DR
KUNS 1320
January 1995

Structure of Li and Be isotopes studied with
antisymmetrized molecular dynamics
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Structure of odd-even and even-even isotopes of Li and Be is studied systematically with
antisymmetrized molecular dynamies which is a theoretical method free froni anv model as-
sumptions such as the existence of clustering. The construction of energy-minimum intriusic
states with definite parity is made by the use of the frictional cooling method. Angular mo-
mentum projection is applied to these intrinsic states in order to get eigenstates of angular
momentum. It is shown that the clustering structure appears in the N =~ Z region with vV
and Z standing for the neutron and proton numbers, respectively. But as V increases the
structure is found to change toward the shell-model-like structure around .V = 3. Further-
more possible existence of new-type clustering feature is suggested in further neutron-richer
region with N > 8. Energy spectra and other quantities are shown to be reproduced well.
Especially magnetic moments are shown to be very well reproduced and it is explained
that the neutron number dependence of the observed magnetic moments reflects well the
structure-change of the isotopes from the clustering structure to the shell-model-like struc-

ture. Important roles of the density dependence of the effective interaction are indicated.

PACS number(s): 21.10.-k, 27.20.+n
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I. INTRODUCTION

A lot of information about neutron-rich nuclei has been obtained by recent experiments
with radioactive nuclear beams {1-4]. It is desirable that those newly observed properties of
neutron-rich nuclei are systematically studied in a single theoretical framework which can
aiso deseribe ordinary nuclei, because we expect that such systematic study can give us
the direct check whether theoretical understanding of unfamiliar features of exotic nuclei is
consistent or not with that of ordinary nuclei. However little systematic theoretical research

has been carried out for light nuclei.

Most theoretical studies about neutron-rich nuclei have concentrated on one nucleus or
a few nuclet at most. For example some three-body model approaches {5} have been applied
to 11Li regarding it as ®Li+2n system and also applied to SHe regarding it as a+2n system.
However, these models are not necessarily useful for other Li and He isotopes. Furthermore,
in the case of 1L, there is left an important problem of treating %Li core excitation, aithough
these models have succeeded in giving a realistic description of the neutron-halo structure
[6-8] of this nucleus. Variational shell model [9] has been successfully used to study the
system of 1*Be which is also considered to have the neutron-halo structure. It is not clear,
however, whether this model is useful or not for the other Be isutopes with a remarkable

cluster structure such as 5Be.

There are many other neutron-rich nuclei which have been left hardly studied yet. The
binding energies of neutrons of these nuclei show that some of them may have the neutron-
halo structure. It is very well known that, in the N =~ Z region with N and Z standing for
the neutron and proton numbers, respectively, the clustering structure appears as is seen in
the ¢ + a cluster structure of ‘Li and in the a + a cluster structure of 3Be [10-14]. However
little has been theoretically investigated about the existence of the cluster structure in the
neutron-rich side of Li and Be isotopes. The recent experimental developments demand the

theoretical research about these unsolved problems in the neutron-rich exotic region.

For most theoretical frameworks in light nuclei, it is not easy to make systematic re-
searches on isotopes ranging from ordinary nuclei to neutron-rich nuclei. First of all, the
applicability of mean field approach is not necessarily assured in light uuclei due to the ex-
istence of cluster structure. In fact it is very difficult for the shell model to describe such
light nuclei as “Li and ®Be which are known to have well-developed cluster structure. These
ordinary light nuclei with cluster structure have been well studied with the cluster model.

In the cluster model the existence of clusters is assumed from the beginning, that makes



the cluster model difficult to be used for the study of exotic nuclei for which we have little
information or data. If a nucleus has sheil-model-like structure instead of cluster structure,
the cluster model does not provide a good approach. To make a systematic research on
isotopes ranging from ordinary nuciei to neutron-rich exotic nuclei, it is desirable to use a
theoretical framework which can describe both shell-model-like states and cluster-like states.
The method of Antisymimetrized Molecular Dynamics { AMD ) [15-21} is the very theoretical
framework that satisfies these requirements and enables us to study isotopes of light nucle1

systematically in one framework without any model assumptions.

AMD is a theory which has been developed recently intending originally to construct
a new microscopic simulation method for the study of heavy ion reactions. Contrary to
other microscopic simulation methods for heavy ion reactions [28,29], AMD is a quantum
mechanical method since it describes the time development of the system wave tunction.
The total wave function of AMD is a Slater determinant of single particle wave functions
represented by Gaussian wave packets. AMD describes the reaction process by calculating
the time evolution of the 6A variables representing the position and momentum centers
of the Gaussian wave packets. The initialization of the collision calculation. namely the
construction of the ground state wave functions of colliding nuclei, demands us to determine
these variables for the the ground state wave functions. It is made by the frictional cooling
method which is a kind of variational calculation. The method to construct the minimumn
energy wave function by the use of the frictional cooling technique in AMD provides us with
a novel and powerful tool for the nuclear structure study because we have no need at all to
rely on model assumptions. According to some preliminary studies {15,16], the AMD wave
functions obtained by the frictional cooling method can describe well both the sheil-model-
like structure and the clustering structure. For instance, the AMD wave function of the 160
ground state has proved to be of the double closed shell configuration, (0s)*(0p)!?, and that
of the 8Be ground state has proved to have a well-developed dumbbell structure of « -+ o.
Recently AMD was successfully applied to the study of the structure change along the yrast
line of 2Ne [27]. In this study the cranked intrinsic state was constructed for each spin-
parity state along the yrast line by the use of the frictional cooling method with constraint
on the expectation value of the angular momentum. This AMD approach enabled us, for
the first time without introducing any model assumption, to describe the quite dramatic
change of structure along the Ne yrast line: namely the a+160 clustering structure in

low-spin region, the (sd)* shell-model-like structure around the band terminal 8% state, and

the appearance of “12C + 2o"-like structure in 10% and 127 states.

The purpose of this paper is to study systematically the structure of Li and Be isotopes
with AMD which is free from any model assumptions. By virtue of the use of AMD, we
expect that we can trace the structure-change along the increase of the neutron number N
even if the structure-change is so drastic as the change from the cluster structure to the
sheil-model-like structure. Specific problems we expect to elucidate in our systematic study
of these isotopes include the following ones: We expect we can answer the question whether
the ciustering structure observed in the V & Z region persists or fades out as N increases.
Another question to be answered is why the magnetic moment of the exotic nucleus *Li
with neutron halo is ciose to the Schmidt value while that of the ordinary nucleus 7Li is

fairly different from the Schmidt value.

As for the problem about the formation and dissolution of clusters in neutron-rich nuclei,
we have a ptoneering work by Seya, Kohno, and Nagata [30] on Be and B isotopes. In this
work of Ref.[30], the molecular orbital model was adopted whick described the system as
composed of an a-a core and surrounding neutrous ( and proton in B isctopes). It was found
that the distance between two a’s changed, along the increase of NV, from the large values in
8Be and ?B to the very small values in '?Be and 3B which have the magic number N = 8
for neutrons. Furthermore, as a very interesting result, it was fouud that the a-o distance
increased again as N increased beyond N = 8 toward the neutron dripline. A drawback of
this pioneering work is that the existence of an a-a core was postulated from the beginning.
In our present approach with AMD, we can check whether this postulation is justified or
not. Especially, we expect that we can answer how plausible the existence of the clustering

feature is in the neutron dripline region.

