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Abstract—In 1995 J. C. Lagarias and Y. Wang conjectured that the generalized spectral radius
of a finite set of square matrices can be attained on a finite product of matrices. The first
counterexample to this Finiteness Conjecture was given in 2002 by T. Bousch and J. Mairesse
and their proof was based on measure-theoretical ideas. In 2003 V. D. Blondel, J. Theys and
A. A. Vladimirov proposed another proof of a counterexample to the Finiteness Conjecture
which extensively exploited combinatorial properties of permutations of products of positive
matrices.

In the control theory, so as in the general theory of dynamical systems, the notion of general-
ized spectral radius is used basically to describe the rate of growth or decrease of the trajectories
generated by matrix products. In this context, the above mentioned methods are not enough
satisfactory (from the point of view of the author, of course) since they give no description of
the structure of the trajectories with the maximal growing rate (or minimal decreasing rate).

In connection with this, in 2005 the author presented one more proof of the counterexample
to the Finiteness Conjecture fulfilled in the spirit of the theory of dynamical systems. Unfor-
tunately, the developed approach did not cover the class of matrices considered by Blondel,
Theys and Vladimirov. The goal of the present paper is to compensate for this deficiency in
the previous approach.

PACS number 02.30.Yy
DOI: 10.1134/S0005117906040171

1. INTRODUCTION

Let A = {A1, . . . , Ar} be a finite set of real m×m matrices, and ‖·‖ be a norm in Rm. Associate
with any finite sequence σ = {σ1, σ2, . . . , σn} ∈ {1, . . . , r}n the matrix

Aσ = Aσn · · ·Aσ2Aσ1 ,

and define for any n ≥ 1 two quantities:

ρn(A) = max
σ∈{1,...,r}n

‖Aσ‖1/n, ρ̄n(A) = max
σ∈{1,...,r}n

ρ(Aσ)1/n.

Then there exists the limit
ρ(A) = lim sup

n→∞
ρn(A),

1 This work was supported by the Russian Foundation for Basic Research, projects nos. 04-01-00330, 06-01-00256
and 06-01-72552-NCNIL-a.
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STRUCTURE OF EXTREMAL TRAJECTORIES 175

which does not depend on the choice of the norm ‖ · ‖. This limit is called the joint spectral radius
of the matrix set A. Analogously, the limit

ρ̄(A) = lim sup
n→∞

ρ̄n(A),

is called the generalized spectral radius of the matrix set A. As is shown in [2], for finite matrix sets
A the quantities ρ(A) and ρ̄(A) coincide with each other, and for any n the following inequalities
hold

ρ̄n(A) ≤ ρ̄(A) = ρ(A) ≤ ρn(A). (1)

In [17] J. C. Lagarias and Y. Wang conjectured that ρ̄(A) in fact coincides with ρ(Aσ)1/n for
some n and σ ∈ {1, . . . , r}n. The first counterexample to this conjecture (which got the name
the Finiteness Conjecture) was proposed in [5], and the corresponding proof was essentially based
on the measure-theoretical ideas. Later, another proof [3, 4] of the counterexample to the Finite-
ness Conjecture appeared which extensively exploited combinatorial properties of permutations of
products of positive matrices.

In [11], one more proof of the counterexample to the Finiteness Conjecture fulfilled in a rather
traditional manner of the theory of dynamical systems was given. The proof was based on the
technique of the so called Barabanov norms [1] (closely related with the usage of functionals Mañé in
[5]) and associated with them extremal trajectories for analysis of “the fastest growing trajectories”
generated by matrix sets.

Unfortunately, proofs suggested in [11, 12] did not cover the “boundary” situation investigated
in [3, 4]. In a private discussion Vladimirov conjectured that for the matrix sets studied in [3, 4]
the generalized spectral radius may be attained on infinite non-periodic matrix products different
from those described in [11,12]. In the present work a modified proof of constructions from [11,12]
is proposed which fully covers the matrix sets considered in [3, 4] and so disproves the conjecture
by Vladimirov.

The structure of the paper is as follows. In Section 2 we recall basics of the theory of difference
equations and inclusions, so as simplest properties of the irreducible matrix sets. Section 3 is
devoted to the study of general facts related to the Barabanov norms. Here we prove compactness
and uniform equivalence of all the Barabanov norms corresponding to the irreducible matrix sets
A; the corresponding proofs have something in common with those from [21]. In Section 3 we
introduce the key notion of the paper, the notion of the extremal trajectories corresponding to the
Barabanov norms, i.e., such trajectories which provide the maximal rate of growth ρ̄(A) = ρ(A)
amongst all the trajectories generated by the matrix set A. Here it is shown also that the extremal
trajectories of a matrix set A may be obtained as the trajectories of some nonlinear discontinuous
map called “the generator of extremal trajectories.” In Section 5 for the matrix sets A = {A0, A1}
consisting of a pair of two-dimensional matrices of a special kind with non-negative entries some
extra properties of the Barabanov norms are established. In particular, here we study the structure
of the unit ball in a Barabanov norm and prove that Barabanov norms are monotone with respect
to the cone of vectors with non-negative coordinates. Then, in the same manner as in [11,12], with
the use of the technique of the Gram symbols borrowed from [5], we investigate the structure of
the so-called “switching sets” of Barabanov norms playing the principal role in description of the
properties of extremal trajectories. In Section 6 we recall fundamental facts of the technique of the
so-called rotation numbers for discontinuous orientation preserving circle maps [6, 9, 10], with the
help of which we fulfil the analysis of the frequency properties of the extremal trajectories. As a
result, we succeed to show that for the extremal trajectories it is well defined the frequency σ(A)
of applying the matrix A1 in construction of the extremal trajectory. Moreover, this frequency is a
continuous invariant of the matrix set A. At last, in Section 7 it is shown that the value σ(A) takes
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rational values if and only if the generalized spectral radius ρ̄(A) = ρ(A) is attained on a periodic
matrix sequence the existence of a matrix set A with an irrational frequency σ(A). After this, to
show that the Finiteness Conjecture is generally not valid it remains only to prove existence of at
least one matrix set A for which the value of σ(A) is irrational. The proofs of all the statements
from Sections 2–7 are relegated to the Appendix.

2. TRAJECTORIES OF MATRIX SETS

One of the important problem in the study of properties of matrix sets A = {A1, . . . , Ar} is how
the joint (generalized) spectral radius ρ(A) is related with the rate of growth of solutions of the
difference inclusion

xn+1 ∈ {A1, . . . , Ar}xn, (2)

in which the value of xn+1 is chosen from the set of vectors {A1xn, . . . , Arxn}. Notice that each
solution of inclusion (2) is defined for all n ≥ 0 and, with some choice of the index sequence {σn},
satisfies the equation

xn+1 = Aσnxn, σn ∈ {1, . . . , r}. (3)

Clearly, the converse is also true, which means that each solution of the difference equation of the
type (3) corresponding to some index sequence {σn} is a solution of inclusion (2). To formulate
further properties of the solutions of inclusion (2) we recall some definitions and commonly known
facts.

In what follows solutions of inclusion (2) will be referred to as trajectories defined by the matrix
set A or simply trajectories of the matrix set A. The set of all trajectories of the matrix set A
will be denoted as T (A), the set of all trajectories x = {xn}∞n=0 of the matrix set A satisfying the
initial condition x0 = x will be denoted as T (A, x). In general, for r > 1 the map

x 7→ T (A, x)

is set-valued. In connection with this recall some definitions and basic facts of the theory of set-
valued maps (see, e.g., [16, §18]).

Let X and Y be topological spaces and f be a map associating with each element x ∈ X a
set f(x) ⊆ Y. Then the map f is called set-valued or multi-valued. The map f is called upper
semi-continuous at a point x ∈ X if for any open set U 3 f(x) there is an open set V 3 x such that
f(V) ⊆ U .1 The graph of the map f is the set

Gr(f) = {(x, y) : x ∈ X, y ∈ f(x)} ⊆ X× Y.

The map f is called closed (compact) if for any closed (compact) set G ⊆ X the set f(G) ⊆ Y is
also closed (compact). Clearly, each compact map is closed.

Recall without proofs some commonly known properties of set-valued maps.

Lemma 1. Let x ∈ X 7→ f(x) ⊆ Y be a set-valued map and let the space Y be regular.2 Then the
following statements are valid:

(i) if the map f is closed and upper semi-continuous then its graph is closed in X× Y;
(ii) if the map f is compact and its graph is closed then it is upper semi-continuous;
(iii) the map f is compact and upper semi-continuous if and only if, given a converging sequence

{xn ∈ X}, any sequence {yn ∈ Y} satisfying yn ∈ f(xn) is compact and the limiting elements x∗
and y∗ of the sequences {xn} and {yn}, respectively, are bounded by the inclusion y∗ ∈ f(x∗).
1 Here, the notation f(V) is used to denote the set ∪y∈Vf(y).
2 A topological space X is called regular if for any its closed set G and point x 6∈ G there are open sets U and V such

that x ∈ U , G ⊂ V and U ∩ V = ∅. For example, any metric space is regular. In particular, spaces Rm and Mm,r

are regular.
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STRUCTURE OF EXTREMAL TRAJECTORIES 177

Denote the set of all ordered r-tuples A = {A1, . . . , Ar} of real m×m matrices by Mm,r. Then
the set Mm,r may be identified in a natural way with Rrm2

if to treat entries of the matrices from
A enumerated in some predefined order as coordinates in Rrm2

. This allows to treat Mm,r as a
topological or, when needed, a metric space.

Denote the space of sequences {xn}∞n=0 endowed with the topology of point-wise convergence by
Ω(Rm). At last, the subset

Ωn = {x : ∃ x = {xn}∞n=0 ∈ Ω : xn = x}.

of Rm consisting of n-th elements of the sequences from the set Ω ⊆ Ω(Rm) will be called the
n-section of the set Ω. Point out that the set Ω is compact in the space Ω(Rm) provided that each
its section Ωn is bounded.

Now, we are able to formulate properties of the trajectories of matrix sets needed in what follows.

Lemma 2. For any matrix set A the set of trajectories T (A) is closed in the space Ω(Rm), and
the map (A, x) 7→ T (A, x) is compact and upper semi-continuous.

This Lemma is a simple corollary of the compactness criterium in the sequence space Ω(Rm), so
its proof is omitted.

In what follows, our prime point of interest will be the so-called irreducible matrix sets. In
connection with this, recall that the matrix set A is called irreducible if the matrices from A
have no common invariant spaces except {0} and Rm. In [13–15] such a matrix set was called
quasi-controllable.

3. BARABANOV NORMS: GENERAL CASE

In the analysis of the properties of the joint spectral radius ideas introduced by N. E. Barabanov
in [1] play an important role. These ideas were further developed in a number of publications
amongst which we distinguish [20].

Theorem (Barabanov). Let the matrix set A = {A1, . . . , Ar} be irreducible. Then the quantity
ρ is the joint (generalized) spectral radius of A if and only if there exists a norm ‖ · ‖ in Rm such
that

ρ‖x‖ = max {‖A0x‖, ‖A1x‖, . . . , ‖Arx‖} . (4)

A norm satisfying (4) will be called a Barabanov norm corresponding to the matrix set A.
Clearly, if ‖ · ‖ is a Barabanov norm than it is an extremal norm, i.e., it satisfies the relations

‖Aix‖ ≤ ρ‖x‖, ∀ Ai ∈ A.

So as the Barabanov norm, the extremal norms play an important role in different problems
arising during study of matrix products (see., e.g., [13–15,20]). Notice, that for an arbitrary norm
‖ · ‖0 in Rm and for any irreducible matrix set A the formula

‖x‖ = sup
n≥0

1
ρn(A)

max
σ∈{1,...,r}n

‖Aσx‖0

defines [8, 15] an extremal norm ‖x‖, while the formula

‖x‖ = lim sup
n→∞

1
ρn(A)

max
σ∈{1,...,r}n

‖Aσx‖0
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defines [1] a Barabanov norm ‖x‖ . Unfortunately, the formulae presented above have almost no
practical use.

Remark that in the Barabanov Theorem it is sufficient to suppose that ‖ · ‖ in (4) is not a norm
but only a semi-norm. The validity of this statement follows from the next Lemma.

Lemma 3. Let the matrix set A be irreducible. Then any semi-norm ‖ · ‖ satisfying (4) is a
norm provided that it does not equal identically to zero.

To prove this Lemma note that the kernel of the semi-norm ‖ · ‖ is a subspace L which, due to
the supposition that the semi-norm is not identically zero, does not coincide with the whole space
Rm, i.e., L 6= Rm. If additionally L 6= {0} then from the irreducibility of the matrix set A it follows
the existence of such a vector x∗ ∈ L for which Aix∗ 6∈ L for some i. Then by the definition of the
subspace L the following two relations should be valid simultaneously: ‖x∗‖ = 0 and ‖Aix∗‖ 6= 0,
which contradicts to (4). From the obtained contradiction it follows that L = {0}, and so ‖ · ‖ is a
norm.

