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STRUCTURE OF GENERAL IDEAL SEMIGROUPS
OF MONOIDS AND DOMAINS

ANDREAS REINHART

ABSTRACT. Let H be a monoid (respectively, an inte-
gral domain) and r an ideal system on H. In this paper
we investigate the r-ideal semigroup of H. One goal is to
specify monoids such that their r-ideal semigroup possesses
semigroup-theoretical properties, like almost completeness, π-
regularity and completeness. Moreover, if H is an integral do-
main and ∗ a star operation on H, then we provide conditions
on H such that the idempotents of the ∗-ideal semigroup are
trivial or such that H is π∗-stable.

0. Introduction. In 1961 Dade, Taussky and Zassenhaus [9]
investigated the semigroup structure of the ideal class semigroup of
one-dimensional Noetherian domains with a focus on non-principal
orders in algebraic number fields. In the sequel, this paper seems
to have fallen into oblivion. It was reconsidered and generalized by
Halter-Koch [17], who put the results into the context of the structure
theory of semigroups as presented in [14]. In recent times, starting
with a paper by Zanardo and Zannier [23], the structure of the ideal
class semigroup of an integral domain attracted the interest of several
authors. In particular, the Clifford and Boolean properties of ideal class
semigroups was investigated. First, this was done for valuation domains
in [7]. In the sequel, Bazzoni provided a general theory, focused
on Prüfer domains [2 5]. Among others, she proved that a Prüfer
domain has a Clifford semigroup if and only if it has finite character,
and she highlighted the connection with stable domains. Following
Bazzoni, Kabbaj and Mimouni in [20 22] investigated the Clifford
and Boolean properties of the t-ideal class semigroup. Among others,
they characterized Prüfer v-multiplication domains with Clifford t-class
semigroup and determined the structure of their constituent groups.
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A more general approach, based on the theory of ideal systems on
commutative cancelative monoids, was recently presented by Halter-
Koch [18]. He observed that the semigroup structure of the ideal class
semigroup is essentially determined by the semigroup structure of the
ideal semigroup itself. Among others, he proved that the semigroup
of fractional r-ideals of an r-Prüfer monoid is a Clifford semigroup
if and only if it has the local invertibility property (a generalization
of Bazzoni’s conjecture for Prüfer domains), and he characterized v-
domains with a Clifford v-ideal semigroup.

A valuable overview of Clifford and Boolean properties of (t-)ideal
class semigroups of integral domains may be found in the survey
article by Bazzoni and Kabbaj [6]. A collection of important results
concerning the ideal class semigroups of Prüfer domains can be found
in [10].

In this paper, we reconsider the more general semigroup theoretical
properties of ideal semigroups as was done in [9, 17], but now we depart
from the special cases of one-dimensional or Prüfer domains. Following
[18], we present our theory as far as possible in the language of ideal
systems on commutative monoids [19]. We provide conditions on a
monoid or domain which entail nice semigroup-theoretic properties (as
almost completeness, π-regularity and completeness) of the ideal class
semigroup in question.

Our main subject of interest is the v-ideal (class) semigroup of a
Mori domain. The main results are in Section 4, and there the case
of ∗ = v is of particular interest. The strength of our results in the
ring-theoretical case is illustrated by a series of examples and counter-
examples in Section 5.

In Section 1 we recall the relevant definitions and facts from the struc-
ture theory of commutative semigroups, essentially following [14]. In
Section 2 we introduce ideal systems and r-ideal semigroups, summarize
some of their elementary properties and provide first results concern-
ing stability and completeness. In Section 3 we discuss preparatory
ring-theoretical results concerning Mori domains and a general prime
avoidance lemma (Lemma 3.2) which seems to be new. As already
mentioned, Section 4 contains the main results, in particular, criteria
for the idempotents of the ideal semigroup to be trivial and criteria for
πr-stability.
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1. Commutative semigroups. Throughout this section, let S be
a multiplicative commutative semigroup. Our main reference for the
theory of commutative semigroups is [14]. We denote by E(S) the set
of all idempotents of S, endowed with the Rees order ≤, defined by
e ≤ f if ef = e. Note that ef ≤ e, for all e, f ∈ E(S). For a ∈ S,
let E(a) = {e ∈ E(S) | ea = a} be the set of all idempotents belonging
to a, and set E∞(a) = ∪k∈NE(ak). Then E(a) ⊆ E∞(a) ⊆ E(S) ⊆ S
are subsemigroups. If I ⊆ E(S) is a subsemigroup, then every minimal
element of I (with respect to the Rees-order) is a least element. In
particular, if I is finite, then I has a minimum.

An element a ∈ S is called

• regular if elements e ∈ E(a) and b ∈ S exist such that ab = e
(equivalently: some b ∈ S exist such that a2b = a).

• π-regular if an is regular for some n ∈ N.

The semigroup S is called

• regular or a Clifford semigroup if every a ∈ S is regular.

• π-regular if every a ∈ S is π-regular.

• almost complete if for every a ∈ S, the set E(a) possesses a minimum
(in the Rees-order).

• complete if it is π-regular and almost complete.

For a ∈ E(S), let P ∗
a = aS\∪b∈�(S),b<SabS be the partial Ponizovski

factor of a. Note that the partial Ponizovski factors are essential
invariants for the structure of S (see [14] and [17, Theorems 2.4 and
2.5]).

Lemma 1.1. Let a ∈ S.

1. If n ∈ N such that an is regular, then ak is regular for all k ∈ N≥n.

2. If k, n ∈ N exist such that k �= n and ak = an, then a is π-regular.

3. If a is π-regular, then E∞(a) has a smallest element in the Rees
order.

Proof. 1. Let n ∈ N be such that an is regular, and let k ∈ N≥n.
Some l ∈ N exists such that nl > k. Since an is regular, e ∈ E(an)
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and b ∈ S exist such that anb = e. Let b′ = anl−kbl ∈ S. Then
akb′ = anlbl = el = e. Since e ∈ E(ak), it follows that ak is regular.

2. Let k, n ∈ N be such that k < n and ak = an. It is straightforward
to show that ak = ak+i(n−k) for all i ∈ N. Some j ∈ N exists such that
j(n − k) > k; hence, aj(n−k) = akaj(n−k)−k = ak+j(n−k)aj(n−k)−k =
a2j(n−k). It follows that aj(n−k) is regular, and thus a is π-regular.

3. Let a be π-regular. Then n ∈ N, e ∈ E(an) and b ∈ S exist
such that anb = e. This implies that e ∈ E∞(a). We assert that
e = min E∞(a). Let f ∈ E∞(a). There is some m ∈ N such that
fam = am. If l ∈ N is such that nl > m, then ef = elf = anlblf =
anl−mamfbl = anl−mambl = anlbl = el = e.

2. Ideal systems and r-ideal semigroups. Next we recall the
most important facts about ideal systems. For a basic introduction
into ideal systems see [15]. We briefly gather the required terminology.
In the following a monoid is always a multiplicative commutative
semigroup that possesses an identity element and a zero element and
where every non-zero element is cancelative. A submonoid of a monoid
H always contains the zero element and the identity element of H . A
monoid K is called quotient monoid of a submonoid H if K\{0} is a
quotient group of H\{0}. Quotient monoids of monoids are essentially
unique. A submonoid T of a quotient monoid of a monoid H is called
overmonoid of H if H ⊆ T . For a monoid H , let H• = H\{0}.
Throughout this section, let H be a monoid and K a quotient monoid

of H . A subset X ⊆ K is called fractional if some c ∈ H• exists such
that cX ⊆ H . Let F(H) denote the set of all fractional subsets of K.
We set F•(H) = {I ∈ F(H) | I\{0} �= ∅}. For arbitrary X,Y ⊆ K, let
(X : Y ) = {z ∈ K | zY ⊆ X}, X−1 = (H : X) and R(X) = (X : X).

Let Ĥ denote the complete integral closure of H . Note that for all
X ∈ F•(H), R(X) is a submonoid of Ĥ . A subset X ⊆ H is called
multiplicatively closed if X contains the identity element andXX ⊆ X .
A subset ∅ �= P � H is called a prime ideal of H if HP = P and H\P
is multiplicatively closed. For a multiplicatively closed subset T ⊆ H•,
let T−1H = {t−1x | t ∈ T, x ∈ H}, and for a prime ideal P of H , let
HP = (H\P )−1H . If T and S are submonoids of K such that T ⊆ S,
then let FS/T = (T : S). Especially if T is an overmonoid of H , then
FT/H = T−1.
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A map r : F(H) → F(H), I 	→ Ir is called the ideal system on H , if,
for all X,Y ∈ F(H) and all c ∈ K•, it follows that:

• X ∪ {0} ⊆ Xr.

• If X ⊆ Yr, then Xr ⊆ Yr.

• (cX)r = cXr.

• Hr = H .

Throughout this section let r be an ideal system on H . Observe that
for all X,Y ∈ F•(H), it follows that (XY )r = (XrY )r = (XrYr)r
and (Xr : Y )r = (Xr : Y ) = (Xr : Yr). (For a proof see [15,
Propositions 2.3 and 11.7]). Furthermore, it is straightforward to show

that if F
Ĥ/H

�= {0}, then Ĥ,F
Ĥ/H

∈ F•
r (H). Next we introduce the

most important ideal systems.

Let s : F(H) → F(H) be defined by s(∅) = {0} and s(I) = IH for
all I ∈ F(H)\{∅}.
Let v : F(H) → F(H) be defined by Iv = (I−1)−1 for all I ∈ F(H).

If H is a domain, then let d : F(H) → F(H) be defined by Id = (I)R
for all I ∈ F(H).

Observe that s, v and d are ideal systems on H . Let F•
r (H) = {I ∈

F•(H) | Ir = I}. If X ∈ F(H), then let Rr(X) = R(Xr). If r′ is
another ideal system on H , then we set r ≤ r′ if F•

r′(H) ⊆ F•
r (H)

(equivalently: for all I ∈ F•(H), it follows that Ir ⊆ Ir′). r is called
finitary if, for all X ∈ F(H), it follows that Xr = ∪F⊆X,|F |<∞Fr. Let
·r : F•

r (H) × F•
r (H) → F•

r (H) be defined by I ·r J = (IJ)r , for all
I, J ∈ F•

r (H). Then (F•
r (H), ·r) is a commutative semigroup, called

the r-ideal semigroup.

We say that H is r-Noetherian, if H satisfies one of the following
equivalent conditions:

• Every ascending sequence of elements of {I ∈ F•
r (H) | I ⊆ H}

becomes stationary.

• Every subset ∅ �= M ⊆ {I ∈ F•
r (H) | I ⊆ H} has a maximal

element.

• If I ∈ F•(H), then some finite E ⊆ I exists such that Ir = Er .

If r = v, then these conditions are equivalent to each the following
conditions:
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• Every descending sequence of elements of F•
r (H) with non-zero

intersection becomes stationary.

• Every subset ∅ �= M ⊆ F•
r (H) with ∩I∈MI �= {0} has a minimal

element.

