been calibrated and plotted on a common vertical scale, so

' f	the relative values seen by various channels can be readily intercompared.
x

Thus a significant enhancement of one channel with respect to the ones adjacent

indicates a significant departure from a simple falling spectrum, probably

implying th*,.,"appearance of an ambient signal near centerband of the affected

channel. Channel selection from figure to figure represented a compromise between

showing important ELF effects and avoiding the confusion of too mane overlapping

curves.

Several features of Figure 10(a) are important. First, there were sudden change's

in average solar wind flux at the shock and in the deflection of protons into the

Lockheed instrument. Second, the deflection of particles detected by the LIS

was essentially continuous although not constant, in the sheath. Third, therma-

lization of the protons clearly occurred just behind the ramp. Fourth, the

magnetic noise peaked around the shock for all channels with f < 216 Hz, but

showed behavior upstream substantially identical to that downstream, with the

most active channel centered at 100 Hz. Although this shock was supercritical

and not laminar, the ELF noise followed the same whistler mode pattern seen in

the laminar shock ( Greenstadt et al., 1975). The large relative separation be-

tween the 100 Hz and 216 Hz noise levels resulted from the whistler cutoff at

the electron cyclotron frequency along the shock normal.	The frequency f c .i was

about 220 Hz (B	8Y)	in front of the shock and 530 Hz	(B z 19y)	behind	it,

f
but since a n B was about 60 °	in front and 77° behind,	fc i	cos

6 n 
was approxi-

mately	110 Hz both upstream and downstream. - As Figure 10(a) shows,	frequencies

f < 100 Hz were enhanced just outside and frequencies	100 ^ f < 216 Hz just

inside the shock, corresponding to detection of rapidly-damped, shock-generated

whistlers below the rising f ci in the B-gradient. Amore detailed exposition

of the ELF phenomenon can be found in the reference cited above.
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The contrast between Figures 10(a) and (b) is of considerable interest.

Seen by itself, the magnetic field in 10(b), particularly its magnitude profile (2nd

panel from the bottom), suggests a "gradual" shock crossing in which the mean

field dropped from about,-20y at far left to l0Y or less by 0439, the latter

value being close to the interplanetary field. But no other diagnostic sup-

ported this view. The solar wind flux,--for_,one, did not return to an average

upstream value when the field had been reduced, but showed violent fluctuations

including very low flux levels characteristic of the steady magnetosheath

(Figure 10(a)). The plasma wave spectrum did not reproduce its typic?,1 solar

wind format, and she ELF magnetic noise channels showed appreciably more

activity at the lower frequencies than they had either in the sheath or the

solar wind surrounding the abrupt crossing of Figure 10(a). Conversely, the

steady deflection or thermalization of protons associated with the sheath in

Figure 10(a) did not appea,- when B was up to sheath level at 0434. This last

observation can be strengthened by reference to Figure 10(e)(ii), which con-

tinues Figure 10(b) (to the left): there were nearly two minutes of relatively

high average field in which significant thermalization was not apparent. Note

that the relatively high and steady field segment surrounding 0438 was accom-

panied by relatively elevated flux and no evident thermalization. In sum,

the quasi-parallel transition from high to low field was grossly different

from the quasi-perpendicular case.

The foregoing description leads directly to disclosure of a wholly new

phenomenon which for purposes of this report we designate the-"interpulsation

regime." In an early .report on the "pulsation shock" (Greenstadt et al.,

1970a,b), attention was called to the appearance of bursts of large amplitude

.,

i
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oscillation, separated by "upstream waves," which appeared almost periodically

in the data. The same type of periodic-burst feature occurred in part of, the

interval we anal^ze her 	but now we are compelled to drop the notion that the

bursts are separated by upstream waves. Figure 10(c)depicts two examples of

genuine upstream waves (i) and (iv), and two examples of interpulsation waves,

(ii) and (iii). The mean field magnitude in all four cases is almost the same,

and essentially at the interplanetary field level, while the character of the

waves is at least superficially indistinguishable in the magnitude panels.