Note that the set of Barabanov norms possesses a variety of strong properties which will be
shown below. Denote by NBar(A, x0), where x0 6= 0 ∈ Rm, the set of all Barabanov norms ‖ · ‖
corresponding to the matrix set A which satisfy the calibrating condition ‖x0‖ = 1. The notation
Cloc(Rm) will be used for the linear topological space of continuous functions defined on Rm with
the topology of uniform convergence on bounded subsets from Rm.

Theorem 1. Let x0 6= 0 ∈ Rm and let A be an irreducible set of m ×m matrices. Then there
exists a compact neighborhood A of A such that the map A′ 7→ NBar(A′, x0) where A′ ∈ A is
compact and upper semi-continuous.

The proof of Theorem 1 is given in the Appendix. Theorem 2 presented below is an important
supplement to Theorem 1.

Let ‖ · ‖0 be a norm in Rm which will play the role of a calibrating norm, i.e., such a norm with
which all other norms in Rm are compared.

As is known, all norms in Rm are equivalent, so for any norm ‖ · ‖ there are constants ∆, δ > 0
such that

δ‖x‖0 ≤ ‖x‖ ≤ ∆‖x‖0.

Clearly, in general, there are no universal constants ∆, δ > 0 since for any given constants ∆, δ > 0
the multiplication of the norm ‖ · ‖ by a number easily breaks the above inequalities. Hence, it is
meaningful to compare with ‖ · ‖0 only such norms which are calibrated beforehand, i.e., which, for
example, take the same values at a some predefined point x0 6= 0.

In this case the following question may be posed: are there constants ∆, δ > 0 for which the
inequalities

δ‖x‖0 ≤
‖x‖
‖x0‖

≤ ∆‖x‖0

hold? Still, even in this case the question posed above has the negative answer for arbitrary norms
‖ · ‖. At the same time, if we consider only Barabanov norms ‖ · ‖ then the universal constants
∆, δ > 0 exist! The corresponding fact is a corollary of the Theorem presented below and which is
formulated in a universal form independent from the choice of an auxiliary vector x0.

Theorem 2. For any irreducible set of m ×m matrices A there are neighborhood A of A and
constants 0 < δ ≤ ∆ <∞ such that for any pair of Barabanov norms ‖ · ‖′ and ‖ · ‖′′ corresponding
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STRUCTURE OF EXTREMAL TRAJECTORIES 179

to the matrix sets A′,A′′ ∈ A, respectively, the following estimates

δ2

∆2

‖x‖′′

‖y‖′′
≤ ‖x‖′

‖y‖′
≤ ∆2

δ2
‖x‖′′

‖y‖′′
∀x, y 6= 0 ∈ Rm,

are valid.

The proof of Theorem 2 is given in the Appendix.
Note in conclusion that in addition to topological properties formulated above, Barabanov norms

possess also some algebraic structure.

Lemma 4. Let ‖ · ‖′ and ‖ · ‖′′ be Barabanov norms corresponding to a matrix set. Then ‖x‖ =
max

{
‖x‖′, ‖x‖′′

}
is also a Barabanov norm corresponding to the same matrix set.

Proof of this Lemma is evident.

4. EXTREMAL TRAJECTORIES AND THEIR GENERATORS

Introduce some notions. A trajectory {xn} of the matrix set A will be called characteristic if
there are constants 0 < c1 ≤ c2 <∞ such that

c1 ≤ ρ−n(A)‖xn‖ ≤ c2 ∀n.

Remark that the definition of a characteristic trajectory does not depend on the choice of the
norm ‖ · ‖ in Rm. An important particular case of characteristic trajectories are so-called extremal
trajectories. A trajectory {xn} of the matrix set A will be called extremal (B-extremal) if in some
extremal (Barabanov) norm ‖ · ‖ the following identities hold:

ρ−n(A)‖xn‖ ≡ const. (5)

In contrast to the definition of characteristic trajectories the definition of extremal trajectories
depends on the choice of the extremal norm. So, a trajectory extremal in one norm may be not
extremal in another. Nevertheless, as will be shown below in Theorem 3 for an irreducible matrix
set one can always find extremal trajectories which are universal in the that such trajectories are
extremal in each extremal norm.

Now we prove that the set of B-extremal trajectories, and consequently the corresponding sets
of extremal and characteristic trajectories are not empty in the case when the matrix set A is
irreducible.

Lemma 5. For any vector x 6= 0 ∈ Rm and any Barabanov norm ‖ · ‖ there is an extremal
trajectory {xn} satisfying x0 = x.

To prove this Lemma construct recursively the trajectory {xn} of the matrix set A satisfying
x0 = x. Suppose that the element xn is already found. Then, by the definition of the Barabanov
norm, the following equality is valid:

ρ(A)‖xn‖ = max {‖A0xn‖, ‖A1xn‖, . . . , ‖Arxn‖} .

Hence, there exists an index σn for which ρ(A)‖xn‖ = ‖Aσnxn‖. So, in order to satisfy conditions
(2), (5) it is sufficient to define the element xn+1 by the equality xn+1 = Aσnxn.

Corollary. If the matrix set A is irreducible then the sets of its extremal, B-extremal and char-
acteristic trajectories are nonempty.
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The proof of this Corollary immediately follows from the Barabanov Theorem asserting that for
an irreducible matrix set the set of Barabanov norms is not empty, and from Lemma 5 according
to which in this case the set of corresponding B-extremal trajectories is also nonempty.

Above, it was mentioned that the definition of extremal trajectories depends on the choice of
the extremal norm. Nevertheless, as shows the next Theorem, amongst all extremal trajectories
there are in a sense “universal” trajectories.

Theorem 3. For any irreducible matrix set A there are trajectories which are extremal with
respect to any norm extremal for the matrix set A.

The proof of Theorem 3 is given in the Appendix.
¿From now on the main attention will ba paid to investigation of properties of the B-extremal

trajectories. Denote by EBar(A, x) the set of all B-extremal trajectories {xn}∞n=0 of the matrix set
A satisfying the initial condition x0 = x 6= 0.

Theorem 4. Let X ⊂ Rm be a compact set which does not contain the origin and let A be an
irreducible set of m×m matrices. Then there is a compact neighborhood A of A such that the map(
A′, x

)
7→ EBar(A′, x) where A′ ∈ A, x ∈ X , is compact and upper semi-continuous.

The proof of Theorem 4 is given in the Appendix.
In order to describe completely a B-extremal trajectory x = {xn} one should know not only the

information about the sequence {xn} but also the information about the related index sequence
{σn}. Below, it will be proposed a construction which determines B-extremal trajectories as all
possible trajectories of some set-valued nonlinear dynamical system. Such a construction will allow
us to avoid the necessity to describe explicitly the index sequence {σn}.

Let ρ = ρ(A) and let ‖ · ‖ be a Barabanov norm corresponding to the matrix set A =
{A1, . . . , Ar}. Denote for each x ∈ Rm the map g(x) by setting

g(x) := {w : ∃i ∈ {1, . . . , r} for which w = Aix, with ‖Aix‖ = ρ‖x‖}.

By the definition of a Barabanov norm the set g(x) for each x ∈ Rm is not empty and consists of
no more than m elements. Note also that each map g(x) has a closed graph and for it the following
identity is valid

‖g(x)‖ ≡ ρ‖x‖. (6)

Lemma 6. The sequence x = {xn} is extremal for the matrix set A in the Barabanov norm ‖ · ‖
if and only if it satisfies the inclusions

xn+1 ∈ g(xn) ∀n.

The proof of this Lemma immediately follows from the definitions of the Barabanov norm and
the map g.

According to Lemma 6 each trajectory of the set-valued map g(·) is extremal in the Barabanov
norm ‖ · ‖. This motivates us to call the map g(·) as the generator of B-extremal trajectories. In
general, the map g(·) can not be described explicitly. Nevertheless, in Section 6 for the sets of 2×2
matrices we will be able to obtain a rather detailed description of the properties of the generators
of B-extremal trajectories.
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STRUCTURE OF EXTREMAL TRAJECTORIES 181

5. BARABANOV NORMS: THE CASE OF A PAIR OF TWO-DIMENSIONAL MATRICES

In this Section, for the case of matrix sets consisting of two 2 × 2 matrices some additional
properties of Barabanov norms and B-extremal trajectories are established.

Consider the pair of matrices

A0 = α

∥∥∥∥∥ a b
0 1

∥∥∥∥∥ , A1 = β

∥∥∥∥∥ 1 0
c d

∥∥∥∥∥ , (7)

where α, β > 0 and
bc ≥ 1 ≥ a, d > 0. (8)

Associate the ray t(x0, x1), t > 0, passing the point (x0, x1) 6= 0, x0, x1 ≥ 0, with the number
ξ = x1/(x0 + x1) ∈ [0, 1]. Under such association the semi-axis of abscissas, i.e., the ray t(1, 0), is
represented by the number ξ = 0, while the semi-axis of ordinates, i.e., the ray t(0, 1), is represented
by the number ξ = 1. Then the matrix A0 maps the ray with the coordinate ξ at the ray with the
coordinate ϕ0(ξ), where

ϕ0(ξ) =
ξ

a(1− ξ) + bξ + ξ
, (9)

while the matrix A1 maps the ray with the coordinate ξ at the ray with the coordinate ϕ1(ξ):

ϕ1(ξ) =
c(1− ξ) + dξ

c(1− ξ) + dξ + 1− ξ
. (10)

Consider also the pair of matrices conjugate to the matrices A0 and A1:

A′0 = α

∥∥∥∥∥ a 0
b 1

∥∥∥∥∥ , A′1 = β

∥∥∥∥∥ 1 c
0 d

∥∥∥∥∥ .
Then the matrix A′0 maps the ray with the coordinate ξ at the ray with the coordinate ψ0(ξ), where

ψ0(ξ) =
b(1− ξ) + ξ

a(1− ξ) + b(1− ξ) + ξ
,

while the matrix A′1 maps the ray with the coordinate ξ at the ray with the coordinate ψ1(ξ):

ψ1(ξ) =
dξ

1− ξ + cξ + dξ
.

Under condition (8) for any 0 ≤ ξ, ζ ≤ 1 the inequalities ϕ1(ξ) ≥ ϕ0(ζ) hold, while the functions
ϕ0(ξ) and ϕ1(ξ) strictly increase. Hence, the graphs of the functions ϕ0(ξ) and ϕ1(ξ) look like
those plotted in Fig. 1. Analogously, the graphs of the functions ψ0(ξ) and ψ1(ξ) look like those
plotted in Fig. 2.

Denote by M] ⊂ M2,2 the set of all matrix sets A consisting of the matrices A0 and A1 of
the form (7) satisfying conditions (8). Then, from the description of the invariant spaces for the
matrices A0 and A1, we immediately get the following Lemma.

Lemma 7. Each matrix set A ∈M] is irreducible.

Given some Barabanov norm ‖ · ‖ in R2 corresponding to A, denote by S the unit ball in the
norm ‖ · ‖. Recall that the linear functional l(x), x ∈ R2 is called the support functional for the
unit ball S if

sup
x∈S

|l(x)| ≤ 1, and ∃ u∗ ∈ S : l(u∗) = 1.
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Fig. 1. Plots of functions ϕ0(ξ), ϕ1(ξ) Fig. 2. Plots of functions ψ0(ξ), ψ1(ξ)

By the Khan-Banach theorem for any point u∗ ∈ S, ‖u∗‖ = 1, there is a support functional l∗ for
which l∗(u∗) = 1. Remark that each functional l(x) can be represented by a linear form:

l(x) ≡ 〈l, x〉 := l0x0 + l1x1, where l = (l0, l1), x = (x0, x1) ∈ R2,

and so, the values l0, l1 may be treated as the coordinates of the functional l(x).

Lemma 8. Let ‖ ·‖ be a Barabanov norm corresponding to the matrix set A ∈M]. Then for any
vector u ∈ S, ‖u‖ = 1, with non-negative coordinates the support functional l(x) = 〈l, x〉 satisfying
l(u) = 1 is also has non-negative coordinates. In other words, the unit ball in the norm ‖ · ‖ in the
first quadrant has the form like that presented in Fig. 3.

The proof of Lemma 8 is given in the Appendix.
Call the norm ‖ · ‖ monotone (with respect to the cone of the vectors with non-negative co-

ordinates) if for any pair of vectors u and v the relations v ≥ u ≥ 0, where the inequalities are
understood coordinate-wise, imply the inequality ‖v‖ ≥ ‖u‖. Then from the description of the
structure of the boundary of the unit ball of the Barabanov norm given in Lemma 8, and from
Fig. 3 in which the point set {v : v ≥ u} is plotted we obtain the next Lemma.

Lemma 9. Any Barabanov norm corresponding to a matrix set A ∈M] is monotone.

Define the sets

X0 = {x : ‖A0x‖ = ρ‖x‖}, X1 = {x : ‖A1x‖ = ρ‖x‖}. (11)

Each of these sets is closed, conic (i.e., contains any vector tx along with the vector x 6= 0), and
by the definition of a Barabanov norm X0 ∪ X1 = R2. The set Θ = X0 ∩ X1 will be called the
switching set of the Barabanov norm ‖ · ‖.