For I, J ∈ F•
r (H), we set I ∼r J if some c ∈ K• exists such that

I = cJ . It is easily checked that ∼r is an equivalence relation on
F•

r (H). Let Sr(H) = F•
r (H)/ ∼r. For I ∈ F•

r (H) we denote by [I]∼r

the equivalence class of I. Let •r : Sr(H)×Sr(H) → Sr(H) be defined
by [I]∼r •r [J ]∼r = [(IJ)r ]∼r , for all I, J ∈ F•

r (H). Then (Sr(H), •r)
is a commutative semigroup, called the r-ideal class semigroup.

From now on we assume that s ≤ r. Let r-spec (H) = {P ∈ F•
r (H) |

P be a prime ideal of H}, and let r-max(H) be the set of all maximal
elements of {I ∈ F•

r (H) | I � H, IH = I}. If r is finitary and T ⊆ H•

is multiplicatively closed, then let T−1r : F(T−1H) → F(T−1H) be
defined by T−1r(T−1X) = T−1Xr, for all X ∈ F(H). Then T−1r
is an ideal system on T−1H . If P is a prime ideal of H , then let
rP = (H\P )−1r. If H ′ ∈ F•

r (H) is an overmonoid of H , then let
r[H ′] : F(H) → F(H) be defined by r[H ′](X) = (XH ′)r, for all
X ∈ F(H). Observe that r[H ′] is an ideal system on H ′. Note that
this construction is investigated in [16] in the more general context of
module systems.

Next we introduce the concept of r- and πr-stability. Note that the
r-stability of H is investigated in [11] for integral domains and in [18]
for arbitrary monoids.

An element I ∈ F•
r (H) is called

• r-invertible if (II−1)r = H .

• r-regular if I is regular as an element of F•
r (H).

• πr-regular if I is π-regular as an element of F•
r (H).

• r-stable if some J ∈ F•
r (H) exists such that (IJ)r = R(I)

(equivalently: (I(R(I) : I))r = R(I)).

• πr-stable if (In)r is r-stable for some n ∈ N (equivalently:
(In(Rr(I

n) : In))r = Rr(I
n), for some n ∈ N).

Note that every r-invertible element of F•
r (H) is r-stable and every

r-stable element of F•
r (H) is r-regular. The monoid H is called
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• r-stable if every I ∈ F•
r (H) is r-stable.

• πr-stable if every I ∈ F•
r (H) is πr-stable.

Lemma 2.1. Let H be r-Noetherian, T a submonoid of H and
H ′ ∈ F•

r (H) an overmonoid of H.

1. H ′ is r[H ′]-Noetherian.

2. T−1H is T−1r-Noetherian.

3. For all I, J ∈ F•
r (H), ∩P∈r-max(H)IP = I and T−1(I : J) =

(T−1I : T−1J).

Proof. 1. Let I ∈ F•(H ′) = F•(H). Then some finite E ⊆ I exists
such that Er = Ir. This implies that Er[H′] = (EH ′)r = (ErH

′)r =
(IrH

′)r = (IH ′)r = Ir[H′]. Therefore, it follows that H ′ is r[H ′]-
Noetherian.

2. This follows by [15, Theorem 4.4].

3. Let I, J ∈ F•
r (H). It follows by [15, Theorem 11.3] that

∩P∈r-max(H)IP = I, and it follows by [15, Proposition 11.7] that
T−1(I : J) = (T−1I : T−1J).

In the following we investigate the r-ideal semigroup ofH with respect
to the properties defined in Section 1. Note that R(I) ∈ E(I) ⊆
E(F•

r (H)) for all I ∈ F•
r (H). Therefore {I ∈ F•

r (H) | I = R(I)} ⊆
E(F•

r (H)), and it is natural to ask when equality holds. In this context
it is worth remarking that the structure of the idempotents of the t-ideal
class semigroup is studied in [22].

Lemma 2.2. Let I ∈ F•
r (H).

1. If J ∈ F•
r (H) is such that (IJ)r = I, then (II−1)r ⊆ (I(J : I))r ⊆

J ⊆ R(I) and FR(I)/H ⊆ J−1 ⊆ R(I).

2. If (I2I−1)r = I, then I is r-regular.

3. If E ∈ E(I), then (I(E : I))r ∈ {J ∈ F•
r (H) | (II−1)r ⊆ J ⊆

R(I), E ∈ E(J) and J2 ⊆ J}.
4. If E∞(I) possesses a smallest element, then some n ∈ N exists

such that Rr(I
k) = Rr(I

n) for all k ∈ N≥n.
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5. Assume that n ∈ N, E ∈ E((In)r), and let J ∈ F•
r (H) be such

that (InJ)r = E. Then it follows that (Ik(Rr(I
k) : Ik))r = E and

R((Rr(I
k) : Ik)) = Rr(I

k) = R(E) for all k ∈ N≥n.

Proof. 1. Let J ∈ F•
r (H) be such that (IJ)r = I. Then IJ ⊆ (IJ)r =

I; hence, J ⊆ R(I). Of course, J−1 = (H : J) ⊆ (IH : IJ) ⊆ ((IH)r :
(IJ)r) = (I : I) = R(I). Clearly, I−1 = (H : I) ⊆ (HJ : IJ) ⊆
((HJ)r : (IJ)r) = (J : I) and hence (II−1)r ⊆ (I(J : I))r ⊆ J . Since
J ⊆ R(I), it follows that FR(I)/H = (H : R(I)) ⊆ (H : J) = J−1.

2. Let (I2I−1)r = I. Since I−1 ∈ F•
r (H), it follows that I is r-

regular.

3. Let E ∈ E(I). Of course, (I(E : I))r ∈ F•
r (H) and, by 1, it

follows that (II−1)r ⊆ (I(E : I))r ⊆ R(I). Since E ∈ E(F•
r (H)) and

((I(E : I))rE)r = (IE(E : I))r = ((IE)r(E : I))r = (I(E : I))r , it
follows that E ∈ E((I(E : I))r). Finally, it follows that ((I(E : I))r)

2 ⊆
(((I(E : I))r)

2)r = (I2(E : I)2)r ⊆ (I(E : I)E)r = (I(E : I))r .

4. Let E be a least element of E∞(I). Some n ∈ N exists such
that (EIn)r = (In)r. Let k ∈ N≥n. Then some l ∈ N exists
such that ln ≥ k. Since Rr(I

ln) ∈ E((I ln)r) ⊆ E∞(I), it follows
that E ≤ Rr(I

ln). This implies that (ERr(I
ln))r = E; hence,

Rr(I
ln) ⊆ R(E). Therefore, it follows that R(E) ⊆ Rr(EIn) =

Rr(I
n) ⊆ Rr(I

k) ⊆ Rr(I
ln) ⊆ R(E); hence, Rr(I

k) = Rr(I
n).

5. Let n ∈ N, k ∈ N≥n, E ∈ E((In)r) and J ∈ F•
r (H) be such

that (InJ)r = E. Some l ∈ N exists such that ln ≥ k. It follows
that Rr(I

n) ⊆ Rr(I
k) ⊆ Rr(I

ln) ⊆ Rr(I
lnJ l) = Rr(E

l) = R(E) ⊆
Rr(EIn) = Rr(I

n); hence, Rr(I
ln) = Rr(I

k) = Rr(I
n) = R(E). It

follows that E = (InJ)r ⊆ (In(E : In))r ⊆ E, hence (In(E : In))r =
E. Since (E : In) = (E : (In)r) = (E : (EIn)r) = (E : EIn) =
(R(E) : In) = (Rr(I

n) : In), it follows that (In(Rr(I
n) : In))r = E.

This implies that E = (El)r = (I ln(Rr(I
n) : In)l)r ⊆ (I ln(Rr(I

n) :
I ln))r ⊆ (Ik(Rr(I

n) : Ik))r ⊆ (In(Rr(I
n) : In))r = E, hence

(Ik(Rr(I
k) : Ik))r = (Ik(Rr(I

n) : Ik))r = E. Finally, this implies
that R((Rr(I

k) : Ik)) = (Rr(I
k) : Ik(Rr(I

k) : Ik)) = (R(E) : E) =
R(E).

Theorem 2.3. 1. The following conditions are equivalent:

a. If I ∈ E(F•
r (H)), then I = R(I) (equivalently: E(F•

r (H)) = {I ∈
F•

r (H) | I = R(I)}).
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b. For all E,F ∈ E(F•
r (H)), E ≤ F implies F ⊆ E.

c. For all E,F ∈ E(F•
r (H)), F ⊆ E implies E ≤ F .

d. For all I ∈ F•
r (H), we have min(E(I)) = R(I).

If these equivalent conditions are satisfied, then F•
r (H) is almost com-

plete.

2. Let I, E ∈ F•
r (H). Then the following conditions are equivalent:

a. E is a least element of E(I) with respect to the Rees-order.

b. E is a least element of {F ∈ E(I) | F ≤ R(I)} with respect to
inclusion.

c. E is a minimal element of {F ∈ E(I) | F ≤ R(I)} with respect to
inclusion.

3. The following conditions are equivalent:

a. H is πr-stable.

b. F•
r (H) is π-regular and E(F•

r (H)) = {E ∈ F•
r (H) | E = R(E)}.

4. Suppose that E(F•
r (H)) = {I ∈ F•

r (H) | I = R(I)}, and let
I ∈ E(F•

r (H)). Then I ·r F•
r (H) = {J ∈ F•

r (H) | I ⊆ R(J)} and
P ∗
I = {J ∈ F•

r (H) | I = R(J)}.

Proof. 1. a ⇒ b. If E,F ∈ E(F•
r (H)) and E ≤ F , then (EF )r = F .

Hence, F ⊆ (FR(E))r = (FE)r = E.

a ⇒ c. If E,F ∈ E(F•
r (H)) and E ≤ F , then (EF )r ⊆ (E2)r = E

and E ⊆ (ER(F ))r = (EF )r . This implies that (EF )r = E, hence
E ≤ F .

b ⇒ d. Let I ∈ F•
r (H) and F ∈ E(I). Then we have to show that

(FR(I))r = R(I). It follows that (FR(I))r ∈ E(I) and (FR(I))r ≤
R(I); hence, R(I) ⊆ (FR(I))r . Since F ∈ E(I), it follows by
Lemma 2.2.1 that F ⊆ R(I). Hence, (FR(I))r ⊆ (R(I)2)r = R(I).
Finally, this implies that (FR(I))r = R(I).

c ⇒ a. Let E ∈ E(F•
r (H)). Then E ⊆ R(E) by Lemma 2.2.1; hence,

R(E) ≤ E. Since (ER(E))r = E, it follows that E ≤ R(E), hence
E = R(E).

d ⇒ a. Let E ∈ E(F•
r (H)). Then E ∈ E(E); hence R(E) ≤ E. Since

(ER(E))r = E, it follows that E ≤ R(E); hence, E = R(E).
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2. a ⇒ b. Of course, E ∈ E(I). Since R(I) ∈ E(I), it follows that
E ≤ R(I). Let F ∈ E(I) be such that F ≤ R(I). It follows that
(EF )r ∈ E(I) and (EF )r ≤ E, hence E = (EF )r . By Lemma 2.2.1, it
follows that E ⊆ R(I); hence, E = (EF )r ⊆ (R(I)F )r = F .

b ⇒ c. Trivial.

c ⇒ a. Let F ∈ E(I). Then it is sufficient to show that (EF )r = E.
It follows that (EF )r ≤ E ≤ R(I) and (EF )r ∈ E(I); hence,
(EF )r ∈ {G ∈ E(I) | G ≤ R(I)}. By Lemma 2.2.1, F ⊆ R(I);
hence, (EF )r ⊆ (ER(I))r = E. This implies that E = (EF )r.

