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In the generalized random-phase approximation, introduced by Anderson and applied to
the theory of superconductivity, existence of a collective excitation with vanishing excitation
energy and momentum was known. It is shown to correspond to the creation of a Cooper
pair. The creation operator satisfies a nonlinear operator equation which dose not depend
on the magnitude of order parameter. It is, therefore, independent of dynamics, that is, of
the strength of the pairing interactions. Nevertheless it has the assumed matrix elements
between a given state in an N-particle system and the corresponding state in the N+2 par-
ticle system. Discussions are confined to the BCS superconductor at absolute zero temperature.

§1. Introduction

In the original formulation of the theory of superconductivity, both BCS"
and Bogoliubov® relaxed the constraint of the electron number conservation in
order to simplify mathematics. Gor’kov® first pointed out the importance of the
matrix element of a product of two electron creation operators between ground
states of N- and N+ 2 particle systems, in deriving equations for Green’s func-
tions. An operator R! was then introduced, which transforms a given state in
an N-particle system into the corresponding state in the N+2 particle system.
It should satisfy the relations:

RYO,N>=|0,N+2), 1-1)
RY\E,s; N)=|k,s; N+2), 1-2)
R|0, N+2>=|0, N>, 1-3)

as mentioned, for instance, in Schrieffer’s book.” Here, |0, N> is the ground
state of the N-particle system, |k, s; N) a low-lying excited state of the N.particle
system with momentum 7%k and spin s. R is the Hermitian conjugate operator
to Rf. These operators should commute with electron field operators, if small
quantities of relative order (1/N) are neglected. . The operator R' evidently
adds a Cooper pair to the condensate, while the conjugate R is annihilation oper-
ator of the pair. In terms of these operators, the theory could formally restore
the number conservation.

The N-particle projection of the wave function written down by BCS is?

— Ei—ee 1+ "
iO, N>—AN ;Td]qa_kl |0> N (14)
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20 Y. Wada

where Ay is a normalization constant, a} and a}; are the creation operators for
electrons with momentum 7%k and with spin down and up, respectively. 4* is
the complex conjugate quantity to order parameter 4. ¢, is the kinetic energy
of an electron relative to its value at the Fermi surface

#k?

2m

ek"—: B
m and 4 being the electron mass and the chemical potential, respectively. E, is
the energy of an elementary excitation

Ek= v Ek2+ l[”z.

|0> is the vacuum. On combining expression (1-4) with a relation satisfied by
Rt (1-1), one has hitherto inferred that R' might have a form®

2 E,—¢
Operators X, which give an approximate description of elementary excitations,
approximately satisfy

[H, X]=—#0X. (1-6)

Here H is the Hamiltonian. If %w is positive, it gives the excitation energy and
X is the annihilation operator of the excitation. Relations (1-1), (1-2) and (1-3)
indicate the fact that the operators R and R are the creation and annihilation
operators, respectively, of an elementary excitation with a vanishing excitation
energy, the energy being measured relatively to #N. The commutator between
H and R! (1-5), however, gives a term like a'a in the generalized random-phase
approximation and does not reproduce such a relation as (1-6). Moreover, the
Hermitian conjugate quantity

E.,—¢
4

does not satisfy (1-3), when applied to |0, N+2> (1-4). Thus, expression (1-5)
should be insufficient for RI.

The generalized random-phase approximation was first introduced by Ander-
son” and applied to the theory of superconductivity. It was shown that most of
the elementary excitations have the BCS energy gap spectrum, but there are
collective excitations also. The neutral Fermi gas has a low-lying branch of
collective modes, while the charged gas has no low-lying collective modes because
of the strong plasma effect. In addition, the existence of a single mode with
vanishing excitation energy and momentum was pointed out, regardless of whether
the system is neutral or charged. The structure of this mode has not been in-
vestigated so far.

The purpose of the present paper is to show that the above single mode

k
(428 257

_2
R=2%
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Structure of Cooper Pairs in Superconductors 21

gives a correct expression for R, It increases the number of electrons from
N to N+2. This elementary excitation is clearly the creation of a Cooper pair.
Identifying the operator of the elementary excitation with R', one obtains a non-
linear operator equation for R'. R' and R are found to satisfy relations (1-1),
(1-2) and (1-3).