This paper is organized as follows. In the next section ( Sec.Il ) we explain the formula-
tion of AMD for our present study of nuclear structure. Namely we explain the AMD wave
function, the frictional cooling method, and the angular momentum projection. In AMD
for the structure study, we use not only a single Slater determinant for the wave function
but also a superposition of Slater determinants. In some cases, it is important to make the
superposition after the angular momentum projection. In Sec.IIl, the two-nucleon interac-
tion used in this paper is explained. The calculated results are given and are compared
with data in Sec.IV. Energy spectra and other quantities are shown to be well reproduced.
Especially the systematical change of the observed magnetic dipole moments are excellently

reproduced. It will be shown that the density dependent interaction is often important to



explain the observed data. We will show that the superposition of AMD Siater dectermi-
nants describes the long tail of the wave function in two cases, the neutron halo structure
in 'Be and the cuter tail of the relative wave function of o-t clusters in "Li. In Sec.V we
will discuss the systematical change of the intrinsic states. The calculation results show the
well-developed cluster structure in the nuclei with N ~ Z and the shell-model-like structure
in the nuclei with the neutron magic number N = 8 . It means that the shell effects of
neutron orbits play an important role in the structure of neutron-rich nuclei. The change
of the observed magnetic moment from "Li to 'Li is explained mainly by the change of
the clustering structure of “Li to the shell-model-like structure of 1'Li. Possible existence
of clustering feature is seen in the neutron-richer nuclei like Be. Finally in Sec. V1 we give

summarizing discussions.

1I. FORMULATION OF AMD

The AMD ( Antisymmetrized Molecular Dynamics ) is a theory which is applicable both
to nuclear structure problems and to heavy-ion collision problems. Here we only explain the
AMD framework for the sake of nuclear structure study. As for the AMD theory for the

sake of nuclear reaction study, the reader is referred to Refs. [18] and {19]. Since the AMD

framework for the structure study has recently been given also in Ref.{27], our explanation

here is brief within keeping a self-contained style.

A. Wave function of AMD

In AMD the wave function of A-nucleon syster |®) is expressed by a Slater determinant,

—

18(Z)) = ——\/lfldet [o5)], 05 =92, %,

where x,, is the spin isospin wave function of j-th single particle state, where o) indicates
the spin isospin, a; = pT,pl,nf,or n|. The spatial wave function of the j-th single particie

state ¢z, is represented by a Gaussian wave packet,

(rlpz,) = (%—?) Y exp [—u(r - %)2 + %zf}

ocexp[—u(r—Dj)2+%Kj~r]. (2)

i
Z; = \/;Dj + 2-h—-‘/—;‘Kj,

whose center is expressed with a complex parameter Z;, where v is the width of the wave

packet common o all nucleons. Thus the wave function of the system [®{Z)) is parameterized

by complex parameters {Z} = {Z1,Z2,...,Z4}.

The wave function |®(Z)) of Eq.(1) is the same as the wave function of the Fermionic
Molecular Dynamics proposed by Feldmeier [31]. Furthermore, {$(Z)) can be regarded as a
special case of the Brink-type cluster model wave function [32] where every cluster is com-
posed of a single nucleon. When the parameters of the Brink-type wave function are treated
as time-dependent parameters by using the time-dependent variational principle, the Brink-
type cluster model is called the time-dependent cluster model { TDCM ) {33]. Therefore,
|®(Z)) can be also regarded as a special case of the TDCM wave function. The reason we use
the name AMD for our present approach to nuclear structure problems is mainly because our
approach is characteristic in the point that it is always combined with the frictional cooling
method which determines the parameters of the wave function often under given constraints.
Other characteristic points of our approach are the use of projection of parity and angular
momentum and the frequent use of the superposition of Slater determinants. ( In the case of
heavy-ion collision problems, the reason why we use the name AMD is mainly because our
approach is characteristic in the point that the stochastic two-nucleon collisions are treated

by introducing the physical nucleon coordinates. )

For the study of nuclear structure, the AMD wave function {$(Z); explained above is

projected to the parity eigenstate,
|©%(Z1,Za,...,Z4)) = (1 £ P)|®(Z1,2Za,...,Z4)), (3)

with P standing for the parity inversion operator. Since different parity states of a nucleus
usually have different structures, this projection is indispensable to discuss the structure
of each parity state. Furthermore we often make a linear combination of two AMD Slater

determinants for more precise study of the nuclear structure,
9% (Zy..... 24, Zh, .., 2y, C)) = |05 (Zn,. .., Za)) + ClOF(ZY,.. . ZL)). (4)

Note that the number of complex parameters of the wave function of Eq.(4) is 64 + 1 while
that of the original AMD is 3A. In this paper, for the sake of convenience, we call the wave
function of Eq.(3) simply as AMD wave function, and the latter one in Eq.{4) as Extended
AMD (EAMD) wave function.



B. Frictional cooling method

As mentioned in subsection A, the AMD wave function of a system |$%(Z)) is parame-
terized by the centers of Gaussian wave packets {Z} = {Z,2,,...,Z4}. Let us consider to
construct the ground state wave function of the system. First we choose some initial param-
eters {Z} of all A nucleons rather arbitrarily. The initial wave function |{®%(Z)) with this
initial choice of {Z} represents in general a highly excited state. We should determine the
parameters {Z} which give the minimum energy for the expectation value of the Hamjltonian
H

E=Ez7)= (SH(Z) H@HZ))
(2%(Z)|2%(2))
For this purpose we introduce frictional cooling equations for {Z} expressed as

dZy, 1 9E

7 = (A + 2[14)77’-’5-2“2- and cc (6)

with arbitrary real numbers A and g < 0. It is easily proved that the energy decreases with

time if the system follows this equation;

dB -\ 9E dz; O dz
dt < 9Z; dt  9Z7
A = [

lg-z—,-é—z_f<0

i=
Then the wave function of the minimum energy state is obtained after sufficient cooling time.
This cooling method explained above is called the frictional cooling method. Obviously the
frictional cooling method can be used not only in the AMD but also in the general variational
calculation with any kind of wave functions which are parameterized by complex parameters.
Therefore just in the same way as AMD, we can obtain the minimum energy state of the

Extended AMD wave function described in subsection A.

C. Constrained frictional cooling method

The frictional cooling method can be extended so as to construct the minimum energy

state with a given constraint. The constraint is written by a constraint function as
W= W(Z“, Z) = given number. (8)

The constraint function is restricted to be real. An example of the constraint is the magnitude

-1

of the orbital angular momentum. In this case the constraint function W(Z“, Z) is chosen
to be

W(z*,Z) =L(Z2*.2) - 1(Z*,7),
d
(%(Z)| T —i)=— }|®%(Z)) (9
(@ (r % ( z)?rj)l (Z))
(9£(Z)]2%(2Z))

L(z*2)=
First we assume that we have initial coordinates {Z™*} which satisfy the given condition;
W(Z™" Z'"*) = given number.

We introduce the following frictional cooling equation instead of Eq.(6);

aZi . .. 9E oW y
e (/\+1u) (BZ" "az*) and ee (10)

with arbitrary real numbers A and x4 < 0. The multiplier function 7 is determined by the

condition of conserving the value of the constraint function ’W';
A%z 2) =0 (11)
dt ’ - Y. b

By using Eq.(10) we have

—‘4 — ——
d— oW dZ; oW dZ}
—W(Z*,Z) = — J
prAACL) Z(azj @ oz dt)

oW 9E oW aW) 12)
oz, 9z " "9z; 92;) |
az; 97, " "0Z; 9%,

G W oW
n=-% F=2) 57 g
i=1 (13)
A —— ~ —— —~
A OW  OF AW OFE
g‘;[(l_"ﬁz"'a_z;f“l“;)é’if’éi}}

Cooling of the total energy is assured for arbitrary A if 4 is negative, because there holds



the following relation

d aﬁﬂ aE(_@
T ev\ozy dt " 9z dt

"Z{ h de__]8W>dZ;: h dZ;_ﬂOW)dZ;C‘;
B I AVEI SR~ A A "5z ) Tt

2uh dZy dz,, A=
. P LA
2+ A2 — dt dt dt

2uh dZ; dZ; <
U2+ A2 - dat dit

(14)

with arbitrary real numbers A and g < 0.