3. a ⇒ b. Let I ∈ F•
r (H). Then there is some n ∈ N such

that (In(Rr(I
n) : In))r = Rr(I

n). Since Rr(I
n) ∈ E((In)r), it

follows that I is πr-regular. This implies that F•
r (H) is π-regular. Let

F ∈ E(F•
r (H)). There is some n ∈ N such that (Fn(Rr(F

n) : Fn))r =
Rr(F

n); hence, F = (FR(F ))r = (F (R(F ) : F ))r = (Fn(Rr(F
n) :

Fn))r = Rr(F
n) = R(F ).

b ⇒ a. Let I ∈ F•
r (H). Since I is πr-regular, some n ∈ N, E ∈

E((In)r) and J ∈ F•
r (H) exist such that (InJ)r = E. Consequently,

Lemma 2.2.5 implies that (In(Rr(I
n) : In))r = E = R(E) = Rr(I

n).

4. Let us show the first equality. “⊆:” Let J ∈ I ·r F•
r (H).

Then some A ∈ F•
r (H) exists such that J = (IA)r. It is clear that

IJ ⊆ (IJ)r = (I2A)r = ((I2)rA)r = (IA)r = J ; hence, I ⊆ R(J).
“⊇:” Let J ∈ F•

r (H) be such that I ⊆ R(J). It follows that J ⊆ JI ⊆
JR(J) = J ; hence, J = Jr = (IJ)r = I ·r J ∈ I ·rF•

r (H). Now we show
the second equality. It follows by 1 that ∪A∈�(F•

r (H)), A<IA ·rF•
r (H) =

∪A∈�(F•
r (H)), I�A{J ∈ F•

r (H) | A ⊆ R(J)} = {J ∈ F•
r (H) | some A ∈

E(F•
r (H)) exists such that I � A ⊆ R(J)} = {J ∈ F•

r (H) | I � R(J)}.
This implies that P ∗

I = {J ∈ F•
r (H) | I ⊆ R(J)}\{J ∈ F•

r (H) | I �
R(J)} = {J ∈ F•

r (H) | I = R(J)}.
It is not difficult to see that algebraic properties of the r-ideal

semigroup F•
r (H) induce corresponding properties of the r-ideal class

semigroup Sr(H). Obviously E(Sr(H)) = {[I]∼r | I ∈ E(F•
r (H))} and,

if I, J ∈ E(F•
r (H)), then [I]∼r ≤ [J ]∼r holds if and only if I ≤ J .

Moreover, if I ∈ F•
r (H), then

• P ∗
[I]∼r

= {[J ]∼r | J ∈ P ∗
I }.

• I is (π)r-regular if and only if [I]∼r is a (π-)regular element of
Sr(H).
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Consequently,

• Sr(H) is regular (π-regular, almost complete, complete) if and only
if F•

r (H) is regular (π-regular, almost complete, complete).

Moreover let r′ be an ideal system on H satisfying r ≤ r′.

• If F•
r (H) is regular (π-regular), then F•

r′(H) is regular (π-regular).

• If H is r-stable[πr-stable], then H is r′-stable (πr′-stable).

For an abstract semigroup-theoretic formalism behind these state-
ments, see [18, Lemma 2.2].

Lemma 2.4. 1. If I ∈ F•
v (H), then (II−1)v = FR(I)/H , and if

I ∈ E(F•
v (H)), then F

Ĥ/H
⊆ I ⊆ Ĥ and F

Ĥ/H
⊆ I−1 ⊆ Ĥ.

2. If I ∈ F•
v (H) and (IFR(I)/H)v = I, then I is v-regular.

3. Let Ĥ be factorial and I ∈ F•
v (H). Then some c ∈ K• exists such

that ((F
Ĥ/H

)2)v ⊆ cI ⊆ Ĥ.

Proof. 1. If I ∈ F•
v (H), then (II−1)v = (H : (H : II−1)) = (H :

((H : I−1) : I)) = (H : (I : I)) = (H : R(I)) = FR(I)/H . Let I ∈
E(F•

v (H)). Then it follows by Lemma 2.2.1 that F
Ĥ/H

⊆ FR(I)/H =

(II−1)v ⊆ I ⊆ R(I) ⊆ Ĥ and F
Ĥ/H

⊆ FR(I)/H ⊆ I−1 ⊆ R(I) ⊆ Ĥ .

2. Let I ∈ F•
v (H) be such that (IFR(I)/H)v = I. Then it follows

by 1 that (I2I−1)v = (I(II−1)v)v = (IFR(I)/H)v = I. Therefore,
Lemma 2.2.2 implies that I is v-regular.

3. Since Ĥ is factorial, it follows that every J ∈ F•
v
Ĥ

(Ĥ) is principal.

Since (Ĥ : I) ∈ F•
v
Ĥ

(Ĥ), some c ∈ K• exists such that (Ĥ : I) =

cĤ . By 1 it follows that F
Ĥ/H

⊆ FR(I)/H = (II−1)v ⊆ (I(Ĥ :

I))v = (IcĤ)v. This implies that ((F
Ĥ/H

)2)v ⊆ ((IcĤ)vFĤ/H
)v =

c(IF
Ĥ/H

)v ⊆ cI ⊆ cIĤ = I(Ĥ : I) ⊆ Ĥ .

Lemma 2.4 shows that every idempotent of the v-ideal semigroup
contains the conductor. In Section 5 we present several examples of
integral domains, where the conductor itself is an idempotent of the v-
ideal semigroup. In the following, we summarize some properties of the
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v-ideal semigroup of v-Noetherian monoids and consider the extremal
case that the conductor is non-trivial and v-idempotent.

Lemma 2.5. Let H be v-Noetherian and F
Ĥ/H

∈ E(F•
v (H)).

1. Let I ∈ F•
v (H) be such that F

Ĥ/H
⊆ I ⊆ Ĥ. If some k, l ∈ N

exist such that k �= l and (Ik)v ⊆ (I l)v, then I is πv-regular.

2. Let Ĥ be factorial and I ∈ F•
v (H) such that R(I) = Ĥ. Then I is

πv-regular.

Proof. 1. Let k, l ∈ N be such that k �= l and (Ik)v ⊆ (I l)v.

Case 1. k < l: Since F
Ĥ/H

�= {0}, we have Ĥ = (F
Ĥ/H

)−1 ∈ F•
v (H).

If 0 �= c ∈ F
Ĥ/H

and r ∈ N, then c(Ik+r(l−k))v ⊆ c(Ik+(r+1)(l−k))v ⊆
c(Ĥk+(r+1)(l−k))v = cĤ ⊆ H . Since H is v-Noetherian, there is some
n ∈ N such that c(Ik+n(l−k))v = c(Ik+(n+1)(l−k))v. This implies that
(Ik+n(l−k))v = (Ik+(n+1)(l−k))v and consequently Lemma 1.1.2 implies
that I is πv-regular.

Case 2. l < k: If r ∈ N, then (I l+(r+1)(k−l))v ⊆ (I l+r(k−l))v. This
implies that {0} �= F

Ĥ/H
= ((F

Ĥ/H
)l+(r+1)(k−l))v ⊆ (I l+(r+1)(k−l))v ⊆

(I l+r(k−l))v. Since H is v-Noetherian it follows that some n ∈ N exists
such that (I l+(n+1)(k−l))v = (I l+n(k−l))v. Therefore, Lemma 1.1.2
implies that I is πv-regular.

2. Of course, (IĤ)v = (IR(I))v = Iv = I. It follows by Lemma 2.4.3

that some c ∈ K• exists such that F
Ĥ/H

⊆ cI ⊆ Ĥ . Since (cI)2 ⊆
cIĤ ⊆ c(IĤ)v = cI, it follows by 1 that cI is πv-regular. This implies
that I is πv-regular.

Theorem 2.6. Let H be v-Noetherian.

1. F•
v (H) is almost complete.

2. If I ∈ F•
v (H), and if some n ∈ N exists such that Rv(I

n) =
Rv(I

k) for all k ∈ N≥n, then E∞(I) has a least element.

3. If Ĥ is factorial, F
Ĥ/H

∈ E(F•
v (H)) and {J ∈ F•

v (H) | J =

R(J)} = {H, Ĥ}, then F•
v (H) is complete.
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Proof. 1. Let I ∈ F•
v (H) and M = {F ∈ E(I) | F ≤ R(I)}. Since

R(I) ∈ M , it follows that M �= ∅. It follows by Lemma 2.2.1 and
Lemma 2.4.1 that ∩B∈MB ⊇ FR(I)/H �= {0}. Since H is v-Noetherian,
there is some E ∈ M that is minimal with respect to inclusion. Finally,
it follows by Theorem 2.3.2 that E is a least element of E(I) with respect
to the Rees-order.

2. Let I ∈ F•
v (H) and n ∈ N such that Rv(I

k) = Rv(I
n) for

all k ∈ N≥n. Let M = {F ∈ E∞(I) | F ≤ Rv(I
n)}. Since

Rv(I
n) ∈ E((In)v) ⊆ E∞(I), it follows that M �= ∅. Let us show

that ∩B∈MB ⊇ FRv(In)/H . Let B ∈ M . Then there is some k ∈ N≥n

such that B ∈ E((Ik)v). It follows by Lemma 2.2.1 and Lemma 2.4.1
that B ⊇ FRv(Ik)/H = FRv(In)/H . This implies that ∩B∈MB �= {0};
hence, (since H is v-Noetherian) some E ∈ M exists that is minimal
with respect to inclusion. Let F ∈ E∞(I). Then we have to show that
(EF )v = E. Some k ∈ N≥n exists such that F ∈ E((Ik)v); hence,
Lemma 2.2.1 implies that (EF )v ⊆ (ERv(I

k))v = (ERv(I
n))v = E.

It follows that (EF )v ∈ E∞(I) and (EF )v ≤ E ≤ Rv(I
n); hence,

(EF )v ∈ M and (EF )v = E.

3. Let Ĥ be factorial, F
Ĥ/H

∈ E(F•
v (H)) and {J ∈ F•

v (H) | J =

R(J)} = {H, Ĥ}. By 1 it follows that F•
v (H) is almost complete. Let

I ∈ F•
v (H). Then R(I) ∈ {H, Ĥ}.

Case 1. R(I) = H : Since FR(I)/H = H ∈ E(I), it follows by
Lemma 2.4.2 that I is v-regular.

Case 2. R(I) = Ĥ: It follows by Lemma 2.5.2 that I is πv-regular.