The discussions will be carried out in a self-consistent way. In deriving
the equations for the elementary excitation, we assume the existence of R' and
R which satisfy (1-1), (1-2) and (1-3) and commute with electron field operators.
We shall then see that R! and R, thus obtained, actually satisfy the above as-
sumptions.

In §2, the elementary excitation is determined from the equations derived
by Anderson. In § 3, the operator equation for R' and R are shown to satisfy
(1-1), (1-2) and (1-3). The canonical commutation relation between R and R!
is examined. Finally, in §4, some comments are made on R.

§ 2. Equations of motion

Anderson® introduced the notations

bqua—k—QLakT s [;kq';a}Hde-M s

0k’ =ak.gar , 5k9=dt—k¢d-k—g¢ ,
1

7= <0, Nlahoan,e|0, Ny =1 (1-%%), @1)
2 E,

b =<0, Nla-uamR'0, Ny= -4 (2-2)

2E,
v
=_2 3,

4 2 ; %

VrQ=°Cx+Q —Ek » ro=¢k+o+Ex,

NpQ="nr+Q— Nk , 2pg=l—ng—ng.q,

where v is the strength of the pairing interactions and is positive. £ is the
volume of the system. In the generalized random-phase approximation, he got

[H, 00%) = 01eg0x®— - (Qmagp + 4*5.R! — 45, °R
+ zj—blt+ Z bk/QRT'— —?—bk Z Z%'R
2 2 & Qe % ?
[H, 0% = — 0robr®+ %’0 (Q) 7200°% + 4*61°Rt — 4B 4°R

+ %bk* > 64.R - %bmg B4R,

%’
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22 Y. Wada
[# 6=~ Bt~ YD (b1 b1 0 0°R
+ 4%+ 5. R+ zk.Q% > b,
[H, 5:°] =52k917;9+”—§29_)(5k* +b%.0)0°R!

—4* (0 + 0 R — sz‘};“ ; 5% .

The case of neutral Fermi gas was defined by v(Q) =const (= —v) as Q—0.

In the case of charged gas, v(Q) takes a form
v(Q) =4rne’/Q
p® is given by
o= 42_" (0x%+0:9.

The operators R and R' are supplemented on the righthand side of the equations

to satisfy the number conservation. Annihilation operators X of elementary ex-
citations take the form

X= Z_c.u‘ (02°02°+ $2%08°R + £1°0k°R + 1181 °R") . 2-3)

Substitution of this expression into the equation of motion (1-6) gives
— 0Pl = — 2ropr®+ 4* (p1°+ &%) + 1, , @9
—hwgr®= — 0podr®+ dpr®— 4* 4+ 1, (2-5)
— 06 = 0rofr®+ 4 — 4* 18+ L, (2-6)
—#0xk®= Lroxr®— 4 (91 + 69 + I, @7
I, = % ; ZroPr®+ % ; (br*dr®+ b% 0k, (2-8)

L="D 5210 (3:0— 620 — 2D 524 (5, 1 by 0) 69— (Bu* + B ) 16},
2 % 0 %
(2-9)

L= —— > znoua®— % 3 (Brrai® + B9 (2-10)

1
2
We have assumed that R and H commute, if small quantities of relative order
(1/N) are neglected, and R'R=1, etc. These are deduced from relations (1-1),
(1-2) and (1-3).

To find out a new solution, we first assume that the Coulomb interactions
in the charged gas are weakly screened, say, as
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Structure of Cooper Pairs in Superconductors 23

v(Q) =4re’/(Q+£7)

by, for instance, the finite dimensions of the system. The limit of no screening
£—0 will be taken after one finds the solution. Equation (2-2) tells us that
Egs. (2-5) and (2-6) are satisfied by '

¢®=82=0, (2-11)
Apr®=A4*12° . (2-12)

Equation (2-4) for ¢,? gives, in a non-interacting system with v=0, an elementary
excitation

ﬁa)=.gkg=8k+9+ €k .

This is a two-particle excitation. Therefore, we will take the outgoing wave
boundary condition

fiv—Fp—10 , >0
in Eq. (2-4). Equation (2-7) for %% however, will be solved with the incoming
wave boundary condition

ho—ho+10,

since the corresponding elementary excitation is a two-hole excitation. Substitu-
tion of (2-11) into Egs. (2:4) and (2-7) immediately shows that the possible
solution has to have a vanishing excitation energy #p=0, and ¢.® and x.° satisfy
the same equation

(2ro+1i0) o= —;}5 ; ZkQ([JkQ.