It is easy to extend this constrained frictional cooling method to the general case with

many constraints and also to the Extended AMD wave function.

The most important feature of the construction of the wave function in AMD by the use
of the frictional cooling method with or without the constraint is that the wave function can
be obtained without prejudice, i.e., free from any mode] assumptions such as the existence of
clustering. If the resulting wave function proves to have clustering structure, the existence of
clustering can be insisted more convincingly than other usual cluster mode! studies. AMD is

a new powerful method for the study of the formation and dissolution of clusters in nuclei.

D. Use of constrained frictional cooling method

in the actual calculation of Extended AMD

When we make calculations of the frictional cooling in the framework of the Extended
AMD (EAMD), we usually encounter the following problem. Let us consider our present
EAMD calculation in which we adopt a superposition of two AMD Slater determinants
|©3(2)) and |®3(Z')). In many cases, |$F(Z)) and |@E(Z')) after the frictional cooling
have proved to be the same except the difference of their spatial orientations. However, as
we explain in the next subsection, in our AMD study we always make angular momentum
projection from the AMD and EAMD wave functions in order to get eigenstates of the total
angular momentum. Therefore the above EAMD result that |[®F(Z)) and |®E(Z")) are the

same except their spatial orientations does not meet the aim of the EAMD calculation to

improve the AMD calculation.

The method which we adopt in this paper to avoid the above-mentioned difficulty of

the EAMD is to impose a constraint to the frictional cooling procedure. The constraint

is that the spatial orientations of [$F(Z)) and [®F(Z')) should be the same. The spatial
orientations of }d’f( Z)) and {®F(Z')) are defined in the following way. As we will report
later in this paper, the AMD results show that in Li isotopes wave-packet centers of two
protons with spin up and down are located at almost the same spatial points and the last
proton wave-packet center is located at a different spatial point, while in Be isotopes we
have spatially separated two pairs of protons with spin up and down and within each pair
two protons are located closely to each other. Therefore as the definition of the orientation
of the AMD wave function for Li and Be isotopes, we adopt the direction which connects

two groups of protons.

The constraint function W(Z*. 2'* Z, Z') is given as follows,

— Y. Y
W,r Z*.Z"*,Z,ZI = ,
@ )= T
1 1
X’E*fZReZ]—_ZReZ]. 15
"(G”,-ec. n(G2)j€GZ (15)
1 1
Y = Z ReZ) - —— Z ReZ/,
M S, nG2) 2,

where G and G stand for two groups of protons explained above, and n(Gy) and n(G2) are
numbers { one or two ) of protons contained in the groups Gy and Gy, respectively. Here, of
course, wave packet centers {Z;} and {Z}} are those of |®7(Z)) aud |95(Z')), respectively.
Initial coordinates {Z;“‘} and {Z’;“‘} for the procedure of the constrained frictional cooling
are chosen so as to satisfy W(Z2t*, Z/"™"*, Zi»t Z/"™) = 1, but the protons belonging to the
same group G or G2 need not to be located closely to each other in the initial configurations

{Z™} and {2}

E. Projection to total angular momentum eigenstates
The wave fungtion of the system should be a total-angular-momentum eigenstate. It is
however difficult to cool the total-angular-momentum projected state of AMD wave function.
We regard the minimum energy state which is obtained with the cooling method described

in subsections B and C as the intrinsic state of the system. We project the intrinsic wave

function |®¥) to the total-angular-momentum eigenstates, and then calculate the expectation

10



values of operators in order to compare with experimental data;

<PI{1K¢iIT:=OIPZ{IK(Di> - T
(P ®%|Pi 9%) N

T = (JMIcO|JM')Z(JK’ku]JK)/dQD{\-‘.K(Q)(@ﬂTl‘R(Q)!@*), (16)
K'v

N = [ daDf @)@ R 5%,

4

where P]{l K 18 a total-angular-momentum projection operator,

Pl = / JODL(R(Q), o

with R(§)) standing for the rotation operator by Euler angle (i, and T;‘ is a given tensor
operator of rank k. K should be chosen so as to get the minimum expectation value of the
Hamiltonian in each system. The R-mixing, namely the diagonalization of the Hamiltonian
with respect to the K quantum number is not made in most cases, but in some cases we
show resulits obtained by A-mixing calculation. The spin J of the calculated ground state
has been found to be the same as the observed spin value of the ground state for almost
every system studied here. In the practical calculation, the three-dimensional integral is

evaluated numerically by taking finite number of mesh points of the Euler angle (.

III. INTERACTION
For the effective two-nucleon interaction, we have adopted Volkov No.1 force [34] as
the central force. The Volkov force contains only Wigner and Majorana compounents. For
some nuclei treated in this paper, we have made calculations by adding appropriate Bartlett
and Heisenberg components to the Volkov force. But the results have proved to be not so
much affected by the additional components at least for the quantities studied in this paper.
We are now making more detailed investigations about this point which will be reported

elsewhere. As for the two-body spin-orbit force V5 we have adopted the G3RS force [33]
expressed as

Vis = {urexp(—kr?) + ug exp(~kgr?)} PCOIL - (S; + S5).
.
L=rx (—-za), ur = —upg = 900 MeV, (18)

kr=50fm™2 ky=2.778 fm™2,
with r denoting the two-nucleon relative coordinate and with P(0) denoting the projection

11

operator onto the triplet odd (30) two-nucleon state. Coulomb interaction is approximated
by a sum of seven Gaussians following the technique of Ref.[19]. This approximation is valid
for the range of the inter-nucleon distance from 1 fm to 20 fm, and is precise enough for the
study of nuclear structure. In order to study the effect of the density dependent interaction,
we have also used the case 3 of the MV1 force of Ref.[36] which contains a zero-range

three-body interaction Vgg in addition to the two-body interaction V, l()zl)):

2 , s T
Vo = (1= m = mPyPr) | Vs exp(~(-)") + Vrexp(~(-)%)],
Vi = —83.34 MeV, r4 =160 fm, Vi = 104.86 MeV, rg = 0.82 fm, (19)
VY = o®g(e; — 10)8(r; — 13}, o) = 4000 MeV - fm®,

where F, and P; stand for the spin and isospin exchange operators, respectively. The
two-body interaction part Vgg 1s constructed from the Volkov No.1 force by weakening the
strength of its repulsive part from Vi = 144.86 MeV to Vg = 104.86 MeV. We have compared
the results with and without the three body interaction. The optimum width parameter v
of wave packets is chosen for each parity of the individual system so as to get the minimum

energy.

IV. CALCULATED RESULTS AND COMPARISON
WITH EXPERIMENTS

The structure of odd-even and even-even isotopes of Li and Be have been studied with
AMD and the results are reported in this section. For Be isotopes. studies have been made
also with the Extended AMD. We have checked the values of the momentum parameters
{K;, =1,...,A} of the AMD wave function obtained with the frictional cooling method
and have found that {K;} parameters of all the nucleons are small in all the nuclei studied

here .

A Binding energies and energy spectra

Figure 1 shows the binding energies of the ground states of Li and Be isotopes. We have
used the Majorana parameter m = 0.56 in the case of no three-body force ( Volkov force )
and m = 0.576 with the three-body force ( MV1 force ). The optimum width parameters
v are shown in Table I. With both the interactions, binding energies are qualitatively re-

produced for Li isotopes and also for Be isotopes except for 1!Be. In Li isotopes the MV1

12



force gives better fitting to data. The calculated result of Be is that of the towest &7
state. Detailed discussions about the energy and the parity of the 'Be ground state will
be given later. For the discussion of the neutron halo structure, it is important o precisely
reproduce relative binding energies between neighboring nuclei, since the density tail of the
neutron hale must be very sensitive to the binding energy of valence neutrons. Hence for the
study of neutron halo structure, it is necessary to give careful consideration in choosing the
Interaction parameters because the energies depend rather sensitively op some parameters

such as Majorana parameter for the Volkov force.