Note that Theorem 2.6.2 proves the converse of Lemma 2.2.4, if r = v
and H is v-Noetherian. We were not able to decide whether the r-ideal
semigroup of a r-Noetherian monoid is almost complete. Theorem 2.6.3
gives a hint how to construct examples of monoids which are not πv-
stable but whose v-ideal semigroup is π-regular.

3. Preparations for the main results. Let R be an integral
domain and K a field of quotients of R. By F•(R), we denote the set
of all non-zero fractional ideals of R and by R we denote the integral
closure of R in K. R is called G-domain if ∩P∈spec(R),P 	={0}P �= {0}.
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An ideal system r on R is called (extended) star operation on R if
d ≤ r. Note that an ideal system r on R is a star operation if and only
if r|F•(R) is a star operation on R in the sense of [13]. Observe that,

for all X ∈ F•(R), R(X) is an intermediate ring of R and R̂.

Lemma 3.1. Let R be a Mori domain, x ∈ R• and S ⊆ R• a
multiplicatively closed set.

1. spec1(R) ⊆ v-spec(R), and {P ∈ v-spec(R) | x ∈ P} is finite.

2. S−1R̂ = Ŝ−1R.

3. If R is not a field, then R\R× = ∪M∈v-max(R)M .

4. If F
R̂/R

�= {0}, then R̂ is a Krull domain and S−1F
R̂/R

=

F
Ŝ−1R/S−1R

.

5. If R is local, dim (R) = 1 and R̂ is a Krull domain, then R̂ is a
semilocal principal ideal domain.

Proof. By spec1(R) we denote the set of height-one prime ideals of
R. Observe that R is a Mori domain if and only if R• is a v-Noetherian
monoid in the sense of [12]. Note that, if R̂• denotes the complete

integral closure of R• in its quotient group, then R̂• = R̂•.

1. The first assertion follows by [12, Proposition 2.2.4.2.], and the
second assertion follows by [12, Theorem 2.2.5.1].

2. See [12, Theorem 2.3.5.2].

3. Let R be not a field. The claim is an immediate consequence of
[12, Proposition 2.2.4.1].

4. Let F
R̂/R

�= {0}. The first assertion follows by [12, Theorem

2.3.5.3], and the second assertion follows by 2 and [12, Proposition
2.2.8.1].

5. Let R be local, dim (R) = 1 and R̂ a Krull domain, and let
M be the maximal ideal of R. It is an immediate consequence of
[12, Proposition 2.10.5.1.(c)] that dim (R̂) = 1. Therefore, R̂ is a

Dedekind domain. Of course, M ′ ∩ R = M for all M ′ ∈ max(R̂)

hence, max(R̂) = P(MR̂). Since R̂ is Noetherian, this implies that

max(R̂) is finite. Therefore, R̂ is a semilocal Dedekind domain; hence,

R̂ is a semilocal principal ideal domain.
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Lemma 3.2 (Prime avoidance lemma). Let S be a commutative
ring with identity and I ⊆ S an additively closed subset. For k ∈ N,
let I〈k〉 = {∏k

i=1 zi | (zi)ki=1 ∈ I [1,k]} and Ik = {∑m
i=1 zi | m ∈ N,

(zi)
m
i=1 ∈ (I〈k〉)[1,m]}.

Let n ∈ N and (Pi)
n
i=1 ∈ spec (S)[1,n] be such that I � Pi for all

i ∈ [1, n]. Then it follows that I(n−1)! � ∪n
i=1Pi.

Proof. We use induction on n. The assertion is obvious for n = 1.
n → n + 1: Let n ∈ N and (Pi)

n+1
i=1 ∈ spec (S)[1,n+1] be such that

I � Pi for all i ∈ [1, n+ 1]. If i ∈ [1, n+ 1], then I(n−1)! � ∪n+1
j=1,j 	=iPj

(by the induction hypothesis), and thus some (yi)
n+1
i=1 ∈ S[1,n+1] exists

such that yi ∈ I(n−1)!\∪n+1
j=1,j 	=iPj for all i ∈ [1, n + 1]. Now we set

y = ynn+1 +
∏n

i=1 yi ∈ In! and assume (contrary to our assertion) that

In! ⊆ ∪n+1
i=1 Pi. For every i ∈ [1, n + 1], we have yni ∈ In! ⊆ ∪n+1

j=1Pj ,

and thus yi ∈ ∪n+1
j=1Pj ; hence, yi ∈ Pi. Since y ∈ In! ⊆ ∪n+1

i=1 Pi, some
m ∈ [1, n+ 1] exists such that y ∈ Pm.

Case 1. m ∈ [1, n]: Since ym ∈ Pm it follows that
∏n

i=1 yi ∈ Pm.
Since y ∈ Pm, we have ynn+1 ∈ Pm; hence, yn+1 ∈ Pm, a contradiction.

Case 2. m = n+ 1: Since yn+1 ∈ Pn+1 and y ∈ Pn+1, it follows that∏n
i=1 yi ∈ Pn+1; hence, some l ∈ [1, n] exists such that yl ∈ Pn+1, a

contradiction.

4. Main results. In [9] it was shown that orders in quadratic
number fields are (d-)stable. This result is based on two other results.
The first one states that the ideal semigroup of a Noetherian one-
dimensional integral domain is πd-stable. The second result gives
a common upper bound on the “index of stability” of all elements
I (i.e., the smallest n ∈ N for which In is stable) of the ideal
semigroup. The main goal of this paper is to extend the first result
to arbitrary ∗-ideal semigroups. As already shown in Section 2 a close
connection exists between π∗-stability and the structure of idempotents
of the ∗-ideal semigroup. As pointed out in [9, 17] the idempotents
of the ideal semigroup of a Noetherian integral domain contain the
identity. Unfortunately, there is no analogous result for general ∗-ideal
semigroups. In Section 5 it will be shown that the idempotents of the
v-ideal semigroup of a Mori domain need not contain the identity. It
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is natural to ask for conditions on R that enforce the ∗-idempotents to
be “trivial” (i.e., they contain the identity). The first main result and
its corollary deal with this problem.

Theorem 4.1. Let R be an integral domain, K a field of quotients
of R, ∗ a star operation on R and I, J ∈ F•∗ (R) such that (IJ)∗ = I.

1. If F
R̂/R

�= {0} and R̂ is a Dedekind domain, then JR̂ = R̂.

2. Suppose that one of the following conditions is satisfied:

a. F
R̂/R

�= {0} and R is a semilocal principal ideal domain.

b. R is a ∗-Noetherian G-domain.

c. R is ∗-Noetherian and dim (R) = 1.

Then JR(I) = R(I).

3. If R is ∗-Noetherian and ∗-max(R) = spec1(R), then (JR(I))∗ =
R(I).

Proof. 1. Let F
R̂/R

�= {0}, and let R̂ be a Dedekind domain. Of

course, IR̂, IJR̂ ∈ F•(R̂). Since IR̂ and IJR̂ are invertible, this

implies that (IR̂)v
R̂

= IR̂ and (IJR̂)v
R̂

= IJR̂. It follows that

IJR̂ = (R̂ : (R̂ : IJR̂)) = (R̂ : (R̂ : (IJR̂)∗)) = (R̂ : (R̂ : (IR̂)∗)) =

(R̂ : (R̂ : IR̂)) = IR̂. Since IR̂ is invertible, it follows that JR̂ = R̂.

2. a. Let F
R̂/R

�= {0}, and let R be a semilocal principal ideal

domain. Then R̂ = R. By 1 it follows that JR(I)R̂ = JR̂ = R̂; hence,

JR(I) � M for all M ∈ max(R̂). Since R̂ is semilocal, this implies that

JR(I) � ∪
M∈max(R̂)

M = R̂\R̂×. Hence, JR(I) ∩ R̂× �= ∅. Of course,

R̂/R(I) is an integral extension; hence, R̂× ∩ R(I) = R(I)×. This

implies that ∅ �= JR(I)∩ R̂× = JR(I)∩R(I)∩ R̂× = JR(I)∩R(I)×,
hence JR(I) = R(I).

b. Let R be a ∗-Noetherian G-domain. Without restriction we may
assume that R is not a field. It follows that (R(I) : JR(I)) = (I :
IJ) = (I : (IJ)∗) = R(I); hence, JR(I) ⊆ (JR(I))vR(I)

= R(I). Since
R(I) ∈ F•

∗ (R) is an overring of R, it follows by Lemma 2.1.1 that R(I)
is ∗[R(I)]-Noetherian; hence, R(I) is a Mori domain. If R(I) = K,
then K ∈ F•

∗ (R). Hence, R = K, a contradiction. Consequently,
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Lemma 3.1.3 implies R(I)\R(I)× = ∪P∈v-max(R(I))P , and, for all
P ∈ v-max(R(I)), it follows that P �= {0}. Therefore, P ∩ R �=
{0} for all P ∈ v-max(R(I)); hence, {0} �= ∩M∈spec(R),M 	={0}M ⊆
R ∩ ∩P∈v-max(R(I))P . If 0 �= x ∈ ∩P∈v-max(R(I))P , then {P ∈
v-spec(R(I)) | x ∈ P} ⊇ v-max(R(I)), and thus v-max(R(I)) is finite
by Lemma 3.1.1. Assume that JR(I) � R(I). Then there is some
Q ∈ max(R(I)) such that JR(I) ⊆ Q. Since Q ⊆ R(I)\R(I)× =
∪P∈v-max(R(I))P , it follows that some P ∈ v-max(R(I)) exists such
that Q ⊆ P ; hence, Q = P and R(I) = (JR(I))vR(I)

⊆ QvR(I)
= Q, a

contradiction.

c. Let R be ∗-Noetherian and dim (R) = 1. If P ∈ max(R),
then RP is a ∗P -Noetherian G-domain by Lemma 2.1.2. Since
IP , JP ∈ F•

∗P
(RP ), and IP = ((IJ)∗)P = (IPJP )∗P , we obtain

JPR(IP ) = R(IP ) by 2 b. Hence, Lemma 2.1.3 implies that JR(I) =
∩P∈max(R)(JR(I))P = ∩P∈max(R)JPR(IP ) = ∩P∈max(R)R(IP ) =
∩P∈max(R)R(I)P = R(I).

3. Let R be ∗-Noetherian and ∗-max(R) = spec1(R). If P ∈
spec1(R), then RP is ∗P -Noetherian and IP = ((IJ)∗)P = (IPJP )∗P

by Lemma 2.1.2. Since IP , JP ∈ F•∗P
(RP ) and dim (RP ) = 1, we

obtain JPR(IP ) = R(IP ) by 2 c. Hence, Lemma 2.1.3 implies that
((JR(I))∗)P = (JPR(IP ))∗P = R(IP )∗P = R(IP ) = R(I)P . Finally,
we have (JR(I))∗ = ∩P∈spec1(R)((JR(I))∗)P = ∩P∈spec1(R)R(I)P =
R(I) by Lemma 2.1.3.

Corollary 4.2. Let R be an integral domain and ∗ a star operation
on R.

1. If R̂ is a Dedekind domain and F
R̂/R

∈ E(F•∗ (R)), then R = R̂.

2. Suppose that one of the following conditions is satisfied:

a. F
R̂/R

�= {0} and R is a semilocal principal ideal domain.

b. R is a ∗-Noetherian G-domain.

c. R is ∗-Noetherian and ∗-max(R) = spec1(R).