Theorem 5. Let A = {A0, A1} be the matrix set defined by equalities (7) and satisfying condi-
tions (8), and let ‖·‖ be a Barabanov norm of the matrix set A. Then each of the sets X0∩K+ and
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Fig. 4. Location of the sectors X0 ∩K+ and X1 ∩K+ and of typical extremal trajectory

X1 ∩K+ is a sector with non-empty interior, the set X1\X0 has a nonempty intersection with the
abscissa axis and the set X0\X1 has a nonempty intersection with the ordinate axis. Intersection
of the sectors X0 ∩K+ and X1 ∩K+ is the ray

Θ = X0 ∩X1 ∩K+ = {tϑ : t ∈ R+} (12)

passing a normed vector ϑ ∈ K+ (see Fig. 4) which is uniquely determined by the system of equations

‖A0ϑ‖ = ‖A1ϑ‖, ‖ϑ‖ = 1, ϑ ∈ K+, (13)

and continuously depends on the matrices A0, A1 and the norm ‖ · ‖.

The proof of Theorem 5 is given in the Appendix. Remark that according to Lemma 6 and
Theorem 5 for the matrix set A = {A0, A1} the extremal trajectories {xn} are the sliding modes
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of some linear system of variable structure (see., e.g., [18, 19]): to obtain the next element xn+1

of the extremal trajectory one need apply the matrices A0 or A1 to the element xn depending on
whether xn belongs to the sector X0 ∩K+ or X1 ∩K+, respectively (see Fig. 4).

6. FREQUENCY PROPERTIES OF EXTREMAL TRAJECTORIES: THE CASE OF
TWO-DIMENSIONAL MATRICES

In this Section, the analysis of the properties of the B-extremal trajectories of the matrix sets
A = {A0, A1} ∈ M] will be continued. Our prime goal will be to prove the following statement.

Theorem 6 (on the switching frequency). For any B-extremal trajectory {xn} of the matrix set
A = {A0, A1} ∈ M] determined by the equation

xn+1 = Aσnxn, n = 0, 1, . . . ,

it is defined the frequency (the switching frequency of the trajectory)

σ = lim
n→∞

∑n
i=1 σi

n

of applying the matrix A1 in the process of computation of the trajectory {xn}.
The frequency σ does not depend on the choice of the extremal trajectory {xn} or on the index

sequence {σn}, and so, it may be denoted as σ(A). In addition, σ(A) depends continuously on
matrices of the matrix set A and takes rational values if and only if the matrix set A has a B-
extremal trajectory corresponding to a periodic index sequence {σn}.

To prove Theorem 6, we will need auxiliary statements and constructions.

6.1. Generator of Extremal Trajectories

Fix in R2 a Barabanov norm ‖ · ‖ corresponding to the matrix set A, and denote by X0 and X1

sets (11) determined by this norm. In this case, the generator of B-extremal trajectories g(·) (see
the definition in Section 4) will take the form

g(x) =


A0x, if x ∈ X0\X1

A1x, if x ∈ X1\X0

{A0x,A1x}, if x ∈ X0 ∩X1.
(14)

Let us study the structure of the map g(·) in the first quadrant, i.e., in the cone K+ := {x =
(x1, x2) : x1, x2 ≥ 0}, in more details. Introduce in K+ the coordinate system (λ, ξ) by setting

λ(x) = ‖x‖, ξ(x) =
x2

x1 + x2
, x 6= 0 ∈ K+. (15)

As was noted above (see (6)), for the map g(·) the identity ‖g(x)‖ ≡ ‖x‖ is valid. Besides, by
Theorem 5 the sets X0 ∩K+, X1 ∩K+ and X0 ∩X1 ∩K+ are transferred by the map ξ(·) in the
intervals [θ, 1], [0, θ] and a point θ ∈ (0, 1), respectively, i.e.,

ξ(X1 ∩K+) = [0, θ], ξ(X0 ∩K+) = [θ, 1], ξ(X0 ∩X1 ∩K+) = θ.

Then in the coordinate system (λ, ξ) the map g takes the form of a map with separable variables

g : (λ, ξ) 7→ (ρλ, Φ), (16)
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where ρ = ρ(A) and

Φ = Φθ(ξ) =


ϕ1(ξ), if ξ ∈ [0, θ)

{ϕ0(θ), ϕ1(θ)}, if ξ = θ
ϕ0(ξ), if ξ ∈ (θ, 1].

(17)

Here the functions ϕ0(ξ) and ϕ1(ξ) are defined by (9) and (10), and have the appearance plotted
in Fig 1. The graph of the set-valued function Φθ(ξ) is presented in Fig. 5.
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j (1 x)

Fig. 5. Graph of the direction function Φθ(ξ)

Remark that the coordinate λ(x) characterizes “remoteness” of the vector x from the origin of
coordinates, while the coordinate ξ(x) characterizes the “direction” of the vector x. In accordance
with this, Φθ(ξ) can be treated as the direction function of the generator of B-extremal trajectories.

¿From Lemma 6, Theorem 5 and representation (16), (17) of the map g(·) one can get the
following description of the B-extremal trajectories.

Lemma 10. A nonzero trajectory {xn} ⊆ K+ is extremal for the matrix set A = {A0, A1} in the
Barabanov norm ‖ · ‖ if and only if its elements in the coordinate system (λ, ξ) can be represented
in the form xn = (λn, ξn), where λn ≡ λ0, and {ξn} is a trajectory of the set-valued map Φθ(·), i.e.,

ξn+1 ∈ Φθ(ξn), n = 0, 1, . . . ,

whose parameter θ satisfies the inclusion θ ∈ (0, 1).
In addition, the trajectory {xn} satisfies the equation

xn+1 = Aσnxn, n = 0, 1, . . . ,

with some index sequence {σn} if and only if the trajectory {ξn} satisfies the equation

ξn+1 = ϕσn(ξn), n = 0, 1, . . . .

Remark that in spite of the fact that the Barabanov norm ‖ · ‖ is, in general, not known
explicitly, the direction function Φθ(ξ) of the generator of B-extremal trajectories is “defined rather
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unambiguously” which means that according to (17) it is uniquely defined by the triplet (ϕ0, ϕ1, θ)
with the only unknown parameter θ.

When it will be needed to emphasize the dependance of the function Φθ(ξ) on the triplet
(ϕ0, ϕ1, θ), we will use the notation

Φθ(ξ) = Φ[ϕ0, ϕ1, θ](ξ). (18)

In its turn, the triplet (ϕ0, ϕ1, θ) depends on the choice of the matrix set A and the corresponding
Barabanov norm ‖·‖. Therefore, consider in more details the question on how the direction function
Φθ(ξ) depends on the matrix set A = {A0, A1} and the related Barabanov norm ‖ · ‖.

According to (9) and (10), the function ϕ0 is uniquely determined by entries of the matrix A0,
while the function ϕ1 is completely determined by entries of the matrix A1. To point out this
dependance we will use the notation

ϕ0(ξ) = ϕ0[A0](ξ), ϕ1(ξ) = ϕ1[A1](ξ).

At the same time, by Theorem 5 and relations (14), (17) the parameter θ is a single-valued function
of the matrix set A and the related Barabanov norm ‖ · ‖, i.e.,

θ = θ[A, ‖ · ‖]. (19)

¿From (18), (19) one can see that the direction function Φθ(ξ) is determined, in the long run,
by the matrix set A = {A0, A1} and by the Barabanov norm ‖ · ‖ corresponding to this set; in the
cases when we need stress this dependance it will be used the notation

Φθ(ξ) = Φ[A, ‖ · ‖](ξ).

As will be shown in Lemma 11 below, the direction function Φ[A, ‖ · ‖] depends continuously on
the matrix set A and the Barabanov norm ‖ · ‖. To make said above meaningful, define first the
notion of closeness between set-valued functions on the interval [0, 1].

Denote by F = F([0, 1]) the set of all set-valued functions f : [0, 1] 7→ 2R with the closed graphs.
In this case the graph Gr(f) of the function f is a closed bounded subset of the set [0, 1]×R ⊂ R2,
and hence, for any pair of functions f, g ∈ F it is defined and finite the value

χ(f, g) = max
{

sup
x∈Gr(f)

inf
y∈Gr(g)

|x− y|, sup
y∈Gr(g)

inf
x∈Gr(f)

|x− y|
}
,

where | · | is some norm in R2. The value χ is called the Hausdorff distance between the graphs of
the maps f and g, it is a metric in the space F . In its turn, the space F , being equipped with the
metric χ, is complete.

Lemma 11. Let x0 ∈ R2 be a nonzero vector. Then for any pair
(
A, ‖ · ‖

)
, where A ∈ M] and

‖·‖ ∈ NBar(A, x0), the map
(
A, ‖·‖

)
7→ Φ[A, ‖·‖], is uniquely defined and continuous by the metric

of the space F .

The proof of Lemma 11 is given in the Appendix.
Properties of maps, graphs of which are like those presented in Fig. 5, are studied below in more

details.
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6.2. Orientation Preserving Discontinuous Circle Maps

Maps of the interval [0, 1) in itself is convenient to treat as maps of the circle S ≡ R/Z. Below,
we will study, primarily, discontinuous maps of the interval [0, 1). Such maps were studied by
different authors (see, e.g., [6, 9, 10] and the bibliography therein), but unfortunately no one of
results, known to the author, can be immediately applied to the analysis of the properties of the
map Φθ(ξ). For example, in [6] main results are established for the set-valued maps with connected
images while in [9,10] properties of the single-valued discontinuous maps are investigated, whereas
in our case Φθ(ξ) is a set-valued map with disconnected images. In connection with this, in what
follows we will recall basic facts of the theory of orientation preserving discontinuous circle maps,
following primarily to the work [6], and then deduce from these results properties of the map Φθ(ξ)
needed below.

Let η : [0, 1) → [0, 1) be some, in general, discontinuous, set-valued function. The function
h : R → R is called the lift of η if it satisfies conditions

h(ξ + 1) ≡ h(ξ) + 1, (20)

and
η(ξ) = h(ξ) (mod 1) ξ ∈ [0, 1). (21)

As is easy to see, each circle map has a lift, and conversely, each map h of the straight line in itself
satisfying (20) is a lift of the circle map η(·) defined by equality (21). Note that there is a plenty
of properties of the circle maps which are more convenient to formulate in terms of corresponding
lifts than in terms of the original circle maps.

The map η : [0, 1) → [0, 1), treated as a map of the circle S ≡ R/Z in itself, will be called
orientation preserving if it has a strictly increasing lift3. A strictly increasing lift h of the map η
will be called standard if it satisfies h(0) = η(0). The orientation preserving map η : [0, 1) → [0, 1)
will be called closed or connectedly closed if it has a strictly increasing lift with the closed graph,
or the graph of some of its strictly increasing lift is a connected and closed set, respectively.

To illustrate notions introduced above, associate with the strictly increasing lift h of the map η
the auxiliary maps

h+(ξ) = lim
ξ̄↓ξ

h(ξ̄), h−(ξ) = lim
ξ̄↑ξ

h(ξ̄),

where notations ξ̄ ↓ ξ and ξ̄ ↑ ξ are used to denote convergence of the variable ξ̄ to ξ strictly from
above or from below, correspondingly. Define also the maps

h∗(ξ) = {h−(ξ), h+(ξ)} , hc(ξ) = [h−(ξ), h+(ξ)] .

Directly from the definitions of the maps h+(ξ), h−(ξ), h∗(ξ) and hc(ξ) it follows that all these
maps are strictly increasing. The maps h+(ξ) and h−(ξ) are single-valued, and the map h+(ξ) is
continuous from the right at each point, while the map h−(ξ) is continuous from the left at each
point. The maps h∗(ξ) and hc(ξ) are, in general, set-valued and their values coincide with the
values of the map h(ξ) at the points, in which the map h(ξ) is single-valued and continuous. In
all other points the values of h∗(ξ) consist of exactly two points while the values of hc(ξ) consist
of closed intervals. Besides, the graphs of the both maps h∗(ξ) and hc(ξ) are closed. It should be
noted also that

h+(ξ), h−(ξ) ∈ h∗(ξ) ⊆ hc(ξ) ∀ξ.
3 Remark that the lift of a circle map is determined non-uniquely. Nevertheless, just as is in the case of continuous

lifts of the circle homeomorphisms, any two strictly increasing lifts of the same circle map (provided that they
exist) can differ from each other only on an integer constant [9, Lemma 2]. A detailed description of the structure
of single-valued discontinuous orientation preserving circle maps and their lifts can be found in [9,10]. The role of
the demand of strict increasing of a lift is discussed in Remark 1.
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In addition, if the graph of the map h(ξ) is closed then h∗(ξ) ⊆ h(ξ) ⊆ hc(ξ). Therefore, it is
natural to call the map h∗(ξ) the minimal closure of the map h(ξ) while the map hc(ξ) can be
called the connected or maximal closure of the map h(ξ). Respectively, the map h(ξ) will be called
minimally closed if h(·) = h∗(·), and it will be called connectedly or maximally closed if h(·) = hc(·).