There is a hint  of higher  frequencies and perhaps slightly larger ampl ' i tudes

present in (ii) and (iii) than in (i) and (iv), but only by contrast.

The two solar wind segments (i) and (iv) were selected as unquestionably

representative of upstream wave trains connected directly to undisturbed

interplanetary fi..ad, either before or after the waves. The first, in

panel c(i), was chosen because it occurred after twenty minutes of upstream

waves following a brief exposure to clean solar wind and shortly before the

appearance of large amplitude oscillations. Thus this segment should be

"deep" in the upstream wave region, near the "shock." The fourth, in

panel c(iv), was chosen because the waves were at the edge of the upstream

wave region, obviously connected immediately to unperturbed solar wind, as

the figure shows. We emphasize that all four of the examples of 8(c) were

within the "band" of solar wind we postulated might have been bounded by

I
	

density discontinuities around 0315 and 0550.

The flux is included in panels c(ii), (iii) for completeness, but little

can be inferred from it since it was unfortunately unavailable for intervals
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(i) and (iv). We note that the levels are rather low, but it `is possible that

the incoming solar wind flux may have varied somewhat over the total half-day

we are examining, and within any subinterval. Nevertheless, there are extremely

low values in (iii) that are hardly compatible with the apparent interplanetary

field level they accompany and are lower Dan the flux values accompanying up-

stream waves at 0320-0330 in Figure 7(a). A distinction between the pairs of

panels appears more readily in the other diagnostics.

Of first interest are the Lockheed data in the fourth panel from the

bottom in all four segments. The presence of signal from the light ion spec-

t-rometer, with its 12° acceptance angle around the normal to the satellite

earth-line, is a much more severe test of extreme particle deflections than

the decrease or absence of signal from the Faraday cup, which has a 40°

acceptance around the sun-earth line. The test is clearly met behind the

q-perpendicular shock of 10(a). In contrast, there was no activity above

background in (i) or (iv), nor indeed was there ever such activity at any

time during the almost six hours of unambiguous upstream wave residence by

OGO on 14 February. Moreover, there is no visible change in the Lockheed

record after 0516 in (iv), leaving perturbed and unperturbed sections

indistinguishable.	In (iii), on the other hand, there was a (barely visible)

trace of activity at about the center of the segment, while in (ii) small

readings of proton defletion and/or thermalization were constantly present

and are evident in the panel. This type of low level, intermittent "cross-

flow" proton noise was characteristic of interpulsation segments.

Lnl^_
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The wave measurements confirm the proton data. The three plasma wave

i
spectra in (i) and (iv) are typical of the solar wind.	In fact, no significant

alteration of the spectral pattern occurred after the onset of upstream waves

in (iv).	In contrast, the spectrum of (ii) was moderately altered, particularly

i`

in the 1.3 kHz channel, while the spectrum of (III) departed radically from the

solar wind form in the two lowest frequency channels.. Similarly, magnetic	
is

noise differed between the two pairs of segments: the average noise levels r^

at the lowest frequencies were slightly higher in at least part of the (ii)

i
segment than in either solar wind example, while the ELF noise in (iii) was

decidedly enhanced over that in any of the other examples.

{

i
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To summarize, true solar wind data were similar to each other whether

representative of unperturbed solar wind, upstream wave onset, or "deep" up-

stream wave observation, while interpulsation waves, appearing to emulate up-

stream waves magnetically, showed diagnostic features suggestive of a quite

different regime.

The remaining pair of this group of examples, Figures 10(d) and (e),

display the large pulsations themselves, which are the essence of the quasi-

parallel structure. Figure 10(d) shows two short bursts of pulsations; Figure

10(e) shows two data segments out of longer intervals l of continuous. pulsations.