Then E(F•∗ (R)) = {I ∈ F•∗ (R) | I = R(I)}.
Proof. 1. Let R̂ be a Dedekind domain and F

R̂/R
∈ E(F•∗ (R)). Then

it follows by Theorem 4.1.1 that R̂ = F
R̂/R

R̂ ⊆ R ⊆ R̂; hence, R = R̂.

2. This is an immediate consequence of Theorems 4.1.2 and 4.1.3.
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Theorem 4.3. Let R be an integral domain, K a field of quotients
of R and ∗ a star operation on R such that R is ∗-Noetherian. Suppose
that one of the following conditions is fulfilled:

a. R̂ is a semilocal principal ideal domain.

b. ∗-max(R) = spec1(R) and R̂P is a Krull domain for all P ∈
spec1(R).

Then R is π∗-stable.

Proof. a. Let R̂ be a semilocal principal ideal domain and I ∈ F•
∗ (R).

Then IR̂ ∈ F•(R̂). Since R̂ is a principal ideal domain, some a ∈ K•

exists such that IR̂ = aR̂; hence, a−1IR̂ = R̂. Hence, it follows that
a−1I � M for all M ∈ max(R̂). Since R̂ is semilocal, Lemma 3.2
implies that some u ∈ N exists satisfying a−uIu � ∪

M∈max(R̂)
M =

R̂\R̂×. Consequently, some b ∈ R̂× ∩ a−uIu exists; hence, R ⊆
b−1a−uIu ⊆ R̂. Let J = b−1a−u(Iu)∗. Then J ∈ F•

∗ (R). Since
R is ∗-Noetherian, some finite subset E ⊆ b−1a−uIu exists satisfying
J = (E)∗. Since E is finite and E ⊆ R̂, some finitely generated R-
submodule M of K exists such that R[E] ⊆ M ; hence, R[E] ∈ F•(R).
Let R′ = (R[E])∗. Then R′ ∈ F•∗ (R) and J ⊆ R′. Since R ⊆ J , it
follows for all m ∈ N that (Jm)∗ ⊆ (Jm+1)∗ and (Jm)∗ ⊆ ((R′)m)∗ =
(R[E]m)∗ = R′. Some x ∈ R• exists such that xR′ ⊆ R; hence, for
all m ∈ N, it follows that x(Jm)∗ ⊆ x(Jm+1)∗ and x(Jm)∗ ⊆ R.
Since R is ∗-Noetherian, this implies that some r ∈ N exists such that
x(Jr)∗ = x(Jk)∗ for all k ∈ N≥r. This implies that (Jr)∗ = (J2r)∗.
Consequently, R ⊆ J ⊆ (Jr)∗ ⊆ R∗(Jr); hence, (Jr)∗ = R∗(Jr).
This implies that b−ra−ru(Iru)∗ = R∗(Iru). Let n = ru ∈ N. Then
R∗(In) = b−ra−ru(Iru)∗ ⊆ (Iru(R∗(Iru) : Iru))∗ ⊆ R∗(Iru); hence,
(In(R∗(In) : In))∗ = R∗(In).

b. Let ∗-max(R) = spec1(R), and let R̂P be a Krull domain for all
P ∈ spec1(R). Let I ∈ F•

∗ (R) and P = {P ∈ spec1(R) | IP �= RP }.
There is some s ∈ R• such that sI ⊆ R and some s′ ∈ I\{0}. Let
t = ss′ ∈ R•. Then tR = ss′R ⊆ sIR = sI ⊆ I. It follows that R is a
Mori domain; hence, Lemma 3.1.1 implies that {P ∈ spec1(R) | st ∈ P}
is finite. Let us show that P ⊆ {Q ∈ spec1(R) | st ∈ Q}. Let
Q ∈ P , and assume that st ∈ R\Q. Then st ∈ R×

Q; hence s, t ∈ R×
Q.

This implies that IQ = sIQ = (sI)Q ⊆ RQ = tRQ = (tR)Q ⊆ IQ;
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hence, IQ = RQ, a contradiction. It follows that P is finite. If
P ∈ spec1(R), then RP is ∗P -Noetherian by Lemma 2.1.2. Hence,

RP is a Mori domain. Therefore, R̂P is a semilocal principal ideal
domain by Lemma 3.1.5. Since IP ∈ F•

∗P
(RP ), it follows by a and

Lemma 2.2.5 that a least nP ∈ N exists such that (IkP (R∗P (I
k
P ) :

IkP ))∗P = R∗P (I
k
P ) for all k ∈ N≥nP (note that nP = 1 if P /∈ P). If

n = max({nQ | Q ∈ spec1(R)} ∪ {1}), then it follows by Lemma 2.1.3
that ((In(R∗(In) : In))∗)Q = (InQ(R∗Q(I

n
Q) : InQ))∗Q = R∗Q(I

n
Q) =

R∗(In)Q for all Q ∈ spec1(R). Consequently, we have (In(R∗(In) :
In))∗ = ∩Q∈spec1(R)((I

n(R∗(In) : In))∗)Q = ∩Q∈spec1(R)R∗(In)Q =
R∗(In) by Lemma 2.1.3.

Corollary 4.4. Let R be an integral domain and ∗ a star operation
on R. Assume that one of the following conditions is fulfilled:

1. R is Noetherian and ∗-max(R) = spec1(R).

2. R is ∗-Noetherian, ∗-max(R) = spec1(R) and F
R̂/R

�= {0}.
Then R is π∗-stable.

Proof. 1. Let R be Noetherian, ∗-max(R) = spec1(R) and P ∈
spec1(R). Then RP is Noetherian with dim (RP ) = 1. Therefore,

the theorem of Krull-Akizuki implies that R̂P is a Dedekind domain.
Hence, R̂P is a Krull domain. Consequently, Theorem 4.3 implies that
R is π∗-stable.
2. Let R be ∗-Noetherian, ∗-max(R) = spec1(R), F

R̂/R
�= {0}

and P ∈ spec1(R). Then RP is a Mori domain by Lemma 2.1.2.
Hence, Lemma 3.1.4 implies that F

R̂P /RP
= (F

R̂/R
)P ⊇ F

R̂/R
�= {0};

consequently, R̂P is a Krull domain by Lemma 3.1.4. Therefore, R is
π∗-stable by Theorem 4.3.

Obviously, the conditions of Corollary 4.4 are satisfied for arbitrary
Noetherian one-dimensional integral domains. We were not able to
decide whether ∗-Noetherian integral domains satisfying ∗-max(R) =
spec1(R) are π∗-stable. By Theorem 2.3.3 and Corollary 4.2 it is
sufficient to show that the ∗-ideal semigroup of such integral domains
is π-regular.



432 ANDREAS REINHART

5. Examples. The examples and counterexamples of this section
are based on subrings of the ring of formal power series R[[X ]] over
an integral domain R. For a power series f we denote by (fi)i∈N0 ,
the sequence of its coefficients, so that f =

∑
i∈N0

fiX
i. For d ∈ R•,

we define Rd = {f ∈ R[[X ]] | d|f1} and, if b, c ∈ R are such that b|d
and c|d, then we set Ib,c = {f ∈ R[[X ]] | b|f0, c|f1}. Observe that R is
completely integrally closed if and only if R[[X ]] is completely integrally
closed (for a proof see [8, Theorem 16]). Recall that if R[[X ]] is a Mori
domain, then R is a Mori domain (since R[[X ]] ∩K = R (where K is a
field of quotients of R) and this is a consequence of [1, Theorem 2.4]).

First we study some ring theoretical properties of Rd and investigate
the elements of its v-ideal semigroup. In particular, we investigate
the completely integrally closed case where the conductor turns out to
be an idempotent of the v-ideal semigroup. In Lemmas 5.3 and 5.4
we study most of the properties introduced in Section 2 with respect
to the v-ideal semigroup of Rd. Moreover, we explicitly calculate
the set of v-idempotents in some special cases. The most important
counterexamples are consolidated in Example 5.5.

Lemma 5.1. Let R be an integral domain, d ∈ R• and K ′ a field of
quotients of R[[X ]].

1. Rd is an intermediate ring of R and R[[X ]], and K ′ is a quotient
field of Rd.

2. For all b, c ∈ R such that b|d and c|d it follows that Ib,c =
(b, cX,X2, X3)Rd

∈ F•
v (Rd), (Ib,c)

−1 = I(d/c),(d/b), R(Ib,c) = {f ∈
R[[X ]] | c|bf1} and (Ikb,c)

−1 = {f ∈ R[[X ]] | d|bkf1, d|bk−1cf0} for all
k ∈ N.

Proof. 1. Of course, R ⊆ Rd ⊆ R[[X ]]. Therefore, it is sufficient to
show that if f, g ∈ Rd, then f + g, fg ∈ Rd. Let f, g ∈ Rd. Then
f + g, fg ∈ R[[X ]], d|(f1 + g1) = (f + g)1 and d|(f0g1 + f1g0) = (fg)1;
hence, f + g, fg ∈ Rd. Let K

′′ ⊆ K ′ be the quotient field of Rd. Since
X = X3X−2 ∈ K ′′, it follows that R[[X ]] ⊆ K ′′; hence, K ′′ = K ′.

2. Let b, c ∈ R be such that b|d and c|d. At first, let us show that
Ib,c = (b, cX,X2, X3)Rd

.
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⊆: Let f ∈ R[[X ]] be such that b|f0 and c|f1. Then there are
v, w ∈ R such that f0 = vb and f1 = wc; hence, f = vb + wcX +
(
∑

i∈N≥2,i	=3 fiX
i−2)X2 + f3X

3 ∈ (b, cX,X2, X3)Rd
.

⊇: Since b, cX,X2, X3 ∈ Ib,c, it is sufficient to show that Ib,c
is an Rd-submodule of R[[X ]]. Therefore, let g, h ∈ Ib,c, and let
p, q ∈ Rd. Then gp+ hq ∈ R[[X ]] and b|(g0p0 + h0q0) = (gp+ hq)0. It
follows that c|d|p1 and c|d|q1. Consequently, c|(g1p0 + g0p1 + h1q0 +
h0q1) = (gp + hq)1; hence, gp + hq ∈ Ib,c. Since X2 ∈ R•

d and
X2(b, cX,X2, X3)Rd

= (bX2, cX3, X4, X5)Rd
⊆ Rd, it follows that

(b, cX,X2, X3)Rd
∈ F•(Rd).