This equation has a solution only if the total momentum @ vanishes. Then, ¢’
takes a form

A

0__
e 2er+10 ’

where

v v A
g # T Eme= g B
The last relat'}on is nothing but the BCS equation for the energy gap. By con-
dition (2-12), one obtains

I4* o_ 14

0__— —__ 4
= et T i

(2-13)

I being a constant to be determined later.
Substitution of (2-11) and (2-13) into the expression for X (2-3) g1ves an
operator of the elementary excitation
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I
2 ; sk+u?

(A a_ klakT+Aak1Ra kl)

The operators R and a' are assumed to commute, when N is very large. The
possible singular interaction v(Q) is included only in the definition of I, (2:9).
Since I, identically vanishes by the requirements (2-11) and (2-12), the operator
X has the same form for the charged and neutral Fermi gases.

§3. Operator equation for R

Since X should be the annihilation operator of a Cooper pair, the expec-

tation value of the number operator X'X has to give the number of the Cooper
pairs:

<0, N|X'X]|0, N>=N/2.
Making a comparison with the relation
R'R~1
we get
R= N/ZX_&—N . +16(A a_kar+ dajyR'a' v), 3:1)

except a possible phase factor. The constant I will be fixed from relation (1-3).
The calculation of R|0, N+2) will be carried out in a self-consistent way: the
operator R’ on the right-hand side of (3:1) is assumed to satisfy a relation like
(1-3) and the total R (3:1) is shown to reproduce (1-3), if the constant I is
suitably taken.

The normalization constant Ay of the wave function |0, N, (1-4), satisfies

NAy/2=Ay_,, 3-2)
if small quantities of relative order (1/N) are neglected.” Equation (3-2) will
be derived in the Appendix. The state R|0, N+2> can now be rewritten

R|0, N-i-2>——~/—_28 n 6{(E,,—e,¢)a_k¢a*_k¢|0, N+ dalya 2|0, N—2)}
k

_ 1 { E,— ek 4 (Er—en) t }

= 0, N>+ 1— 0, N—2

v % ara PV R adw VR Jebat ’
I

1/5_{N(0),Q jdek(—anka(ek) —1)0, N>

2

+ Z E" ak,a* 1|0, N— 2)}

=(—i7t|A|N(O).!ZI/x/2N )0, ND. (3-3)
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Structure of Cooper Pairs in Superconductors 25

Here, N(0) is the density of Bloch states of one spin per unit volume per unit
energy at the Fermi surface, and a condition

N(©)2 Ide,,:N

has been used, the integral extending over states within the range where |& is
less than the average phonon energy. ‘Equation (3-3) conforms to (1-3), if we
put

\/2—-N_i A .
I=ianoe’ @9

which is a small quantity of order 1/4/N. The equation for R (3-1) becomes,
with the help of Eq. (3:-4),

R= i Z 1 -
N0 R F g.+i0
where ¢ is the phase of the order parameter

4=4le*.

(e *a_pam+etajyRla k), (3-5)

A similar argument immediately shows that the Hermitian conjugate operator R'
self-consistently satisfies relation (1-1). Commutators [axy, R], [a-x, ,R], [ary, R'],
etc., give small quantities of order 1/N. This implies the validity of (1:2), since
elementary excitations are usually represented as linear combinations of a’s and
aPs or of products of these operators. To obtain these commutators up to terms
of order 1/N, we may write

b [ € o opyst 2 et ot ] )
[axrs, R] nN(O).Q[e,,+i6a—klR + % 6,,»+i66 aknal e Rl awm, R] |. (3-6)

R and [ax, R] on the right-hand side may be regarded as if they were c-numbers.
Equation (3-6) can be formally solved and gives

. 16
ary, R] = g -J a5 R, 3.7
[aw. R1= 0y 2en s i0) "l @-7)
with
2iei¢ a}maﬂ 1% lR

N2 % ¢g.+i0
Similarly, we find

e
-k R]=— = -JauR?,
le-wy R1= =y aGrmy
o
[ak, R] = — te Ja (3-8)

ZN(0)2(e:+0)
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. _ig
[a“_kl, R] = e "laM .