The caiculated energy spectra with and without the three-body interaction are shown and
are compared with the observed data in Fig.2 for Liisotopes and in Fig.3 for Be isotopes. The
second J* levels with the three-body force are obtained by diagonalizing the Hamiltonian
matrix with respect to the K quantum number in the spin J projected states. For the lowest
JZ* states the diagonalization of the Hamiltonian gives almost the same energy spectra as the
spectra without the K-mixing. This means that K is approximately a good quantum number
in the lowest J* states projected from the AMD wave functions. The spectra with the three-
body force are found to have larger moment of inertia than those without the three-body
force. The three-body force gives greater effects on the energy difference hetween normal
parity and non-normal parity states and the calculation with the three-body interaction is

seen to reproduce the energy spectra well except for }!Be.

The results of the AMD calculation without the three-body force give larger value for
this energy difference than the observed value in the system of most Li and Be isotopes. On
the other hand, in the results with the three-body force the excitation energy of non-normal
parity states come down and agree much better with the experimental data. Io general
non-normal parity states have wider extension of the density distribution and feel relatively
weaker repulsive density-dependent force than normal-parity states. It is the reason why the
calculation with the three-body force gives smaller excitation energy of nou-normal parity
states than that without the three-body force.

The density-dependent force seems to be important especially for the system of 'Be. In
terms of the shell model, the normal parity of the !'Be system should be negative, but it is
experimentally known that the ground state is a non-normal positive parity %“L state and the
lowest %" state is excited by 0.32 MeV. In the AMD results without the three-body force.
the lowest %+ state is not the ground state but is excited by about 7 MeV from the lowest

-;-—. With the three-body force, the lowest %+ state has less excitation energy of about 5

13

MeV. Interaction parameters can be adjusted so as to get better agreement with data. For
example when we use Majorana parameter m = 0.65, the calculated result becomes better
and about 3 MeV is obtained as the excitation energy of the lowest %+ state. The careful
choice of the effective interaction is one of the important points for the reproduction of the

non-normal parity ground state.

There are left other important probiems. Fukunishi, Otsuka, and Sagawa [9] have studied
the structure of 1!Be with the approach which they call the variational shell model and have
obtained the positive parity ground state. They discussed that such a low excitation energy
of the non-normal parity state largely owes to its deformation and to the neutron halo
structure. Unfortunately it is not straightforward for the AMD to express the long tail of
neutron halo structure because the single particle wave function of AMD is described with a
simple Gaussian wave packet. A superposition of some AMD wave functions is necessary for
this problem, and we have tried to make Extended AMD calculations with a superposition
of two Slater determinants. The lowest positive parity state obtained with the EAMD, in
which the neutron density distribution is spatially more extended, has about 0.5 MeV lower
excitation energy than in the AMD calculation, but, the improvement of the excitation
energy is too little to reproduce the positive parity ground state. Further extensions of the
AMD wave function should be tried. By supposing that the AMD method can well describe
the single particle wave functions of the nucleons other than the last valence neutron { or
halo neutron) which is located at a somewhat isolated position from other nucleons, we have
adopted the following method in order to see what structure is prefered by the last valence
neutron in the lowest positive parity state of 1'Be. The single particle wave functions of the
other ten nucleons have been fixed to be the same as the AMD result of }'Be. Ounly the
wave function for the last valence neutron has been described by a superposition of some
Gaussian wave packets which have the same width parameter v but different centers Zq1’s.
We have determined the coefficient of each Gaussian in the superposition not by cooling but
by diagonalyzing the matrix elements of the Hamiltonian. This method has been applied
to each parity state of 'Be. When the energies are compared before making the angular
momentum projection, the excitation energy of the lowest positive parity state has become
by 0.9 MeV smaller than in the AMD calculation. Since the neutron-halo structure is directly
concerned with the radius of the nucleus, we will discuss the !Be problem again in the next
subsection. In the neutron-richer nuclei of Be, some excited levels have been observed. But

the spin parity J* of many states have not been identified yet. The AMD calculation with

14



the density dependent force suggests that some states of non-normal parity may exist 1o the

rather low excitation energy region in '*Be which have deformed structure.

B. Radii of nuclei

Figure 4 shows the comparison of the theoretical values of the radii of Li and Be 1sotopes
with experimental data. The calculated radius of 1*Be is that of the lowest %+ state. Dotted
lines are the AMD results without the three-body force, dashed lines the results with the
three-body force, and solid lines the EAMD results with the three-body force.

Experimentally observed radii of Be-isotopes are seen to be qualitatively reproduced by
the calculations of AMD with the three-body repulsive force, while without the three-body
force the calculated radii are too small especially in neutron-rich systems. These results show
that the density-dependent repulsive force is important to reproduce the large observed radii.
We cousider the reason is as follows: Since the three-body repulsive force works weaker in
the low density region, the state prefers having the density distribution extended to spatially

wider region, which results in the larger radius.

However even the AMD calculation with the three-body force can not sufficiently repro-
duce the large radii of neutron-rich nuclei such as !'Be that extremely deviate from the A!/3
law. Like the problem about the energy difference between different parity states in the *'Be
system discussed in the previous subsection, one of the important points for this problem of
the large radius is the careful choice of the effective interaction that is to say the adjustment
of interaction parameters. The nuclear radius as weil as the binding energy is very sensitive
to the choice of the effective interaction. For example, if we use the Majorana parameter
m = 0.65 in the AMD calculation with the three-body force, the radius of the %+ Be state
increases up to a large value, 2.78 fm, that is as large as the experimental value. In fact it
is generally reasonable to adopt larger m value in a nucleus with larger mase number, and
the use of the fixed value of the m parameter for all the isotopes is not necessarily justified.

Hence the value m = 0.65 may not be so unnatural for 1!Be.

The extremely large radius of the !Be ground state is of course directly related to
the neutron halo structure of this state. In the previous subsection, we have reported the
calculation in which we have made the superposition of several Gaussians of the last valence
neutron. This calculation has been made with the expectation that the reproduction of the
long tail of the last valence neutron may reduce the large energy gap between different parity

states. The radius obtained by this superposition calculation is 2.33 fm, which is only by
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0.0 fm larger than the value obtained by the simple AMD calculation. On the other hand,
much difference is found in the result of the neutron density distribution as shown in Fig.5.
The dashed line shows the proton density distribution and the solid line shows the neutron
one for the %+ ! Be state. Contrary to the proton density, the solid line of neutron density
has a long tail with low density in the outer region from 5 fm to more than 10 fm. On
the other hand, in the case of the simple AMD calculation, the neutron density distributes
in almost the same way as the proton density and has no tail. However when compared
with the phenomenologically-determined density distribution which provides a good fit to
the cross section of the neutron dissociation reaction, the tail described in our result is by
about one order smaller in the region around 10 fm. Here we should make a remark that

the calculated é+ !1Be state still has a higher energy than the 1°Be-+n threshold energy.

Also in the calculated results of Li-isotopes, the AMD and EAMD have not been able to
sufficiently reproduce the large radius of *'Li that deviates largely from the A'/3 law. The
small binding energy of '1Li has been considered to be very important to describe its large
radius. It implies the importance of the exact reproduction of the binding energy which is
sensitive to the interaction parameters. Besides that, further extensions of the AMD wave

function may be necessary for the precise description of the neutron-halo structure.

C. Magnetic moments

The calculated results of magnetic dipole moments are not sensitive to the interaction
parameters except for 1'Be. Almost the same values are obtained with and without the three-
body force in the AMD calculations and even in the EAMD calculations except for the 1Be
system. The results of the AMD calculation given in Fig.6 show very good agreement with
the experimental values for even-odd isotopes of Li and Be. It should be emphasized that
the AMD method is the first framework which has succeeded in reproducing the magnetic

dipole moments systematically for these isotopes as long as we know.