Let k ∈ N. If g ∈ K ′ is such that g(b, cX,X2, X3)kRd
⊆ Rd,

then gbk ∈ Rd ⊆ R[[X ]] and gX2k ∈ Rd ⊆ R[[X ]]. Hence, g ∈
R[[X ]]. This implies that ((b, cX,X2, X3)kRd

)−1 = {f ∈ R[[X ]] |
f(b, cX,X2, X3)kRd

⊆ Rd}. If f ∈ R[[X ]], then X2f ∈ Rd. Hence,

((b, cX,X2, X3)kRd
)−1 = {f ∈ R[[X ]] | fbk, fbk−1cX ∈ Rd} = {f ∈

R[[X ]] | d|bkf1, d|bk−1cf0}.
Since (d/b)|d, (d/c)|d and b, c ∈ R are arbitrary it follows that

(b, cX,X2, X3)−1
Rd

= {f ∈ R[[X ]] | (d/c)|f0, (d/b)|f1} = I(d/c),(d/b) and

(Ib,c)v = (I(d/c),(d/b))
−1 = Ib,c. Finally, it follows that R(Ib,c) = {f ∈

R[[X ]] | f(b, cX,X2, X3)Rd
⊆ Ib,c} = {f ∈ R[[X ]] | fb, fcX, fX2, fX3 ∈

Ib,c} = {f ∈ R[[X ]] | c|bf1}.

Lemma 5.2. Let R be a completely integrally closed domain, d ∈ R•

and K ′ a field of quotients of R[[X ]].

1. Rd = R̂d = R[[X ]] = (1, X)Rd
.

2. F
R̂d/Rd

= Id,d = (d, dX,X2, X3)Rd
∈ E(F•

v (Rd)).

3. Let Q ∈ spec(Rd) be such that F
R̂d/Rd

⊆ Q. Then ht (Q) ≥ 2.

4. X ∈ ∩P∈spec1(Rd)(Rd)P .

5. Let Rd be a Mori domain and P ∈ spec1(Rd). Then (Rd)P is a
discrete valuation domain.

Proof. 1. Let us show that R[[X ]] = (1, X)Rd
.

⊆: Let f ∈ R[[X ]]. Then f = f1X + (
∑

i∈N0,i	=1 fiX
i)1 ∈ (1, X)Rd

.

⊇: Clear. Since R[[X ]] is completely integrally closed, this implies
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that R[[X ]] ⊆ Rd ⊆ R̂d ⊆ R̂[[X ]] = R[[X ]], hence Rd = R̂d = R[[X ]] =
(1, X)Rd

.

2. It follows by Lemma 5.1.2 that Id,d = (d, dX,X2, X3)Rd
∈ F•

v (Rd).
Let us show that F

R̂d/Rd
= Id,d.

⊆: Let f ∈ F
R̂d/Rd

. Then f ∈ Rd; hence, d|f1. Since fX ∈ Rd, we

have d|(fX)1 = f0.

⊇: Since R̂d = R[[X ]], it follows by 1 that {d, dX,X2, X3} ⊆
F

R̂d/Rd
; hence, (d, dX,X2, X3)Rd

⊆ F
R̂d/Rd

. Therefore, Lemma 5.1.2

implies that (I2d,d)
−1 = {f ∈ R[[X ]] | d|d2f0, d|d2f1} = R[[X ]]; hence,

((F
R̂d/Rd

)2)v = (I2d,d)v = (R[[X ]])−1 = F
R̂d/Rd

.

3. Let h : R[[X ]] → R be the canonical ringepimorphism and
g = h|Rd

. Then g is a ringepimorphism. Let us show that Ker (g) =
(dX,X2, X3)Rd

.

⊆: Let f ∈ Ker (g). Then f0 = 0. Of course, d|f1; hence,
f = f1X +X2(

∑
i∈N≥2,i	=3 fiX

i−2) + f3X
3 ∈ (dX,X2, X3)Rd

.

⊇: Trivial. This implies that Rd/(dX,X2, X3)Rd
∼= R; consequently,

(dX,X2, X3)Rd
∈ spec(Rd). Since {0} � (dX,X2, X3)Rd

� F
R̂d/Rd

⊆
Q, we have ht (Q) ≥ 2.

4. Let P ∈ spec1(Rd). By 2 and 3 we have {d, dX,X2, X3} � P .

Case 1. d /∈ P : Since d, dX ∈ Rd, we have X = d−1dX ∈ (Rd)P .

Case 2. dX /∈ P : Since dX, dX2 ∈ Rd, it follows that X =
(dX)−1dX2 ∈ (Rd)P .

Case 3. X2 /∈ P : Since X2, X3 ∈ Rd, we have X = X−2X3 ∈ (Rd)P .

Case 4. X3 /∈ P : Since X3, X4 ∈ Rd, it follows that X = X−3X4 ∈
(Rd)P .

5. Since X ∈ (Rd)P (by 4), it follows by Lemma 3.1.2 and 1 that

(̂Rd)P = (R̂d)P = R[[X ]]P ⊆ ((Rd)P )P = (Rd)P ; hence, (Rd)P is
completely integrally closed. Since (Rd)P is a Mori domain, this implies
that (Rd)P is a Krull domain. Since (Rd)P is a Krull domain and
dim ((Rd)P ) = 1, it follows that (Rd)P is a Dedekind domain and,
since (Rd)P is local, this implies that (Rd)P is a discrete valuation
domain.



IDEAL SEMIGROUPS OF MONOIDS AND DOMAINS 435

Lemma 5.3. Let R be a completely integrally closed domain, d ∈ R•

and K ′ a field of quotients of R[[X ]].

1. {Ib,c | b, c ∈ R, b|d, c|d} ⊆ {I ∈ F•
v (Rd) | FR̂d/Rd

⊆ I and I2 ⊆ I},
and if R is a GCD-domain, then {Ib,c | b, c ∈ R, b|c|d,GCD(d/b, b) =
R×} ⊆ E(F•

v (Rd)).

2. Let {I ∈ F•
v (Rd) | F

R̂d/Rd
⊆ I and I2 ⊆ I} ⊆ {Ib,c | b, c ∈

R, b|d, c|d}. Then, for all a ∈ R such that a2|d, it follows that a ∈ R×.

3. If R/dR is finite, then {I | I is an Rd-submodule of R̂d such that
F

R̂d/Rd
⊆ I} is finite and F•

v (Rd) is almost complete.

4. If R/dR is finite, then for all I ∈ F•
v (Rd) such that F

R̂d/Rd
⊆ I ⊆

R̂d it follows that I is πv-regular.

5. Let I ∈ F•
v (Rd) be such that F

R̂d/Rd
⊆ I ⊆ R̂d. Then some

P ⊆ R × R exists such that I = {f ∈ R[[X ]] | d|(bf1 + cf0) for all
(b, c) ∈ P}.
Proof. 1. Let b, c ∈ R be such that b|d and c|d and I = Ib,c. Then it

follows by Lemma 5.1.2 that I ∈ F•
v (Rd). Since b|d and c|d, it follows

by Lemma 5.1.2 that F
R̂d/Rd

= {f ∈ R[[X ]] | d|f0, d|f1} ⊆ {f ∈ R[[X ]] |
b|f0, c|f1} = I. Since I2 = (b2, bcX, bX2, bX3, c2X2, cX3, cX4, X4, X5,
X6)Rd

and all generators of I2 are products of elements of I and Rd,
it follows that I2 ⊆ I.

Now let R be a GCD-domain, b|c and GCD((d/b), b) = R×. It follows
by Lemma 5.1.2 that (I2)−1 = {f ∈ R[[X ]] | (d/b)|bf1, (d/c)|bf0}.
Since b|c, it follows that (d/c)|(d/b); hence, GCD ((d/c), b) = R×.
Since R is a GCD -domain, this implies that (I2)−1 = {f ∈ R[[X ]] |
(d/b)|f1, (d/c)|f0} = ((d/c), (d/b)X,X2, X3)Rd

= I−1. Hence, I =
(I2)v, and thus I ∈ E(F•

v (Rd)).

2. Let a ∈ R be such that a2|d and I = (a2, a2X, aX + a,X2, X3)Rd
.

Of course, I ∈ F•(Rd). By Lemma 5.1.2, I−1 = (Ia2,a2 + (aX +
a)Rd)

−1 = (Ia2,a2)−1 ∩ (aX + a)−1Rd = I(d/a2),(d/a2) ∩ {f ∈ K ′ |
(aX + a)f ∈ Rd} = {f ∈ R[[X ]] | (d/a2)|f0, (d/a2)|f1, (d/a)|(f0 + f1)}.
Let us show that I−1 = ((d/a), (d/a)X, (d/a2)(1 −X), X2, X3)Rd

.

⊆: Let f ∈ R[[X ]] be such that (d/a2)|f0, (d/a2)|f1 and (d/a)|(f0 +
f1). Then some r, s ∈ R exist such that f0 + f1 = (d/a)r and
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f0 = (d/a2)s; hence, f = f0 + f1X +
∑

i∈N≥2
fiX

i = s(d/a2)(1−X)+

r(d/a)X +
∑

i∈N≥2
fiX

i ∈ ((d/a), (d/a)X, (d/a2)(1 −X), X2, X3)Rd
.

⊇: Trivial, since I−1 is an Rd-module.

Consequently, it follows by Lemma 5.1.2 that Iv = (I−1)−1 =
(I(d/a),(d/a) + (d/a2)(1 − X)Rd)

−1 = (I(d/a),(d/a))
−1 ∩ ((d/a2)(1 −

X))−1Rd = Ia,a ∩ {f ∈ K ′ | (d/a2)(1 − X)f ∈ Rd} = {f ∈ R[[X ]] |
a|f0, a|f1, a2|(f1 − f0)}.
Let us show that Iv = I.

⊆: Let f ∈ R[[X ]] be such that a|f0, a|f1 and a2|(f1−f0). Then some
r, s ∈ R exist such that f1 = f0 + a2r and f0 = as. This implies that
f = f0 + f1X +

∑
i∈N≥2

fiX
i = s(aX + a)+ ra2X +

∑
i∈N≥2

fiX
i ∈ I.

⊇: Trivial. Of course, I ∈ F•
v (R). Since a2|d, it follows by Lemmas

5.1.2 and 5.2.2 that F
R̂d/Rd

= Id,d ⊆ Ia2,a2 = (a2, a2X,X2, X3)Rd
⊆ I.

Of course, I2 = (Ia2,a2)2 + (a3X + a3, a4X + a4, a2X2 + 2a2X +
a2, aX3 + aX2, aX4 + aX3)Rd

⊆ (a2, a2X,X2, X3)Rd
⊆ I. Therefore,

there are some b0, c0 ∈ R such that b0|d, c0|d and I = Ib0,c0 . It
follows by Lemma 5.1.2 that aX + a ∈ Ib0,c0 ; hence, c0|a. Since
c0X ∈ I = {f ∈ R[[X ]] | a|f0, a|f1, a2|(f1 − f0)}, it follows that a2|c0.
This implies that a2|a; hence, a ∈ R×.

3. Let R/dR be finite and M = {I | I is an Rd -submodule of R̂d

such that F
R̂d/Rd

⊆ I}. Let f : R/dR × R/dR → R̂d/FR̂d/Rd
be

defined by f((a+dR, b+dR)) = (a+bX)+F
R̂d/Rd

for all a, b ∈ R. Let

a, a1, b, b1 ∈ R be such that a+dR = a1+dR and b+dR = b1+dR. Then
some c1, d1 ∈ R exist such that a = a1+c1d and b = b1+d1d. Therefore,
Lemma 5.2.2 implies that (a + bX) + F

R̂d/Rd
= (a1 + b1X) + (c1d +

d1dX)+F
R̂d/Rd

= (a1 + b1X)+F
R̂d/Rd

; hence, f is well-defined. Now

let g ∈ R̂d = R[[X ]]. Then, by Lemma 5.2.2,
∑

i∈N≥2
giX

i ∈ F
R̂d/Rd

;

hence, f((g0+dR, g1+dR)) = (g0+ g1X)+F
R̂d/Rd

= g+F
R̂d/Rd

, and

thus f is surjective.