The quasi-periodic character of the large oscillations is striking,

particularly in the components, as the illustrated B XSH shows. The full array

of diagnostics demonstrates that the pulsation profiles were neither solar

wind nor magnetosheath nor alternating samples of those two regimes. The de-

flection and/or thermalization of the solar wind stream was evident in both

the JPL and Lockheed data when the "megapulsations" were present: the flux

stream diminished and fluctuated, but protons appeared irregularly across the

tI	normal flow in the light ion spectrometer only when the flux essentially dis-

appeared. Electric plasma wave and magnetic ELF wave noise levels were en-

hanced to values higher than those sustained in the sheath and were comparable

to those normally associated with low S, low M, quasi-perpendicular shock Gros-
i.F

sings. The examples in Figure 10(d) substantiate the distinction in Figure

i
10(c) between upstream and interpulsation wave regimes by exhibiting, parti-

cularly in the ELF wave measurements of 10(d)(ii), little distinction between

burst and adjacent data.

s
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DISCUSSION

Magnetic Structure

The distinct character of the pulsation structure of the q-parallel

shock has been seen in both magnetic and plasma diagnostics, and the geom-

etry of dual satellite observations here and in an earlier study ( Greenstadt

et al., 1970x) have implied that the pulsation region can be quite thick. The

accidentally similar radial placement of the pairs of satellites in both

studies have confirmed the minimal thickness of ;_-2 R E , but prevented the esti-

mation of any upper limit to the thickness. One additional item is valuable

in demonstrating the nature of the extended region occupied by this structure.

Figure 11 displays, in a common panel, the sections of pulsation structure re-

corded simultaneously by OGO 5 and HEOS 1 magnetometers. In this figure, the

OGO field measurements have been represented by 48- second samples, simulating

the HEOS data to enable a valid comparison between the two separate and dis-

similar sampling systems. Attention is directed to the appearance of several

segments of time, e.g., 0400-0410, during which B
OGO	HEO$'

> B	Recall that

OGO was the more distant from the earth of the two spacecraft, and it follows

that the q-parallel magnetic structure is one in which neither field average

nor oscillation amplitudes necessarily decrease with distance outward from

the earth. In this case, of course, there could have been lateral dependences

of B, and we cannot say what profile would have been recorded along a common

normal.

The polarizations of q-parallel pulsations perpendicular to B, the

{

thickness of the oscillation region, and the seemingly irregular independence

of B on distance suggest that the q-paral lel magnetic structure may be thought

f

i -,	1,

a ^^
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of as a relaxation of the q-perpendicular shock field jump into large ampli-

tude, transverse waves spreading out along B. A spectrum of frequencies is

present which, together with the dispersive quality of local wave propaga-

tion, results in a complicated pattern of wave superpositions, sometimes

adding to very large field values, sometimes cancelling to nearly zero mag-

n1tude.

Plasma Structure

The distinct character of the q-parallel structure has been elucidated

in large part by the behavior of the plasma. Perhaps the most serious de-

ficiency in plasma detection on either spacecraft was the inability to ob-

tain accurate directional spectra. Without these it has not been possible

to determine just where the protons transferred from the peak to the wings

of the solar wind distribution were heading. Since we know that reflected

protons of energy more than double the bulk speed are associated with up-

stream waves, and very likely with the effective viscosity responsible for

dissipation in supercritical shocks, it is attractive to infer that the

high energy tail of the proton spectra represented particles reflected in

one or more magnetic gradients and travelling in directions other than that

of the local bulk flow. In a strict sense, however, we have obtained only

a one-dimensional view of the plasma, and what we have seen is the "energy"

or "speed structure" of the q-parallel shock.