Theorem 7 (see [6]). Let η : [0, 1) → [0, 1) be an orientation preserving circle map with a con-
nectedly closed lift h. Let {ξn} be a trajectory of the map h, i.e.,

ξn+1 ∈ h(ξn), n = 0, 1, . . . . (22)

Then the following assertions are valid:

(i) there is a number τ , not depending on the initial value ξ0, for which the estimates hold∣∣∣∣ξnn − τ

∣∣∣∣ ≤ 1
n
, n = 1, 2, . . . ,

and hence

τ = lim
n→∞

ξn
n

;

(ii) if the number τ is rational of the form τ = p/q with coprime p and q then the map η(·) has a
periodic point of period q, and any trajectory (22) converges to a periodic trajectory of period q
as n→∞;

(iii) if the number τ is irrational then all trajectories (22) have the same limiting set which is either
coincide with the whole circle or is the Cantor set;

(iv) the number τ depends continuously on the graph of the map h in the Hausdorff metric4.

According to this Theorem the number τ is uniquely determined by the map h and does not
depend neither on the choice of the initial point ξ0 of the trajectory {ξn} nor on arbitrariness in the
construction of the trajectory {ξn} by formula (22). So, it is reasonable to denote the number τ
by τ(h); this number is called the rotation number of the lift h. The value τ(h) is often called also
the rotation number of the circle map η. One should only bear in mind that the rotation number
for a circle map is defined modulo integer additives since lifts of the circle map are also defined
modulo integer additives. Therefore, sometimes the rotation number of a circle map is defined as
τ(h) (mod 1).

Remark 1. An orientation preserving circle map was defined above as such a circle map which
has a strictly increasing lift. Theorem 7 will be no longer valid if to omit the requirement that the
corresponding lift increases strictly, which follows from the fact that in this case a circle map may
have simultaneously periodic points of different coprime periods as is plotted in Fig. 6 and 7.

The next Remark shows that in Theorem 7 the requirement of the connectedness of the graph
of the lift h is not essential. What is important is the closeness of the graph.

Remark 2. All the statements of Theorem 7 continue to be valid for any circle map possessing
a strictly increasing closed lift.

4 The statement means that for any orientation preserving circle map η̂ with a connectedly closed lift ĥ the values
of τ̂ tend to τ when the graph of the map ĥ tends to the graph of the map h by the Hausdorff metric. Point out
that due to condition (20) the Hausdorff distance between the maps h and ĥ is defined correctly in spite of the fact
that the graphs of these maps are not bounded.
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To prove this Remark suppose that the circle map η(ξ) has a strictly increasing closed lift h(ξ).
Consider the connected closure hc(ξ) of the map h(ξ). Then from the inclusions h(ξ) ⊆ hc(ξ) valid
for any ξ ∈ R it follows that each trajectory {ξn} of the map h(ξ) is also a trajectory of the map
hc(ξ). Hence, the rotation number τ(h) of the map h is correctly defined and coincides with τ(hc),
and besides, the limiting set of the trajectory {ξn} does not depend on the choice of the trajectory
in the case when τ(h) is irrational. If the number τ(h) is rational then the trajectory {ξn} of the
map h, being at the same time a trajectory of the map hc, by assertion (iii) of Theorem 7 converges
to some periodic trajectory of the map hc. But in view of closeness of the graph of the map h the
corresponding limiting trajectory will be a trajectory of the map h, from which assertion (iii) of
Theorem 7 for the map h follows. At last, assertion (iv) of Theorem 7 for the map h follows from the
already established identity τ(h) ≡ τ(hc) and from the remark that for any two strictly increasing
maps h and ĥ with the closed graphs the Hausdorff distance between their graphs coincide with
the Hausdorff distance between the graphs of the maps hc and ĥc.

One of weak points in the definition of the rotation number τ(η) for the circle map η(·) is that
one need perform intermediate steps (such as to construct the lift h(·) and to build the trajectory
{ξn} of the map h(·)) to calculate the limit τ(η) = limn→∞ ξn/n. It is desirable to find a method to
calculate the rotation number τ(η) directly in terms of the map η and its trajectories. To do it, we
first investigate in more details properties of the orientation preserving circle maps (cf. [9, Lemma
1]).

At last, we are able to present the definition of the rotation number of the circle map η(·) directly
in terms of the map η(·) (to be precise, the definition of the rotation number of the standard lift
h(·) of the map η(·)).

Theorem 8. Let η : [0, 1) → [0, 1) be an orientation preserving circle map with the closed stan-
dard lift h. Let {ζn} be a trajectory of the map η, i.e.,

ζn+1 ∈ η(ζn), n = 0, 1, . . . .

Then the uniform estimates hold∣∣∣∣∑n
i=1 ν(ζi)
n

− τ(h)
∣∣∣∣ ≤ 2

n
, n = 1, 2, . . . , (23)
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and so,

τ(h) = lim
n→∞

∑n
i=1 ν(ζi)
n

,

where

ν(ξ) =

{
1 if 0 ≤ ξ < ω
0 if ω ≤ ξ < 1,

(24)

with ω = min{y : y ∈ η(0)}5.

The proof of Theorem 8 is given in the Appendix.

6.3. Frequency Properties of the Direction Function

In this Section, we make use of the properties of the circle maps obtained in Section 6.2 to analyze
the properties of the direction function Φθ of the generator of B-extremal trajectories introduced
in Section 6 (see (17)).

Note that the function Φθ(ξ) differs from a function representing an orientation preserving circle
map only in that it is defined on the closed interval [0, 1] but not on the semiopen one [0, 1) as is
the case for a circle map. Let us show that the indicated difference is not essential, and for the
function Φθ(ξ) the notion of the rotation number can be defined with all the “good” properties
intrinsical to the rotation number of the circle maps.

Theorem 9. Let A = {A0, A1} ∈ M] be the set of 2 × 2 matrices (7) satisfying conditions (8),
let Φθ be the direction function (17) of some generator of B-extremal trajectories for the matrix set
A and let ν(·) be the function defined by equality (24). Then for any trajectory {ξn}∞n=0 of the map
Φθ there are valid the non-equalities ξn 6= 0, 1, where n ≥ 1, and there is defined the frequency

τ = lim
n→∞

∑n
i=1 ν(ξi)
n

(25)

with which the elements of the trajectory {ξn} hit the interval [0, ω), where ω = ϕ0(1).
The frequency τ does not depend neither on the choice of the trajectory {ξn} nor on the choice

of the function Φθ. So the frequency τ may be denoted as τ(A). In addition, for τ(A) assertions
(i)–(iii) of Theorem 7 are valid, and besides, τ(A) depends continuously on the matrices of the set
A.

The proof of Theorem 9 is given in the Appendix.
Now, all is ready to prove Theorem 6. Let {xn} be a B-extremal trajectory of the matrix set

A = {A0, A1} ∈ M] and let {σn} be the corresponding index sequence, i.e., the sequences {xn}
and {σn} satisfy the equalities xn+1 = Aσnxn for n = 0, 1, . . .. Then by Lemma 10 the numerical
sequence ξn = ξ(xn), where the function ξ(·) is defined by equality (15), satisfies the relations

ξn+1 = ϕσn(ξn) ∈ Φθ(ξn), n = 0, 1, . . . ,

with some direction function Φθ. At the same time, by Theorem 9 there is defined the frequency

τ = lim
n→∞

∑n
i=1 ν(ξi)
n

,

5 Remark that the function ν(ξ) is identically equal to zero if ω = 0. In this case h(ξ) ≡ η(ξ) on the interval [0, 1),
and so, the function η(ξ) strictly increases on [0, 1).
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and besides, ξn 6= 0, 1 for n ≥ 1. Therefore, for n ≥ 1 the value ξn+1 ∈ (0, 1) is obtained from
ξn ∈ (0, 1) by the formula ξn+1 = ϕ0(ξn) if and only if 0 < ξn+1 < ϕ0(1) or, what is the same, if
and only if ν(ξn+1) = 1. Consequently, σn = 1− ν(ξn+1) for n ≥ 1 and by Theorem 9 there is the
limit

σ(A) = lim
n→∞

∑n
i=1 σi

n
= 1− lim

n→∞

∑n
i=1 ν(ξi+1)

n
= 1− τ(A).

Now, all the assertions of Theorem 6 follow from analogous assertions of Theorem 9.

7. CONSTRUCTION OF THE COUNTEREXAMPLE

At last, start constructing the counterexample to the Finiteness Conjecture. The key tool here
will be the next Theorem.

Theorem 10 (on unattainability of the generalized spectral radius). Let the matrix set A =
{A0, A1} ∈ M] be such that the number σ(A) is irrational. Then for any finite sequence of indices
σk ∈ {0, 1}, k = 1, 2, . . . , n, the strict inequality ρ(AσnAσn−1 · · ·Aσ1) < ρn(A) is valid.

According to this Theorem in order to construct the counterexample to the Finiteness Conjecture
it is sufficient to prove existence of at least one of the matrix set A = {A0, A1} ∈ M] for which
σ(A) is irrational. The facts needed to prove existence of the required matrix set will be obtained
in the next Lemma.

Lemma 12. Let a, b, c, d be a fixed set of parameters satisfying (8), and let A = {A0, A1} ∈ M]

be the corresponding matrix set (7) in which parameters α and β may vary. Then the following
assertions are valid:

a) if a < 1 then σ(A) = 0 for all sufficiently large values of α/β and σ(A) > 0 for α/β < 1;
b) if d < 1 then σ(A) = 1 for all sufficiently small values of α/β and σ(A) < 1 for α/β > 1;
c) if a = d = 1 then σ(A) = 1

2 for α = β and σ(A) 6= 1
2 for all sufficiently large and sufficiently

small values of α/β.

Now, fix some set of numbers a, b, c, d satisfying conditions (8), and consider the family of the
matrix sets A depending on α and β as on parameters. Then by Lemma 12 σ(A) is not a constant
function, i.e., it takes different values as α/β varies from zero to infinity. But by Theorem 6 the
value σ(A) depends continuously on the matrix set A, and then on α and β. Hence, for some α
and β the quantity σ(A) takes an irrational value. Then by Theorem 10 for such α and β the
generalized spectral radius ρ(A) can not be attained on finite products of matrices from the set A.

For a = b = c = d = 1 we get the proof of the counterexample to the Finiteness Conjecture for
the case studied in [4].

APPENDIX

A.1. PROOF OF THEOREMS 1 AND 2

Establish first one auxiliary statement characterizing the property of irreducibility of matrix
sets.

Let x ∈ Rm. Denote the n-section of the set T (A, x) by Tn(A, x). Also, define for any n =
0, 1, 2 . . . the sets

T ∗
n (A, x) =

n⋃
k=0

Tk(A, x).
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Recall that above every finite sequence σ = {σ1, σ2, . . . , σn} ∈ {1, . . . , r}n was associated with
the matrix Aσ = Aσn · · ·Aσ2Aσ1 , and it was supposed implicitly that n ≥ 1. It is convenient
to extend the notation Aσ on the case n = 0 in which the sequence σ is empty, i.e., consists
of zero amount of elements. So, we set {1, . . . , r}0 = ∅. In this case it is naturally to identify
σ ∈ {1, . . . , r}0 with the empty set and to denote A∅ = I.

Lemma A.1. The set T ∗
n (A, x) coincides with the set of all possible vectors of the form Aσx,

where σ ∈ {1, . . . , r}k for some, possibly zero, integer k ≤ n.
If A is an irreducible set of m ×m matrices and x 6= 0 then the set T ∗

n (A, x) contains at least
min{n+1,m} linearly independent elements one of which may be assumed to be coinciding with x.

Proof. Only the second claim of this Lemma has to be proved. Denote the linear hull of the set
T ∗

n (A, x) by Ln(A, x). Then the dimension of the subspace Ln(A, x) will be equal to the amount
of linearly independent vectors in the set T ∗

n (A, x). Since, in addition, for any n ≥ 0 the inclusion
T ∗

n (A, x) ⊆ T ∗n+1(A, x) holds then Ln(A, x) ⊆ Ln+1(A, x). So,

1 = dimL0(A, x) ≤ dimL1(A, x) ≤ . . . ≤ dimLn(A, x) ≤ . . . .

Consequently, Lemma A.1 will be proved if we show that

dimLn(A, x) ≥ n+ 1, n = 0, 1, . . . ,m− 1. (A.1)

Prove inequalities (A.1) by induction. For n = 0 inequality (A.1) holds since the subspace
L0(A, x) coincides with the linear hull of the vector x, and so dimL0(A, x) = 1. Suppose that the
assertion of Lemma A.1 is valid for some n = k < N − 1, i.e., dimLk(A, x) ≥ k + 1. Then, due to
the supposition about irreducibility of the matrix set A, the subspace Ln(A, x) can not be invariant
for all the matrices A1, . . . , Ar. Therefore, there is a matrix Ai such that AiLn(A, x) 6⊆ Ln(A, x).
Hence Lk+1(A, x) 6= Lk(A, x). From this it follows that dimLk+1(A, x) ≥ dimLk+1(A, x) + 1 ≥
k + 2. So, the induction step is justified, and the proof of Lemma A.1 is completed. ut

Choose an arbitrary nonzero vector x0 ∈ Rm and an irreducible set of m×m matrices A. Then,
by Lemma A.1, the set T ∗

m−1(A, x0) contains N linearly independent vectors x0, x1, . . . , xm−1. Then
the balanced convex set6

S] = co{±x0,±x1, . . . ,±xm−1} (A.2)

contains the origin in its interior and so it may be treated as the unit ball in the norm ‖ · ‖] in Rm

determined by the inequality
‖x‖] = inf{t : t > 0, x ∈ tS]}, (A.3)

i.e., S] = {x : ‖x‖] ≤ 1}.