Since R/dR × R/dR is finite, this implies that R̂d/FR̂d/Rd
is finite.

Since a bijection between the set of all Rd-submodules of R̂d/FR̂d/Rd

and M exists, it follows that M is finite. It follows by Lemma 2.4.1
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that E(F•
v (Rd)) ⊆ M ; hence, E(F•

v (Rd)) is finite. This implies that
F•

v (Rd) is almost complete.

4. Let R/dR be finite and I ∈ F•
v (Rd) such that F

R̂d/Rd
⊆ I ⊆ R̂d.

It follows by Lemma 5.2.2 that F
R̂d/Rd

= ((F
R̂d/Rd

)k)v ⊆ (Ik)v ⊆
((R̂d)

k)v = R̂d for all k ∈ N. Since {I ∈ F•
v (Rd) | FR̂d/Rd

⊆ I ⊆ R̂d}
is finite, there are some r, s ∈ N such that r �= s and (Ir)v = (Is)v.
Hence, I is πv-regular by Lemma 1.1.2.

5. Let P = {(b, c) ∈ R × R | b + cX ∈ I−1}. Let us show that
I = {f ∈ R[[X ]] | for all (b, c) ∈ P we have d|(bf1 + cf0)}.
⊆: Let f ∈ I and (b, c) ∈ P . Since b + cX ∈ I−1, it follows that

(b+ cX)f ∈ Rd, and hence d|((b + cX)f)1 = bf1 + cf0.

⊇: Let f ∈ R[[X ]] be such that d|(bf1 + cf0) for all (b, c) ∈ P . It is
sufficient to show that fg ∈ Rd for all g ∈ I−1. Let g ∈ I−1. Then g ∈
I−1 ⊆ (Rd :K′ F

R̂d/Rd
) = R̂d = R[[X ]]. It follows by Lemma 5.2.2 that∑

i∈N≥2
giX

i ∈ (X2, X3)Rd
⊆ F

R̂d/Rd
⊆ I−1; hence, g0 + g1X ∈ I−1.

Therefore, (g0, g1) ∈ P , and thus d|(g0f1 + g1f0) = (gf)1. This implies
that gf ∈ Rd.

Lemma 5.4. Let R be a completely integrally closed domain, d ∈ R•

and K ′ a field of quotients of R[[X ]].

1. The following assertions are equivalent:

a. d ∈ R×.

b. Rd is completely integrally closed.

c. F•
v (Rd) is a group.

d. F•
v (Rd) is a Clifford semigroup.

e. E(F•
v (Rd)) = {F ∈ F•

v (Rd) | F = R(F )}.
f. F

R̂d/Rd
∈ {F ∈ F•

v (Rd) | F = R(F )}.
2. If d is a product of pairwise non-associated prime elements of R,

then {I ∈ F•
v (Rd) | FR̂d/Rd

⊆ I and I2 ⊆ I} = {Ib,c | b, c ∈ R, b|d, c|d}.
3. If d is a product of prime elements of R, then E(F•

v (Rd)) = {Ib,c |
b, c ∈ R, b|c|d,GCD(b, (d/b)) = R×} and F•

v (Rd) is almost complete.
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4. If R[[X ]] is factorial and if d is a prime element of R or R/dR is
finite, then F•

v (Rd) is complete.

Proof. 1. a ⇒ b. Let d ∈ R×. Then Rd = {f ∈ R[[X ]] | d|f1} =

R[[X ]] = R̂d by Lemma 5.2.1; hence, Rd is completely integrally closed.

b ⇒ c. Clear. c ⇒ d. Trivial.

d ⇒ a. Let F•
v (Rd) be a Clifford semigroup and I = F

R̂d/Rd
+XRd.

It follows by Lemma 5.2.2 that I = (d,X,X2, X3)Rd
. We show that

(I2)v = (IF
R̂d/Rd

)v = F
R̂d/Rd

. It follows by Lemmas 5.1.2 and 5.2.2

that F
R̂d/Rd

= ((F
R̂d/Rd

)2)v ⊆ (IF
R̂d/Rd

)v ⊆ (I2)v = ({f ∈ R[[X ]] |
d|d2f1, d|df0})−1 = (R[[X ]])−1 = F

R̂d/Rd
; hence, (I2)v = (IF

R̂d/Rd
)v =

F
R̂d/Rd

. Since I is v-regular, some E ∈ E(I) and J ∈ F•
v (Rd) exist

such that (IJ)v = E; hence, (F
R̂d/Rd

J2)v = (I2J2)v = (E2)v = E.

This implies that (F
R̂d/Rd

E)v = ((F
R̂d/Rd

)2J2)v = (F
R̂d/Rd

J2)v =

E. It follows by Lemma 2.4.1 that F
R̂d/Rd

⊆ E = (EF
R̂d/Rd

)v ⊆
(R̂dFR̂d/Rd

)v = F
R̂d/Rd

; hence, E = F
R̂d/Rd

. This implies that

F
R̂d/Rd

∈ E(I); hence, F
R̂d/Rd

= (IF
R̂d/Rd

)v = I. Finally, it follows

by Lemma 5.2.2 that X ∈ I = F
R̂d/Rd

= Id,d. Therefore, d|1 and thus

d ∈ R×.

c ⇒ e. Clear. e ⇒ f . This is an immediate consequence of
Lemma 5.2.2.

f ⇒ a. Let F
R̂d/Rd

∈ {F ∈ F•
v (Rd) | F = R(F )}. Then, by

Lemma 5.2.2, 1 ∈ F
R̂d/Rd

= Id,d. It follows that d|1; hence, d ∈ R×.

2. Let n ∈ N, and let (pi)
n
i=1 be a finite sequence of pairwise non-

associated prime elements of R such that d =
∏n

i=1 pi. Now we show
the equality.

⊇: This follows by Lemma 5.3.1.

⊆: Let I ∈ F•
v (Rd) be such that F

R̂d/Rd
⊆ I and I2 ⊆ I. Then

I ⊆ R(I) ⊆ R̂d = R[[X ]]. By Lemma 5.3.5 some P ⊆ R × R exists
such that I = {f ∈ R[[X ]] | d|(b0f1 + c0f0) for all (b0, c0) ∈ P}. Let
M = {i ∈ [1, n] | pi � c0} for some (b0, c0) ∈ P}. There is some
(b0, c0) ∈ P such that pi � c0}, N = {i ∈ [1, n] | pi � b0} for some
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(b0, c0) ∈ P} such that b =
∏

i∈M pi and c =
∏

i∈N pi. Next we show
that I = Ib,c.

⊆: Let f ∈ I. Then f2 ∈ I2 ⊆ I. If (b1, c1) ∈ P , then d|(b1(f2)1 +
c1(f

2)0). Therefore, d|(b1(2f0f1)+c1f
2
0 ), and thus d|(b1f0f1+f0(b1f1+

c1f0)). Since d|(b1f1 + c1f0), it follows that d|b1f0f1. Now we prove
that b|f0. It is sufficient to show that pi|f0 for all i ∈ M . Let i ∈ M .
Then some (b0, c0) ∈ P exists such that pi � c0.

Case 1. pi � b0: Since pi|d|b0f0f1, we have pi|f0 or pi|f1. If pi|f1,
then since pi|d|(b0f1 + c0f0), we have pi|f0.
Case 2. pi|b0: Since pi|d|(b0f1 + c0f0), we have pi|f0.
Now we prove that c|f1. It is sufficient to show that, for all i ∈ N , it

follows that pi|f1. Let i ∈ N . Then some (b0, c0) ∈ P exists such that
pi � b0. Since pi|d|b0f0f1, we have pi|f0 or pi|f1. If pi|f0, then pi|f1,
since pi|d|(b0f1 + c0f0).

⊇: Since X2, X3 ∈ F
R̂d/Rd

⊆ I, we have to show that b, cX ∈ I. Let

us show that b ∈ I. It is sufficient to show, that for all i ∈ [1, n] and
all (b1, c1) ∈ P , it follows that pi|c1b. Let i ∈ [1, n] and (b1, c1) ∈ P .

Case 1. For all (b0, c0) ∈ P , it follows that pi|c0. Of course, pi|c1|c1b.
Case 2. Some (b0, c0) ∈ P exists such that pi � c0. Since i ∈ M , we

have pi|b|c1b.
Let us show that cX ∈ I. It is sufficient to show that, for all i ∈ [1, n]

and all (b1, c1) ∈ P , it follows that pi|b1c. Let i ∈ [1, n] and (b1, c1) ∈ P .

Case 1. For all (b0, c0) ∈ P , it follows that pi|b0. Of course, pi|b1|b1c.
Case 2. There is some (b0, c0) ∈ P such that pi � b0. Since i ∈ N , it

follows that pi|c|b1c.
3. Without restriction, let n ∈ N, (pi)

n
i=1 a finite sequence of pairwise

non-associated primes of R, and let (ki)
n
i=1 ∈ N[1,n] be such that

d =
∏n

i=1 p
ki

i .

Claim. (Iki+1
pi,1

)v = I
p
ki
i

,p
ki
i

for all i ∈ [1, n].

Proof of the claim. Let i ∈ [1, n]. Then it follows by Lemma 5.1.2
that (Iki+1

pi,1
)−1 = {f ∈ R[[X ]] | d|pki+1

i f1, d|pki

i f0} = {f ∈ R[[X ]] |
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(d/pki

i )|f1, (d/pki

i )|f0} = I
(d/p

ki
i

),(d/p
ki
i

)
; consequently,

(Iki+1
pi,1

)v = (I
(d/p

ki
i

),(d/p
ki
i

)
)−1 = I

p
ki
i

,p
ki
i

by Lemma 5.1.2.

Next we show the equality. ⊆: Let I ∈ E(F•
v (Rd)). Then we have

F
R̂d/Rd

⊆ I ⊆ R̂d by Lemma 2.4.1; hence, some P ⊆ R×R exists such

that I = {f ∈ R[[X ]] | d|(bf1 + cf0) for all (b, c) ∈ P} by Lemma 5.3.5.
Let M = {i ∈ [1, n] | pi|f0 for all f ∈ I}, li = max{r ∈ [0, ki] | pri |f1 for

all f ∈ I} for all i ∈ [1, n], b =
∏

j∈M p
kj

j and c =
∏n

j=1 p
lj
j . Next we

show that b | c. Let i ∈ M . Then I ⊆ Ipi,1 by Lemma 5.1.2. and hence

I = (Iki+1)v ⊆ (Iki+1
pi,1

)v = I
p
ki
i

,p
ki
i

by the claim. It follows that pki

i |f1
for all f ∈ I. Therefore, li = ki; hence, b | c. Of course, c | d and, since
(pi)

n
i=1 is a sequence of pairwise non-associated prime elements of R,

we have GCD(b, (d/b)) = R×.

