Structure of Clusters in Methanol-Water Binary Solutions Studied by Mass Spectrometry and X-ray Diffraction

Toshiyuki Takamuku, Toshio Yamaguchi^a, Masaki Asato^b, Masaki Matsumoto^b, and Nobuyuki Nishi^c

Department of Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan

^a Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan

^b Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

^c Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

Reprint requests to Prof. T. Y.; Fax: +81-92-865-6030; E-mail: yamaguch@sunsp1.sc.fukuoka-u.ac.jp

Z. Naturforsch. 55 a, 513–525 (2000); received February 11, 2000

The structure of clusters in methanol-water solutions in its dependence on the methanol mole fraction $x_{\rm M}$ has been investigated by mass spectrometry on clusters isolated from submicron droplets by adiabatic expansion in vacuum and by X-ray diffraction on the bulk binary solutions. The mass spectra have shown that the average hydration number, $\langle n_m \rangle$, of *m*-mer methanol clusters decreases with increasing $x_{\rm M}$, accompanied by two inflection points at $x_{\rm M} = \sim 0.3$ and ~ 0.7 . The X-ray diffraction data have revealed a similar change in the number of hydrogen bonds per water and/or methanol oxygen atom at ~ 2.8 Å. On the basis of both results, most likely models of clusters formed in the binary solutions are proposed: at $0 < x_{\rm M} < 0.3$ the tetrahedral-like water cluster is the main species, at $0.3 < x_{\rm M} < 0.7$ chain clusters of methanol molecules gradually evolve with increasing methanol content, and finally, at $x_{\rm M} > 0.7$ chain clusters previously found in ethanol-water binary solutions and discussed in relation to anomalies of the heat of mixing of methanol-water binary solutions.

Key words: Methanol-water Binary Solutions; Mass Spectrometry; X-ray Diffraction; Clusters; Hydrogen Bonds.