It may reasonably be inferred that almost all previous displays of

plasma behavior in the shock have been derived from quasi-perpendicular

geometries, whether explicitly so defined or not, since it has been pro-

perly customary to disregard data rendered ambiguous by rapid fluctuation

over many spectral sampling cycles. Prominent features of various q-
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perpendicular shocks have been; a clear reduction of 20-30 percent in VSW

(Montgomery et al., 1970); sudden, consistent deflection of solar wind

flow (Neugebauer, 1970); rapid proton thermalization with clear appearance

of particles transverse to the bulk flow direction (Neugebauer, 1970;

Ossakow et al., 1970); and bimodal proton distributions (Montgomery et al.,

1970; Formisano and Hedgecock, 1973b). A summary of results can be found

in a current review (Greenstadt, 1976), and several of these features are

apparent in Figure 10(a) of the present report. Within the limitations

of our one-dimensional view, we find that for our q-parallel case the solar

wind is slowed down at most only a little, while a significant fraction of

the streaming protons are scattered to both higher and lower speeds, in

the spacecraft frame. Some of these contribute to a substantial high-

energy tail. In addition, we know that the bulk flow is deflected appreciably,

often 20° to 40° or more, by individual encounters with large amplitude field

pulsations, and that these fluctuations are often not associated with the

degree of thermalization that would produce particles normal to the flow.

We do not see any indication of a prominent second peak in the proton dis-

tributions at 3 to 4 times the bulk energy (Figure 6), but this peak is

presumed to be associated with higher mach number (Montgomery et al., 197;

Formisano and Hedgecock; 1973b.) than that estimated in our case. If the

bimodal distribution can be regarded as the signature of the q-perpendicular

structure at high M, then the average, skewed pulsation spectrum (Figure 6)

can perhaps be regarded as the signature of the q-parallel structure at

low M.

An additional prominent characteristic of the q-perpendicular shock

is the flat-topped electron distribution (Montgomery et al., 1970; Scudder

et al., 1973). We cannot contrast this directly. There were no electron

.,
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data accessible to this study, the London Langmuir probe record being

especially difficult to interpret at the 1 kilobit telemetry rate. However,

we note that the data from the outbound, apparently quasi-parallel, shock

passage by Mariner 10 at Mercury suggest electron density and activity

that were different from those associated with either the solar wind or

the magnetosheath (Bridge et al., 1974). Such a separate identity would

be consistent with the observations by other diagnostics in the present

study.
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Wave Structure

Electric and magnetic waves appear to have been distingui_:hed in our

q-parallel structure by the absence of any outstanding intrinsic values.

We note especially that only once did plasma wave noise exceed briefly,

10 mV/m, and rarely did it exceed 2-3 mV/m. This may be contrasted with

the almost steady noise at 5-10 Win recorded in very high-O shocks

(Formisano et al., 1975), and with the very high electric fields in high

mach number, q-perpendicular shocks (Greenstadt, 1974). Similarly, the

magnetic ELF noise was at lower values than those usually found at elevated

[ (Greenstadt, 1974). In general, the wave components of the structure were

comparable to those associated with simple, laminar, q-perpendicular shocks

(Greenstadt et al., 1975)• The most interesting wave "structure" was the

presence of noise above solar wind background in the interpulsation seg

ments of the data, but the levels of the noise were not striking.

Theoreti cal Considerations

A comprehensive comparison of observational details with the theory

of the microstructure of the quasi parallel shock is outside the scope of

i
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this report for several reasons, chief among which is that there is neither

a single, unified theory nor a small group of competing, easily differentiated

models. Those models that have been developed to the point of providing quan-

titative, or even qualitative, results have been founded on extreme assumptions,

e.g., b >> 1, b << 1, M `t: 1, 6 nB = 0, quasilinearity, in order to make the

mathematics tractable ( Kennel & Sagdeev, 1967; Auer	V61k,.1973). Our case,

where 6nB # 0, M 2:! 4 -5, ^ < 1, covers exactly the parameter ranges for whichlu

conventional simplifications are inapplicable and for which even approximate

solutions or extrapolations of solutions are problematical. There were also

experimental difficulties in that the most crucial theoretical quantities

governing parallel shock formation, e.g., Te/Tp , TVTi, were not measured.

Without these quantities, especially within the structure itself, validation

of theoretical assumptions or predictions cannot proceed. Nevertheless, a

few remarks are justified by the nature of the data and by the ideas con-

tained in existing theory.