-J
7N (0) 2(e,+10)

In the random-phase approximation, the operators X, given in (1:-6), have to
satisfy the usual commutation relations between creation and annihilation operators
as an average. In the present case, the requirement takes the form

<0, N|[X, X"]|0, N>=1,
which, with the help of (3-1), gives

<0, NI[R, R'|0, N> = 12\7 . (3-9)

Equation (3-9) will be proved again in a self-consistent way. Supposing R and
R', on the right-hand side of (3:5), have a commutation relation

[R, R = % (3-10)

at least, among the ground- and low-lying excited states as (3-9), we can show
the total R and R' reproduce (3-9). Equation (3-10) gives

. -1 .
[R’, R"]=4[R, R']= N (3-11)

if quantities of order 1/N*® are neglected. Equation (3-5) and the Hermitian
conjugate expression for R' give the commutation relation

1 1 1
11 = . —2i¢ , _ 12 ,
[R, RT] N 2) ka S [e=**a_p [a-ianr, R™]arn

— e’“’a}ﬁ [a}maf_kq, Rz] dI. k| + aTkT [d_ K’y RZ] atkLRT’ak’T
+a_w{ajR [al), R?] + a4y [RY, R™]a s+ [aky, R¥] Rl )} Qrnt
+ d-quﬂa;c‘r [ar, R*] aT—kl] . (3-12)

With the help of (3:7) and (3-8), it will be found out that all terms cancel
each other except the one with [R? R"™], (3-12) being reduced to

8 1 1
R, R = - @l wi@aon .
[R, K] (AN(0) QYN iR 6o +0 ey —ip e PRI H1TH

Use has been made of (3-11). Since the right-hand side of (3:13) is already a
quantity of order 1/N, we may use the wave function of |0, N> in its form of

the lowest order approximation, (1-4) or the original BCS form, to calculate
the expectation value

(3-13)

2
0, N|a_g@hral rar+|0, N =b'b*=—|4l—.
< | 24125 klak‘rl > %Ok 4E.E,

i is defined in (2-2). Substitution to (3:13) gives
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Structure of Cooper Pairs in Superconductors 27

2|4 3 1 _2
(N (0) Q)N £.% (5, +10) (e —i0) EE,y N~

<0, N|[R, R']|0, N)>=
which is (3:9).
The non-linear equation (3:5) has a formal solution

_R: 2 i Z e_id’ a
1+ /144U zN(0) 2 F &, +10

B 3172 7 3

where

Ue 1 3 1
(@N(0)2) EE (6,+10) (e +170)

The annihilation of a Cooper pair turns out to be a superposition of many com-
ponents. The n-th component annihilates » pairs and creates n—1 pairs. The
structure of the Cooper pair is, thus, further complicated than that given by the
simple formula (1-5).

a_klakta}cﬂrat_kq N

§ 4. Discussions

The equations of motion for the elementary excitations, derived in the gen-
eralized random-phase approximation, have a solution which corresponds to a
creation or annihilation of a Cooper pair. One finds a non-linear equation (3-5)
for the operator of the pair. It is remarkable that the equation depends only
on the phase of the order parameter and not on its absolute magnitude. There-
fore, the operators R and R' do not depend on the strength of the pairing in-
teractions. It may be probable that their structure, investigated in the present
work, may be closely related with some symmetry property of the system, since
they are practically constants of motion.
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Appendix

Relation NAN/2:AN_3

Although this relation was implied in a work by Nakamura,” we shall briefly
summarize here another way of obtaining it, since wave functions are given in a
different representation.

Let us put
Ek_ek>27l _ 1 — IA] Ek__ek m+l t t
by (—MI ., Xla=pll (—I y )" ahata,

Vu= (le)ﬂl 0> . (A' 1)
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28 Y. Wada

The ground state of the N.particle system (1-4) is then given by
10, N>=Ax¥yp. (A-2)

We can also put

X"Uy= 2] II (.Qc,)"l(X,, )i TM—n— 3 mye

{ny, mys}=0,1, »oe ll'=1§2:'4- Pty
e
XSu(ny, nay e 5 My My --2). (A-3)

The summations are to be taken on condition
n=Yln,+ IZ &-1m,,
l=1 /=2

and m, is defined by
m=M—-n—> m..