It remains to prove that I = Ib,c. ⊆: Let f ∈ I. If j ∈ M , then

I ⊆ I
p
kj
j

,p
kj
j

. Therefore, p
kj

j |f0; hence, b|f0. Of course, p
lj
j |f1 for all

j ∈ [1, n]; hence, c|f1.
⊇: It follows by Lemma 5.2.2 and Lemma 2.4.1 that X2, X3 ∈

F
R̂d/Rd

⊆ I. Due to Lemma 5.1.2, it is sufficient to show that b ∈ I and

cX ∈ I. We have to prove that, for all j ∈ [1, n] and all (b1, c1) ∈ P , it

follows that p
kj

j |c1b and p
kj

j |b1c. Let j ∈ [1, n] and (b1, c1) ∈ P .

Case 1. j ∈ M : Since p
kj

j |b|c, we have p
kj

j |c1b and p
kj

j |cb1.
Case 2. j /∈ M : There is some f ∈ I such that pj � f0. Since f2 ∈

I2 ⊆ I, we have d|(b1(f2)1+c1(f
2)0); hence, d|(b1f0f1+f0(b1f1+c1f0)).

Since f ∈ I, it follows that p
kj

j |d|b1f0f1 and, since pj � f0, we have

p
kj

j |b1f1. Since p
kj

j |d|(b1f1 + c1f0), it follows that p
kj

j |c1|c1
∏

i∈M pki

i .

If lj = kj , then p
kj

j |b1c; hence, we may assume that lj < kj . Some g ∈ I

exists such that p
lj
j |g1 and p

lj+1
j � g1. It follows that p

kj

j |d|(b1g1+c1g0);

hence, p
kj

j |b1g1 and p
kj−lj
j |b1. This implies that p

kj

j = p
kj−lj
j p

lj
j |b1c.

⊇: Let b, c ∈ R be such that b|c|d and GCD (b, (d/b)) = R×. We set
I = (b, cX,X2, X3)Rd

. It follows by Lemma 5.1.2 that I ∈ F•
v (Rd) and

(I2)−1 = {f ∈ R[[X ]] | (d/b)|bf1, (d/c)|bf0}.
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Let us show that (I2)−1 = I(d/c),(d/b). ⊆: Let f ∈ (I2)−1. Then
(d/c)|bf0 and (d/b)|bf1. Since (d/c)|(d/b), we have GCD(b, (d/c)) =
R×. Of course, d/b and d/c are associate to products of prime elements
ofR. Therefore, it is straightforward to show that (d/c)|f0 and (d/b)|f1.
Consequently, f ∈ I(d/c),(d/b).

⊇: Trivial. Therefore, Lemma 5.1.2 implies that (I2)−1 = I−1; hence,
(I2)v = I. Now it is straightforward to prove that E(F•

v (Rd)) is finite.
Hence, it follows that F•

v (Rd) is almost complete.

4. Let R[[X ]] be factorial. At first, let d be a prime element of R. It
follows by Lemma 5.2.2, 2 and 3, that {J ∈ F•

v (Rd) | F
R̂d/Rd

⊆ J

and J2 ⊆ J} = {F
R̂d/Rd

,F
R̂d/Rd

+ XRd, Rd, R̂d}, E(F•
v (Rd)) =

{F
R̂d/Rd

, Rd, R̂d} and F•
v (Rd) is almost complete. We have to show

that F•
v (Rd) is πv-regular. Let I ∈ F•

v (Rd). Then R(I) ∈ {Rd, R̂d}.
Case 1. R(I) = Rd: Since FR(I)/Rd

= Rd ∈ E(I), we have I is
v-regular by Lemma 2.4.2.

Case 2. R(I) = R̂d: Since R̂d ∈ E(I) and R̂d /∈ E(Rd), it follows by

Lemmas 2.2.4 and 2.4.1 that (I(R̂d :K′ I))v ∈ {J ∈ F•
v (Rd) | FR̂d/Rd

⊆
J ⊆ R̂d, R̂d ∈ E(J) and J2 ⊆ J} = {F

R̂d/Rd
,F

R̂d/Rd
+XRd, R̂d}. Since

R̂d = R[[X ]] is factorial and (R̂d :K′ I) ∈ F•
v
R̂d

(R̂d), it follows that there

is some c ∈ K ′• such that (R̂d :K′ I) = cR̂d. Hence, (I(R̂d :K′ I))v =

(cIR̂d)v = cI, and thus I ∈ {c−1F
R̂d/Rd

, c−1(F
R̂d/Rd

+XRd), c
−1R̂d}.

Case 2.1. I = c−1F
R̂d/Rd

: Since FR(I)/Rd
∈ E(I), we have I is

v-regular by Lemma 2.4.2.

Case 2.2. I = c−1(F
R̂d/Rd

+ XRd): Since (I2)v = c−2F
R̂d/Rd

and

FRv(I2)/Rd
∈ E((I2)v), it follows by Lemma 2.4.2 that (I2)v is v-

regular; hence, I is πv-regular.

Case 2.3. I = c−1R̂d: Since cR̂d ∈ F•
v (Rd) and (IcR̂d)v = R̂d, we

have that I is v-regular.

Now let R/dR be finite. It follows by Lemma 5.3.3 that F•
v (Rd) is

almost complete. Let J ∈ F•
v (Rd). Then, since R̂d = R[[X ]] is facto-

rial, it follows by Lemmas 2.4.3 and 5.2.2 that some c ∈ K ′• exists such
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that F
R̂d/Rd

⊆ cJ ⊆ R̂d. Therefore, Lemma 5.3.4 implies that cJ is

πv-regular; hence, J is πv-regular.

Example 5.5. Each of the following properties is satisfied by some
integral domain R:

1. R is Noetherian, dim (R) = dim (R) = 2, R is local, Noetherian
and factorial, F

R̂/R
∈ E(F•

v (R))\{I ∈ F•
v (R) | I = R(I)} and RP is a

discrete valuation domain for all P ∈ spec1(R).

2. R is neither a Mori domain nor completely integrally closed and
yet F•

v (R) is almost complete.

3. F
R̂/R

�= {0}, dim(R̂) = 2, R̂ is local, Noetherian and factorial, and

some I ∈ F•
v (R) exists such that Rv(I

n) � Rv(I
n+1) for all n ∈ N. In

particular, F•
v (R) is not π-regular.

Proof. 1. Let S be a discrete valuation domain, L a field of quotients
of S, X an indeterminate over L, d ∈ S•\S×, and R = {f ∈ S[[X ]] |
d|f1}. It follows by Lemma 5.2.1 that R = R̂ = S[[X ]] = (1, X)R;
hence, R is a local, Noetherian and factorial domain and dim (R) =
dim (R) = 2. It follows by the theorem of Eakin-Nagata that R is
Noetherian, hence Lemma 5.2.5 implies that RP is a discrete valuation
domain for all P ∈ spec1(R). Since d /∈ S×, it follows by Lemmas 5.2.2
and 5.4.1 that F

R̂/R
∈ E(F•

v (R))\{I ∈ F•
v (R) | I = R(I)}.

2. Let S be a completely integrally closed domain, that is, not
a Mori domain; for example, the ring of algebraic integers. Let Y
be an indeterminate over S. It follows that S[[Y ]] is a completely
integrally closed domain that is not a Mori domain. Of course, Y
is a prime element of S[[Y ]]. Let L be a field of quotients of S[[Y ]], X
an indeterminate over L and R = {f ∈ (S[[Y ]])[[X ]] | Y |S[[Y ]]f1}. Then
Lemma 5.4.3 implies that F•

v (R) is almost complete. Since X /∈ R, it
follows that R is not completely integrally closed. Assume that R is a
Mori domain. Then Lemmas 3.1.4 and 5.2.1 imply that R̂ = (S[[Y ]])[[X ]]
is a Mori domain, hence S[[Y ]] is a Mori domain, a contradiction.

3. Let S be an integral domain that is not a field. Let K ′ be a
quotient field of S, Y an indeterminate over K ′ and T = S + Y K ′[[Y ]].
It follows that T and K ′[[Y ]] have the same field of quotients; we
denote it by L. Since K ′[[Y ]] is a principal ideal domain, it follows
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that T̂ ⊆ K̂ ′[[Y ]] = K ′[[Y ]]. On the other hand, Y K ′[[Y ]] ⊆ T . Since

Y ∈ T •, we have K ′[[Y ]] ⊆ T̂ ; hence, T̂ = K ′[[Y ]]. It follows that T̂
is a discrete valuation domain. Some b ∈ S•\S× exists. Of course,
b ∈ T \T× and ∩n∈NbnT ⊇ Y K ′[[Y ]] �= {0}. Let d ∈ T • be such that
d ∈ ∩n∈NbnT .

Let X be an indeterminate over L, R = {f ∈ T [[X ]] | d|f1} and

I = (b, dX,X2, X3)R. It follows that T̂ [[X ]] is local, Noetherian,

factorial and dim (T̂ [[X ]]) = 2. This implies that R̂ ⊆ ̂̂
T [[X ]] = T̂ [[X ]].

Since X2Y T̂ [[X ]] ⊆ X2T [[X ]] ⊆ R and X2Y ∈ R•, we have T̂ [[X ]] ⊆ R̂.

Therefore, R̂ = T̂ [[X ]] and F
R̂/R

�= {0}. By Lemma 5.1.2, it follows

that (In)−1 = {f ∈ T [[X ]] | d|bnf1, d|bn−1df0} = (1, (d/bn)X,X2, X3)R
for all n ∈ N. Hence, it follows by Lemma 5.1.2 that Rv(I

n) = ((In)v :
In) = (R : (In)−1In) = R((In)−1) = R((1, (d/bn)X,X2, X3)R) =
{f ∈ T [[X ]] | (d/bn)|1f1} = (1, (d/bn)X,X2, X3)R for all n ∈ N.
Assume that some m ∈ N exists such that Rv(I

m) = Rv(I
m+1). Then

(d/bm+1)X ∈ Rv(I
m+1) = Rv(I

m) = {f ∈ T [[X ]] | (d/bm)|f1}; hence,
(d/bm)|(d/bm+1). This implies that b ∈ T×, a contradiction. Hence,
Lemmas 1.1.3 and 2.2.4 imply that F•

v (R) is not π-regular.

Note that Example 5.5.1 shows that the idempotents of the v-ideal
semigroup of a Mori domain need not be trivial. Moreover, by Example
5.5.2, it follows that the converse of Theorem 2.6.1 does not hold. By
Example 5.5.3, we get that the π-regularity of the v-ideal semigroup
does not descend from the complete integral closure.

Acknowledgments. I want to thank my advisor Professor Franz
Halter-Koch for the many helpful suggestions. I am indebted to the
referee for pointing out a few inaccuracies in a previous version of the
paper.

REFERENCES
1. V. Barucci, Mori domains, in Non-noetherian commutative ring theory, Math.

Appl. 520, Kluwer Academic Publishers, Dordrecht, 2000.

2. S. Bazzoni, Class semigroups of Prüfer domains, J. Algebra 184 (1996),
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