Lemma A.2. Let ‖ · ‖] be the norm introduced in (A.2)–(A.3) and determined by an irreducible
set of m×m matrices A and by a vector x0 6= 0. Then for any Barabanov norm ‖ · ‖ corresponding
to the matrix set A the following estimate holds:

‖x‖
‖x0‖

≤ (max{1, ρ(A)})m−1 ‖x‖] ∀x ∈ Rm. (A.4)

Proof. By Lemma A.1 each of the vectors x0, x1, . . . , xm−1 in (A.2) may be represented in the
form

xi = Aσ(i)x0, i = 0, 1, . . . ,m− 1,

6 Recall that a set in a linear space is called balanced if with each its element x it contains also the element −x.
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where σ(i) ∈ {1, . . . , r}ki for some, possibly zero, integer ki ≤ m − 1. Therefore, for arbitrary
Barabanov norm ‖ · ‖ corresponding to the matrix set A the inequalities

‖xi‖ ≤ (max{1, ρ(A)})m−1 ‖x0‖, i = 0, 1, . . . ,m− 1.

are valid. The obtained inequalities show that

S] ⊆ {x : ‖x‖ ≤ (max{1, ρ(A)})m−1 ‖x0‖}

from which estimate (A.4) follows. Lemma A.2 is proved. ut
Now, we are able to prove the right-hand side of inequalities

δ‖x‖0 ≤
‖x‖
‖x0‖

≤ ∆‖x‖0, (A.5)

even in a more strong form.

Lemma A.3. Let ‖ · ‖0 be a norm and x0 6= 0 be a vector in Rm. Let also A be an irreducible
set of m ×m matrices. Then there is a number ∆ < ∞ and a neighborhood A of the matrix set
A such that for any Barabanov norm ‖ · ‖′ corresponding to the matrix set A′ ∈ A the following
estimate is valid

‖x‖′

‖x0‖′
≤ ∆‖x‖0 ∀x ∈ Rm. (A.6)

Proof. Let A = {A1, . . . , Ar}. Then by Lemma A.1 the set T ∗
m−1(A, x0) contains the linearly

independent vectors x0, x1, . . . , xm−1 of the form

xi = xi(A) = Aσ(i)x0, i = 0, 1, . . . ,m− 1,

where σ(i) ∈ {1, . . . , r}ki for some, possibly zero, ki ≤ m − 1. In this case, for any matrix set
A′ = {A′1, . . . , A′r} from a sufficiently small neighborhood A of A the vectors

x′i = xi(A′) = A′σ(i)x0, i = 0, 1, . . . ,m− 1,

are also linearly independent.
For each A′ ∈ A we denote by S](A′) the balanced convex set

S](A′) = co{±x0(A′),±x1(A′), . . . ,±xm−1(A′)},

which contains the origin in its interior. As it was noted above, such a set may be treated as the
unit ball in the norm ‖ · ‖′] in Rm determined by the equation

‖x‖′] = inf{t : t > 0, x ∈ tS](A′)}.

Then from Lemma A.2 it follows that

‖x‖
‖x0‖

≤ (max{1, ρ(A(λ))})m−1 ‖x‖′] ∀x ∈ Rm, ∀A′ ∈ A. (A.7)

To complete the proof, it remains only to note that the vectors x0(A′), x1(A′), . . . , xm−1(A′)
depend continuously on A′ and are linearly independent at the point A′ = A. Hence the intersection
of the sets S](A′) with A′ ∈ A has a nonempty interior to which the origin belongs. Therefore,
there exists a constant µ such that

{x : ‖x‖0 ≤ 1} ⊆ µ
⋂

A′∈A
S](A′),
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and then
‖x‖′] ≤ µ‖x‖0 ∀x ∈ Rm, ∀A′ ∈ A. (A.8)

¿From (A.7) and (A.8) we readily obtain the statement of Lemma A.3 with the constant ∆
defined as

∆ = µ sup
A′∈A

(
max{1, ρ(A′)}

)m−1
.

Here, one can assume that the constant ∆ is finite since the supremum in the right hand part
of the latter formula is bounded in any bounded neighborhood of the matrix set A, while the
neighborhood A is supposed to be rather small and hence bounded. Lemma A.3 is proved. ut

Now, all is ready to prove Theorem 1.
Proof of Theorem 1. Given a norm ‖ · ‖0 in Rm, define A as such a compact neighborhood of

the matrix set A whose existence has been established Lemma A.3. Introduce the set of norms

N :=
⋃

A′∈A
NBar(A′, x0),

and show that this set is compact in the space Cloc(Rm).
Indeed, by Lemma A.3 for some ∆ <∞ the following estimates hold

‖x‖ ≤ ∆‖x‖0 ∀x ∈ Rm, ∀‖ · ‖ ∈ N ,

and so the values of the norms from N are uniformly bounded on each bounded set from Rm.
Besides, again by Lemma A.3 we have∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖ ≤ ∆‖x− y‖0 ∀x, y ∈ Rm, ∀‖ · ‖ ∈ N ,

and hence the norms from N are functions satisfying a uniform Lipschitz condition on Rm. Thus,
the norms from N form a set of uniformly bounded and equicontinuous functions on each closed
bounded set from Rm, from which by the Arzela-Ascoli theorem the compactness of the set N in
the space Cloc(Rm) follows.

Now we prove that the graph of map

A′ 7→ NBar(A′, x0) (A.9)

is closed in the space A×Cloc(Rm). Let {
(
A(n), ‖·‖(n)

)
}, where A(n) ∈ A, be a sequence of elements

belonging to the graph of map (A.9) and converging to some element
(
A∗, ν(·)

)
∈Mm,r×Cloc(Rm).

Then the compactness of A implies the inclusion A∗ ∈ A. At the same time, we may state that
the function ν(·), being a limit in Cloc(Rm) of a sequence of norms ‖ · ‖(n), is only a semi-norm.

¿From the definition of the sequence {
(
A(n), ‖ · ‖(n)

)
} it follows that ‖ · ‖(n) ∈ NBar(A(n), x0) for

each value of n and therefore

ρ(A(n))‖x‖(n) = max
{
‖A(n)

1 x‖(n), . . . , ‖A(n)
r x‖(n)

}
∀x ∈ Rm ,∀n. (A.10)

Here, due to the assumption about the irreducibility of the matrix set A, without loss of generality,
one can assume that each of the matrix sets A(n) is also irreducible. In this case it holds (see [7])
ρ(A(n)) → ρ(A∗) and, by passing to limit in (A.10), we obtain

ρ(A∗)ν(x) = max {ν(A∗0x), ν(A∗1x), . . . , ν(A∗rx)} ∀x ∈ Rm,

with ν(x0) = limn→∞ ‖x0‖(n) = 1. Hence, the semi-norm ν satisfies condition (4) for the irreducible
matrix set A∗ and does not equal identically to zero. Then by Lemma 3 this semi-norm is in fact
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a Barabanov norm, i.e., ν(·) = ‖ · ‖∗ ∈ NBar(A∗, x0), which means that the graph of map (A.9) is
closed.

So, it is proved that the graph of map (A.9) is closed and that the set N is compact. From
this we get by Lemma 1 the compactness and upper semi-continuity of map (A.9). Theorem 1 is
proved. ut

Now, we are able to prove the left-hand side of inequalities (A.5).

Lemma A.4. Given a norm ‖ · ‖0 and a vector x0 6= 0 in Rm, let A be an irreducible set of
m ×m matrices. Then there exist a number δ > 0 and a neighborhood A of A such that for any
Barabanov norm ‖ · ‖′ corresponding to the matrix set A′ ∈ A the following estimate hold:

δ‖x‖0 ≤
‖x‖′

‖x0‖′
∀x ∈ Rm.

Proof. Define A as the neighborhood of the matrix set A determined by Theorem 1. Then,
supposing that Lemma A.4 in not true, one may choose matrix sets A(n) ∈ A and corresponding to
them Barabanov norms ‖ · ‖(n) ∈ NBar(A(n), x0) as well as vectors x(n) such that ‖x(n)‖0 = 1 and

‖x(n)‖(n)

‖x0‖(n)
→ 0 as n→∞. (A.11)

By Theorem 1 one can suppose that the sequences {A(n)} and {‖ · ‖(n)} are convergent, i.e.,
A(n) → A∗ ∈ A and ‖ · ‖(n) → ‖ · ‖∗ ∈ NBar(A∗, x0). The sequence {x(n)} also can considered as
convergent: x(n) → x∗ 6= 0. Then, by passing in (A.11) to limit, we obtain the equality

‖x∗‖∗

‖x0‖∗
= 0, x∗, x0 6= 0,

which is impossible since ‖ ·‖∗ is a norm. The contradiction completes the proof of Lemma A.4. ut
The proof of Theorem 2 now directly follows from Lemmas A.3 and A.4.

A.2. PROOF OF THEOREMS 3 AND 4

Proof of Theorem 3. Let {xn} be a trajectory of the matrix set A which is extremal in some
extremal norm ‖ · ‖0. Consider the sequence of “shifted” trajectories xk = {x(k)

n } defined as follows

x(k)
n = ρ−kxn+k, n = 0, 1, 2, . . . .

Then for each fixed n = 0, 1, . . . the set of elements {x(k)
n } is uniformly bounded

‖x(k)
n ‖0 = ‖ρ−kxn+k‖0 = ρn‖x0‖, k = 0, 1, . . . ,

where ρ = ρ(A). Hence, by Lemma 2 the sequence of trajectories xk is compact in the space
Ω(Rm). Therefore, without loss of generality one may suppose that for each n = 0, 1, . . . there
exists the limit

x∗n = lim
k→∞

x(k)
n = lim

k→∞
ρ−kxn+k. (A.12)

Note that by Lemma 2 the set of all trajectories of the matrix set A is closed in the space Ω(Rm),
and so the limiting sequence x∗ = {x∗n}∞n=0 is also a trajectory of the matrix set A.

At last, show that the trajectory x∗ = {x∗n}∞n=0 is extremal in any extremal norm of the matrix
set A. Fix an arbitrary norm ‖ · ‖∗ extremal for the matrix set A. Then, by the definition of an
extremal norm, for the trajectory {xn} the following inequalities hold

‖x0‖∗ ≥ ρ−1‖x1‖∗ ≥ ρ−2‖x2‖∗ ≥ . . . ≥ ρ−n‖xn‖∗ ≥ . . . ≥ c1 > 0.
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Hence, the sequence {ρ−n‖xn‖∗} monotonously decreases and consequently there exists limit

lim
n→∞

ρ−n‖xn‖∗ = ω ≥ c1 > 0.

Together with (A.12) the latter relation implies

ρ−n‖x∗n‖∗ = lim
k→∞

ρ−(n+k)‖xn+k‖∗ = ω, n = 0, 1, . . . .

So, the trajectory x∗ = {x∗n}∞n=0 is extremal in the norm ‖ · ‖∗. Theorem 3 is proved. ut
Proof of Theorem 4. Let A be such a closed neighborhood of the matrix set A whose existence

is asserted by Lemma A.3. Consider the sets

EBar =
⋃

A′∈A

⋃
x∈X

EBar(A′, x), T =
⋃

A′∈A

⋃
x∈X

T (A′, x),

and observe that by Lemmas 1 and 2 the set EBar is a subset of the compact set T ⊆ Ω(Rm).
Therefore the set EBar is also compact in the space Ω(Rm).

Now we show that the graph of map(
A′, x

)
7→ EBar(A′, x), A′ ∈ A, x ∈ X , (A.13)

is closed in A × X × Ω(Rm). Choose a sequence of elements
(
A(k), x(k),x(k)

)
with A(k) ∈ A and

x(k) ∈ X belonging to the graph of map (A.13) and converging to some element
(
A∗, x∗,x∗

)
∈

A×X ×Ω(Rm). Then the sequence
(
A(k), x(k),x(k)

)
belongs also to the graph of the map T (A, x).

In this case, due to the compactness and upper semi-continuity of the map T (A, x) (see Lemma 2),
the limiting element

(
A∗, x∗,x∗

)
also belongs to the graph of the map T (A, x):

x∗ ∈ T (A∗, x∗).

Hence, x∗ is a trajectory of the matrix set A∗ ∈ A satisfying the initial condition x∗ ∈ X . It
remains only to prove that the trajectory x∗ is B-extremal.