I

r
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First, and most importantly, the issue of the existence of parallel

conditions in the context of the bow shock must be carefully weighed. The

y
magnetic records displayed here show unmistakably that no identifiable shock

could be said to have been propagating instantaneously along B, because every

component of the field in the nominal shock-normal frame contained fluctua-

tions whose amplitudes were non-negligible fractions of the total field.

Consequently there was no sense in which the upstream plasma flux could have

behaved as if it were streaming only parallel to B. We are presently in
r

clined to the view that the incoming solar wind flow, nominally along a and
3

B, encounters appreciable transient, transverse field before it is "shocked"
I

i
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and that influential upstream nonparallel effects, which some theories have

neglected, must be taken into account in seeking a valid theoretical under-

standing of the parallel bow shock.

Second,,B, as adopted, was within a few degrees of the nominal normal,

probably as close to parallel as experimental	techniques can certify,	but

enB # 0, and the question can be raised that the observed shock was not

strictly parallel, a geometric condition which may have unique, narrowly de-

fined characteristics.	However, the bow shock is a three-dimensional	curved

"surface" and can never be tightly parallel except over a minor fraction of

its area.	Since theoretical	and numerical	results have been one-dimensional,

F it is unknown, given deflected flux, propagating waves, and reflected parti-

cles, to what extent the untidy nearly-parallel structure we observed would

spread into and destroy an	adjacent "clean"p	y	y	̂	parallel	structure	if	it existed.,

We favor the notion that dimensional effects are important in the bow shock

and that locally parallel, unlike perpendicular, average geometry may not be

r an	isolatable state.

jj Finally,	there were some resemblances and dissimilarities of the ob-

servations to existing theory that must be noted.	The high B,	low M calcu-

lations of Auer & Volk (1973) developed a genuine shock with a density jump,

i
l but the jump was accompanied by an increase in the pressure anisotropy.	The

ii enhanced anisotropy would support the firehose instability which would in
s{

turn provide a dissipation mechanism and form the parallel shock into a

"relaxation" phenomenon with appreciable magnetic turbulence.	The authors

I{ proposed a qualitative extrapolation to strong	(high M)	parallel	shocks	in

:i

which they envisioned a double structure consisting of a thin electrostatic

A

f
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shock (tiX	XO), distinguished by a density and temperature jump, followed

do'wastream by a broad relaxation structure of the firehose type (AX ;z^ 100 Ri).

They speculated that the magnetoshea

of the bow shock. In support of thi

r

tant electrostatic part of the Auer

Are there any measured or infe

tions of Feb. 14 that can be brought
,t

theories? As already noted, none of

rectly measured, let alone measured

obliged to reason from rough estimat

bility is that A = 1 - 1/2((3 A +
e e	i

A i = 1 - (T il /T i W ( Kennel	Scarf,

stance for this instability occurs i

If we assume this extreme was the ca

and upstream Te equal to the "connec

Feldman et al. (1973), we get 0 = .E

tron and proton anisotropies make A

tion that the solar wind was not fii

Ir >t

f

r

th itself could be the relaxation zone

s argument, we recall the HEOS plasma

measurements of Fig. 5, where the density (and "temperature" as well)

appeared commonly to be higher throughout the pulsation interval than it

was in what we adopted as the undisturbed solar wind. This result would be

consistent with the idea that magnetic turbulence would exist behind an

electrostatic-shock and within a region of enhanced density.. If the den-

& Volk model might have , been responsible.

rred quantities of the shock observa-

to bear on the Kennel-Sagdeev/Auer-Volk

 the most salient quantities was di-

independently upstream, so we are

s. The condition on fi.rehose insta-

i ) < 0, where A  = 1 - (T ei/Tell ), and

1968). The most favorable circum-

A =
e	i

A = 1; i.e., T
el

= T
i1 

= 0.
-

e and take the largest upstream 13 i	.3

ed" average Te = 1.56 x 10 5 °K of	a

0. Realistic estimates of the elec-

:ven larger, so there is rough, indica-

:hose unstable in the upstream region
a

1
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outside the q-parallel structure. We are inclined to think that encounter

by the solar wind with the large pulsation gradients heated the electrons

resistively and made them more isotropic, thus tending to cancel altogether

the f 
e 
A 
e 

term. If this did occur, then there would have been at most a few

instants within the q-parallel structure when A < 0 provided we credit the

computer-derived values of T i and assign them entirely to increases in Till.