The dependence on the neutron number seen in the observed values for Li isotopes is
expected to carry important information on the nuclear structure, because in terms of the
shell model the valence proton in the same Opj /2 orbital would give dominant effects on the
magnetic moments and hence almost the same value would be obtained for the magnetic
moments of all these isotopes. We will give detailed discussions about the dependence on

the neutron number of the system in the later section.

Contrary to Li isotopes, in the case of Be isotopes the wave function for the last valence
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neutron may contribute mainly, and it is important to make a closer discussion of the neutron
orbital itself. The magnetic dipole moment is measured only for ?Be, and the result obtained
with the AMD agrees well with the data. On the other hand, a little complicated problem
exists in the system of !!Be for which the experimental data have not heen obtained vet.
In the 1 Be system, two different states are eventually obtained with the AMD calculations.
The two states have almost the same values of the binding energy and the root-mean-squarc
radius, but they have considerably different magnetic dipole moments, —1.9 n.m. and —1.5
n.m.. In this situation, it is expected to be useful to apply the EAMD method with two
Slater determinants of AMD wave functions. With the EAMD calculation. the result of —1.0
n.m. is obtained. However, the calculations by the use of different interaction parameters m
and uy = —ugy of Vg give various results ranging from —1.5 n.m. to —1.9 n.m.. We need
more careful investigations in order to get a conclusion about the theoretical value for the
magnetic moment of !'Be, since there is left the problem to reproduce the observed large

radius which is concerned with the neutron-halo structure.

D. Electric quadrupole moments and B(E2) values

The electric quadrupole moments for even-odd isotopes of Li and Be caleulated with
the three-body force are shown in Fig.7 and are seen to reproduce weli the experimental
data. The AMD results without the three-body force are much smaller in absolute value
than the experimental data. It is not surprising that this situation is similar to the case of
the radii which have already been discussed in the subsection B. We can say that the small
values of quadrupole moments obtained without the three-bedy force are mainly due to the
problem not in the quadrupole deformation but in the radial density distribution. Although
the values with the three-body force seem to be still slightly smaller than the data, it is
not a serious problem, because about 10 percent larger values can be obtained just by using

m = 0.60 as the Majorana parameter instead of m= 0.576.

The theoretical value of the quadrupole moment of “Li shown in Fig.7 has been obtained
by improving the AMD wave function in the following way. As we discuss later in detail, the
AMD wave function of 7Li has proved to have a cluster structure of a+t. However, since the
single nucleon wave function of AMD is a Gaussian wave packet, the relative wave function

between o and ¢ is also necessarily a Gaussian wave packet of the form,
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When the clustering is well developed, the description of the inter-cluster relative wave func-
tion by a single Gaussian wave function is not sufficient because the relative wave function
spreads out toward the outer spatial region resulting in a long tail. The lack of the outer tail
part of the inter-cluster relative wave function may be sensitively reflected in the value of the
quadrupole moment. In fact, the AMD with the three-body force has given us rather small
value of the "Li quadrupole moment compared with the data. Therefore we have improved
the inter-cluster relative wave function of the AMD wave function by superposing several
AMD wave functions as described below. The trial AMD wave functions to be superposed

have been constructed by adopting the following changes of the original {Z} values,

Z)’———»Z]‘—Ff—,\/l_/.c, for j=1,...,4,

{

: (21)
Z,——)Z]~;\/;C, for j=5,...,7
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The trial AMD wave functions having different values of the displacement real vector C have
been all projected onto the %’—“ state in parity and angular momentum. The superposition of
these projected states has been made by diagonalizing the total Hamiltonian. The resulting
improved AMD wave function has proved to reproduce the quadrupole moment well as seen
in Fig.7.

Table II shows the E2 transition strength compared with the observed data. The
simple AMD calculations reproduce well the experimental data except for the strength
B(E2:1/2= — 3/27) of "Li. The theoretical value 7.51 e*fm* is much smaller compared
with the observed value 16.14 e*fm* for B(E2;1/2~ — 3/27) in "Li. As in the same way
as the case of quadrupole moments, the improved AMD wave function gives the strength of

18.57 e*fm* which is as large as the data.
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IV. STRUCTURE-CHANGE BETWEEN CLUSTER STRUCTURE
AND SHELL-MODEL-LIKE STRUCTURE

In section [1I we have reported the calculated results and compared them with the exper-
imentally observed values. We have seen that the observed values of various quantities which
show interesting dependence on the neutron number are reproduced by AMD qualitatively
or excellently as in the case of magnetic moments. It is important to analyze the intrinsic
structure of the obtained AMD states in order to understand the fundamental mechanism

of such characteristic dependence on the neutron number.

A. Deusity distribution

The deusity distributions of the calculated intrinsic states of Li and Be isctopes are
shown in the Figs.8 and 9, respectively. In drawing the figures, the density of each intrinsic
state is projected onto an adequate plane by integrating out along the axis perpendicular
to the plane. We see here systematic but drastic structure-change along the increase of the
neutron number. In the results of Li isotopes ( Fig.8 ), it is easily seen that the 7Li system
has the largest deformation with a cluster structure. 9Li also has a deformation whick is,
however, not as large as the one seen in "Li. *!Li has an almost spherical state that can
be expressed by a shell model wave function. In Fig.9 for Be isotopes, more interesting
features are seen. In this figure the density distributions of only the normal parity states
of Be isotopes are shown except the case of 'Be. Just like the structure-change from 7Li
to 1'Li, the deformation is most developed in ®Be which has a cluster structure and then
gradually decreases toward ?Be which has the most spherical shell-model-like structure.
What is novel and interesting in Be is the result that in heavier Be isotopes than !2Be the
deformation develops again as the neutron number increases. Rather large deformation is
seen in the positive parity state of 'Be which is known to have the ground state with the
anomalous positive parity. It is to be noted that deformation has been considered to be one

of the essential mechanisms for the decrease of the excitation energy of the 1/2% level in
lige,
B. Clustering aspect

As mentioned in Sec.I, it is well known that in the N =~ Z region of Li and Be isotopes
there appear well-developed cluster structures like the a-a structure of 3Be and the o-

t structure of "Li. Many theoretical studies by the use of the cluster model have been
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successfully made both for nuclear structure problems and for nuclear reaction problems.
However, there have been very small number of theoretical works which have ascertained
the formation of clusters microscopically without assuming the existence of any kinds of

clusters. The present AMD theory is a very suitable theoretical framework for the above-

mentioned ascertainment.

By checking the spatial centers of Gaussian wave packets given by the values {D} =
{ReZ//v}, we have found that the AMD wave functions of “Li and 3Be have actually the
a-t and a-o clustering structure, respectively. Further, the AMD wave function of ®Be has
been found to be of the a-a-n structure ( or o-*He structure ), which has also been well

known for a long time as the structure of “Be.

We are interested in how the clustering structure changes as a function of the neutron
number N. In Li isotopes, °Li has the $He+t clustering, although it is not so well-developed

as the « +1¢ clustering in the “Li. The heavier nucleus 1Li has no clustering structure.

Figure 10 shows the spatial configuration of the center of each Gaussian wave packet
for Be isotopes. The values {D} = {ReZ/\/v'} are projected to an appropriate piane. The
squares and circles correspond to protons and neutrons, respectively. In all Be isotopes, four
protons are always grouped spatially into two pairs. Each pair is composed of p T and p |
and 1s seen in the figure as just two squares located very closely to each other. The neutrons
except for the valence neutron in the even-odd Be isotopes also couple to compose some pairs
of n T and n |. It is shown that many of Be isotopes have two-center clustering structure
with at least one o cluster. One will ind the 2p + a clustering in the positive parity state of
®Be, 3He+a in "Be, a + « in ®Be, *He+« in °Be , *He+a in Be and the "He+a clustering

in the negative parity state of !!Be.