=2
Multiplication of the operator X; on (A-3) leads to a recurrence formula
Sas1(nyy 73, -+ 5 my, my, )

=;(ml+1)fn(n1, ...’nl...,l’ ey My, e, mt+1, ...)

—;(m;—l—Z) (mz+ D fu(ny, nay - My, e, Myt 2, 00, my—1, --)

=23 (mi+1) (my+1)
i
an(nly Nay =t0 5 My, -, ml+13 Ty ml’+1’ Y mH—V—‘l, '“)'
(A-4)
Introducing functions ¢, by
gn(nls Ngy =t My, My, - ) \/ml' mz fn (nls Ny, ** 5 My, My, * ")9 (A'S)

we define operators &; and &,' for artificial Bose particles by

gy 7gy ooy My ooy Mgy B3| 00> = Vg + 10, (g, 70, -+ 3 14, e mg+1, 00,

Mgy Mgy ooy Mgy oo, g, 16N Gy = VM9, (s, 7a, -+ My ey my—1, -02),
where

iy Mgy <+ 3 Mgy Mgy | Gad> =G (71, 713, o, gy gy +-). (A-6)
b’s and bys satisfy
bibt—b,1b;=0y; .
One further introduces operators V' by
sy gy oy 7y oo gy gy o | VG =G Gy ooy a1, -ovs 1y, 12, -+,

and rewrite (A-4) as
Ins1= (; Vitb,— Z blib 161) G .
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Structure of Cooper Pairs in Superconductors 29

This formula immediately gives

32 Leg,=exp (6 (X Vitbi— 3 Blivbibi) 1o

a=oz |

=exp{—¢ le] bl biby}
% exp {2 LGl SO ‘b,,‘,,} % . (A-7)
n=0 7+ 1 Ly lgy o

Since we are interested only in ¢y, (M=N/2), where there are no b-particles,
the first exponential factor on the right-hand side of (A-7) can be effectively
put at unity. The definition of ¢, (A-5), with the help of (A-6), leads to

o= (&N "0),

|0) being the vacuum of b-particles. Therefore, in (A-7), all &,, should be &
It is easily found that

1, & (= m ! {(—1)‘ T}w x
_]\ﬁg” mZ=0 m! %‘i:.‘zf;'j{nl!n’!“' ILI ] Vl (bl) Jo. (AS)

Tng=m
Finally, with the help of (A-1), (A-3) and (A-8), one obtains
¥ul ¥y =<0| (Xl)MI Y
= 2 (1,_1 (L2e)") 9u(ny, 1, -+ 3 m=0,0, --+)

ny

M=X'lng
= 2 (Ml)2 H M"_ ,
M=1éllnl L nl!
where
_ (_ 1)1_1 _ (_ l)l—l Elc'_ &r 2l .
=D o= (= ;( < ) . (A-9)

The normalization factor Ay in (A-2) has a magnitude
/ -1
| Ax| = ((%’) !> Qv (A-10)

with
_ (£b,)"
0 g &

n
N/2=Zlng

This is the result derived by Nakamura. Since N is even, we put N=2M and

E(z) = i}o Q= exp (3 22’}

220z 1snbny oz uo 1senb Aq £/26161/61/1/81/81o1e/d1d/woo dno-olwepeoe)/:sdyy wouy papeojumoq



30 Y. Wada

Then, Q,y takes a form

Qu=-1 § 5@ dz=i_§l exp (3] Ob'— Mlog 2)dz . (A-11)
2pi J M 2miJ =z v

The contour is a circle around z=0 in a counter-clockwise direction. The in-
tegral (A-11) is evaluated by the saddle point method; The saddle point is on
the real axis at z=2, which is determined by

3 igbai=M. (A-12)
Similarly, Q.x-, can be rewritten as

Qap—s= i_j:-exp Gl @bt — Mlog 2)dz ,
2mi T

which has the same saddle point z,. Therefore, if a small quantity of relative
order 1/N is neglected, we get

Qsn/ Qax—2=1/z, . (A-13)
Substitution of (A-9) into (A-12) leads to
_N_ 2 (Ee—e)

2 F A+ z(E—e)
This equation determines z, with the help of (2-1), as

21 ' (A-14)
Equation (A-10), (A-13) and (A-14) gives
Ax/Ay-s=2/N,
which is (3-2).
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