To the above remarks may be added the observation that, at high resolu-

tion, proton (,and electron) thermalization and high B tended to occur to-

gether, cancelling each other out in the definitions of fi e , f i and thus

acting to keep A from going negative. Also, no extraordinary plasma wave

(acoustic) noise and no extreme proton heating were encountered at the

pulsations. The condition A < 0 was therefore improbable on qualitative

empirical grounds.

On balance, we cannot rule out the possibility that the firehose in-

stability may have been excited locally at some times, but we do not find

direct evidence or persuasive arguments that the electrostatic/firehose

relaxation shock model was applicable to the case described in this re-

port in the sense of accounting for the observed overall macrostructure.

We suggest that most, if not all, of the quasi-parallel macrostructure

we observed was part of a largely upstream, unshocked, or partially

shocked plasma state in which the shock relaxed to a thick region with

waves, and probably reflected particles, extending far into the upstream

medium, and with large amplitude transverse pulses and waves deflecting and



solar wind. We propose that separated pulses formed and steepened and that

the solar wind streamed through these, emerging as a modified plasma flow

corresponding to the interpulsation regime described in the report. The

only dissipation mechanisms for which direct evidence was recorded in the

region observed were dispersion andion plasma frequency noise. We speculate

that the highest estimated proton temperatures could have been produced by

multiple pulsation encounters and anomalous ion-wave resistivity only, and

that these were the most likely components of the q-parallel microstructure.

The shock appeared superficially as one in which whistlers might have taken

the otherwise abrupt transition and run away upstream with it, spreading

fragments along the way. This interpretation would be in closest accord

with the picture of oblique whistler shocks presented by Tidman & Krall

(1971). The upstream conditions in our observed case corresponded to

region IV, near the b  axis, of their Figs. 5.3 and 9.4 and the shock profile

corresponded to the forward section including part of the dissipative shock

layer, in the sketch of their Fig. 9.5. In addition, we would expect a com-

plex interaction among solar wind particles, reflected protons and electrons,

upstream Alfven waves, and whistlers propagating both upstream.and downstream.

The picture of Biskamp & Welter (1972) comes to mind, but we lack the diag-

nostic sophistication for testing their model. We do not exclude two-stream

interactions.

SUMMARY

The observed quasi-parallel bow shock structure, at supercritical Mach

number and moderate ^, was characterized as follows;

Y
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a
4

1. Irregular, large amplitude, magnetic pulsations, sometimes in bursts,

F	 -

often separated by intervals of smaller amplitude, upstream-Like waves;

2. Thickness ti 2 RE;

3. Large amplitude, quasiperiodic, transverse magnetic wave components;
s

4. Solar wind of nominally unreduced, but significantly deflected, streaming

velocity;

5. Solar wind of elevated temperature, enhanced density, distinct distribu-

tion with skewed high energy tails and irregular low energy envelopes;

6. Inversely related antisolar-directed plasma flux and field magnitudes.;

a

7. Electric and magnetic ELF wave noise comparable to that associated with

laminar shocks;

8. Interpulsation regions of upstream magnetic magnitude and wave structure

but noisy, deflected, and partially thermalized plasma flow;

9. No direct evidence that the macrostructure was governed by firehose in-

stability as a dissipation mechanism;

10. Macrostructure following the outlines of an oblique whistler shock,

modified by additional irregularity-and complexity.
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Figure 1. Context of shock observations of 14 February 1969. (a) Three-

dimensional view of HEOS 1 position relative to shock and B-X

plane; (b) HEOS location near area of parallel geometry. Distance

in earth

Figure 2. Relative

curves.

ecliptic

segments

The circ

radii (RE).

locations of satellite observations and nominal shock

Distance scales are in units of earth radii (R E ) in solar

coordinates. The direction of motion along the trajectory

marked HEOS 1 and OGO 5 was outward for both spacecraft.

led numbers in (a) mark nominal shock locations corres-

ponding to the numbered times of Figure 3.

