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arise naturally in a variety of physical contexts, including the 
numerical path integral study of quantum dynamics. The de- 
velopment of the present approach and the related method, the 
coordinate rotation t e c h n i q ~ e , ~ . ~  suggests that progress is being 
made toward the development of a general Monte Carlo theory 
of quantum dynamics. It is likely that the methods described here 
will find use in other problem areas where there are difficulties 
associated with phase oscillations. 

It is important to recognize that there are a number of potential 
pitfalls associated with applications of any of the approximate 
forms of the damping function. Perhaps the most serious is the 
fact that the results of integrations using an approximate damping 
function are not exact. There is an additional difficulty in ap- 
plications of any of the second-order damping functions [eq 13 
or 151. For multidimensional integrations the second derivatives 
required in the evaluation of the second-order damping functions 
take the form of determinants. The generation of such deter- 

minants for many-dimensional systems may prove to be difficult. 
A more useful procedure may be one requiring only first derivatives 
which can be corrected to the exact result. Such a procedure is 
given in ref 12. 
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The results of recent computer simulations on fluids of nonspherical hard-core particles are discussed. New data are presented 
on the structure and dynamics of a system of hard spherocylinders with length-to-width ratio LID = 5 .  These data show 
that such spherocylinders can occur in at least four stable phases, viz., isotropic fluid, nematic liquid crystal, crystalline solid, 
and, surprisingly, a smectic A phase. 

Introduction 
Computer simulations of classical many-body systems can be 

used to gain insight in the microscopic behavior of real liquids 
and solids. Two distinct, and often complementary, approaches 
may be distinguished. On the one hand, one may carry out 
simulations on a realistic models in order to assist the interpretation 
of real experiments. On the other hand, computer simulations 
on idealized models of dense phases may be used to test theoretical 
concepts. Occasionally, computer simulations on simple model 
systems have yielded results that were qualitatively different from 
what was expected on the basis of the theories current at the time. 
A prime example of such a "computer discovery" is the observation 
by Alder and Wainwright of the long-time tails in the velocity- 
autocorrelation function of hard spheres. Our current theoretical 
understanding of simple liquids is, to a large extent, based on the 
results of such simulations. 

The situation is different for more complex fluids, such as liquid 
crystals. For the latter class of materials, direct comparison 
between experiment and simulation is difficult, because such 
simulations are very time-consuming (although not impossible; 
see ref 2). Simulation of idealized models for liquid crystals is 
also less than straightforward because there is no consensus as 
to what constitutes an "ideal" liquid crystal. 

For atomic liquids it is well-known that the structure of the 
fluid is almost completely determined by the short-range repulsive 
forces acting between the atoms. In fact, the success of the 
hard-sphere fluid as a reference system in thermodynamic per- 
turbation theories for simple liquids3v4 is largely a consequence 
of this fact. In contrast, it is at present not known whether the 
structure of more complex liquids, such as liquid crystals, is also 
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primarily determined by excluded volume effects. From the 
theoretical work of Onsager5 we know that a fluid of (infinitely) 
thin spherocylinders with length L and diameter D must undergo 
a transition from the isotropic to the nematic phase at  a number 
density of order l/(L*D). At this density the fraction of the 
volume occupied by the spherocylinders is still vanishingly small 
(of order D/L). Recent computer simulations on hard ellip- 
soids-of-revolution with more realistic shapes6!' have shown that 
a stable nematic phase is possible for this class of hard-core 
molecules if the length-to-breadth ratio is either larger than 2.5 
or less than 0.4.8 These results do not yet imply that nonspherical 
hard-core interactions are the cause of orientational order in real 
nematic liquid crystals. In fact, two additional factors are often 
invoked to explain the stability of nematic liquid crystals, namely, 
(1) long-range anisotropic forcesg which tend to induce orienta- 
tional order and (2) the presence of flexible tails attached to the 
rigid molecular core.1° The effect of the flexible tails is to stabilize 
the liquid phase with respect to the crystalline solid. However, 
now that we know that hard spheroids, that have neither long- 
range interactions nor flexible tails, form a nematic phase over 
a rather wide range of length-to-breadth ratios, we can begin to 
test thermodynamic perturbation theories. Such tests should 
enable us to ascertain whether nonspherical hard-core fluids can 
serve as "reference" systems for nematic liquid crystals in the same 
way that the hard-sphere fluid is a reference system for, say, liquid 
argon. 
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