By construction, x(k) = {x(k)
n } is a trajectory of the matrix set A(k) which is extremal in some

Barabanov norm ‖ · ‖(k). Then

‖x(k)
0 ‖(k) = ρ−1(A(k))‖x(k)

1 ‖k = . . . = ρ−n(A(k))‖x(k)
n ‖(k) = . . . , (A.14)

where by Theorem 1 one may assume that the sequence of Barabanov norms ‖ · ‖(k) converges to
some Barabanov norm ‖ · ‖∗ of the matrix set A∗. Therefore, taking the limit in (A.14) we obtain7:

‖x∗0‖∗ = ρ−1(A∗)‖x∗1‖∗ = . . . = ρ−n(A∗)‖x∗n‖∗ = . . . .

The obtained relations justify that the trajectory x∗ = {x∗n} of the matrix set A∗ is extremal in
the Barabanov norm ‖ · ‖∗.

So, it is proved that the graph of map (A.13) is closed and that the set EBar is compact. By
Lemma 1 this implies the compactness and upper semi-continuity of map (A.13). Theorem 4 is
proved. ut

7 Remark that ρ(A(k)) → ρ(A∗) as k → ∞ since the generalized spectral radius depends continuously [7] on the
irreducible matrix set.

AUTOMATION AND REMOTE CONTROL Vol. 68 No. 1 2007



STRUCTURE OF EXTREMAL TRAJECTORIES 197

A.3. PROOF OF THEOREM 5

To start the proof, obtain some auxiliary estimates of the generalized spectral radius. Let A be
a set of matrices A0 and A1 of the form (7) satisfying (8), and let ρ(A) be the joint spectral radius
of the matrix set A. Then in virtue of (1)

ρ(A) ≥ (ρ(An
0A1))

1
n+1 , (ρ(A0A

n
1 ))

1
n+1 , ∀n ≥ 0,

from which we get
ρ(A) ≥ max{α, β}. (A.15)

Remark that formula (A.15) is generally unimprovable. Nevertheless, in what follows we will
need estimates which sometimes will be more accurate.

Lemma A.5. For each n ≥ 0 hold the estimates

ρ(A) ≥ max

αa
(

(n+ 1)β
α

) 1
n+1

, βd

(
(n+ 1)α

β

) 1
n+1

 . (A.16)

Proof. As is easy to see,

An
0A1 = αnβ

∥∥∥∥∥ an + (1 + · · ·+ an−1)bc (1 + · · ·+ an−1)bd
c d

∥∥∥∥∥ ,
and the characteristic polynomial p(λ) of the matrix (αnβ)−1An

0A1 has the form:

p(λ) = λ2 − (d+ an + (1 + · · ·+ an−1)bc)λ+ and.

In this case

p((n+ 1)an) = (n+ 1)2a2n − (d+ an + (1 + · · ·+ an−1)bc)(n+ 1)an + and.

Here due to (8) (1 + · · · + an−1)bc ≥ nan, and therefore, p((n + 1)an) ≤ −nand ≤ 0. Hence the
maximal root of the polynomial p(λ) is not less than (n+1)an, and then ρ (An

0A1) ≥ (n+1)αnβan,
from which it follows that

ρ(A) ≥ (ρ (An
0A1))

1
n+1 ≥ αa

(
(n+ 1)β
αa

) 1
n+1

≥ αa

(
(n+ 1)β

α

) 1
n+1

.

Analogously, it can be shown that ρ(A) is not less than the second member under the maximum
sign in (A.16). Lemma A.5 is proved. ut

Corollary. For any α, β > 0 there is such a γ(α, β) > 1, that

ρ(A) > γ(α, β) max {αa, βd} .

Proof. The required estimate immediately follows from Lemma A.5 if to note that the quantities

(
(n+ 1)β

α

) 1
n+1

,

(
(n+ 1)α

β

) 1
n+1

in (A.16) are strictly greater than 1 when n+ 1 > max{α/β, β/α}. ut
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It seems, that in a majority of situations this Corollary is even weaker than the statement of
Lemma A.5. Nevertheless, it will be needed below namely in such a form. Besides, this Corollary
implies that ρ(A) > max{α, β} for a and b sufficiently close to 1.

Now, we are ready to prove Lemma 8 clarifying to some extent the structure of the unit ball of
a Barabanov norm.

Proof of Lemma 8. Let ‖ · ‖ be a Barabanov norm corresponding to the matrix set A ∈ M],
and let w = (0, w1), w1 > 0, be a point lying on the boundary of the ball S = {x : ‖x‖ = 1}, i.e.,
‖w‖ = 1. Show that in this case for any point x = (x1, x2) ∈ S lying in the first quadrant (i.e.,
such that x0, x1 ≥ 0) the following relation holds

x1 ≤ w1.

Suppose the contrary, i.e., that there is a point z = (z0, z1), ‖z‖ = 1, for which z1 > w1, z0 > 0,
and show that this is impossible. In what follows the “vertical” coordinate z1 of the point z is
supposed to be maximal, i.e., it is supposed that the unit sphere in the norm ‖ · ‖ has no points
with the vertical coordinate exceeding z1. Clearly, this additional assumption does not restricts
generality.

Since ‖ · ‖ is a Barabanov norm then ρ‖w‖ = max {‖A0w‖, ‖A1w‖} where ρ = ρ(A). Hence,
either ‖A0w‖ = ρ‖w‖ or ‖A0w‖ < ρ‖w‖. Consider both of this cases.

Let first ‖A0w‖ = ρ‖w‖. Represent the vector A0w as a linear combination of the vectors ρw
and A0z:

A0w = sρw + tA0z. (A.17)

Accounting that A0w = α (bw1, w1) and A0z = α (az0 + bz1, z1) the equality (A.17) can be rewritten
in the following equivalent coordinate form:

αbw1 = tα (az0 + bz1) , αw1 = sρw1 + tαz1. (A.18)

The first equality (A.18) implies that t = bw1/(az0 + bz1). Then from the relations z1 > w1 > 0
and z0 > 0 we get:

0 < t =
bw1

az0 + bz1
< 1.

Now, substituting the obtained value for t in the second equality (A.18), we get:

s =
α

ρ

w1 − tz1
w1

=
α

ρ

w1 − bw1
az0+bz1

z1

w1
=
α

ρ

aw1z0
w1

=
α

ρ
az0 > 0.

At last, taking into account that in view of (A.15) ρ = ρ(A) ≥ ρ (A0) ≥ α > 0, from the second
equation (A.18) and from the estimate z1 > w1 > 0 we obtain the chain of relations

αw1 = sρw1 + tαz1 > αw1 = sαw1 + tαw1,

from which s+ t < 1.
So, it is shown that

s, t > 0, s+ t < 1.

Then from (A.17) and from the relations ‖w‖ = 1 and ‖z‖ = 1 we get the chain of inequalities

‖A0w‖ ≤ sρ‖w‖+ t‖A0z‖ ≤ sρ‖w‖+ tρ‖z‖ < ρ,

contradicting to the supposition that ‖A0w‖ = ρ‖w‖ = ρ. In other words, the case ‖A0w‖ = ρ‖w‖
is impossible.
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Let now ‖A0w‖ < ρ‖w‖. Since ‖ · ‖ is a Barabanov norm then in this case ‖A1w‖ = ρ‖w‖ = ρ
where A1w = βdw by the definition of the vector w. Then βb = ρ, and the following representation
holds:

1
ρ
A1z =

(
β

ρ
z0,

β

ρ
cz0 +

β

ρ
bz1

)
=

(
β

ρ
z0,

β

ρ
cz0 + z1

)
.

Since ‖ · ‖ is a Barabanov norm then here
∥∥∥1

ρA1z
∥∥∥ ≤ ‖z‖ = 1. On the other hand the vertical

coordinate of the vector 1
ρA1z, which is equal to β

ρ cz0 + z1, is turned to be strictly greater than z1
which contradicts to the definition of the vector z. In other words, the case ‖A0w‖ < ρ‖w‖ is also
impossible.

So, it is shown that the intersection of the ball S with the first quadrant lays entirely below the
straight horizontal line crossing the point w (see Fig. 3).

Analogously can be shown that if the vector v = (v0, 0), v0 > 0, is such that its norm equals
to one, then the intersection of the ball S with the first quadrant lays entirely below the straight
horizontal line crossing the point v (see Fig. 3). Now, from the convexity of the ball S immediately
follows the statement of the Lemma. ut

To further analyze the structure of the unit ball of a Barabanov norm we will need some con-
structions involving the so-called Gram symbol. Given a pair of vectors x, y ∈ R2 and a pair of
linear functionals

u(w) = 〈u,w〉, v(w) = 〈v, w〉, u, v, w ∈ R2.

Then the Gram symbol of the ordered four-tuple {u, v, x, y} is the expression{
u x
v y

}
:= u(x)v(y)− u(y)v(x) ≡ 〈u, x〉〈v, y〉 − 〈u, y〉〈v, x〉. (A.19)

Lemma A.6. {
u x
v y

}
= 0 ⇐⇒ u = tv or x = ty,

and {
u x
v y

}
≥ 0 if x = u, y = v, (A.20)

{
u x
v y

}
≤ 0 if x = v, y = u. (A.21)

Proof. By definition (A.19), the Gram symbol of the four-tuple {u, v, x, y} vanishes if and only
if

〈u, x〉〈v, y〉 − 〈u, y〉〈v, x〉 = 〈u, x〈v, y〉 − y〈v, x〉〉 = 0.

If here x〈v, y〉 − y〈v, x〉 = 0 then x = ty, and Lemma A.6 is proved. Therefore, we will suppose
that w = x〈v, y〉 − y〈v, x〉 6= 0. Then

〈u,w〉 = 0, w 6= 0, (A.22)

and besides,
〈v, w〉 = 〈v, x〈v, y〉 − y〈v, x〉〉 ≡ 0. (A.23)

Clearly, in a two-dimensional space equalities (A.22), (A.23) with nonzero w may be valid only in
the case when u = tv.
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Inequalities (A.20) and (A.21) immediately follow from the following relations{
u u
v v

}
= −

{
u v
v u

}
= 〈u, u〉〈v, v〉 − 〈u, v〉2 ≥ 0.

Lemma A.6 is proved. ut
Lemma A.6 implies that, under non-degenerate deformations of ordered pairs of the vectors

{u, v} and {x, y} satisfying u 6= tv and x 6= ty, the sign of the Gram symbol does not change.
Moreover, each ordered pair of the vectors {u, v} and {x, y} may be deformed either at the ordered
pair of the vectors {e1, e2}, or at the pair {e2, e1}, where

e1 = (1, 0), e2 = (0, 1).

So, the geometrical sense of the Gram symbol is that the ordered pair of the vectors {x, y} has the
same orientation as the ordered pair of the vectors {u, v} if and only if the Gram symbol of the
corresponding ordered four-tuple of the vectors {u, v, x, y} is positive.

Now, we a ready to fulfil the final steps of the proof of Theorem 5. Let S be the unit ball of a
Barabanov norm ‖ · ‖ and let

S′ = {u ∈ R2 : sup
x∈S

|〈u, x〉| ≤ 1}.

Denote by K+ the cone of vectors in R2 with the non-negative coordinates.

Lemma A.7. Let ‖ · ‖′ be the norm the unit ball of which coincides with S′. Then

|〈u, x〉| ≤ ‖x‖‖u‖′. (A.24)

Moreover, for each vector x 6= 0 there is a vector u 6= 0 such that 〈u, x〉 = ‖x‖·‖u‖′, and furthermore,
if x ∈ K+ then u ∈ K+.

Proof. Inequality (A.24) is a well known fact in the theory of topological vector spaces and it
directly follows from the definition of the dual norm ‖u‖′. The fact that the equality 〈u, x〉 =
‖x‖ · ‖u‖′ with x ∈ K+ is valid for some u ∈ K+ follows from Lemma 8. ut

Now, let x, y 6= 0 be a pair of the vectors satisfying x ∈ X0 ∩K+, y ∈ X1 ∩K+. Then due to
the non-negativity of entries of the matrices A0 and A1,

A0x ∈ K+, ‖A0x‖ = ρ‖x‖, A1y ∈ K+, ‖A1y‖ = ρ‖y‖,

and by Lemma A.7 such vectors u, v ∈ K+ can be found for which

〈u,A0x〉 = ‖u‖′‖A0x‖ = ρ‖u‖′‖x‖, (A.25)
〈v,A1y〉 = ‖v‖′‖A1y‖ = ρ‖v‖′‖y‖. (A.26)

On the other hand, (A.24) and the definition of a Barabanov norm imply

〈u,A0y〉 ≤ ‖u‖′‖A0y‖ = ρ‖u‖′‖y‖, (A.27)
〈v,A1x〉 ≤ ‖v‖′‖A1x‖ = ρ‖v‖′‖x‖. (A.28)

¿From (A.25), (A.26), (A.27) and (A.28) we get

〈u,A0x〉〈v,A1y〉 = ρ2‖u‖′‖v‖′‖x‖′‖y‖ ≥ 〈u,A0y〉〈v,A1x〉.