The degree of development of clustering structure is roughly estimated with the relative
distances between two pairs of protons which we show in Fig.11. The « clustering is most
developed in ®Be and it becomes weaker in heavier isotopes as the neutron number increases.
No developed clustering structure is found in ?Be with the neutron magic number N = 8.
In ¥Be and *Be which have neutron number N > 8, the clustering structure develops
again. In 13Be, the « is not so normal but is somewhat polarized with neutrons distributed
in the outer region. In 4Be, the distortion of « is larger since it is seen thai two valence
neutrons distribute in the further outer region. In Ref.[30] Be isotopes were studied with
the molecular orbital model which describes the Be isotope as composed of an -« core and

surrounding neutrons. It was found there that the inter-a distance decreases when going
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from 3Be to *?Be but increases when going from 2Be to *Be. Since the relative distanve
between two proton pairs mentioned above is similar to the a-a distance, their results are
consistent with ours which have been obtained without any assumption of the existence of

clusters.

The calculations of the Extended AMD present us with interesting results about clus-
tering features. In EAMD we have adopted the superposition of two parity-projected Slater
determinants which we denote as |$F(Z)) and |#5(Z")). In most of normal parity states of
Be isotopes, the main component i@f(Z)) has proved to be almost the same as the wave
function of the simple AMD calculation. The minor component |®3(2Z')) mixes in with only
small amount and gives an improvement for the description of the system with the major
component. By analyzing {Z'} in the minor component |®3(Z')), we have found that the
types of improvement made by |®%(Z")) can be classified into three types. The first type is
seen in the cases of Be and “Be. The state |®3(Z)) in "Be (°Be), has the same clustering
configuration SHe+a (2p + «) but with larger inter-cluster distance compared to the one m
the simple AMD result. On the other hand, {Z'} in |®F(2')} are distributed between the

two clusters so that the spatial region between the two clusters does not become too iow in
density.

The second type of the improvement is concerned with the relative wave function between
the clusters. In ®Be (°Be), the state |®(Z)) is found to have the same « + a {*He+a)
clustering structure as the one obtained by simple AMD. The second component |®F(Z'})
has the same clustering configuration, but its inter-cluster distance is larger by about 2
fm than the inter-cluster distance of |$¥(Z)). The total wave function |OE(Z))+|®F(Z))
results in improving the outer tail of the wave function of the relative motion between the
clusters. In heavier Be isotopes, we observe the third type of improvement by the minor
component [$F(Z"). In this case, |®5(Z))+|®E(Z")) represents the mixing of two different
channels of clustering. In '°Be, 'Be and '2Be, the main component |®F(Z)) represents
the ®He+a, "He+a and ®He+a channels and the minor component |®3(Z')) corresponds to
the SHe+°He, ®He+3He and *He+5He channels, respectively. In 3Be, the main component
|8F(Z)) has the 8He+He configuration with the polarized *He, while the minor component
|3 (Z')) has 8He+a + n structure with the valence neutron locating far from the center of
the nucleus.

More interesting aspect of clustering is found in the non-normal parity state of 'Be.

Figure 12 shows the spatial configurations of {ReZ/\/v} in |®F(Z)) and {ReZ'/V¥} in
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|{®F(Z'}) comparing with the result of simple AMD. The positive parity state obtained with
the simple AMD has the "He+a clustering feature (seen in Fig.12-a). On the other hand the
EAMD calculation gives the state with a mixture of a+%He+n and 3He+®He configurations.
Both configurations in the EAMD calculation differ from the one in the AMD calculation,
and they describe the behavior of the valence neutron far from the center better than the

simple AMD calculation.

Though the two states |®F) and g'bzi) are not orthogonal to each other, in most Be
isotopes it is found that the second state i@g) has a significant component orthogonal to
1®F) In the total wave function, |®F)+{®F), the orthogonal component to | is about 10
%. In Table III we show the percentage of the normalized component {$F)V = |25} /|||0F)]|
contained in the normalized total wave function |(<I>f: +OEHN = 1oy + o))/l oF) +
|BEN. 1V (@F|(2% + @F))Y|2. The above-mentioned fact that the main component [®F) is
very similar to the wave function of the simple AMD calculation which adopts one parity-
projected Slater determinant and that the second component i@?) mixes in with a small
mixing amplitude implies that the AMD study adopting only one parity-projected Slater

determinant is usually sufficiently reliable.

C. Indispensable role of parity projection in describing

asymmetric cluster structure

We here point out that the parity projection is essential for describing the precise struc-
ture especially concerning with the clustering aspects. As shown above, o + ¢ clustering in
"Li is described by the variational calculation by the use of the parity projected AMD wave
function. However when we have adopted the variational calculation without the parity
projection we have obtained the state not with the o + ¢ clustering configuration but with
t +n -+t clustering. The AMID wave function without parity projection is given by a single
Slater determinant, and its variational calculation is considered to be one of approximated
frameworks of the Hatree-Fock method. In any Hartree-Fock type theory which adopts a
single Slater determinant, the description of the a + ¢ clustering can be made only by a
parity-violating intrinsic state. But, usually the minimum energy is obtained not by parity-
violating configuration but by parity-conserving configuration. This is the reason why we
have failed to obtain the asymmetric configuration of a +¢ but have obtained the symmetric
configuration of t + 7 +1¢ in “Li in the AMD calculation without parity projection. We have

encountered the same situation in the study of ?’Ne [27]. By the AMD calculation with par-
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ity projection, we could confirm the existence of a+'%0 clustering in *°Ne. However, when
we made the AMD calculation without parity projection, we never obtained the asvmmet-
ric ( parity-violating ) a+1%0 clustering configuration but a symmetric {parity-conserving )
configuration. Therefore we stress here that the parity projection is important to describe
the structure of light auclei and it is sometimes dangerous to extract a conclusion with the
framework in which the functional space is restricted within a single Slater determinant

without parity projection.

D. Correlations of the structure change with the observed

electromagnetic properties

The drastic change of the intrinsic structure has been discussed in the previous subsec-
tions A and B. Our aim here is to understand the fundamental mechanism how the observed
electromagnetic properties reflect the systematical structure change. Furthermore we aim to

find what information about the nuclear structure can be given by the observed daia.

The observed magnetic moments of Li isotopes change systematically as the neutron
number N changes. The shift of the "Li magnetic moment from the Schmidt value 3.79
n.m. of the Ops/, proton orbit has been considered to be closely related with the clustering
structure. Below we discuss this point on the basis of our AMD calculations. An important
point of the AMD results which we need to remember in the following discussions is that
neutrons make no contribution to the calculated magnetic moments. This result is because
of the property of the calculated AMD wave functions of Li isotopes that neutrons are all
paired off, namely every spin-up neutron wave packet always shares the same spatial point
with a spin-down neutron wave packet. It implies that the total intrinsic spin of neutrons is
zero and the total angular momentum of neutrons is exhausted by the total orbital angular

momentum.