Figure 3. Synoptic magnetic field observations of the quasi-parallel bow shock

of 14 February 1969. Explorer 35: 48-sec samples. Pulsation

index I  was computed with a = 1.6 ( Greenstadt, 1972b). The

circled numbers refer to times of boundary crossings or pulsation

onsets at either HEOS or OGO.

Figure 4. Basis for estimates of minimal thickness of q-parallel structure.

(a) Tipped axis still leaves OGO and HEOS on separate nominal shock

surfaces; (b) Shock arcs enclosing trajectory segments corresponding

to pulsation data at both satellites define the thickness.

Figure 5. Synoptic plasma and field magnitude data from HEOS 1. Each plasma
3

parameter value corresponds to one complete 384-sec spectrum; the

y j

	
circles represent concurrent values from OGO 5. The double values

r
	 of V at 0529 represent the range of velocities compatible with an

ambiguous spectrum spanning the large 0530,especially between 0314

and 0530, are unreliable, but their general levels relative to

f ,i
	 the solar wind are significant.
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FIGURE CAPTIONS (Cont'd)

Figure 6. (a) Average solar wind, magnetosheath, and pulsation region ion

energy spectra from HEOS 1; (b) Two representative pulsation ion

spectra.

4

i

Figure 7. (a) Comparison of solar wind flux with field magnitude at OGO 5;

(b) Apparent inverse relationship between flux and field strength

in quasi-parallel structure from 0355 to 0515.

Figure 8.	Individual ion spectra (solid lines) from HEOS 1 in original time

sequence, displaying the four spectral subcycles in each.. The top

panel identifies the times and conditions at which the spectra were

obtained relative to the q-parallel structural sequence recorded

by the HEOS magnetometer. Dashed and dotted lines reproduce the

average solar wind and magnetosheath spectra at lower right.

Figure 9. Magnetosheath (left) and pulsation samples of field components

measured by OGO 5 (UCLA), showing persistence of preferred wave

polarizations normal to B. B is along B

XSli 

at left, along B 

Z  

at

right.

Figure 10. Multidiagnostic views of various shock conditions seen by OGO 5

on 14 February 69. (a) Quasi-perpendicular crossing.

Figure 10(°u). Quasi-parallel field gradient.

Figure 10(c). Two samples (left and right) of upstream wave region and two

samples (center) of "interpulsatiorr" wave re: ions.

Figure 10(d). Two samples of pulsation bursts

Figure 10(e). Two samples of long pulsation trains.

Figure 11. Simultaneous 48-sec samples of quasi--parallel structure seen by

HEOS and OGO magnetometers, showing alternation of higher field

level at the two spacecraft.
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Figure 1. Context of shock observations of 14 February 1969.	(a)

Three-dimensional view of HEOS 1 position relative to shock

and B-X plane; (b) HEOS location near area of parallel

geometry.	Distance in earth radii (RE).
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Figure 5. Synoptic plasma and field magnitude data from HEOS 1. Each

plasma parameter value corresponds to one complete 384-sec

spectrum; the circles represent concurrent values from OGO 5.

The double values of V at 0529 represent the range of veloci-

ties compatible with an ambiguous spectrum spanning the large

0530, especially between 0314 and 0530, are unreliable, but

their general levels relative to the solar wind are signifi-

cant.
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Figure 6.	(a) Average solar wind, magnetosheath, and pulsation

region ion energy spectra from HEOS l; (b) two

representative pulsation ion spectra.
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Figure 10(d). Two samples of pulsation bursts.
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Figure 10(e).	Two samples of long pulsation trains.
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Figure 11. Simultaneous 48-sec samples of quasi-parallel

structure seen by HEOS and OGO magnetometers,

showing alternation of higher field level at

the two spacecraft.