Then {
A′0u x
A′1v y

}
= 〈A′0u, x〉〈A′1v, y〉 − 〈A′0u, y〉〈A′1v, x〉 ≥ 0. (A.29)

So, we have proved the following
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Lemma A.8. Let x, y 6= 0 be a pair of the vectors satisfying x ∈ X0 ∩K+, y ∈ X1 ∩K+. Then
there are such nonzero vectors u, v ∈ K+ for which relation (A.29) is valid.

This Lemma is a key point in the analysis of the structure of the sets X0 ∩K+ and X1 ∩K+.
Proof of Theorem 5. Let v = (v0, 0), v0 > 0, be a vector of unit norm, and let ρ = ρ ({A0, A1}).

Then A0v = α (av0, 0) = αa (v0, 0) = αav, and by the corollary from Lemma A.5 ‖A0v‖ < ρ‖v‖.
Since ‖ · ‖ is a Barabanov norm then from here it follows that ‖A1v‖ = ρ‖v‖ and therefore
v ∈ X1\X0. Moreover, the inequality ‖A0v‖ < ρ‖v‖ means that for all vectors v̄ from some
neighborhood of v it is also valid the inequality ‖A0v̄‖ < ρ‖v̄‖ which, as was shown above, implies
v̄ ∈ X1\X0. So, the set X1\X0 has a nonempty intersection with the abscissa axis, and the interior
of the set X1\X0 is nonempty. Analogously can be shown that the set X0\X1 has a nonempty
intersection with the ordinate axis, and the interior of the set X0\X1 is nonempty.

By Lemma A.8 for a pair of nonzero vectors x ∈ X0 ∩ K+, y ∈ X1 ∩ K+ non-proportional to
each other there are such nonzero vectors u, v ∈ K+ for which the Gram symbol of the four-tuple
{A′0u,A′1v, x, y} is non-negative. This means that the ordered pair of vectors {x, y} has the same
orientation as the pair {A′0u,A′1v}. On the other hand, under conditions (8) for the pair of matrices
A0, A1 the ordered pair of vectors {A′0u,A′1v} is always oriented negatively, i.e., the vector A′1v
can be obtained by rotating the vector A′0u counter clockwise on the angle not exceeding π and by
appropriate stretching or contracting. Therefore, the ordered pair of vectors {x, y} should also be
oriented negatively.

So, any ordered pair of nonzero vectors x ∈ X0 ∩ K+, y ∈ X1 ∩ K+ not proportional to each
other is negatively oriented. Since in addition, the sets X0∩K+ and X1∩K+ are closed and conic,
i.e., contain with each its nonzero element the whole ray passing this element, then they should be
such as it is asserted in Theorem 5.

The fact that the vector ϑ is the only solution of the system of equations (13) directly follows
from definitions (11), (12) of the sets X0, X1, Θ and from the fact that the set Θ is a ray. Therefore,
to complete the proof of Theorem 5 we need only show that the vector ϑ depends continuously on
the matrices A0, A1 and the norm ‖ · ‖.

Let {A(n)
0 }, {A(n)

1 } be sequences of matrices (7) satisfying (8), and let {‖ · ‖(n)} be a sequence
of the Barabanov norms corresponding to these matrices. Suppose that

A
(n)
0 → A

(0)
0 , A

(n)
1 → A

(0)
1 , ‖ · ‖(n) → ‖ · ‖(0),

where convergence of the norms is understood as convergence in the space Cloc(Rm). Denote by
{ϑ(n)} the sequence of vectors satisfying the system of equations

‖A(n)
0 ϑ(n)‖(n) = ‖A(n)

1 ϑ(n)‖(n), ‖ϑ(n)‖(n) = 1, ϑ(n) ∈ K+, (A.30)

To prove that ϑ(n) → ϑ(0) it is sufficient to show that any limiting point ϑ∗ of the sequence
{ϑ(n)} coincides with the element ϑ(0). But it is really so, since by passing to limit in (A.30) one
can be convinced readily that ϑ∗ satisfies the equations

‖A(0)
0 x‖(0) = ‖A(0)

1 x‖(0), ‖x‖(0) = 1, x ∈ K+.

Since the only solution of the latter system is, by the definition, the vector ϑ(0) then ϑ∗ = ϑ(0).
So, the continuous dependance of the vector ϑ on the matrices A0, A1 and the norm ‖ · ‖ is

established, and the proof of Theorem 5 is completed. ut
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A.4. PROOF OF THEOREMS 6–9

Proof of Lemma 11. The fact that the map(
A, ‖ · ‖

)
7→ Φ[A, ‖ · ‖]. (A.31)

is defined uniquely by the pair
(
A, ‖ · ‖

)
, directly follows from (18), (19).

Remark now that by definition (17) of the direction function Φ, continuity of map (A.31) will be
established if we show that both of the functions ϕ0 = ϕ0[A0] and ϕ1 = ϕ1[A1] depend continuously
on the matrices A0 and A1 in the metric of the space C[0, 1], while the parameter θ = θ[A, ‖ · ‖]
depends continuously on A and ‖ · ‖.

Continuous dependance of the functions ϕ0 = ϕ0[A0] and ϕ1 = ϕ1[A1] on defining them matrices
immediately follows from definitions (9), (10). Besides, continuous dependency of the parameter
θ = θ[A, ‖ · ‖] on A and ‖ · ‖ follows from the fact that θ is the ξ-coordinate (see (15)) of the vector
ϑ defined in Theorem 5, which depends continuously on A and ‖ · ‖ by Theorem 5.

So, map (A.31) is continuous, and the proof of Lemma 11 is completed. ut
To prove Theorem 8 we need an auxiliary statement.

Lemma A.9. Let η be a closed orientation preserving circle map and let h be its standard lift.
Then for any ξ ∈ [0, 1) and any pair of elements ηξ ∈ η(ξ), hξ ∈ h(ξ) satisfying ηξ = hξ (mod 1)
the following relation is valid:

hξ = ηξ + ν(ηξ), (A.32)

where ν(ξ) is function (24) (see Fig. 8).
Conversely, if for a pair of elements ηξ ∈ η(ξ) and hξ relation (A.32) holds then hξ ∈ h(ξ).

Proof. Fix a point ξ ∈ [0, 1) and choose a pair of elements ηξ ∈ η(ξ) and hξ ∈ h(ξ) satisfying
the relation ηξ = hξ (mod 1). Since, by Lemma’s conditions, h(·) ia a standard lift of the map η(·)
then h(0) = η(0) ∈ [0, 1). Then from the fact that the map h(·) is strictly increasing we obtain the
estimates

0 ≤ η(0) = h(0) ≤ hξ < h(1) = h(0) + 1 = η(0) + 1 < 2, ξ ∈ [0, 1),

i.e., hξ ∈ [0, 2).
If hξ ∈ [0, 1) then the equality ηξ = hξ (mod 1) implies ηξ = hξ, and by monotony of the

function h(·)
ω = min{y : y ∈ η(0)} = min{y : y ∈ h(0)} ≤ hξ = ηξ < 1.

Hence, in this case ν(ηξ) = 0 from which we obtain that hξ = ηξ + ν(ηξ).
But if hξ ∈ [1, 2) then the equality ηξ = hξ (mod 1) implies ηξ = hξ − 1. In this case by

monotony of the function h(·) the following relations take place

0 ≤ ηξ = hξ − 1 < min{y : y ∈ h(1)} − 1 = min{y : y ∈ h(0) + 1} − 1 =
= min{y : y ∈ h(0)} = min{y : y ∈ η(0)} = ω.

Hence ν(ηξ) = 1 which again implies hξ = ηξ + ν(ηξ). So, in one direction Lemma A.9 is proved.
Now, let ηξ ∈ η(ξ) and hξ be elements for which relation (A.32) is fulfilled. By the definition

of the lift of a circle map, the sets η(ξ) and h(ξ) satisfy the relation η(ξ) = h(ξ) (mod 1). Con-
sequently, the set h(ξ) contains such an element h∗ that ηξ = h∗ (mod 1). But then, due to the
already proven first part of Lemma, the relation h∗ = ηξ + ν(ηξ) should be valid. But by suppo-
sition, for the elements ηξ and hξ the analogous relation (A.32) is also true, i.e., hξ = ηξ + ν(ηξ),
from which we immediately obtain hξ = h∗ ∈ h(ξ). Lemma A.9 is completely proved. ut
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Fig. 8. Orientation preserving closed circle map η(ξ) and its standard lift h(ξ).

At last, we are able to present the definition of the rotation number of the circle map η(·) directly
in terms of the map η(·) (to be precise, the definition of the rotation number of the standard lift
h(·) of the map η(·)).

Proof of Theorem 8. Define the sequence {ξn}∞n=0 by setting ξ0 = ζ0 and

ξn = ζn +
n∑

i=1

ν(ζi), n = 1, 2, . . . .

Prove by induction that {ξn} satisfies the inclusions

ξn+1 ∈ h(ξn), n = 0, 1, . . . , (A.33)

and so, it is a trajectory of the map h.
Indeed, by the definition, ξ1 = ζ1 + ν(ζ1), where ζ1 ∈ η(ζ0). Therefore, by Lemma A.9 ξ1 ∈

h(ζ0) = h(ξ0), and the statement of Theorem 8 is true for n = 0.
Perform the step of induction. Suppose that the statement of Theorem 8 is valid for n = k ≥ 0

and show that this imply its validity for n = k + 1. By the definition of the element ξk+1,

ξk+1 = ζk+1 +
k+1∑
i=1

ν(ζi)

or, what is the same,

ξk+1 −
k∑

i=1

ν(ζi) = ζk+1 + ν(ζk+1).
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Since here, by the definition of the trajectory {ζn}, the inclusion ζk+1 ∈ η(ζk) with ζk ∈ [0, 1) holds,
then by Lemma A.9 ζk+1 + ν(ζk+1) ∈ h(ζk). Hence,

ξk+1 −
k∑

i=1

ν(ζi) ∈ h(ζk)

or, what is the same,

ξk+1 ∈ h(ζk) +
k∑

i=1

ν(ζi) = h(ζk +
k∑

i=1

ν(ζi)).

Here, by the supposition of induction, the argument of the function h in the right-hand part
coincides with ξk which implies ξk+1 ∈ h(ξk).

So, the step of induction is justified and inclusions (A.33) are proved. To complete the proof of
Theorem 8 it remains to note only that by Theorem 7 and Remark 2 for the trajectory {ξn} the
estimates hold ∣∣∣∣ξnn − τ(h)

∣∣∣∣ ≤ 1
n
, n = 1, 2, . . . ,

while by the definition of trajectory {ξn} it is valid the equality

ξn
n

=
ζn
n

+
∑n

i=1 ν(ζi)
n

,

where ζn ∈ [0, 1). Estimates (23) now directly follow from the latter relations. Theorem 8 is
proved. ut

Proof of Theorem 9. Now all is ready to prove Theorem 6. Let {xn} be a B-extremal trajectory
of the matrix set A = {A0, A1} ∈ M] and let {σn} be the corresponding index sequence, i.e., the
sequences {xn} and {σn} satisfy the equalities xn+1 = Aσnxn for n = 0, 1, . . .. Then by Lemma 10
the numerical sequence ξn = ξ(xn), where the function ξ(·) is defined by equality (15), satisfies the
relations

ξn+1 = ϕσn(ξn) ∈ Φθ(ξn), n = 0, 1, . . . ,

with some direction function Φθ. At the same time, by Theorem 9 there is defined the frequency

τ = lim
n→∞

∑n
i=1 ν(ξi)
n

,

and besides, ξn 6= 0, 1 for n ≥ 1. Therefore, for n ≥ 1 the value ξn+1 ∈ (0, 1) is obtained from
ξn ∈ (0, 1) by the formula ξn+1 = ϕ0(ξn) if and only if 0 < ξn+1 < ϕ0(1) or, what is the same, if
and only if ν(ξn+1) = 1. Consequently, σn = 1− ν(ξn+1) for n ≥ 1 and by Theorem 9 there is the
limit

σ(A) = lim
n→∞

∑n
i=1 σi

n
= 1− lim

n→∞

∑n
i=1 ν(ξi+1)

n
= 1− τ(A).

Now, all the assertions of Theorem 6 follow from analogous assertions of Theorem 9. ut
Construct the map ηθ(·) of the semiopen interval [0, 1) in itself with the help of following equal-

ities

ηθ(ξ) =


ϕ1(0) ∪ ϕ0(1), if ξ = 0

ϕ1(ξ), if ξ ∈ (0, θ]
ϕ0(ξ), if ξ ∈ [θ, 1).

This map can be treated as an orientation preserving circle map with the closed graph since it has
the strictly increasing lift with a closed graph hθ(·) defined for ξ ∈ [0, 1) by the relation8

hθ(ξ) =


ϕ1(0) ∪ ϕ0(1), if ξ = 0

ϕ1(ξ), if ξ ∈ (0, θ]
ϕ0(ξ) + 1, if ξ ∈ [θ, 1).