In the following discussions, one should recall that the clustering gives two kinds of
fundamental effects on the nuclear structure. One is caused by the spatial relative distance
between clusters ( spatial clustering ), and the other is concerned with the angular momentum
coupling of nucleons caused by the clustering correlation of nucleons ( cluster coupling of
angular momenta ). A typical example of the latter kind is found in the so-called shell-
model cluster which is the cluster appearing in the SUs coupling shell model configuration.
According to the Bayman-Bohr theorem {40}, the clustering wave function with the minimum

spatial separation of clusters is equivalent to the the SUj-shell-model wave function. As
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we see below, the effect of clustering on the magnetic moment is not due to the spatial
clustering but due to the cluster coupling of angular momenta. In order to exiract the
effect of the cluster coupling of angular momenta from our AMD wave functions, we have
artificially made the inter-cluster relative distance in the AMD wave function small so as
to get shell-model limit state. In practice we have transformed all the parameters Z; as
{Z} — {aZ} where a is a real constant that is sufficiently small. It should be noted that
this transformation does not largely affect the internal wave functions of clusters contained in
the AMD wave functions, because nucleons inside each cluster are located closely each other.
The state obtained in the shell model limit does not have the developed clustering in view
of the inter-cluster relative distance any more, but keeps the angular momentum coupling
correlation caused by the clustering structure of the original AMD wave function. Table
IV shows some electromagnetic quantities calculated with the angular-momentum-projected
states from the shell-model-limit intrinsic state mentioned above, which are compared with
the original AMD calculations. In Table IV we have also shown the expectation values of
squared total angular momenta of protons (Jf,) and neutrons (J2) and those of squared totai
orbital angular momentum of protons (Lf,). We see that the magnetic dipole moments in the
shell model limit are almost the same as the original AMD and reproduce the experimental
data. Furthermore we see that the values of (J%), (J%), and (L2) in the shell model limit are
close to those of the original AMD. These results given in Table IV confirm that the angular
momentum coupling of nucleons in the shell-model-limit wave functions is similar to the one
in the original AMD wave functions, and that the magnetic moments are not sensitive to
the spatial clustering but to the cluster coupling of angular momenta. Below we explain
the characters of the angular momentum coupling of nucleons in the shell-model-limit wave
functions. These characters are of course different from those of the j-j coupling shell model

wave functions when the original AMD wave functions have clustering structure.

In Li isotopes, the magnetic dipole moments in the shell model limit are determined
by the orbit of only the third valence proton in Op orbits. In Li with the closed shell for
neutron orbits, (J2) is 3.75 ( = 3/2(3/2 + 1) ) and (J2) is 0 in the shell model limit. This
is because the angular momenta of all neutrons couple totally to 0 and only the Opy /2 Orbit
is allowed for the the valence proton orbits in the ground state with total spin 3/2. In this
case the magnetic moment 4 is as large as the Schmidt value. In 7Li, the magnitude 2.61
of (J2) implies that the component with the non-zero total angular momentum of neutrons

is considerably large. It is to be noted that, as we mentioned before, the total angular
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momentum of neutrons is equal to the total orbital angular momentum of neutrons. The
magnitude 3.12 of (JZ,) which is smaller than 3.75 is due to the mixing of Ops/ with Opy /s, and
this proton anguiar momentum couples with the non-zero angular momentum of neutrons
S0 as to compose totally 3/2 spin. This Op;;; mixing in proton orbits reduces the p value
from the Schmidt value. %Li has the medium properties between L1 and "Li. lu Table IV
we see that the Opy/, mixing of proton in Li is smaller than in "Li but is larger than mn Li
and also that the total angular momentum of neutrons in ?Li is smaller than in "Li but is

larger than in *Li.

In summary, it is concluded that the dependence of the p-moments of Li isotopes on
the neutron number IV originates from the angular monentum coupling correlation caused
by the clustering structure. Our results shows that the magnetic moments is not sensitive
to the relative distance between clusters and that the observed data gives little information

about the detail of the inter-cluster relative motion.

In contrast to dipole moments, electric quadrupole moments are sensitive to the relative
distance between clusters. in the following discussion of the N-dependence of the electric
quadrupole moments, we try to decompose the calculated (3-moments into two components:
the first component is due to the spatial clustering and the second component 15 due to
the other properties of the AMD wave function including the cluster coupling of angular
momenta. We regard that the second components are given by the Q-moments calculated
by the skell-model-limit wave functions defined above. They are shown in Table IV together
with the Q-moments of the AMD ealculation and are-15.1, -23.28 and -29.41 e-mb for "Li, SLi
and '1Li, respectively. These values show that the second component becomes smaller as the
neutron number N decreases. Such NV-dependence can be explained by the argument similar
to that made for y-moments about the mixture of proton’s Op; /2 and Opg;o orbits. The mixing
of the Opy/; proton configuration into the Op; /2 broton configuration is larger for smaller N.
It makes the Q-moment smaller for smaller N because of the fact (Op, /21Q°P[0pyyp) = 0
with Q°P standing for the Q-moment operator which is a tensor operator with rank two.
By subtracting this component from the total Q-moments { namely the Q-moments of the
AMD calculation ), we obtain the first component which is due to the spatial clustering. The
first component becoines smaller as the neutron number increases from Li to 1'Li. Such
dependence of the first component on the neutron number is consistent with the drastic
change of clustering structure. Thus the systematical experimental data are qualitatively

explained by the structure change seen in our AMD results. The AMD value of the Li
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-moment given in Table IV is not the value obtained by improving the a-t relative wave
function mentioned in Sec.{II-D but the value obtained by using single parity-projected AMD
Slater determinant. Yet the first component of the Q-moment is largest for 7Li than for 9Li
and 1Li.

Finally we analyze the AMD wave functions by calculating the total number of the
oscillator quanta. The state with clustering structure usually contains large amount of the
high-lying shell-model orbits and gives larger expectation value of the total number of the
oscillator quanta than the state with the shell-model-like structure. Gur analysis is made
separately for the neutron and proton orbits. We introduce the value AN, and AN, which
stand for the deviation of the proton and neutron orbits in the AMD wave function from

those in the simple shell-model wave function;

(P P*INDP I Py B%)
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where Ny and N3” are the oscillator quantum number operators and N2 and N2 are
the minimum oscillator quantum numbers given by the simple shell model for protons and
neutrons, respectively. The state with shell-model-like structure should have small AN
values, while the state with well-developed clustering structure should have large values of
AN. Figure 13 shows AN, and AN, of Be and Li isotopes. For both Li and Be, AN, is
quite large with the neutron number N = 4 and it decreases as N increases. AN, has the
smallest value 0 in the nuclei with neutron magic number N = 8, and it increases again as
NV increases in the region with N > 8. Such neutron-number dependence of AN,, directly
reflects the shell effect of neutron orbits. We see that the AN, for proton orbits has almost
the same dependence on the neutron number N. A very interesting fact is that the shell effect
of neutron orbits is reflected on the proton orbits which have close relation to the electric
and magnetic properties. What causes the clustering structure is such feature that protons
behave accompanying the neutrons orbits. This feature is fundamental for the mechanism

of the N-dependence of the electromagnetic data.
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V. SUMMARY

Structure of odd-even and even-even Li and Be isotopes have been studied with AMD
{ antisymmetrized molecular dynamics ). Energy spectra and other quantities bave been
reproduced well. AMD is the first framework which has succeeded in reproducing systemat-
ical data of electric and magnetic properties such as magnetic dipole moments and electric
quadrupole moments in wide range of light isotopes. In our AMD framework we never
need to introduce the effective charge but we use only the bare charge. It is because the
drastic change of proton orbits from clustering structure to the shell-model-like structure is

described automatically by the AMD wave function.

It has been ascertained that the well-developed clustering structure appears in *Li and
8Be without assuming the existence of any kind of clusters. The clustering structure seen
in the N ~ Z region of Li and Be isotopes gets weaker as the neutron number N increases.
and changes toward the shell-model-like structure in *Li and ?Be with the neutron magic
number NV = 8. It is suggested that possible clustering aspects appear again in neutron-richer
region like 1*Be. Thus the drastic structure change as a function of the nentron number N

has been explained in connection with the shell effect of neutron orbits.

N-dependence of electric and magnetic data has been discussed in relation with the
structure change. It has been shown that systematical data of Li isotopes directly reflect the
drastic structure change between clustering structure and shell-model-like structure. Strictly
speaking, N-dependence of y-moments has been explained in terms of the cluster coupling
of angular momenta, namely the angular momentum coupling correlation of nucleons which
1s caused by clustering structure. In the case of Q-moments which are more sensitive to the
nuclear deformation, N-dependence has been explained in terms of two effects of clustering
structure; one is the spatial clustering and the other is the cluster coupling of angular
momenta.

We have also tried to make Extended AMD calculations with a superposition of two
parity-projected Slater determinants for Be isotopes. It has been found that in most cases
the first Slater determinant which is the major component is almost the same as the wave
function of the simple AMD calculation and the second Slater determinant which is the minor
component is not so large and gives an improvement for the description of the system with
the major component. Therefore the AMD calculation by the use of single parity-projected

Slater determinant is approved to be sufficient for describing leading properties of nuclear
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structure. In some nuclei, however, two Slater determinants have been found to describe two

channels of different clustering configurations.

In some cases, further improvements of AMD wave functions have been found to be
important. For example, the improved AMD calculation which adopts a superposition of
several Slater determinants has proved to be necessary for the J* = 1/2% state in !Be in
order to describe the behavior of the valence neutron better than the simple AMD and also
in order to give better results about the energy and radius, even though the reproduction
is not sufficient yet. We have shown that a superposition of several AMD wave functions
reproduces the long tail of the wave function in two cases, the neutron halo in 'Be and the

a-+t relative motion of "Li.

We have found that the density dependence of the effective interaction plays important
roles in getting better agreements with data of radii, electric quadrupole moments, and low
excitation energies of non-normal parity states. These quantities are sensitive to the density
distribution. Our results show that the density dependence of the effective interaction is
indispensable in obtaining better reproduction of density distributions in a wide range of
isotopes,

It is expected that many kinds of interesting structure exist in excited states of neutron-
rich nuclei. Though some low excited states have been described by angular momentum
projection from the intrinsic state obtained with AMD, the detailed structure of excited
states are to be studied by using the constrained frictional cooling method in the AMD
approach. Such kind of study has been already made in ?*Ne for the investigation of the

structure change in yrast states [27].
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Table I

The adopted width parameters v of Be and Li isotopes in the AMD calculations.

They are chosen so as to make the energies minumum.

t3 = 0MeV  f3 = 4000 MeV
m = 0.56 m = 0.576
(fm™2) {in~?%)
5Be(+) 0.215 0.195
"Be(-) 0.230 0.200
8Be(+) 0.250 0.205
9Be(-) 0.245 0.195
9Be(+) 0.235 0.200
10Be(+) 0.230 0.190
0Be(—) 0.225 0.180
Upe(-) 0.220 0.180
UBe(+) 0.220 0.180
12Be(+) 0.215 0.175
12Be(—) 0.210 0.180
13Be(+) 0.205 0.170
Y4Be(+) 0.210 17
TLi(~) 0.230 0.200
OLi(+) 0.210 0.180
ULi(+) 0.195 0.170

Table 11

The E2 transition strength B{(E2;I; — I2). The theoretical values are the AMD
results calculated with the interaction parameters m = 0.576 and ¢ = 4000MeV.

In 7Li the strength B(E2;1/2~ — 3/27) calculated with the improved AMD wave

function is shown in the parenthesis.

B(E2)
TRANSITION | ENERGY EXP. THEORY
(I, = I2) (MeV) (e?fm?) (e*fm*)
L 1/27 = 3/2° 0.48— 0 16.14 7.51 (18.57)
7/27 = 3/2 4.63— 0 3.51 4.72
9 Be 5/27 ~ 3/2~ 2.43— 0 27.8 18.35
T/27 = 3/2 6.76— 0 7.24 7.73
10 Be 2+ — 0F 3.37T = 0 10.49 9.46

Table III

Percentage of the normalized compornent |®1)Y = |®;)/]||®1)]| contained in the

i
normalized total wave function |(®1 + @2)) = (|€1) + |@2))/1[|®1) -+ |®2)]}.

IM(@1)(@1 + D))V
Be(-+) 0.83
"Be(—) 0.84
3Be(+) 0.83
9Be(—) 0.90
10Be(+) 0.85
1Be(-) 0.96
11Be(+) 0.88
12Be(+) 0.96
13Be(+) 0.90




Table IV

Comparison of various quantities calculated with the AMD wave functions to those cal-
culated with the shell-model-limit wave functions of AMD. The notations, (J3}, (J2) and
(Lf,} are explained in the text. The experimental data of the magnetic dipole moments y
and the electric quadrupole moments @ are also shown for comparison. The expectation
values are calculated with the total angular momentum projected states. The adopted

interaction parameters are m = (0.576 and ¢ = 4000 MeV.

@ Q <¥> <B> <Lix
{n.m.) (e-mb)

EXP. 327 -40(3) ~ - -

TLi AMD 3.15 -27.6 3.31 2.74 217
shell model 3.14 -15.1 3.12 2.61 2.00

EXP. 3.44 -27(1) — - -

9 Li AMD 3.52 -26.6 3.54 1.07 2.01
shell model 1 353 -23.3 3.54 1.02 2.00

EXP. 3.76 -31(5) - - -~

Ui AMD 3.79 -29.4 3.75 0.02 2.00
shell modd 3.79 -29.4 3.75 0.00 2.00

—
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Fig.7

Fig.8

Fig.9
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Fig.11

Binding energies of Li and Be isotopes calculated with the Volkov force No.1 (m=0.56)
(a) and the MV1 force (m=0.576) (b). Experimental data are also shown.

Energy spectra of 'Li and °Li calculated with the Volkov force No.1 (m=0.56) (a) and
the MV1 force (m=0.576) (b). Observed spectra are also shown.

Energy spectra of Be isotopes. Calculated results with the Volkov force No.1 (m=0.56)

{a) and the MV1 force {m=0.576) (b) are shown and compared with experimental data.

Root mean square radii of Li and Be isotopes. They are calculated with AMD and
EAMD using the interaction Volkov force No.1 {(m=0.56) (a) and MV1 force (m=0.576)
{b). Squares represent the interaction radii derived from the data of interaction cross

sections [6].

Density of the positive parity state of ! Be calculated by superposing several Gaussians
for the last valence neutron wave function. The solid {dashed) curve shows neutron

(proton) density.

Magnetic dipole moments. The triangle shows the magnetic moment of another neariy

degenerate AMD state. Observed data are shown with squares [37,38].

Electric quadrupole moments calculated with the MV1 force (m=0.576) (triangles).
A circle is the moment of "Li calculated with the improved AMD with the same

interaction. They are compared with experimental data (squares) [37,39].

Matter density distribution of AMD states of Li isotopes. The intrinsic densities before
parity projection are shown. Density is projected to a x-y plane and integrated along

the z-axis perpendicular to the plane. Units of x- and y-axes are in fm.

Matter density distribution of AMD states of Be isotopes. The intrinsic densities before
parity projection are shown. Density is projected to a x-y plane and integrated along

the z-axis perpendicular to the plane. Units of x- and y-axes are in fm.

Spatial configurations of the centers of nucleon wave packets in normal parity states
of Be isotopes. {ReZ/\/v} in AMD are projected to an adequate plane. Circles and
squares with up arrow (down arrow) represent the centers of n 1 ({) and p T (}),

respectively.

Mass number A dependence of the relative distance between two proton pairs of normal



Fig.12

Fig.13

and non-normal parity intrinsic states in Be isotopes. Solid line is for normal parity

states and dashed line for non-normal parity states.

Spatial configurations for the positive parity state of 1! Be. Figure (a) shows {ReZ//v}
of the AMD wave function. Figure (b) shows {ReZ/+/¥} in ®; (b-1) and {ReZ'/\/¥}
in ®5 (b-2) obtained with EAMD. Circles and squares with up arrow (down arrow)

correspond to the centers of n T (}) and p 1 {{), respectively.

Deviation of the total number of oscillator quanta of the AMD state from that of the
simple shell-model wave function. Deviation for proton and neutron orbits is shown
as ANy and AN,, which are defined in the text.
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