8 The lift hθ(·) can be extended on other values of ξ ∈ R with the preservation of the identity hθ(ξ+ 1) ≡ hθ(ξ) + 1.
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Point out that the map ηθ(·) takes two values at each of the points ξ = 0, θ.
Now, let {ξn} be a trajectory of the map Φθ, i.e.,

ξn+1 ∈ Φθ(ξn), n = 0, 1, . . . . (A.34)

By Lemma 10 the parameter θ of the map Φθ(ξ) satisfies the inclusion θ ∈ (0, 1). Then, as can be
seen, e.g., from Fig. 5, the values of the function Φθ(ξ) are separated from 0 and 1, i.e., one can
find such µ > 0 for which for all the elements of the trajectory {ξn} will be valid the estimates
µ ≤ ξn ≤ 1 − µ, except maybe for the element ξ0. ¿From here and from (A.34), and taking into
account that the values of the functions Φθ(ξ) and ηθ(ξ) coincide with each other for 0 < ξ < 1,
we deduce that the trajectory {ξn} satisfies the inclusions ξn+1 ∈ ηθ(ξn) for n = 1, 2, . . .. Defining
now the sequence {ζn} by setting

ζn =

{
ξ0 (mod 1), if n = 0
ξn, if n ≥ 1,

one can easily verify that this sequence satisfies the inclusions ζn+1 ∈ ηθ(ζn) for n = 1, 2, . . .. From
here by Theorem 8 it follows the existence of such a number τ for which the estimates hold∣∣∣∣∑n

i=1 ν(ξi)
n

− τ

∣∣∣∣ =
∣∣∣∣∑n

i=1 ν(ζi)
n

− τ

∣∣∣∣ ≤ 2
n
, n = 1, 2, . . . , (A.35)

where the function ν(·) by Lemma A.9 has the form

ν(ξ) =

{
1 if 0 ≤ ξ < ω
0 if ω ≤ ξ < 1.

Here ω = min{hθ(0)} = Φθ(1) which means that in a formal sense the number ω depends on θ. But
since by Lemma 10 the number θ satisfies the inclusion θ ∈ (0, 1) then Φθ(1) ≡ ϕ0(1). Therefore,
in fact the number ω, as well as the function ν(·), does not depend on θ.

Estimates (A.35) imply the existence of limit (25). Note that for a given direction function Φθ

the number τ by Theorem 8 does not depend on the choice of the trajectory {ξn}, and so, τ is a
function of the only argument θ, i.e., τ = τ(θ). Show that in fact the number τ does not depend
on θ, too, but it is uniquely determined by the matrix set A, i.e., τ = τ(A).

Let Φθ1(ξ) and Φθ2(ξ) be the direction functions of some generators of B-extremal trajectories
g1(x) and g2(x) corresponding to different Barabanov norms ‖ · ‖1 and ‖ · ‖2. Then by Theorem 3
there is a trajectory {xn} of the matrix set A which is extremal as in the norm ‖ ·‖1 as in the norm
‖ · ‖2. By the definition of a generator of B-extremal trajectories, this trajectory should satisfy as
the inclusions

xn+1 ∈ g1(xn), n = 0, 1, 2, . . . ,

as the inclusions
xn+1 ∈ g2(xn), n = 0, 1, 2, . . . .

Then, by the definition of the direction function, the sequence {ξn} defined by

ξn =
x1,n

x1,n + x2,n
, n = 0, 1, 2, . . . ,

should satisfy as the inclusions

ξn+1 ∈ Φθ1(ξn), n = 0, 1, 2, . . . , (A.36)
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as the inclusions
ξn+1 ∈ Φθ2(ξn), n = 0, 1, 2, . . . . (A.37)

We can use now formula (25) to calculate the number τ(θ1) for the sequence {ξn} treating the
latter as the sequence satisfying (A.36). Analogously, we can use the same formula (25) to calculate
the number τ(θ2) for the same sequence {ξn} but this time treating it as the sequence satisfying
(A.37). Since in the both cases calculations (25) are performed with the same sequence {ξn} then
we conclude that τ(θ1) = τ(θ2), from which independence of the number τ from θ follows.

Validity of assertions (i)–(iii) for τ(A) follows from the definition of the number τ(A) and
from Theorem 7. Therefore, to complete the proof of Theorem 9 it remains only to establish the
continuous dependance of the function τ(A) on the matrix set A. Let {A(n) ∈M]} be a sequence
of matrix sets converging to the matrix set A∗ ∈M]. Fix a vector x0 6= 0 ∈ R2 and choose for each
n a Barabanov norm ‖ · ‖(n) ∈ NBar(A(n), x0), and then build the direction function Φθ(n) of the
generator of B-extremal trajectories corresponding to the matrix set A(n) and the norm ‖ · ‖(n).

By Theorem 1 one can suppose that the sequence {‖ · ‖(n)} converges in the space Cloc(Rm) to
some Barabanov norm ‖ · ‖∗ corresponding to the matrix set A∗. Then by Lemma 11 the sequence
{Φθ(n)} converges by the metric of the space F to the direction function Φθ∗ of the generator of
B-extremal trajectories corresponding to the matrix set A∗ and the norm ‖ · ‖∗. Hence

τ(A(n)) = τ(Φθ(n)) → τ(Φθ∗) = τ(A∗). (A.38)

Here, convergence of the numerical sequence {τ(Φθ(n))} to τ(Φθ∗) follows from convergence of the
sequence of functions {Φθ(n)} to the function Φθ∗ by the metric of the space F (i.e., in the sense of
convergence of the graphs of these functions in the Hausdorff metric) and from Theorems 7 and 8.
Equalities in (A.38) follows from the already proven fact that the number τ(A) does not depend
on the choice of the direction function of the generator of B-extremal trajectories of the matrix set
A.

Thus, continuous dependance of the number τ(A) on the matrix set A is proved, and so the
proof of Theorem 9 is completed. ut

A.5. PROOF OF THEOREM 10 AND LEMMA 12

Proof of Theorem 10. Since the matrices A0 and A1 are non-negative then by the Perron-
Frobenius theorem there is a vector x0 with non-negative coordinates such that

ρnx0 = AσnAσn−1 · · ·Aσ1x0, (A.39)

where ρ = ρ(AσnAσn−1 · · ·Aσ1).
Extend the finite index sequence {σk}n

k=1 to the infinite periodic one with period n and then
consider the corresponding sequence {xk}∞k=0:

x1 = Aσ1x0, . . . , xn−1 = Aσn−1xn−2, xn = Aσnxn−1, . . . .

Then from (A.39) we get xn = ρnx0, and in any Barabanov norm ‖ · ‖ the following inequalities
will be valid

‖x1‖ ≤ ρ(A)‖x0‖, . . . , ‖xn‖ = ρn‖x0‖ ≤ ρ(A)‖xn−1‖, . . . , (A.40)

from which ρ ≤ ρ(A). Here, the equality ρ = ρ(A) may take place only in the case when each of
inequalities (A.40) is in fact equality, i.e., when the sequence {xn} is extremal in the Barabanov
norm ‖·‖. However, by Theorem 9 periodicity of the index sequence of at least one of the B-extremal
trajectories of the matrix set A implies the rationality of the number σ(A) which contradicts
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the condition of Theorem. The obtained contradiction is caused by the supposition that ρ =
ρ(AσnAσn−1 · · ·Aσ1) = ρ(A). Theorem 10 is proved. ut

Proof of Lemma 12. First prove assertion a). Denote by K the set (cone) of all vectors from
the first quadrant lying between the straight lines L0 = {(x0, x1) : bx1 = (1 − a)x0} and L1 =
{(x0, x1) : (1− d)x1 = cx0}, i.e.,

K := {(x0, x1) : x0, x1 ≥ 0, (1− a)x0 ≤ bx1, (1− d)x1 ≤ cx0}.

Then the direct verification shows that

A0K ⊆ K, A1K ⊆ K. (A.41)

Fix a number γ > 1, and show that

A0x > γA1x, ∀ x 6= 0 ∈ K, (A.42)

as soon as the quotient α/β is sufficiently large (inequality (A.42) is understood coordinate-wise).
Indeed, the vector inequality (A.42) is equivalent to the pair of scalar inequalities

α(ax0 + bx1) > γβx0, αx1 ≥ γβ(cx0 + dx1), ∀ x 6= 0 ∈ K,

or, what is the same,
α

β
> γ sup

x 6=0∈K

{
x0

ax0 + bx1
,
cx0 + dx1

x1

}
. (A.43)

But as is easy to see, supremum in the right-hand part of (A.43) is finite, from which it follows
that inequality (A.42) is valid for sufficiently large values of the quotient α/β.

Show now that σ(A) = 0 for all sufficiently large values of α/β. Let ‖ · ‖ be an arbitrary
Barabanov norm for the matrix set A, let x∗ be a nonzero vector from the cone K, and let the
parameters α and β be such that inequality (A.42) holds. Then by Lemma 5 there is a B-extremal
trajectory {x(n)}∞n=0 of the matrix set A which starts from the point x∗, i.e., x(0) = x∗ 6= 0 ∈ K
and

x(n+1) = Aσnx
(n), ‖x(n+1)‖ = ρ‖x(n)‖ n = 0, 1, . . . .

Moreover, (A.41) implies that x(n) ∈ K for n = 0, 1, . . .. Show that in this case the index sequence
{σn} satisfies the identity σn ≡ 0.

Indeed, in the opposite case σn0 = 1 for some n0. Then by the definition of the B-extremal
trajectory

‖x(n0+1)‖ = ‖A1x
(n0)‖ = ρ‖xn0‖, (A.44)

where ρ = ρ(A), and at the same time the inequality

‖A0x
(n0)‖ ≤ ρ‖xn0‖, (A.45)

should be valid. But by Lemma 9 the Barabanov norm ‖ · ‖ is monotone and then by (A.42)

‖A0x
(n0)‖ ≥ ‖γA1x

(n0)‖,

where γ > 1, which contradicts to relations (A.44) and (A.45).
So, it is shown that σn ≡ 0, from which by Theorem 6 σ(A) = 0.
To complete the proof of assertion a) it remains to note that in view of (A.15) ρ(A) > β for

α/β < 1. Therefore the generalized spectral radius cannot be attained on a B-extremal trajectory
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with the index sequence σn ≡ 0. But this means that σ(A) > 0 for α/β < 1. The proof of assertion
a) is completed.

The proof of assertion b) can be provided analogously to that of assertion a). Therefore, it
remains only to prove assertion c). To emphasize that σ(A) is the frequency of applying of the
matrix A1 in the process of construction of the B-extremal trajectory for the ordered matrix set
A = {A0, A1}, until the end of the proof of Lemma the quantity σ(A) will be denoted by σ(A0, A1).
Note now that the entries b and c of the matrices A0 and A1 can be treated equal to each other
since this may be achieved by the change of variables x̃0 = tx0, x̃1 = x1 with t =

√
c/b. Therefore,

without restriction in generality one may suppose that the matrices A0 and A1 have the form

A0 = α

∥∥∥∥∥ 1 s
0 1

∥∥∥∥∥ , A1 = β

∥∥∥∥∥ 1 0
s 1

∥∥∥∥∥ ,
where s =

√
bc ≥ 1.

Now, change the variables by setting x̃0 = x1, x̃1 = x0. Then in the new coordinates the matrices
A0 and A1 take the form Ã0 and Ã1 where

Ã0 = α

∥∥∥∥∥ 1 0
s 1

∥∥∥∥∥ , Ã1 = β

∥∥∥∥∥ 1 s
0 1

∥∥∥∥∥ .
Clearly, any change of variables transforms extremal trajectories of the pair of matrices {A0, A1}

in extremal trajectories of the pair of matrices {Ã0, Ã1}. Hence, σ(A0, A1) = σ(Ã0, Ã1). Note now
that for α = β we have the equalities Ã0 = A1, Ã1 = A0, and therefore the following chain of
equalities is valid:

σ(A0, A1) = σ(Ã0, Ã1) = σ(A1, A0) = 1− σ(A0, A1).

The latter relations immediately implies the equality σ(A) = σ(A0, A1) = 1
2 .

It remains to prove that σ(A) 6= 1
2 for all sufficiently large values of α/β. This will be shown if

we prove that for sufficiently large values of α/β it is valid the inequality

ρ
(
A2

0A1

) 1
3 > ρ (A0A1)

1
2 , (A.46)

since the latter inequality means that for given α and β a B-extremal trajectory of the matrix set
{A0, A1} cannot has the index sequence of period 2, and so, σ(A0, A1) 6= 1

2 .
Direct calculations show that A2

0A1 = α2βR, A0A1 = αβS, where the matrices R and S have
the form:

R =

∥∥∥∥∥ 1 + 2s2 2s
s 1

∥∥∥∥∥ , S =

∥∥∥∥∥ 1 + s2 s
s 1

∥∥∥∥∥ .
Then inequality (A.46) is equivalent to the inequality

(
α2βρ(R)

) 1
3 > (αβρ(S))

1
2 , and so, inequality

(A.46) is valid for
α

β
>
ρ2(R)
ρ3(S)

.

Analogously can be shown that ρ
(
A0A

2
1

) 1
3 > ρ (A0A1)

1
2 as soon as α/β is sufficiently small,

which implies validity of the non-equality σ(A0, A1) 6= 1
2 for all sufficiently small values of α/β.

So, assertion c), and the Lemma with it, are completely proved. ut
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